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Abstract: This symposium identifies current trends and future directions in research on 

metacognition and Self-Regulated Learning (SRL) in educational technologies, and 

specifically, Intelligent Tutoring Systems (ITS).  Each paper will elaborate on detection and 

assessment of metacognition/SRL, forms of support and scaffolding, and self- and co-

regulation processes and authoring of environments that support ITS. The symposium will 

conclude with discussions that describe the manner in which metacognitive development can 

be promoted through strategies that support individual differences in multiple contexts. The 

alternative perspectives presented in this session will help advance our understanding of 

support for metacognition and SRL in ITS, as well as identify gaps that will influence future 

research pursuits.  

Overall focus of the symposium 
Intelligent Tutoring Systems (ITS) are designed to manage and regulate learning experiences within a specified 

domain. While shown to be effective in helping individuals gain new knowledge and learn problem solving 

procedures, a typical ITS confines its pedagogical approach to the domain material alone, with little emphasis 

on promoting metacognitive learning strategies that are general across domains. Recent research strives to 

enhance such systems through the incorporation of tools and methods that promote Self-Regulated Learning 

(SRL) by incorporating strategies linked to metacognitive awareness and regulation. Metacognition is often 

described as being made up of two constituent parts: (1) Metacognitive knowledge, which is declarative and 

deals with the interplay between knowledge of one's abilities to perform tasks, the nature of the task, and the 

strategies one can employ to successfully perform the task; and (2) Metacognitive regulation, which includes 

activities related to goal selection, planning, monitoring, control, and reflection (Flavell et al., 1985; Schraw et 

al., 2006; Veenman, 2012). Because metacognition involves the explicit management of one’s own cognitive 

resources, there exist strong interrelationships between learners’ metacognitive abilities and their understanding 

of, familiarity with, and effectiveness in executing the cognitive tasks required for success (Bransford, et al., 

2000; Winne, 1996). Thus, tutors in open-ended environments must be able to measure and interpret student 

behaviors at both the cognitive and metacognitive level in order to provide support for both types of mental 

processes (Biswas, et al., 2010; Land, 2000; Kramarski, 2004; Roll, Aleven, McLaren, & Koedinger, 2007). The 

purpose of this symposium is to present current research and perspectives that address this problem space from 

relevant experts in the field. 

This session includes four papers that adopt the common theme of using technology-based instructional 

systems to help students become more independent learners. Presentations will cover research derived from 

models and constructs linked to SRL, modeling and monitoring techniques to gauge students’ cognitive and 

metacognitive abilities, defined strategies and tactics for guiding and improving metacognitive processes,  and 

implications for developing authoring tools to facilitate monitoring, modeling, and scaffolding metacognitive 

processes in an ITS. Collectively, the presentations will be oriented toward discussing pragmatic issues 

associated with supporting metacognition and SRL in ITSs, and how the application of metacognitive strategies 

can enhance learning outcomes as they relate to improved learning performance and transfer. As metacognition 

deals with one’s awareness of the knowledge and regulation of cognition, it is important to understand the 

distinctions between these two parts and how they compliment learning within SRL environments that are open-



ended in nature. In turn, ITS developers need to understand how individuals apply metacognitive strategies to 

fully embed modeling techniques and pedagogical strategies that fit within the theoretical constructs of how 

students regulate resources and emotions when learning. This includes looking at various modeling approaches 

that take into account theoretical foundations associated with a domain, along with methods to monitor actions 

in an environment to identify patterns of successful behavior that may be linked to metacognitive strategies. In 

addition, the use of instructional strategies to improve students’ metacognition must be explored, looking both at 

triggers (i.e., static vs. adaptive) and distinguishing characteristics of strategies as they relate to the varying 

processes linked to learning (i.e., cognition, behavior, motivation, and affect). Furthermore the application of 

ITS technologies outside of academic settings (i.e., K-12) is becoming more prevalent, with a push for systems 

to support simulations in real-world contexts. Student profiles and learner models must now accommodate the 

life-long adult learner. Implications for tailoring systems to support individuals in varying phases of their life 

and career must be identified, as these characteristics will dictate how systems will adapt to aid in the 

development of independent learning skills. In addition to establishing a foundation for how to assess and 

instruct metacognitive behaviors, we describe tools to author these mechanisms into an Intelligent Tutor. 

Paper 1: A Combined Theory- and Data-Driven Approach for Interpreting 
Learners’ Metacognitive Behaviors in Open-Ended Learning Environments 
Gautam Biswas, James R. Segedy, John S. Kinnebrew, ISIS/ Department of EECS, Vanderbilt University 

 

Adapting to learners’ needs and providing useful individualized feedback to help them succeed has been a 

hallmark of most intelligent tutors (Anderson, et al., 1995; Gertner & Van Lehn, 2000). More recently, to 

promote deep learning, critical thinking, and problem-solving skills in STEM disciplines, researchers have 

begun developing tutoring systems that present learners with complex problems and a set of tools for learning 

and problem-solving (Hannafin, 1994; Land, 2000). To be successful in such open-ended learning environments 

(OELEs), learners must be metacognitively aware, apply metacognitive strategies that promote effective 

learning, and manage, coordinate, and reflect on their use of a number of cognitive processes to succeed in their 

learning and problem solving tasks (Bransford et al., 2000; Zimmerman, 2001). A typical learning task may 

combine a number of activities, such as searching for information, interpreting information in the context of the 

learning and problem solving tasks, and applying it to the construction and testing of potential problem 

solutions. This can present significant challenges to novice learners; they may have neither the proficiency for 

using the system’s tools nor the experience and understanding necessary for explicitly regulating their learning 

and problem solving (Chi et al., 1988; VanLehn, 1996). Furthermore, their abilities to reflect on past activities 

and relate them to task outcomes may not be well developed (Schunk & Zimmerman, 1997). Not surprisingly, 

research has shown that novices often struggle to succeed in such complex environments. 

Measuring Metacognition in Open Ended Learning Environments (OELEs) 
Adaptive tutoring systems regularly capture and analyze student activities in order to make decisions about how 

and when to scaffold learners. However, the complexity of OELEs poses considerable challenges to accurately 

interpreting and understanding student behaviors. Traditionally, learning behavior is assessed with top-down 

metrics based on theory and hypotheses about student learning activities in the context of their learning tasks 

(Hmelo-Silver, 2004; Segedy, Loretz, & Biswas, 2013). In recent years, however, bottom-up data mining 

techniques that analyze students' logged activity data have been utilized to discover important aspects of how 

students learn (Kinnebrew, Loretz, & Biswas, 2013). We present a framework for analyzing learning activity 

data in OELEs that combines top-down metrics and bottom-up pattern discovery. This integrated framework can 

be employed to build detailed models of students' learning behaviors and strategies, and subsequently to identify 

opportunities for providing adaptive scaffolds to students as they use the system.  

For top-down, theory-driven analysis of learning behaviors, our framework focuses on (i) the learner's 

acquisition and application of knowledge and information encountered while they perform their task-related 

activities in the OELE and (ii) the impact of these activities with respect to the learning task (e.g., whether an 

action directly resulted in progress toward completion of the task). For bottom-up, data-driven discovery of 

learning behaviors, our framework employs data mining techniques for identifying frequent patterns of action in 

logs of their activity in the environment. Our approach enhances the analysis and assessment of student learning 

behavior by combining these complementary top-down and bottom-up techniques. This allows us to identify 

specific learning behaviors for a group of students, behavior differences between groups that are relevant to 

understanding their approach to learning in the environment, and the connections between specific patterns of 

activity and the relevant skills or strategies for learning and problem solving. More specifically, the theory-

driven metrics are used for evaluating and differentiating instances of the discovered patterns in order to better 

understand whether or not the discovered patterns were used as part of coherent strategies and, if so, which ones. 

The theoretical measures also provide valuable information about individual differences among students that 

may employ the same pattern of actions but in different manners or for different purposes. Therefore, this 



analysis framework provides concrete results in the form of action patterns with associated measures that are 

linked to relevant learning strategies and behaviors. 

Case Study: Application to the Betty’s Brain OELE 
Betty's Brain is an open-ended learning environment (Biswas, et al., 2005) that provides students with a learning 

context and a set of tools for pursuing authentic and complex model building tasks. Students working in the 

Betty's Brain system are expected to apply a number of cognitive skills that relate to the four primary activities 

that the students can perform in the environment: (1) read and understand the science content, (2) translate the 

relevant content into specific causal relations to build the causal map to teach Betty, a computer agent, (3) check 

the correctness of the causal map by asking Betty questions and getting her to take quizzes, and (4) use the quiz 

and question results to identify the correct, incorrect and incomplete parts of the map. Together (1) and (2) are 

referred to as Knowledge Construction skills, and (3) and (4) are referred to as Solution Evaluation skills. 

Building up from the cognitive skills, we hypothesize four categories of metacognitive strategies that students 

need to develop and deploy in the Betty's Brain environment: (1) Goal Setting & Planning, (2) Knowledge 

Construction, (3) Solution Evaluation, and (4) Help Seeking (Kinnebrew, Segedy, & Biswas, 2014).  

An important aspect of our hierarchical task model is its non-linearity; students are expected to 

continually navigate among the cognitive and metacognitive processes as they go about their task of teaching 

Betty a correct and complete map of the domain. Thus, this model also serves as a framework for interpreting 

students' learning activities and activity sequences that we characterize as learning behaviors. This matches 

other approaches (e.g. (Hadwin et al., 2007)) that describe students' evolving metacognition in terms of a 

sequence of events using trace methodologies. The structure of the model also implies that it is unlikely students 

can be effective in metacognitive strategies unless they are proficient in the related cognitive strategies. 

Our analytic framework for analyzing OELE learning activity data comprises extracting sequences of 

canonical actions from log files of student activities, sequential pattern mining to identify common action 

patterns, mapping identified patterns back into action sequences to analyze them with the theory-driven 

measures in the context of the students' other activities, and linking the identified behaviors (described by both a 

sequential pattern of actions and the relevant measure values that distinguish it from other instances of the same 

action pattern) to skills and strategies in the cognitive/metacognitive task model. To assess a student's 

metacognitive regulation, our approach evaluates student behaviors using a measure of coherence called action 

support. Support for a particular student action represents the extent to which it is informed by information 

gained from previous actions. For example, information seeking actions (e.g., reading about a causal 

relationship) can provide support for future solution construction actions (e.g., adding the corresponding causal 

link to the map). Students with higher proportions of supported actions are considered to have a higher mastery 

of strategies for coordinating their use of tools within the environment. 

We present results from analyzing data from recent studies with Betty’s Brain that we have run in 

middle school science classrooms. The results of this analysis provide a foundation for developing performance- 

and behavior-based learner models in conjunction with adaptive scaffolding mechanisms to promote effective, 

personalized learning experiences. 

Paper 2: Assessment and Instruction of Self- and Co-Regulation of Medical 
Diagnostic Processes in Technology-Rich Learning Environments 
Susanne Lajoie and Eric Poitras, McGill University 

 

Broadly speaking, learning is often described in terms of the relationship between what goes on in the mind and 

how the environment influences what is learned. By environment we refer to: the learning materials presented in 

or outside of class; the real or augmented context; the presence and influence of others (human or computer-

supported) be they peers, tutors or teachers, and; the structure of the environment (ill-structured or structured). 

We are seeing an evolution in the constructs of SRL that better articulate the components of the environment 

that need to be considered in defining and supporting SRL. In this paper, we describe BioWorld (Lajoie et al., 

2013), a computer based learning environment (CBLE) in terms of how it supports learners’ SRL of diagnostic 

reasoning processes while solving virtual patient cases.  

Fostering Regulatory Processes in Diagnostic Reasoning with BioWorld 
The social cognitive perspective of SRL states that self-regulation involves cognitive, affective, motivational., 

and behavioral activities that are planned and adapted in order to attain a goal., such as solving a problem 

(Zimmerman, 2000). Problem-solving processes occur in three phases: forethought, performance, and self-

reflection. Self-reflection processes occur after performance efforts, and in turn, influence forethought in 

relation to subsequent steps taken to solve the problem. SRL processes are recursive in that feedback from prior 

performance informs subsequent adjustments efforts (Zimmerman & Campillo, 2003). We apply SRL theories 

to phases of problem-solving processes relevant to domain-specific knowledge involved in diagnostic reasoning.  



BioWorld is designed to foster SRL by supporting cognitive and metacognitive activities that are 

critical in diagnosing virtual patient cases. Forethought processes involve learners’ efforts to orient themselves 

to a patient problem, and plan the necessary next steps. Self-regulated learners activate their prior knowledge of 

disorders in response to relevant information pertaining to the case in an effort to list hypothetical diagnoses. A 

typical learner might then formulate a plan to order a lab test that will confirm the most likely diagnosis, look 

for particular information from the library, or seek external help by asking for a consult. During the performance 

phase, learners execute the steps, and then monitor the outcomes. After receiving the outcomes of a lab test for 

instance, learners determine whether the results are pertinent or non-pertinent to the diagnosis. In doing so, 

learners might determine that their overall understanding of the case improved, or if their test results are 

unexpected, or contradictory, confusion may occur which may lead to a re-evaluation of the plausibility of the 

tentative diagnoses. Self-reflection processes consist of learners’ evaluation of and elaboration on their overall 

progress in problem solving. Self-regulated learners check the relevant evidence and symptoms, while at the 

same time verifying each hypothetical diagnosis. A typical learner connects evidence and relevant information 

by drawing conclusions and updating their confidence in each diagnosis. 

Assessing Novices along the Trajectory towards Expertise 
A learner model is a computational representation of learner characteristics that includes relevant states 

pertaining to knowledge and skill acquisition as inferred through their interaction with the learning environment 

(Shute & Zapata-Rivera, 2012). The representation of relevant learner characteristics is continually updated 

throughout the learning session as they practice their skills. Learner interactions are recorded and analyzed by 

the CBLE with the aim of guiding instruction. Table 1 shows an overview of learner modelling techniques used 

for the purposes of assessing SRL in BioWorld. The current version of BioWorld implements a novice-expert 

overlay model to deliver feedback. This method relies on the comparison of novice actions to the expert solution 

trace. These actions are recorded through the evidence palette, which is designed to assist novices in orientating 

themselves to the problem space (i.e., patient symptoms highlighted in case description, relevant library 

information accessed, lab tests ordered etc.). The feedback palette shows similarities and differences between 

the novice and expert solution paths on these key processes.  

 

Table 1: An overview of learner modelling techniques used to assess self-regulation in BioWorld. 

 

SRL phase Tool description Learner modeling 

method 

Data channels Measures 

  Implemented in BioWorld version 2.1 

Forethought Evidence palette Overlay method Action attributes Log file 

trace 

  Under development for BioWorld version 3.0 

Performance Library  Machine learning 

method 

Action attributes Log file 

trace 

Consult tool Machine learning 

method 

Linguistic attributes Think aloud 

Self-

reflection 

Case summary Machine learning 

method 

Linguistic attributes Log file 

trace 

Feedback 

palette 

Quantitative modelling Affective/Motivational 

attributes 

Self-report 

 

We are using a data-driven approach that uses educational data mining techniques to redesign 

components of BioWorld’s learner model. First, we have created a decision tree classifier that allows BioWorld 

to trace Novice library searches and infer whether the library topics explored leads novices to engage or 

disengage from the expert solution path. Data from the library classification model stands to improve instruction 

through the recommendation of specific topics in the library. Second, we examined the novice think-aloud 

protocols and clustered them based on sequences of cognitive and metacognitive activities, outlined by the SRL 

model, that occur prior to asking for a consult in BioWorld. The cluster model allows researchers to tailor the 

content of hints delivered by the consult tool in response to different profiles of help-seekers.  

Although these models targeted different aspects of task performance, the following tools are designed 

to support novices in reflecting about their own approach to solving the problem. We evaluated the written 

patient case summaries using a neural network classifier to assess disease type and correctness of diagnosis on 

the basis of linguistic features. We plan to broaden the scope of the text classification model to provide novices 

with feedback on the quality of case summary sections and instruction on text writing strategies. Finally, we 

expanded the scope of the SRL model by modelling the impacts of achievement emotions and goals towards 

attention given to feedback in BioWorld. The logic model allows the system to assess learner characteristics 



through self-report, and direct novices’ attention to aspects of the feedback that are most often overlooked by 

learners with a similar profile of characteristics. 

Developing a Community of Co-Regulated Problem-Solvers 
BioWorld serves as a platform to develop a community of practice, using cognitive apprenticeship principles to 

deliver instruction that brings in expertise from outside the classroom to the learning environment. We involve 

expert medical instructors in the case creation and expert knowledge building by having them use CaseBuilder, 

an authoring tool designed to allow domain experts and researchers to modify cases and explore instructional 

activities. Expert problem-solving traces are collected using verbal protocols, and researchers create visual 

representations that converge multiple solution paths for the purposes of validating the case solution. Case 

scenarios are built with medical staff and the case solution is uploaded to the server database, which can be 

uploaded by novices while solving problems with BioWorld. In doing so, instructors can design cases to be 

solved by groups of novices in the classroom, teaching on collaborative strategies that are critical in regulating 

the progress of groups and teams of problem-solvers. Recent advances in conceptualizing the context-specific 

nature of SRL, focusing on group collaboration, stands to better guide instruction (Jӓrvelӓ & Hadwin, 2013; 

Volet, Vauras, Khosa, & Iiskala, 2013). Future research will evaluate the effects of adding new components to 

the BioWorld user model in terms of co-regulating processes involved in solving problems. 

Paper 3: Supporting Self- and Co-Regulation in Intelligent Tutoring Systems to 
Help Students Acquire Better Learning Skills 
Ido Roll, University of British Columbia 

Eliane Stampfer Wiese, Yanjin Long, Vincent Aleven, Kenneth R. Koedinger, Carnegie Mellon University 

 

Providing scaffolding to help students regulate their learning has become an increasing focus within educational 

technologies, and specifically, within ITS. Overall, there is compelling evidence that scaffolding students’ SRL 

can improve their learning gains (Aleven & Koedinger, 2002; Holmes, Park, Day, Bonn, & Roll, 2013; Wood 

and Wood, 1999). In this presentation we aim to extend the theory of SRL scaffolding in ITS by identifying 

three important developments in this area. First, we focus on the objectives of scaffolding. While domain 

learning remains an important objective, a more ambitious goal is to help students acquire better SRL skills and 

attitudes. Thus, the scope of the desired effect should extend beyond the supported environment and associated 

post-assessments to new learning situations. Second, we focus on the role of the scaffolding. Traditionally, the 

discussion around self regulation in ITS is framed either in terms of students’ self-regulation (Winne, 1996), or 

external-regulation by the environment (Azevedo, Moos, Greene, Winters, & Cromley, 2008). However, 

learning in ITS can also be viewed as the emerging outcome of negotiations and interactions between learners 

and the system. We discuss this perspective in terms of co-regulation (Hadwin, Järvelä, & Miller, 2011), and 

investigate its implications on the design of regulatory scaffolding. Last, we discuss the form of the scaffolding, 

where we identify grounded feedback uses (Nathan, 1998; Stampfer & Koedinger, 2013) to implicitly encourage 

students to monitor their progress.  

We ground the discussion on the objectives, roles, and form of SRL scaffolding by focusing on three 

important families of SRL strategies: Help seeking and help giving (Roll, Aleven, McLaren, & Koedinger, 

2011; Walker, Rummel, & Koedinger, 2011); self assessment (Long & Aleven, 2013; Roll, Aleven, & 

Koedinger, 2011); and planning and monitoring (Holmes et al., 2013; Kinnebrew et al., 2013; Stampfer & 

Koedinger, 2012). In conclusion, we argue that these developments enable new modes of SRL support that 

could lead to sustained improvement in students’ learning skills and attitudes.  

From Domain Learning to Metacognitive Learning 
As mentioned above, several successful examples show that students who receive relevant support for their 

learning processes demonstrated better learning outcomes. However, can we aim higher than that? Can support 

for SRL achieve the ambitious goals of helping students learn to regulate their learning, and thus become more 

competent learners?  

We previously proposed a hierarchy of goals for SRL scaffolding (Koedigner, Aleven, Baker, & Roll, 

2009). Support for SRL should first help students apply better learning behaviours within the supported 

environment. Second, it should lead to better domain learning outcomes within the supported environment. 

Third, students should  demonstrate better SRL behaviour in a future learning event without the SRL support. 

Last, the support should lead to improvement in future learning outcomes without the SRL support.  

In recent years, several studies have looked at transfer of SRL behaviours, allowing us to evaluate 

characteristics of SRL support that seek to improve future learning. Roll et al. (2011) gave students adaptive 

feedback on their help-seeking actions in a geometry tutor. They found that students who received feedback 

transferred better help-seeking skills to new topics within the same environment, when no support was offered, 

but not to a new (paper) environment. Long & Aleven (2013) found a similar pattern. After each problem in an 



ITS on linear equations, students were prompted to assess their understanding. While these students 

demonstrated more productive learning behaviours on subsequent problems within the tutored environment, 

they did not transfer their improved self-assessment behaviors to a new environment. Limited transfer of 

improved SRL behaviours was also found in environments that support planning and monitoring. In these 

environments, SRL support for some components of the task led to improved SRL on other, unsupported, 

elements, but so far failed to show significant improvement on SRL strategies in transfer topics, even within the 

same environments (Biswas et al., 2009; Holmes, 2013). Thus, while well-designed SRL support can lead to 

transferable results, the patterns of transfer across tasks, topics, and environments should be further examined.  

From Self- to Co-Regulation 
To date, most efforts to scaffold SRL in ITS have focused on explicitly directing students to apply prescribed 

strategies, mainly through the use of static support. In such cases, regulation of learning could be considered 

Externally Regulated Learning (ERL; Azevedo et al., 2008), as the system chooses the sub goals and strategies 

for the student (e.g., using self-explanation prompts). 

While the constructs of SRL and ERL are useful for discussing learning either from the student 

perspective (SRL) or the system perspective (ERL), they are somewhat less relevant when the regulation 

emerges from negotiations between the student and the system. A similar debate in regulation of groups sparked 

the idea of co-regulation (Hadwin et al., 2011). Here, we would like to extend the use of co-regulation to 

describe ITSs where the learning process emerges from negotiations and interactions between the learner and 

the environment. A good example for that process is the Open Learner Model (OLM; Long & Aleven, 2013; 

Zapata-Rivera & Greer, 2002). In OLMs, learners can view the ITS’s estimation of their skills. Furthermore, 

several examples of OLM engage students in a discussion over desired goals and future activities. Another 

example is the work on peer tutoring (Walker et al., 2011). Rather than defining the interaction process for the 

student, the ITS offers strategies but does not impose them. The actual learning process is the result of 

contributions by the ITS and the two students who engage in the learning process. We argue that considering 

SRL support as a process of co-regulation can inform the design of support mechanisms that give more agency 

to learners and create stronger partnerships between ITS and the students.  

From Explicit to Implicit Support 
While many theories of self-regulation emphasize monitoring and reflection as key components of learning, 

students often fail to engage in these processes. One reason may be the failure of many ITSs to provide 

meaningful opportunities for student reflection. For example, when asked to calculate standard deviation of 

certain data sets, or to add two fractions, how can students know whether their answers are correct? Grounded 

Feedback supports triangulation, as the student can recognize the correct or incorrect application of a to-be-

learned skill by evaluating the system response in alternative, familiar representation (which could be 

situational., visual., or based on already mastered procedures; cf. Natahan, 1998). We demonstrate this process 

using two environments: a fraction-addition ITS that uses graphical representations to help students evaluate 

magnitude, and a data-analysis ITS which uses contrasting cases to give students a baseline with which they can 

make intuitive predictions.  

While Grounded Feedback allows students to monitor their performance, recent classroom experiments 

suggest that this approach is met with only limited success (Stampfer & Koedinger, 2012). A more powerful 

support may combine Grounded Feedback with explicit feedback on students’ use of that information to assess 

their performance. Such feedback follows an intelligent novice model, or “immediate + 1” feedback, as 

feedback is suppressed when students commit domain-level errors (giving them a chance to detect their own 

errors), and is given when students fail to use the grounded clues to successfully make sense of their domain-

level mistakes (Mathan & Koedinger, 2005).  

To summarize, we identify three developments in the landscape of SRL support in ITS. Put together, 

we believe that SRL scaffolding should aim for co-regulation by involving students in the pedagogical 

decisions, and giving students opportunities to monitor their progress. At the same time, the ITS should, like a 

skilled human tutor, intervene when students are off track. These directions could lead to SRL scaffolding that is 

more responsive to students’ interactions with the environment, gives students more agency over their learning 

process, and subsequently, may lead to sustained gains to students’ SRL skills and attitudes. 

Paper 4: From the Classroom to Industry: The Push for Intelligently Guided 
Self-Regulated Training to Support Complex Skill Development 
Benjamin Goldberg, Robert Sottilare, U.S. Army Research Laboratory 

 

The culture of education and training is quickly shifting. Technology is being utilized in the classroom more 

than ever, with new tools and methods completely reshaping how people interact with learning content and 

materials (i.e., interactive e-textbooks distributed to students on Apple iPads; Sloan, 2012). In turn, where 



people learn is also rapidly changing. With enhanced mobile networks that support on-the-go internet access and 

the availability of advanced light-weight portable computers, someone can conceivably learn and train from 

anywhere in the world. This is leading to a culture based around the self-regulation of learning, especially within 

industries like medicine and the military that value continual on-the-job training for skill development. In this 

context, ITSs are being defined as major focal points in regulating interaction and instilling metacognitive skills 

to support future training opportunities (TRADOC, 2011). This is based on empirical evidence in the learning 

sciences community showing the benefit of training metacognitive strategies and their subsequent impact on 

future learning outcomes (Koedinger, Aleven, Roll, & Baker, 2009; Poitras, Lajoie, & Hong, 2012; Roll, 

Aleven, McLaren, & Koedinger, 2011). The challenge is overcoming barriers linked to authoring such systems 

(Sottilare, Goldberg, Brawner, & Holden, 2012). At the current moment, authoring systems that support SRL is 

time consuming and requires expertise. Can tools and methods be employed to streamline the authoring of 

environments that take into account metacognitive functions? 

From this perspective, there are two fundamental problems that must be addressed. First, military and 

industry training domains are extremely volatile in nature, with continual changes in task procedures as the 

result of advancements in technologies and techniques. With a change in task execution, an effective ITS must 

be able to accommodate shifts in procedural knowledge so as to continue providing efficient performance 

assessment and feedback. This needs to be accomplished without completely overhauling a system to account 

for new domain information. Next, with the role of the instructor being redefined in a SRL culture, there is a 

large burden placed on the student to regulate their training experience. This requires planning, executing a set 

of actions, monitoring and assessing performance, recognizing error, troubleshooting potential solutions, and 

identifying cause and effect as it relates to the context of the experienced problem (Zimmerman & Campillo, 

2003). Especially with tasks that evolve over time, focusing instruction to improve cognitive processes and 

promote higher-order thinking, rather than improve task-specific procedures, is needed.  

As such, research is required to identify streamlined processes that produce ready to use ITSs that are 

metacognitively aware outside of the laboratory setting. To further deconstruct these challenges, the authors will 

provide a comprehensive overview of the current gaps in ITS authoring that must addressed before training 

communities buy-in to adaptive training technologies. These include: (1) putting intelligent authoring tools in 

the hands of the instructor to create ITS-embedded training, (2) development of a systematic method of 

processes and standards to author such functions, and (3) providing sound pedagogical methods based on 

empirical evidence to enhance an individual’s ability to regulate their own learning experience. These identified 

challenges will serve as the focal point of the discussion, where we examine current work surrounding authoring 

issues linked to SRL in post-academic training spaces and the role metacognition plays in pedagogical planning. 

The Generalized Intelligent Framework for Tutoring (GIFT): Putting Authoring in the 
Hands of the Instructors 
Authoring ITSs to aid in metacognitive development across training-based industries is a challenge that must be 

addressed. Training environments for military and industry relevant domains are often drastically different from 

the academic settings ITSs are typically applied within. Much of the training in job-related instances focuses on 

specific tasks and procedures that require proficiency before they can be fully conducted under proper 

operational contexts. In addition, how tasks are conducted depend largely on context, which is often ill-defined 

in nature. Thus, performing a task under one context may differ greatly from performing the same task under a 

different set of conditions. Therefore, a focus of instruction needs to be based on developing strategies to 

improve how individuals monitor performance, troubleshoot complications, and regulate attentional resources, 

rather than solely on executing task procedures. This will improve an individual’s ability to self-regulate their 

future learning, as well improve how they conduct and adapt procedures based on reflections of actions taken.  

The current issue is that building ITSs is expensive, labor intensive, and requires expertise across a 

number of disciplines (Murray, 1999; Sottilare, Goldberg, & Durlach, 2011). They are also commonly built as 

stand-alone solutions to a specific program, offering minimal reuse for future applications. Tools need to be 

developed that address these gaps and enable instructors to build and modify ITS model components that can be 

plugged into any training application available. This requires standardized methods and processes to build tutors 

from, along with an intelligently guided authoring process to assist instructors in building core components. 

Existing tools are available for standardized authoring of ITSs linked to cognitive example-tracing and 

constraint-based modeling techniques. These include Carnegie Mellon’s Cognitive Tutor Authoring Tools 

(CTAT; Aleven, McLaren, Sewall, & Koedinger, 2006) and University of Canterbury’s ASPIRE Authoring 

Tool (Mitrovic et al., 2008). They provide a generalized authoring environment, but lack elements linked to 

interactive simulation-based training systems such as gaming platforms commonly used in industry training.  

The U.S. Army Research Laboratory (ARL) is currently addressing this problem. ARL is in the process 

of developing the Generalized Intelligent Framework for Tutoring (GIFT), an open source domain-independent 

architecture that provides standardized approaches for authoring, delivering, and evaluating ITS components 

and functions (Sottilare et al., 2012). Essentially, GIFT is a set of tools and standards used to author ITS 



solutions to promote and accelerate learning, regardless of the task being trained (Sottilare & Goldberg, 2013). 

What GIFT provides is a modular approach to ITS development, enabling a swap and play capability, which 

promotes reuse of standardized modeling techniques designed to accommodate any instructional domain. Where 

GIFT needs to shine is in compensating for the expertise and knowledge a particular author or instructor lacks. 

This requires tools that aid an author in modeling a domain to the parameters set forth by GIFT standards, 

developing assessments and triggers associated with the modeled domain, and identifying instructional 

strategies to utilize when triggers are activated.  

The caveat is that all of these processes need to be defined in a generalized fashion so that they extend 

across domain implementations. Currently, GIFT monitors performance through an ontological representation of 

a domain by expressing objectives and concepts in a relational hierarchy. For each concept identified in the 

hierarchy, an assessment is authored that designates metrics linked to competency. These metrics are used to 

produce a learner state for each defined concept, which is used by the pedagogical model to inform guidance 

functions. From there, GIFT makes informed pedagogical recommendations on a domain-independent level 

(e.g., provide hint, provide prompt), leaving it to the instructor to author that strategy as an actionable tactic 

(Goldberg, Brawner, Sottilare, et al., 2012). In this instance, a developer authors multiple levels of tactics 

enabling the system to vary the level of detail provided in feedback messages based on individual differences 

associated with a learner. In the event that a system requires updates to task procedures, tactic definitions for 

each affected concept will need to be updated. This can be a taxing process on the course administrator if the 

task is modified on a regular basis. The same process can be said for supporting metacognitive tutoring. SRL 

behaviors require representation in GIFT’s domain model that enables tracking of user interaction. This allows 

building rules to determine proper and improper execution. The goal would be to support the methods described 

above from the various authors. These determinations are used by the pedagogical model to enact a designated 

intervention; however, where metacognitive prompts differ is in their representation. They can be represented as 

standardized prompts that can be maintained across domains, without required edits. 

Metacognition and Domain-Independency 
As described above, GIFT works with system authors by providing instructional strategy recommendations, 

which are then translated into tactics as they relate to the training context. These tactics are used during ITS 

runtime and are selected based on a learner’s individual differences. At the current moment, feedback in GIFT is 

domain dependent and requires explicit content linked to each concept modeled. When it comes to 

metacognitive feedback, what are the implications to a domain-independent approach? First, modeling 

techniques, such as the one presented in Biswas et al.’s paper, need to be developed to monitor an individual’s 

practice of metacognitive strategies that can be expressed in a generalized format. Another example would be 

incorporating a help-seeking model, as highlighted in Koedinger et al. (2009). Researching and establishing 

models based around commonly available GIFT interactions (e.g., request hint button) can be used to build 

theoretical representations of how effective students use the interface to solve problems and troubleshoot errors. 

Depending on the domain, an assessment model will need to be generated that associates cognitive and 

metacognitive processes with task execution. This can be used to establish an assessment model for detecting 

learners exhibiting poor metacognitive behaviors, and is used to trigger feedback interventions to improve 

subsequent behavior. With support for applying varying modeling techniques, generic tactics can be identified 

that are based around effective metacognitive behavior, and should be based around learning theory identified 

by Roll et al. and Lajoie & Poitras. While tactics can be represented in a domain independent format, monitoring 

how a learner adapts their behaviors as a result of the intervention is an open question, and is dependent on the 

modeling approaches being applied. 

 In summary, we identify the desire from military and industry-based training communities to 

incorporate technologies to enable SRL. With technology being utilized more than ever for this purpose, using 

ITSs to monitor and improve metacognitive behaviors can greatly enhance the learning. To streamline this 

development, authoring needs to be taken out of the lab and put in the hands of those using the tools.  
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