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Preface 

The purpose of this workshop is to examine current research within the ITS com-

munity focused on instructional management within educational technology, and to 

conceptualize its application in a domain-independent authoring environment, such as 

the Generalized Intelligent Framework for Tutoring (GIFT). The goal of this topic is 

to recognize the various factors associated with instructional management in ITSs, the 

types of strategies being applied in today’s use cases, and current trends being re-

searched by the field. This topic is of particular interest to the open-community of 

researchers currently involved in the development of GIFT, which provides a stand-

ardized environment to author and deliver adaptive functions in computer-based 

learning environments. For GIFT to be fully embraced by the ITS community, the 

architecture must be flexible enough to accommodate varying pedagogical strategies 

deemed useful by the field. This includes both individualized and collaborative team-

based instruction. With that said, this is a critical time in GIFT’s development, as 

standards and processes are still being defined. As such, this workshop provides a 

forum for the ITS community to influence future development of GIFT by defining 

functions and processes they would like to see supported. 

This workshop closely aligns with the theme of ITS 2014, “Creating Fertile Soil 

for Learning Interactions.” With the focus of the event on the research and application 

of instructional strategies across today’s ITSs, the findings will help guide future de-

velopment of GIFT modules and standards used to manage and regulate instructional 

practices. A key advantage of a generalized approach to ITS development (and GIFT 

in particular) is defined standards that warrant high potential for reuse across educa-

tional and training domains, thus creating the fertile soil necessary to produce effec-

tive learning experiences in a stream-lined and cost-effective manner.  

The workshop is divided into three themes: (1) instructional management on a 

cognitive level; (2) instructional management on an affective level; and (3) instruc-

tional management in the context of team-based instruction. The themes include pa-

pers that address relevant pedagogical practices that are found to impact the effective-

ness of ITS applications.  
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What Makes an Effective Pedagogical Model? 

Benjamin Goldberg
1 

1United States Army Research Laboratory 

Human Research & Engineering Directorate 

Simulation & Training Technology Center, Orlando, FL 32826 

{benjamin.s.goldberg.civ}@mail.mil 

Abstract. In this paper we will provide a perspective overview on what makes 

an effective pedagogical model. The overview will be grounded in work being 

conducted by the U.S. Army Research Laboratory and their current GIFT (Gen-

eralized Intelligent Framework for Tutoring) architecture under development. 

An objective of GIFT is to capture best practices and lessons learned from in-

structional strategy research. These best practices will be encapsulated within 

GIFT’s pedagogical module and will be used to inform authoring decisions dur-

ing system development. This paper will be used to present the problem space 

and to identify variables that dictate instructional management decisions.  

Keywords: Instructional Management, Strategy Recommendation, Pedagogical 

Modeling, Adaptation, Personalization 

1 Introduction 

Pedagogical modeling is associated with the application of learning theory and is 

based on variables empirically proven to influence outcomes [1]. It involves deter-

mining what to teach and how to teach it given a learner and desired end goal-state. 

According to Beal and Lee [2] the role of a pedagogical model is to balance the level 

of guidance and challenge during a learning event so as to influence performance and 

interaction, while maintaining student engagement and motivation. Conceptually 

speaking, a system should be designed to challenge a given learner just beyond their 

ability with guidance functions built within to support experienced impasses and mis-

conceptions. Yet what does this mean from an operational standpoint? A pedagogical 

model, in a run-time instantiation, makes informed instructional decisions based on 

data known about the learner and functions supported by the learning environment. 

The goals associated with recognizing components and processes that make up an 

effective pedagogical model are influenced by current work involving the GIFT 

(Generalized Intelligent Framework for Tutoring). GIFT is being developed as an 

open-source domain-independent architecture that provides the tools and methods to 

author, deliver, and assess adaptive instructional materials [3]. Another major goal 

associated with the architecture is extending its application outside of a laboratory 

setting and into the hands of educators and trainers. The intent is to enable course 

developers to apply intelligent tutoring practices into existing materials through 
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standardized tools and messaging protocols. This user base is expected to be well-

versed in the knowledge and skills associated with a given domain, but lack many of 

the technical abilities necessary to develop a mature adaptive instructional program. 

With that said, GIFT requires baseline functionalities that are intended to guide au-

thoring processes, both from a programming standpoint as well as from an instruc-

tional design standpoint. From this perspective, an ongoing effort linked with GIFT 

development is encapsulating best-practices into an over-arching domain-independent 

pedagogical model that will guide and influence authoring of run-time decisions. This 

model is called the engine for Macro-/Micro- Adaptive Pedagogy (eM2AP) [3]. 

The design and implementation of the eM2AP is still in early stages, and we are 

seeking critiques on proposed approaches and guidance on missing functionality. 

With respect to this workshop, we are presenting a conceptual framework of the vari-

ous components an effective pedagogical model would manage. These include: (1) 

managing course flow; (2) managing knowledge assessment; (3) managing focused 

remediation; (4) managing practice opportunities; (5) managing guidance; (6) manag-

ing challenge; and (7) managing learner affect and motivation. 

2 Adaptive Components of  the engine for Macro-/Micro-

Adaptive Pedagogy (eM
2
AP) 

From the traditional sense, a pedagogical model serves two primary functions. It 

manages both an outer- and inner-loop of instructional strategy selection, with each 

serving a distinctly different purpose during system run-time. In the case of outer-loop 

pedagogy (i.e., macro-adaptation), adaptive logic is applied to determine what is to be 

experienced by a learner and the sequence of its interaction. Depending on how an 

individual is performing and feeling during a lesson, the outer-loop will adjust the 

flow of instruction and practice based on metrics associated with competence and 

affect. In terms of inner-loop pedagogical functions (i.e., micro-adaptation), strategy 

selection is focused on real-time feedback intended to influence performance behav-

iors and scenario/problem adaptations to maintain appropriate challenge levels. From 

this perspective, a pedagogical model is designed to facilitate Vygotsky’s Zone of 

Proximal Development (ZPD) [4]. These distinctions in pedagogical practice are 

managed by the components of instruction listed above. In this section, we define 

each component and how the eM
2
AP is being built to support their processes.  

The eM2AP is GIFT’s first domain-independent contribution to the pedagogical 

module. Its design is based on sound instructional design principles and adaptive 

strategy selection logic informed by available empirical evidence in the literature. The 

overarching goal of the eM2AP is to provide a pedagogical framework that enables a 

course developer to easily establish adaptive course flow and guidance by enacting 

available techniques supported in the GIFT architecture. This multi-representation of 

what makes an effective pedagogical model serves as a guiding function in determin-

ing architectural design approaches to support each component. To this effect, the 

eM2AP is being built in multiple phases, with each providing a new functionality that 

improves the overall adaptive capability of GIFT.  
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2.1 Managing Course Flow 

An effective pedagogical model is designed to provide personalized learning experi-

ences across an array of course materials. In the instance of a complete distributed 

learning experience, a pedagogical model is responsible for presenting relevant in-

formation about a domain, assessing an individual’s understanding of the concepts 

and relationships inherent to that domain, and structures and guides deliberate prac-

tice opportunities for skill development. One important outer-loop function is manag-

ing a learner’s flow of interaction across these instructional events with content and 

guidance based on their current ability levels. 

One well-received instructional technique that can guide outer-loop course flow 

management in an Intelligent Tutoring System (ITS) environment is mastery learning 

[5]. Mastery learning, from the ITS perspective, is based on a set of instructional pro-

cedures to assist a learner in mastering a set of course objectives. In most cases, this 

involves establishing an ontological representation of concepts for a domain. This 

representation highlights concept dependencies and prerequisites that ultimately guide 

content delivery. The notion is that a learner must show comprehension of a prerequi-

site concept before continuing on. 

In the instance of GIFT’s course management, a challenge is creating a pedagogi-

cal framework that supports the mastery learning technique. In reviewing the work 

surrounding instructional system design theory, David Merrill’s work on the Compo-

nent Display Theory (CDT) was recognized as a potential guiding benchmark for 

establishing a domain-independent structure of course elements [3, 6]. The CDT dis-

tinguishes course materials across a 2x2 matrix of varying content and presentation 

modalities. This simplified structure can assist in deconstructing a domain into its 

constituent parts that ultimately can be used to inform adaptive course flow across a 

set of learners. In essence, CDT describes a lesson structure around four fundamental 

piece parts. These include: (1) presenting facts and rules about a domain (rules quad-

rant), (2) presenting structured examples of the application of those facts and rules in 

a real-world context (examples quadrant), (3) assessing a learner’s understanding of 

the facts and rules (recall quadrant), and (4) allowing a learner to apply those facts 

and rules in a practice environment for the purpose of skill development (Practice 

Quadrant; see Figure 1 for a visual representation of CDT in a GIFT lesson). 

The CDT is currently being coded into the eM
2
AP as a framework to build course 

interaction around. The four quadrants of Rules, Examples, Recall, and Practice estab-

lish a generalized course flow that is designed to operate on authored metadata de-

scriptors. The metadata is used to define what quadrant specific instructional materi-

als associate with, along with variables (i.e., difficulty ratings and individual differ-

ences) that will influence the type of learner those materials will be targeted towards. 

This provides the ability for an author to personalize learning experiences by desig-

nating certain materials and interactions for a particular type of individual, while 

maintaining a structure appropriate for mastery learning. This structure also influ-

ences how the other components of instruction identified above will be represented in 

the eM
2
AP. 



4 

 

 

Fig. 1. Component Display Theory Represented in GIFT Lesson Flow   

2.2 Managing Knowledge Assessment 

An effective pedagogical model is designed to manage robust assessment practices so 

as to determine competency across a set of concepts linked to a domain. This ap-

proach to assessment is aimed at evaluating a learner’s understanding of a domain as 

it relates to the dimensions of knowledge highlighted in Bloom’s Taxonomy [7]. We 

attribute the management of knowledge assessment to outer-loop pedagogy, where a 

system will generate a set of assessment materials that will provide a granular snap-

shot of an individual’s comprehension for a set of interrelated concepts. It is the peda-

gogical models job to determine the form of assessment along with the criteria for 

scoring responses. This management is important as it provides valuable information 

used to identify a concept that requires remediation, and the extent of understanding 

an individual has that will dictate the type of remediation to deliver.  

Managing knowledge assessment in the eM
2
AP is dependent on a linkage between 

the pedagogical module and GIFT’s Survey Authoring System (SAS). The SAS is 

web-based authoring tool that allows a user to create surveys out of a bank of ques-

tions, and allows that user to define the context for which a survey will be used. With 

respect to managing knowledge assessment, both the SAS and the eM
2
AP are being 

modified to support autonomous assessment creation. This capability enables a user to 

create a bank of domain relevant questions in the SAS, link each question to a concept 

that is being trained by GIFT along with an associated difficulty rating, and establish-

es logic for selecting questions and scoring responses. An example is when learner A 

enters the recall quadrant of the CDT for concepts X and Y, the eM
2
AP requests a 

specified amount of questions for each concept and for each difficulty rating. Re-

sponses to a set of questions with varying ranges of complexity is used to gauge a 

learner’s knowledge level for that set of concepts and guides remediation practices 

described below. Knowledge assessment can also be administered at other times dur-

ing a learning event, and can serve different approaches to gauging comprehension, 
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such as asking a learner to summarize a concept or to reflect on the interactions of a 

previous event. 

2.3 Manage Practice Opportunities 

An effective pedagogical model is designed to manage practice opportunities that 

optimize time on task and promote skill development through interaction. In compar-

ing knowledge assessment to practice, the main distinction from our perspective is 

knowledge assessment deals with what we term as ‘checks on learning’. This form of 

assessment is provided at designated times to check on an individual’s comprehension 

and to assess cognitive understanding for conducting procedures and solving prob-

lems. It is the management of practice opportunities that allows a learner to apply the 

knowledge and skills covered in a lesson across novel problems and contexts. This 

management is an outer-loop function in that it determines the type of practice oppor-

tunity to deliver and directs subsequent problems and scenarios based on a learner’s 

state information. 

Practice opportunities in the eM
2
AP are being designed around common use case 

examples, and map to the practice quadrant of the CDT. In the aim of providing adap-

tive training, there are two notional examples of interaction. The first involves 

blocked practice (i.e., drill and kill) that incorporates a large set of scenarios/problems 

of varying difficulty, where the eM
2
AP manages problem selection based on gauged 

learner competency reported by the learner model. The goal is to adjust complexity of 

the practice in an outer-loop capacity by dictating what is presented to the learner next 

and designating when practice is complete. This conclusion is based on when a con-

cept is recognized as needing remediation or a learner has shown mastery levels of 

performance. The other instance of practice involves a single scenario, most common-

ly involving game-based applications, that requires a learner to perform a set of task-

related procedures that are modeled within a virtual environment. While the selection 

of a scenario is limited to a single event, many of these game-based environments 

enable scenario configurations that manipulate the difficulty and complexity of a 

problem by adjusting the presence and behaviors of available entities.   

2.4 Manage Remediation Practices 

An effective pedagogical model manages remediation practices by assisting learners 

in correcting misconceptions and bypassing impasses experienced during a learning 

event. An effective ITS indentifies persistent misconceptions across a domain, diag-

noses a cause for each misconception and implements remedial methods to repair it 

[8, 9]. This either involves an outer-loop instance of remediation where a pedagogical 

model will manage the delivery of supplementary content intended to assist a learner 

in better understanding a topic, or it is an inner-loop instance of remediation in the 

form of a hint or instructional prompt aimed at providing instant remedial content. For 

the purpose of the paper, we designate the management of remediation practices to be 

associated with outer-loop adaptation, while the inner-loop remediation support will 

be described in the next section on managing tutorial guidance.  
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In terms of outer-loop remediation, the goal is to direct a learner to a source of in-

formation that will assist them in recognizing their error and correcting any mental 

model linked to that concept. The eM
2
AP is being designed to support outer-loop 

remedial logic that enables an author to dictate how a learner transitions through a 

corpus of material based on student knowledge assessments and practice opportunity 

outcomes. This logic is based on the CDT and is focused on redirection to a rule or 

example quadrant for a concept when requested by the pedagogical model.  

This outer-loop instance can take many forms. An initial approach is the idea of a 

system introducing a number of concepts to a learner before they are given the oppor-

tunity to practice their application. For this instance, an author may apply various 

checks on learning throughout the process to gauge a learner’s cognitive understand-

ing. When a misconception is identified, the system can adapt training by providing 

new material that covers the same concept, either by presenting a new representation 

of concept rules or by displaying a new example, with a hope that there is information 

in there to help correct the present error. The other approach is based off of perfor-

mance information made available following a practice opportunity. If a training ap-

plication can provide granular performance assessment so as to identify root causes of 

error, the eM
2
AP can redirect a learner to the rule or example quadrants to review the 

concept identified as below expectation.    

2.5 Manage Guidance 

An effective pedagogical model manages tutorial guidance through system-initiated 

and student-initiated guidance requests. For both instances, this form of pedagogy is 

an inner-loop implementation in that learner-ITS communication takes place during a 

single learning event within a lesson. In terms of guidance, interventions are used to 

serve various components associated with the learning process (i.e., cognitive, meta-

cognitive, and motivational), resulting in multiple functions for the purpose of regu-

lating interaction. This includes guidance that provides a reinforcing function, an 

informing function, and/or a guiding or steering function [10]. Ideally, guidance on a 

cognitive level provides a learner with just-in-time information that assists them in 

attaining task goals as dictated by the type of learning event being experienced.  

For student-initiated guidance, a learning environment requires resources a learner 

can use to seek additional information pertaining to a concept or to engage the tutor 

for assistance on how to proceed. Much of this interaction is based on a learner’s 

metacognitive ability in recognizing resources available for assistance and knowing 

when best to use them. As for system-initiated guidance, the learner model is the in-

put source for pedagogical decisions and provides real-time performance information 

on a concept by concept level. Dependent on the learner, the type of system-initiated 

guidance delivered should be adapted to better serve the ability levels of a given indi-

vidual. This includes adapting the timing of feedback (i.e., what type of error consti-

tutes the presentation of a guidance message) and the specificity of feedback (i.e., 

what type of content to provide in the guidance message). This is attributed to scaf-

folding techniques where the level of guidance is reduced as a learner exhibits more 

competence in a domain [11].  
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For the eM
2
AP, guidance can be associated with each quadrant within the CDT. 

The goal of the eM
2
AP is provide principles and heuristics for guidance delivery, and 

is intended to assist an author in establishing these practices in the context of their 

educational system. Student-initiated requests are most often attributed to help-

seeking behaviors, where a learner recognizes their own impasse and actively seeks 

assistance. This can take place in any of the CDT quadrants. In terms of system-

initiated feedback, the system is dependent on learner state information, which is only 

available in the recall and practice quadrants, unless it is informed by affect related 

information, which will be discussed below. 

2.6 Manage Challenge 

An effective pedagogical model is designed to manage the challenge level associated 

with an instructional event so as to influence learning and skill development by main-

taining desirable difficulties during interaction. This type of pedagogical management 

is linked with both inner- and outer-loop adaptation. Managing challenge on a macro-

adaptive capacity was highlighted in the managing practice opportunities, where as in 

this subsection, we discuss a model’s ability to adapt challenge in real-time during a 

practice event. Specifically, this interpretation of challenge management is associated 

with practice environments that can have elements that can be manipulated in real-

time by an ITS. An example is a game-based training environment in the military. 

Managing challenge levels could involve increasing or reducing the number of oppos-

ing forces, changing the weather conditions, or adding or removing distracters in the 

environment. The type of intervention that can be executed in this type of adaptation 

is dependent on options inherent to a selected training application.  

In the eM
2
AP, challenge is controlled by allowing an author to establish ‘scenario 

adaptation’ requests based on learner state information. These adaptations associate 

with both cognitive information (i.e., a practice scenario proving to be too easy or 

difficulty for a learner) and affective information (i.e., a learner is getting bored or 

frustrated during a practice scenario). In terms of establishing a set of heuristics that 

guide real-time challenge management, there is a lack of empirical evidence on how 

to handle this form of inner-loop pedagogy. Ideally, an ITS manages both guidance 

and challenge simultaneously through theoretical underpinnings linked to ZPD [4].  

2.7 Manage Learner Affect and Motivation 

An effective pedagogical model is designed to manage and influence a learner’s af-

fective state and motivation during an educational event. This form of pedagogy ac-

counts for a learner’s behavioral and physiological reaction to an event, and can dic-

tate both inner- and outer-loop adaptations. These adaptations are dependent on the 

learning event being experienced and the state assessed by the ITS. In the instance of 

knowledge delivery, if a system can gauge a learner is getting bored while reading a 

passage, an ITS can intervene and provide new material on the same concept with the 

hope that it will re-engage the individual. In the example of a practice opportunity, 

there are many more options. If a learner is assessed as being bored during a scenario, 
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the pedagogical model can increase the challenge. If a learner exhibits signs of frus-

tration, the pedagogical model can provide guidance to assist the learner or it can 

reduce the challenge to better suit the individual’s ability levels. The pedagogical 

model can also inform what to provide following practice based on affective states 

experienced during the interaction. There is an abundance of research on how to ef-

fectively model a learner’s affective state, but there is little work on how best to use 

that information to inform pedagogical interventions. 

To assess affective state that is communicated to the eM
2
AP, GIFT includes a sen-

sor module that takes in behavioral and physiological markers and outputs state de-

terminations based on present classifiers. This state is combined with a learner’s per-

formance state in the learner model, which is then communicated to the eM
2
AP. Cur-

rently, the eM
2
AP can perform inner-loop adaptations based on affective information 

by executing a guidance function or adjusting challenge levels. Eventual work will be 

conducted so affect can influence outer-loop decisions on what will be presented next. 

3 Conclusions and Future Work 

In this paper, we present the components and processes being used to guide the devel-

opment of GIFT’s first domain-independent pedagogical model, the eM2AP. It is 

believed these components provide a framework to structure processes and functions 

that the architecture must be able to support. While much of the work is presented on 

a conceptual level, many of the functions described are currently available in the lat-

est release of GIFT. While the functions themselves are available, how best to imple-

ment them is an open research question. The factors of interest include the types of 

pedagogical decisions a developer faces when creating a system (i.e., inner- and out-

er-loop adaptive strategies), the variables and modeling techniques used to trigger a 

defined strategy, and the requirements for its implementation within a specific learn-

ing context and environment [3, 12, 13]. In terms of future research, areas of explora-

tion include curriculum sequencing, preventing system gaming behaviors, open stu-

dent modeling techniques, using worked examples, learning through tutorial dialogs, 

and learning by teaching methods. 
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Abstract.  Although research on human tutoring highlights the importance of a 

high degree of interactivity between the tutor and student, some instructional 

strategies that could be carried out interactively are implemented didactically in 

tutoring systems.  This is especially true of summarization, a ubiquitous instruc-

tional strategy.  We investigated summarization during human tutoring in order 

to determine how to refine decision rules that specify when and how summari-

zation takes place in a tutoring system so that these rules can be made more in-

teractive and adaptive.  We describe the informational requirements for carrying 

out these rules and implications for developing an authoring framework that can 

provide this information to a dialogue management system.   

Keywords:  human tutoring, natural-language tutoring systems, instructional 

strategies, summarization, authoring frameworks, GIFT, TuTalk, Rimac 

1 Introduction 

Several researchers have proposed that the large effect sizes of human tutoring can be 

attributed to its interactive nature—that is, the high degree to which the student and 

tutor respond to and build upon each other’s dialogue moves [1], [2]. However, an 

important line of research conducted to test this interaction hypothesis shows that it is 

neither how much interaction takes place during automated tutoring that is important, 

nor the granularity of interaction. Instead, what matters most is how well the interac-

tion is carried out—for example, what content the tutoring system addresses, when 

(e.g., in the context of which activities?) and how (e.g., using which tutoring strate-

gies? delivered through which types of media?) [3, 4]. In other words, interactivity 

during tutoring needs to be carefully managed.   

These important findings present several challenges to learning scientists and de-

velopers of natural-language tutoring systems.  First, we need to determine which 

tutoring strategies are effective and for which types of learners. Second, because tu-

toring is essentially a linguistic process, we need to identify specific linguistic mecha-

nisms that carry out these strategies.  Several studies in the past decade have identi-

fied inctive dialogue patterns during tutoring whose frequency predicts positive learn-

ing outcomes (e.g., [5, 6]).  Third, we need to specify decision rules that can guide a 

tutoring system in carrying out pedagogical strategies adaptively. 

mailto:pjordan%7d@pitt.edu
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Table 1. Example of a post-problem reflective dialogue in Rimac 

Problem: A kangaroo can jump about 2.5 m straight up.  What is the magnitude of the take-

off velocity? 

Reflection Question:  At what time during the jump (from the moment it leaves the ground 

to the moment it reaches the top of the jump) is the kangaroo moving fast-

est?  

 

S = student; T = automated tutor (… = deleted dialogue) 

S1: at the highest point (incorrect response) 

Remedial dialogue implements Rule 3 in Table 2: 

T2: Let’s step through the reasoning. What is the magnitude of the kangaroo’s velocity at 

take-off?   

S3: .54m/s 

T4: Good.  Does the kangaroo’s velocity change over the course of its upward jump or does 

the velocity stay the same? 

S5: it gets smaller (correct response) 

T6: what physics quantity represents change in velocity over time? 

S7: acceleration (correct response; triggers Rule 3) 

T8: Correct! Acceleration represents the change in velocity over time.  In this case the ac-

celeration is caused by gravity. This acceleration is pointing downward and it causes the 

kangaroo’s upward velocity to get smaller… 

End-of-tutoring summary 

T9: To sum up, the kangaroo’s velocity is greatest at take-off.  It slows down as the kanga-

roo rises, until its velocity reaches 0 m/s at the top of the jump.  Acceleration causes this 

change in velocity (velocity slows down to 0 m/s) and the acceleration is due to gravity. 

Our research team has been addressing these issues in the process of developing 

Rimac, a natural-language tutoring system that scaffolds students in acquiring a deep 

understanding of physics concepts and principles, by engaging them in qualitative 

“reflective dialogues” after they solve problems and study worked examples [6]. (See 

Table 1.)  Our goal is to specify tutoring decision rules that are empirically supported, 

domain independent, and more intuitive than those produced using automated ap-

proaches such as reinforcement learning (e.g., [3, 4]).  Rimac’s dialogues were devel-

oped using TuTalk, a dialogue development “toolkit” which has been used to build 

natural-language tutoring systems in various domains [7].  

Our approach to deriving an initial set of decision rules to implement in Rimac can 

be summarized as follows. (See [6] for more detail.) We first identified patterns of 

collaborative dialogue exchanges in a large corpus of physics tutoring transcripts: 310 

live tutoring sessions, in which one of seven tutors was paired with fifteen students.  

Interaction between the tutor and student was via teletype.  We then conducted corre-

lational analyses to identify relations whose frequency predicts positive learning out-

comes and examined aptitude-treatment interactions.   We described the context in 

which these potentially effective dialogue patterns typically occur and specified deci-

sion rules that capture relevant triggering conditions.  We then implemented simpli-

fied versions of these rules within Rimac and are currently evaluating the system to 

determine whether these rules support learning—collectively, individually, and/or in 

groups defined by the tutorial strategy that they carry out.  Table 2 shows a sample of 

these decision rules, expressed informally.   
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Table 2. Examples of tutoring decision rules to guide summarization in Rimac 

End-of-tutoring “recap”: 

1. IF <student response to problem or tutorial dialogue question = correct> 

AND <amount of steps or dialogue leading to response = medium or high> 

 Recap line of reasoning that led to correct response 

Summaries during tutoring: 

2. IF <solution step or student response to tutorial dialogue question = correct> 

AND <amount of tutor scaffolding moves leading to response = 0> 

 Recap line of reasoning that led to correct response 

3. IF <current tutoring state = remediation> 

AND <student response to current  tutorial dialogue question = correct> 

 Recap line of reasoning that follows from student response 

4. IF<student response to problem or tutorial dialogue question = incorrect or partially 

correct> 

 Summarize line of reasoning that leads to correct response 

OR scaffold student through main line of reasoning 

These decision rules implement summarization—in particular, encapsulation of the 

line of reasoning that leads to a solution to a problem or answer to a question asked 

during tutoring, or that stems from a given problem-solving step.  Our correlational 

analyses revealed that different types of line-of-reasoning summaries, as represented 

by these rules, predict learning [6].  For example, exchanges in which one dialogue 

partner (tutor or student) provides the steps in a line of reasoning that stem from, or 

lead to, a solution step expressed in his partner’s turn predicted learning across ability 

levels (R=.65, p<.01), while tutor prompts for the student to summarize the reasoning 

that led to a correct answer to a problem or tutorial dialogue question predicted learn-

ing among high-knowledge students (R=.83, p<.05).   

We take the view that language is purposeful action [8].   In essence, a summary 

abstracts the main points from a tutorial dialogue or any other instructional activity—

for example, reading a text, watching a video, solving a problem, or playing an educa-

tional game.  Summarization supports a wide range of instructional goals such as 

reinforcing facts and concepts, developing problem-solving scripts, and facilitating 

self-regulation of learning.  It takes place dynamically, flexibly, and adaptively.   As 

we illustrate presently, it can occur at the beginning of a tutoring session, at the end, 

and at various points in-between.  It is typically didactic, but sometimes interactive.   

In contrast, simulation of summarization in tutoring systems, including Rimac, is a 

far cry from capturing the level of flexibility and adaptability that we have observed 

during human tutoring.  In response to this limitation and to the potential for summa-

rization to support learning [9, 10], our goal is to make decision rules such as those 

shown in Table 2 more adaptive to students’ cognitive and affective state.  Towards 

this end, we are investigating summarization further in the tutoring literature and em-

pirically.  Although we also plan to do this with other tutoring strategies, this paper 

focuses on summarization—in particular, summarization of tutorial dialogue as op-

posed to other types of instructional activities. We first discuss what our analyses of 

summarization during naturalistic tutoring suggest about how summarization could be 

carried out more adaptively within tutoring systems. We outline the informational 

requirements of an adaptive tutorial dialogue system and describe how a domain-
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neutral, interoperable ITS authoring framework such as the Generalized Intelligent 

Framework for Tutoring (GIFT, [11]) could be extended to support micro-adaptive 

implementation of summarization—that is, dynamic response to changes in students’ 

cognitive and affective states. 

2 Summarization During Human and Automated Tutoring 

2.1 End-of-Tutoring “Recaps” of Main Points 

Summarization happens in all forms of instruction—for example, end-of-chapter 

summaries in textbooks; recaps of classroom discussions or lectures, and of tutoring 

sessions with a human or automated tutor. In their extensive analyses of naturalistic 

tutoring sessions, Graesser and colleagues observed that summarization is one of the 

most frequent dialogue moves during Step 4 of their 5-step tutoring frame: scaffold-

ing to improve an answer to a problem or question asked during tutoring [2], [12].  

Frequent summarization is characteristic of both skilled and unskilled tutors [13, 14].   

Natural-language tutoring systems, such as those developed within AutoTutor, typ-

ically simulate unskilled tutors’ summarization practices, which Graesser et al. [14] 

describe as follows: “Unskilled tutors normally give a summary that recaps an answer 

to a question or solution to a problem. This summary serves the function of succinctly 

codifying a lengthy, multi-turn, collaborative exchange when a question is answered 

or a problem is solved” (p. 40). A tutoring system needs minimally adaptive decision 

rules to implement such end-of-tutoring recaps.  The main parameter that determines 

whether a summary should be delivered is whether the topic under discussion has 

been adequately addressed during the dialogue, as reflected by the following 

AutoTutor decision rule [2]: “IF [quality of the cumulative collaborative exchange = 

completely correct] THEN [tutor supplies a summary or recap of the answer]” (p. 

509). 

Rule 1 in Table 2 similarly fires in Rimac when the student has arrived at a correct 

answer to a reflection question, after a series of questions that address the main ideas 

in the line of reasoning.  See, for example, the summary at T9 in Table 1.  Later ver-

sions of AutoTutor considered dialogue length, in addition to topic coverage, to de-

termine whether to trigger a summary as the next dialogue move [12]: “IF [topic cov-

erage = HIGH or number of turns = HIGH] THEN [select SUMMARY]” (p. 30). This 

rule ensures that the main points are extracted from lengthy dialogues and that short 

dialogues will not be summarized.   

Typically, both skilled and unskilled tutors present end-of-tutoring summaries di-

dactically.  However, an alternative, which few tutors (skilled or unskilled) do, is  

prompt the student to generate a summary, perhaps with some degree of scaffolding 

from the tutor.  Several tutoring system researchers have highlighted the potential 

benefits of doing so, in response to research which shows that generative activities 

such as summarization promote knowledge organization and retention [9,10].  To our 

knowledge, only one tutoring system, Guru, supports student summarization [13]. 

The choice between didactic and student-generated summarization provides a good 

example of how minimally adaptive decision rules such as those shown in this section 
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and in Table 2 could be refined to support more adaptive summarization during tutor-

ing.  Under what conditions should the tutoring system choose each option? One rele-

vant factor is the student’s level of knowledge of the topic discussed.  For example, if 

the student made few errors, or the dialogue was short, a brief didactic summary (or 

none) would be appropriate. Another important factor is dialogue history [15]; in 

particular, prior exposure to a didactic summary.  If the tutor has already summarized 

the material covered at the end of a previous dialogue, the student might be ready to 

generate a summary, perhaps with scaffolding.  In addition to refining summarization 

decision rules to select who generates a summary, these rules could be extended to 

select suitable presentation media: text, static graphics, and/or video.  The main pa-

rameter to consider is type of content: does text suffice, or is visualization necessary?  

If the latter, is the material static or dynamic?  Learner preferences and “styles” (e.g., 

is the student a more visual or verbal learner?) could also be considered. 

Our analyses of summarization during human tutoring sessions revealed other 

types of summaries besides the didactic, minimally adaptive end-of-tutoring recaps of 

main points that pretty much define summarization in tutoring systems. We therefore 

suggest the need to broaden the view of what can be summarized to include anything 

that the tutor expects to be in the “world of discourse” that he or she shares with the 

student because it is, or will be, relevant to the current tutoring session.  This can 

include the content of a lecture, lab, or textbook section; a conversation during a pre-

vious tutoring session—not just what was discussed during the current session.  We 

present a sample of the types of summaries that we identified in the next section, in 

order to provide a “case study” of what more dynamic, micro-adaptive implementa-

tion of tutoring strategies would entail.  

2.2 Summaries at the Start of Dialogue and Various Points Along the Way 

Line-of-reasoning summaries throughout dialogues. Whereas Rule 1 in Table 1 

fires only at the end of a tutorial dialogue or problem, after a correct solution has been 

reached (e.g., T9 in Table 2), Rules 2-4 represent summarization that can take place at 

various times.  Like Rule 1, these rules are minimally adaptive because they mainly 

respond to the correctness of the student’s answer to the tutor’s current question.  As 

we will illustrate presently, a higher level of adaptivity could be reached by taking 

other factors into account.  Due to space limitations, we focus on Rule 3. 

Rule 3 captures situations in which the tutor addresses an incorrect answer to a 

question asked during tutoring through a remedial sub-dialogue.  At some point dur-

ing remediation, the student answers a question posed by the tutor correctly.   The 

tutor then completes the line of reasoning that would lead from the student’s answer 

to a correct answer to the original question that triggered the remedial dialogue, as 

illustrated in Table 1.  Here the student answers the Reflection Question incorrectly 

(S1).  The tutor launches a remedial dialogue at T2.  When the student answers cor-

rectly at S7, the tutor completes the line of reasoning at T8. The purpose of this sum-

mary appears to be expediency; the tutor doesn’t want to spend so long in a remedial 

dialogue that the student loses track of the original question (the Reflection Question).  

The tutor returns to this question in the end-of-tutoring summary at T9. 
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In the human tutorial dialogues that we analyzed, these “tutor completion” lines of 

reasoning varied in their degree of interactivity.  Sometimes the tutor would prompt 

the student for a few more steps in the line of reasoning that followed from the stu-

dent’s correct answer, instead of delivering all remaining steps.  Once again, factors 

such as the student’s confidence level and dialogue history should be considered, in 

order to refine this rule.  If the student has difficulty getting through the dialogue, then 

fewer opportunities for failure (i.e., incorrect responses to the tutor’s questions) might 

prevent the student from giving up.   Also, if the dialogue history log indicates that 

the student has engaged in remedial dialogues about the same content in the past, then 

perhaps a summary would be appropriate in the current dialogue. 

Summaries at the start of dialogue (or early on). Sometimes tutors state the most 

salient features of a problem or other instructional activity, or the main concepts and 

principles to apply, for example: “You need to think of these problems as the same in 

the sense that when you are dealing with problems where we have several forces act-

ing the first equation that should enter your mind is Newton's 2nd law.” Alternatively 

or in addition, the tutor might provide a sketch of the main steps to be taken to solve a 

problem.  Cade et al. [16] refer to such “game plan” summaries as “highlighting” and 

note that they are characteristic of expert tutoring.  Tutors might label the type of 

problem being addressed and their key features, compare the current problem with 

previous problems, and/or outline the main steps in order to help students do what 

domain experts do: classify a problem early on and invoke relevant solution schema 

[17].  Like end-of-tutoring summaries, these early-session summaries draw upon the 

tutor’s expectations of a shared “world of discourse” with the student.  Breakdowns in 

these expectations need to be repaired, as illustrated presently.  

Tutors tend to offer highlighting summaries when a student has had limited expo-

sure to a given type of problem or displayed difficulty solving similar types of prob-

lems in the past.  Consistent with these knowledge state attributes, highlighting sum-

maries are typically delivered didactically, although the tutor might guide the student 

in co-constructing a “game plan” at the start of a problem-solving session after the 

student has demonstrated increased skill in solving similar problems, for example: 

T: Let’s start from the beginning.  Use Newton’s Second Law.  What does this law say? 

S: Fnet = mass * acceleration 

T: That is the equation you need to use.  Now what are the forces acting on the object?... 

Another type of summary that is presented early on in a tutoring session is a “mini 

lecture” about the domain content associated with a problem or other type of learning 

activity.  Again, these summaries respond to the student’s knowledge state.  For ex-

ample, we observed that physics tutors summarized a topic targeted by the current 

problem when they incorrectly assumed that the student had sufficient exposure to 

that topic. In automated tutoring, degree of exposure to domain content could be de-

termined before a student starts to work on a tutoring system, through a questionnaire 

or pretest.  This data could be used to macro-adaptively prime the tutoring system to 

provide “mini-lectures” about topics that the student has had limited exposure to. 

Summaries to support self-regulation.  Students sometimes exhibit poor learning 

habits during tutoring.  Several physics tutors that we observed responded with cor-

rective advice that might promote self-regulation—for example, reminders to memo-
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rize often-used equations; to express equations in terms of variables first and instanti-

ate later.  After the student solved the problem, tutors sometimes summarized this 

self-regulatory advice, for example: “OK that is what I got too but...next time, write 

the equations out symbolically first and then assign values before you do the actual 

calculation, so we can both follow what you are doing.”   

3 Implications for Supporting Micro-Adaptive Summarization 

The central aims of the preceding section were to show that summarization during 

human tutoring goes well beyond the didactic, end-of-tutoring “recaps” that are typi-

cally implemented in tutoring systems and to specify the types of information that 

would be needed by a dialogue system to simulate more flexible, dynamic and micro-

adaptive summarization.  This includes information about the learner’s knowledge 

state about domain content addressed during the dialogue; local and global dialogue 

history—for example, what topics have been covered during the current dialogue and 

during previous lessons?  Has the content been summarized during a previous session 

and, if so, how (e.g., didactically or interactively; using which media?). Is the student 

ready to generate a summary, perhaps with scaffolding?  Information about the stu-

dent’s affective and metacognitive state is also important—for example, what types of 

self-regulatory advice should be recapped after a learning activity? 

A modular, service-oriented, domain-independent framework such as the GIFT 

[11] will support management of this complex array of instructional information.  The 

main “workhorses” are the Trainee, Pedagogical, and Domain Modules, which re-

spectively model the learner’s cognitive and affective states, make decisions about 

what to teach and how to teach it (e.g., through which tutoring moves, using which 

strategies? etc.) and instantiate the preceding with domain content.   As developers of 

the GIFT extend this framework to support micro-adaptive tutoring, the roles of these 

modules and inter-modular communication will need to be clarified—in particular, 

what types of information messages will each module send and provide?    In addi-

tion, GIFT developers will need to consider how students’ responses and initiatives 

during tutorial dialogues can be used as input to the Trainee Module.  As several tu-

toring researchers have noted, students’ dialogue contributions are one of the best 

resources for diagnosing the student’s knowledge about a topic [18].  Extensions to 

the GIFT such as these will greatly support the development of tutoring systems that 

interact with students as effectively as human tutors, perhaps more so. 
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Abstract. Unlike text-based input to an intelligent tutoring system, a diagram is 

perceived as a whole state; the operation sequence is less important. Traditional 

step-wise coaching is not as appropriate in diagram-based intelligent tutoring 

systems (DITS). From two previous tutoring systems, StaticsTutor and Thermo 

Cycle Tutor, we propose cross-domain pedagogical guidelines for DITS. In par-

ticular, instruction needs to be mapped to a hierarchical understanding of the di-

agram, where each level focuses on different characteristics of the drawing. Al-

so, instruction needs to address conceptual knowledge and procedure expertise 

separately. Some practical suggestions are described to achieve these goals, 

such as 1) different tolerance for error at different level of evaluation, 2) use of 

Q&A to resolve diagram ambiguity and 3) early loading of expertise that is im-

portant for avoiding difficult-to-fix diagrammatic states. 

Keywords: intelligent tutoring system, diagram, instruction, pedagogy 

1 Introduction 

Given the comprehensive advantages of pictorial representations, diagrams play a big 

role in scientific cognition, e.g., free-body diagrams in physics, Temperature-volume 

(T-v) diagrams in thermodynamics, circuit diagrams in electrical engineering, and 

Unified Modeling Language (UML) diagrams in software engineering. Cognitive 

models of graphics comprehension [1] propose that graphics comprehension involves 

interaction between bottom-up perceptual processes of encoding information from the 

graphic as well as top-down processes of applying graph schemas and domain 

knowledge, which makes it a challenge to teach students how to use diagrams to rep-

resent information.  

In this paper, we discuss lessons regarding pedagogy that we learned from two dia-

gram-based tutoring systems, and provide cross-domain guidelines for the design of 

future diagram-based intelligent tutoring systems (DITS). 
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2 Background and previous work 

We have designed and implemented two diagram-based intelligent tutoring systems in 

engineering statics and thermodynamics courses: StaticsTutor [2] for free-body dia-

grams, and Thermo Cycle Tutor (Guo et al., in preparation), for T-v diagrams of re-

frigeration cycles. Even though they focus on different domains, both feature peda-

gogy aimed at helping students’ conceptual understanding and decision-making at the 

earliest stage of problem framing.  

StaticsTutor was developed to analyze student-drawn free-body diagrams and rec-

ognize misconceptions without requiring numerical force values or the need to pro-

vide equilibrium equations. Preliminary results with 81 engineering undergraduates in 

fall 2013 showed that StaticsTutor could detect students' misconceptions that were 

categorized as “missing basics,” “hinge issue,” “rope issue,” and so on. A post-survey 

indicated an overall positive experience with the tutor with a mean usability score of 

3.5 (SD 1.11).  

The Thermo Cycle Tutor implemented a teaching pedagogy (Hagge et al., in prepa-

ration) based on decision-making, where class concepts are posed as a set of simple 

questions that can be answered for all problems in the thermodynamics course. In fall 

2013, 42 undergraduate engineering students were given a pre-test on refrigeration 

cycles and then given the Thermo Cycle Tutor to complete a homework problem. 

They then took a post-test.  Students’ post-test scores improved from 70% to 89% on 

average. To test retention, they were given a second post-test after four weeks, and 

they scored an average of 81% better than the pre-test with no additional lectures on 

refrigeration cycles.  

Both tutors faced the challenge of how to analyze the students' diagrams computa-

tionally, and how to give appropriate feedback. Pedagogical questions that arise in-

clude, "If there are multiple issues with the diagram, which issue should receive feed-

back first?", "Given an error in the diagram, what can I infer about the student's mis-

conceptions, if any?", and "When should I evaluate the diagram, at each step of con-

struction, or only at the end?"  

2.1 Previous work on diagram interpretation and DITS 

Koffman and Friedman [3] designed an early instructional tool for diagramming to 

assist beginning programmers in learning to make a computer-aided flow diagram. 

They emphasized the problem-framing aspects of diagram planning, and wanted stu-

dents to use the diagrams to learn the program logic before implementing the code. 

Usually it is difficult to analyze a diagram at each step of its construction, because 

there are typically graphic elements that must be added one at a time in no particular 

order), and the diagram can frequently exist in non-well-formed states that cannot be 

fully anticipated by the tutor author. However, in Koffman and Friedman's case, the 

linear structure and the level of granularity of their diagram components helped this 

system avoid these open-ended ambiguities that usually occur during construction. 

Constraint-based modeling (CBM) has been adopted in ITS community, where the 

domain knowledge is represented as a set of constraints. By focusing on violated con-



20 

 

straints, CBM tutors are able to generate instructional actions even without having 

expert solutions. Instructional feedback is generated by focusing on one genuine mis-

conception if more than one constraint is violated [4]; frequently one misconception 

will cause the violation of several related constraints. COLLECT-UML [5] is a CBM 

tutor to teach object-oriented design which supports both single user and multi-user 

for collaboration purpose. However, as Py. et al., [6] noted, instructional feedback 

directly generated from a violated constraint might not be a good solution from a 

pedagogical point of view. They separated the diagram diagnosis output from instruc-

tional feedback. However, they didn’t have much emphasis on diagram structure and 

how to generalize it. 

Futrelle [7] attempted to apply levels of abstraction to diagrams by offering a dia-

gram constraint grammar and process for automatic computational diagram analysis 

loosely based on computer vision. His approach, however, was focused on analyzing 

the diagrams, rather than tutoring using diagrams. Tutoring through a diagram not 

only needs to analyze the diagram, but also to understand the student’s knowledge 

and misconception within the abstraction in the diagram. Thus, a mapping between 

levels of abstraction in the diagram with domain-wide conceptual knowledge is highly 

desired. Here, we proposed a three-layer abstraction for diagrams used in engineering 

domain, where errors in lower layer need to be addressed first as it is more fundamen-

tal. Also, the three-layer abstraction follows a general process of knowledge acquisi-

tion: from superficial to deep, from rough to detailed.   

It is worth mentioning the pedagogy in the Andes tutor [8] that allows students to 

pursue different correct solutions during problem solving instead of limiting them to a 

predefined optimal solution. A solution graph representation, which contains several 

types of nodes, is used to model all possible solution paths, upon which a Bayesian 

network is built. Then Bayesian inference is applied to designate student’s current 

goal node and a rule-application node where the student is stuck for lack of 

knowledge. A hint is then generated to coach that knowledge accordingly. Even 

though Andes focuses on text-based inputs, this step-by-step coaching strategy also 

applies to diagram-based systems. However, there are some differences that make 

pedagogy in diagrams challenging: 1) A diagram should be perceived as an entire 

state, no matter when and how an element is added to the diagram. Step-by-step 

coaching needs to be redesigned appropriately. 2) Even though sequence is less im-

portant in a diagram, it does require a series of actions to be applied in order to meet a 

certain requirement in a given state. This means that the diagram must be properly 

defined as several sequential stages, where each stage represents certain conceptual 

understanding. Within a stage, the sequence of actions do not likely matter. 

3 Instructional guidelines for DITS 

Guideline 1: Instruction needs follow hierarchical diagram understanding.  

Even though diagrams vary across domains, there are usually underlying concepts 

that drive core questions that should be answered during the assessment process. The 

core questions can be defined through an expert module, which might vary based on 
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the expert’s instructional and pedagogical preferences. However, a general architec-

ture that fits in a cross-domain evaluation system is highly desired, e.g., a version of 

the popular ontology editor Protégé customized for DITS authoring. For this purpose, 

we propose three levels of hierarchy for diagram evaluation. Before defining the lev-

els theoretically, we offer an illustrative example from thermodynamics. Figure 1 

shows an example with T-v diagrams. These diagrams are used to abstractly represent 

how pressures, temperatures, and volumes change within a mechanical refrigeration 

system, which may contain compressors, pumps, valves, etc. The Thermo Cycle Tutor 

basically asked six questions: 1) Is a vapor dome needed? 2) How many pressures are 

present in the cycle? 3) How is a pressure line drawn on a T-v diagram? 4) How 

should phase change P and T be labeled on the diagram? 5) What are the P, T, v rela-

tions for each component? 6) How can the problem information, and the decisions 

above uniquely identify each state? 

While these questions are particular to refrigeration cycles, they have the following 

characteristic which applies across domains: some of them focus on the student's con-

ceptual understanding (1, 2, 5), and some focus on the procedural skill of how to 

make a diagram appropriately (3, 4). Of course, these two aspects are tightly coupled, 

and some questions apply to both (6).  

It is noteworthy that the six questions follow a hierarchical understanding of the 

diagram. At Level 1, nine straight line segments are recognized on a vapor dome 

(Figure 1a), where each three connected segments represent a pressure line. At this 

level, the message that the diagram conveys is simply that there are three pressures in 

this system.  At Level 2 (Figure 1b), more details are shown: some text labels are 

attached to the pressure line segments at the right-hand side, and tick marks are added 

to show the phase change temperatures. These additions give the viewer more con-

crete information about the exact value of the pressures and phase change tempera-

tures. Then, at Level 3 (Figure 1c), by adding some points with labels on the pressure 

line segments, the diagram brings in details on the state information and how it inter-

acts with the pressure and phase change temperatures.  

 

Fig. 2.Three levels in a refrigeration cycle T-v diagram. (a). A vapor dome with three pressures. 

(b). Labels of phase-change temperature and pressure values were added. (c). State information 

was anchored on the pressure line. 

To generalize the levels just described, Level 1 focuses on basic graph-style struc-

tures and the spatial relations between each other. At Level 1, the tutor has a rough 

idea of what components are present and their connections. To give feedback at Level 
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1, the DITS needs to incorporate domain knowledge. Level 2 focuses on object identi-

ties and their object-type-specific relationships. At this level, attributes about an ob-

ject will be identified through domain knowledge and some text labels. These include 

object name and possible values relate to object. Spatial relationships from Level 1 

will be transformed to more specific numerical relationships. As is shown at Figure 

1b, the numeric value has been explicitly shown in each pressure line, so it is easy to 

tell the second pressure is 0.67 (1 - 0.33) psi higher than the first pressure, whereas 

Figure 1a only tells the second pressure is above the first pressure. Level 3 focuses on 

properties or children of Level 2 objects. In this level, details on Level 2 objects will 

be revealed and examined. The details could comprise sub-objects that constitute a 

Level 2 object, or a sub-object that is attached to a Level 2 object but itself is not con-

sidered as a basic structure at Level 1. Instructional feedback can be composed based 

on the level of specificity. The lower level error should be tackled first, as it is more 

fundamental and serves as the basis of the higher level object. For instance, if a Level 

1 object is missing, it doesn’t make sense to correct a Level 2 object as by definition 

its structure is based on Level 1 object. We propose this “divide-and-conquer” strate-

gy where each piece can be mapped to one or more states of student’s understanding.  

Guideline 2: Customized instruction from individual to individual.  

A diagram embeds a student’s conceptual understanding, while evaluation by the 

expert module is trying to infer it.  Thus evaluation questions need to be somehow 

mapped to domain-wide concepts. In order to track student’s knowledge on each con-

cept, it is necessary to register them in student model.  A complete set of evaluation 

steps will be applied to the student’s diagram at the beginning, as the domain-wide 

concepts in her student model is not determined. As she finishes a problem, her stu-

dent model will get updated, with some concepts being checked as passed. How to 

define a concept as mastered is not in the scope of this paper. The next time, the ex-

pert module should consult her concept inventory before initializing the tutoring pro-

cess. For example, we have implemented six questions in the expert module in the 

Thermo-Cycle tutor. However, for the student who has understood phase change tem-

perature, how to use the reference form to locate the value, and how it should appear 

in a T-v diagram, expert instruction would skip question 4, which checks the label of 

phase change temperature in the future T-v diagram evaluation.  

Guideline 3: Separate conceptual knowledge from procedure expertise.  

As the evaluation engine assesses a student’s drawing based on the elements defined 

in the expert module and gives instructional feedback, there are some practical issues. 

How to handle these issues will affect the usefulness and quality of instructional feed-

back, student’s engagement, and finally affect learning gains.  

In most cases, when a student starts to frame a problem, she doesn’t have a clear 

idea of what information needs to be drawn, and what might be a proper way to repre-

sent it. So a drawing with incomplete elements might be submitted to the tutoring 

system for help. In order to provide the most useful instructional feedback, the tutor is 

desired to “read” information from the drawing. The information includes what might 
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be her intention, what knowledge she might have known or not known and what other 

knowledge needs to be further determined from the drawing. 

 

Fig. 3. Examples of wrong drawings on refrigeration cycle T-v diagram. (a) and (b): incomplete 

pressure line. (c). Wrong pressure line representation which uses a negative slope. 

The student might not be able to represent her conceptual understanding correctly 

in the drawing at the beginning. However, when she gets familiar with the procedure 

or gains expertise on how to represent the knowledge, she can focus more on the con-

ceptual part. So a tutoring system needs to set apart these two types of questions, and 

give instructional feedback separately. Figure 2 (a) and (b) show two examples of 

sloppy drawing where a vapor dome and three coupled lines were present. To be con-

sidered as a correct representation of a pressure line, three connected segments should 

be included. However, the incomplete drawing still implies that the author thought 

there were three pressure lines. Assume three pressure lines are the correct answer in 

expert solution. In this case, the tutor’s instructional feedback should focus on how to 

help them to construct a pressure line, instead of correcting the number of pressures 

because zero "true" pressure lines were detected in the diagram. 

Figure 2 (c) shows an incorrect representation of a pressure line since slope in the 

side lines should be positive. Many beginners tend to borrow the shape that they 

learned in P-v diagram, which is negative, and apply it to T-v diagram. Even though 

the tutor cannot detect pressure lines, it should be able to probe student’s intention as 

three pressures in the system, and give her appropriate instruction such as “This is not 

a P-v diagram. Would you like help on drawing pressure lines in a T-v diagram?” To 

facilitate this strategy, we provide guidelines for a DITS evaluation engine.  

Diagrams require different tolerances at different levels of evaluation.  

As we mentioned earlier, instruction could be based on evaluation of a three-level 

hierarchical structure of the drawing. A different tolerance could be assigned to each 

level. Tolerance could be a concrete value applying to check functions such as 10%, 

or it could have a conceptual definition, i.e., a pressure line can have two or three 

connected segments. A larger tolerance should be used to detect whether a basic 

structure is present. For instance, to check the number of pressures, a pressure line can 

be recognized if one horizontal line in the middle and two positive sloped lines at 

sides are found and well connected. The tolerance for gaps between line segments 

could be a large value. After it passes the Level 1 check, and goes to the next level, 

which checks the representation correctness, this tolerance would decrease, and any 

big gap would need to be filled by moving line segments closer to their neighbor. 

Another two examples with incomplete pressure lines (Figure 2a and 2b) would pass 
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the number of pressure check, given a higher tolerance on recognizing a pressure line. 

After a student passed the Level 1 check, the incomplete pressure line issue would be 

addressed due to a lower tolerance on how a pressure line should be drawn.  

Diagrams' inherent ambiguity can be resolved with Q&A.  

Due to the intrinsic complexity and ambiguity of a drawing, it is safer to confirm the 

information that is conveyed in a drawing with some text inputs. For example, if the 

drawing fails on a number_of_pressures check, a multiple choice question pops up 

and ask student to choose how many pressures are there in the system. If it is correct, 

it indicates that the student’s conceptual understanding is correct, but some procedural 

issue caused the failure, e.g., she accidentally clicked the submit button without fin-

ishing the pressure line. Another example is shown in Figure 3. The student did a 

good job on drawing pressure lines, labeling pressure and phase change temperature, 

and anchoring points on pressure lines to show the state changes in each component. 

However, feedback from the tutor said “There appears to be some misconceptions 

about the specific volume change in a compressor.” Then tutor the directed her to 

three multiple choice questions regarding pressure, temperature and specific volume 

change in a compressor. She answered all the questions correctly and was told to 

“modify state 3 and 4 to reflect this.” These successful answers imply that the student 

understood knowledge in a compressor, but didn’t incorporate it into the drawing.  

 

Fig. 4. (a). A refrigeration cycle T-v diagram. (b). Three windows that displayed questions 

about pressure, temperature and specific volume change in a compressor. 

Conceptual and procedural performance in diagrams can be tightly coupled. 

This problem is critical and stems from the fact that some aspects of constructing the 

drawing can make it difficult to edit elements later. This situation can frustrate a stu-

dent if it occurs late in the problem solving process. As is shown in Figure 3, after the 

student realized state 3 should have a larger volume than state 4 (which means state 3 

should appear on right side of state 4 in the T-v diagram), it is impossible for her 

change it in the diagram because there is no room. However, the student would not 

realize this issue until she reached this step if she didn’t have much experience on 

solving this type of problem before. To alleviate this form of unnecessary frustration, 
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when a particular problem is initialized by student, the evaluation engine should be 

able to load some practical expertise information about the base objects, e.g., the 

shape of the vapor dome should not be too thin and the distance between the horizon-

tal lines should be greater than some percentage threshold.  

4 Conclusion and future work 

In this paper, we discussed cross-domain pedagogical strategies in diagram-based 

tutoring systems. In particular, instructional feedback needs to be mapped to a hierar-

chical understanding of the diagram. Personalized evaluation is desired which is 

based on student’s current knowledge state. Also, it should be able to separate con-

ceptual knowledge from procedure expertise. To achieve that, we proposed: 1) allow 

different tolerances at different level of evaluations, 2) use Q&A to reduce ambiguity, 

and 3) determine if conceptual knowledge can be applied by procedure expertise in 

the current drawing. In the future, we will design a general authoring tool for DITS to 

support the above pedagogical strategies, allowing instructors to define a) concepts in 

the knowledge base, b) objects and tolerances in each hierarchical level, c) evaluation 

pieces which link to one or more concepts and d) guidelines of procedural expertise.  
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Abstract. Simulation-based instruction can be motivating for students. Content 

students learn can be directly applied to improve real-life performance. Simula-

tion-based instruction will be more efficient if instruction adapts to each stu-

dent’s needs. Adapting instruction to students’ needs requires (1) identifying 

topics that should be remediated and (2) guiding students through an instruc-

tional interaction which improves their ability at the identified topic. The pro-

cess of developing an automated scoring system to specify instructional topics 

with open-ended simulations begins with experts scoring and then critiquing 

student performance. This data is transformed into scoring rules. The scoring 

rules can be automated and applied in real time to drive student remediation 

needs. The instructional content is based on domain knowledge specified in 

summaries of good practice. The instructional format follows current instruc-

tional theory, including situated cognition, scaffolding, interactions in which 

students create knowledge structures, and considerations of cognitive load. The 

application of these principles is illustrated within a turn-based instructional 

game. 

Keywords: situated cognition; scaffolding, instructional interactions, cognitive 

load; assessment; critiques; cognitive task analysis 

1 Introduction 

Students can benefit by learning within simulations. Simulations can motivate stu-

dents by providing an interesting context which captures students’ attention; instruc-

tion in simulations enables students to easily transfer skills gained from the simulation 

directly to real-world conditions. While simulation-based instruction (SBI) has many 

advantages, instruction within simulation is historically more expensive and difficult 

to construct than more common, de-contextualized instruction. In addition to the costs 

and difficulties of creating simulations, further difficulties of SBI  include (a) as-

sessing student performance in real-time and using it to guide trainees to content they 

need to learn and (b) developing replicable, theoretically grounded approaches to 

instruction within simulations.  

Widespread use of SBI that adapts to student needs face three major challenges:  

first, the assessment challenge is to identify skills and knowledge that are responsible 
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for students’ performance weaknesses within the simulation. The second challenge is 

designing effective instructional interactions in which students gain knowledge while 

maintaining the flow of the scenario within the simulated environment. The third 

challenge is to design affordable SBI development processes so that organizations 

will choose adaptive SBI.   

This report describes an approach to affordably develop SBI. The instructional ap-

proach collects scores and critiques from experts reviewing student performance, and 

transforms expert input into an automated scoring system. The instructional approach 

is similar to the Coached Practice Environment described by Lesgold and Nahemow 

[1]. The Coached Practice Environment places students within a simulation environ-

ment and encourages them to learn-by-doing within the simulation. As students pro-

gress through problems posed by the simulation, they may face obstacles that they 

cannot overcome on their own. The automated coach provides a series of hints to help 

them overcome performance difficulties. More in-depth reflective reviews of the chal-

lenge occur during post-problem reflection. The current paper reports an efficient 

approach to assess performance in complex simulations, and an instructional approach 

that provides short interactions that guide students in constructing knowledge that 

improves performance. 

1.1 Approach to Assessment 

Our assessment approach elicits and captures experts’ knowledge as experts review 

student performance within a simulation. Experts who are knowledgeable about the 

domain and the simulated scenario are able to reliably estimate overall quality of stu-

dent performance and provide rationale underlying their assessment. We then use 

expert reviews to develop automated assessment systems that take student perfor-

mance input, apply scoring rules based on experts’ scores and critiques, and produce 

assessments that (a) mimic experts’ ability to rate overall quality of performance [2] 

and (b) identify patterns of performance that comply or violate good procedure [3]. 

The assessment approach uses a method to capture expert policies that we call Per-

formance Evaluation through Expert Review (PEER). PEER begins by recording 

student performance within the simulation. These records are transformed into a 

presentation that is easy for experts to understand, enabling them to easily review and 

assess student performance. Experts’ knowledge is elicited by asking experts to (a) 

rank order performance by overall quality; (b) assign scores that reflect overall quali-

ty; and (c) critique performance and justify assigned scores. The critiques are then 

classified by the analyst into semantically related categories and sub-categories. The 

focused comments enable analysts to summarize good practice. Performance indica-

tors are created which identify compliance or violation with good practice. Rule sets 

that use the indicators of compliance or violation to good practice are created to yield 

scores that approximate experts’ scores of overall quality. The assessment system is 

refined until the scores from the scoring system closely mimic experts’ scores. The 

scoring system is validated by taking data from new students, and measuring the 

agreement between expert raters and the automated scoring system. 
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This approach differs from a more common ITS assessment approach in which ac-

tions are probabilistically linked to cognitive variable [4]. First, the PEER scoring 

system does not score each action that a student takes; rather, experts’ comments 

identify patterns of activity and relations between concepts to assess performance. 

Second, the PEER scoring system does not use a probabilistic approach to assessing 

student performance. Uncertainty in performance is addressed by the triggers that 

experts use to identify compliance or violation with good practice. Third, the PEER-

based automated scoring system focuses on performance characteristics that become 

targets of remediation rather than underlying cognitive variables. PEER identifies 

patterns of weakness that experts notice and used to initiate a training remediation. 

Thus, PEER-based remediations are often at a higher level of analysis than other ITS. 

This approach is consistent with a change in one view of instruction that has been 

well expressed by Sack, Soloway, and Weingrad [5]. They suggest that the concept of 

instruction in the early days of ITS assumed that learners skill and knowledge could 

be diagnosed to a fine granularity; remediation consisted of adjusting the details of 

students’ knowledge and skill structure. Sack, et. al. suggest that this view of detailed 

knowledge review, which they refer to as a “learner as consumer” view, should be 

replaced by a view of “learner as constructor”. According to this view, students im-

prove performance not by targeted replacements of new thoughts, but by constructing 

a larger knowledge structure that incorporates the change of a specific fact and then 

integrates this change into a broader approach to understanding and solving problems. 

1.2 Approach to Instruction 

Our instructional approach is to design a learning environment which applies current 

instructional principles to SBI. These include situated cognition; instructional targets 

selected based on student need; interactions that help students construct skill and 

knowledge; and considerations of cognitive load.  The principle of situated cognition 

is attained by embedding instruction within a simulation of the task environment [6]. 

Targeting skills and knowledge based on assessment of performance leads to focusing 

instruction on performance areas on which students should improve [7]. Instructional 

interactions that help students understand what they need to learn should in them in 

acquiring and applying the knowledge they need in the way they need [8]; and cogni-

tive load must be factored in so as not to overwhelm and confuse students [9].  

We will describe how to apply these principles, as the relationships between them 

are complex. While each principle makes sense and has demonstrated effects, the 

application requires design balance and pilot testing, as paying too much attention to 

one principle at the expense of another can lead to inefficient learning. An example of 

how these principles provide different guidance can be observed when trying to (a) 

address student weaknesses, while (b) considering restrictions due to cognitive load.  

For example, targeting skills for remediation is somewhat at odds with managing 

cognitive load. At any point during a simulation, there may be many ways in which a 

student violates good practices and should be remediated. But students also have lim-

ited cognitive capacities, and presenting too many remediations will be counter-

productive. Thus, the intent to remediate students on a wide variety of topics must be 
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balanced with considerations of cognitive load. The approach we have taken in our 

instructional design is that during problem solution, only one topic, the one that is 

calculated as the worst, becomes the target of an instructional intervention. During a 

review of the entire problem, for example, during a post-problem reflection or during 

a review activity, all topics are addressed. 

The design of the instructional interaction must take into account many considera-

tions as well. Some of these factors include that the interaction should be (a) effective, 

(b) short and non-disruptive so it does not excessively interrupt the flow of the chal-

lenge presented by the simulation, and (c) the interaction should provide scaffolding 

so that the student performs as much as possible on one’s own. Mechanisms underly-

ing the view that students learn by interaction has been studied extensively by Chi [8] 

and is consistent with the view expressed earlier of considering students as construc-

tors, not consumers. Combining the assessment that identifies the target with the larg-

est violation of good practice with the interaction of instruction yields a remediation 

in which students are initially given a small clue regarding the focus of their largest 

violation. If they are able to use this to improve their performance, great; if they are 

not, they are given a more directed clue in the form of a question. If they do not im-

prove their performance, they are then told what actions they should have taken. We 

will next put these theoretical pieces together by describing a use case. 

2 Use Case 

The targeted instructional system is a game that is used to teach Army leaders how to 

conduct counter-insurgency operations. This game, “UrbanSim”, was sponsored by 

the Army’s Research Development and Engineering Command (RDECOM) and built 

by the University of Southern California’s Institute of Creative Technologies. This is 

a turn based game in which students are conducting counter-insurgency operations in 

a simulated city with a population of 300,000. In any turn, the student will assign 11 

different resources to a specific mission. A mission can include repairing structures; 

communicating with civilians, civilian leaders, or military leaders; conducting mili-

tary operations; or supporting host nation government activities such as training or 

recruiting for police or Army personnel. After the student selects the activities for 

each of the 11 resources, the student submits the order. The simulation executes the 

order and presents their effects. These include (a) changes in conditions of the simu-

lated city, and (b) attacks on United States or government forces and (c) significant 

achievements. This game is a complex environment; Vogt, et. al. [10] reported 5*10
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possible paths through the game. 

2.1 Applying PEER and Building an Assessment System 

In applying PEER to the complex simulation environment of UrbanSim, we begin by 

collecting student traces (log files of simulation activity), and then transform them 

into a format that is easy for experts to interpret. An example of the presentation of 

student data that experts reviewed is shown in Figure 1. The student’s actions for a 
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turn are shown in the top half of the page, with actions shown on the city map on the 

left, and presented on the right side in text. The results of the actions are shown in the 

bottom half of the screen in terms of condition scores on the left side and listings of 

results on the right side (e.g., the percentage of the population supporting the host 

nation government is 26%).  

 

 

Fig. 5. Example Presentation of Student Data for Expert Review 

Experts reviewed student actions, then analysts collected (a) experts’ judgments of 

overall quality and (b) their critique of students’ performance. Three senior leader 

experts critiqued and assigned scores reflecting overall quality to 15 student records. 

The correlations across experts ranged were .5, .72, and .74, all p < .05.  

After seeing that experts’ judgments did in fact correlate with each other, analysts 

categorized their critiques based on semantic similarity. For example, some critiques 

described conditions of security. Security became a high level category. The first two 

columns of Figure 3 show the process of collecting and categorizing the critiques.  

Security actions were further divided into more refined categories. Some critiques 

from experts described security actions as being too harsh; others described security 

actions as too lax. Each of these became sub-categories under the security category. 

For each policy, there is a description of the policy and deviations from that policy. 

The development of policy is shown as the third column of Figure 2.  

Next, analysts developed scoring rules. Compliance with good practice has positive 

scores; violations of good practice have negative scores. The weights of each rule are 

initially based on comments from experts about the importance of each factor consid-

ered; these values are revised so that the automated system yields scores that closely 

mimic the average of experts’ scores of overall quality.  
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Fig. 6. Diagram of PEER Process 

2.2 Application of Assessment System to Pedagogy 

Scoring rules identify the category of performance that is weakest and most in need of 

remediation. By targeting the student’s weakest sub-scores, the instruction focuses on 

the topic at which the student is weakest. Improving each student’s poorest topic 

should efficiently raise their overall quality score. y (see figure 3). 

In addition to responding to regular remediation scores, there are some egregious 

violations of good policy that require an immediate remediation. In UrbanSim, for 

example, a trainee might shoot all the civilians in the city. For each sub-score, we will 

determine a criterion that corresponds to a ‘poison score’. If the trainee on any turn 

exceeds the poison score, the remediation related to the violation is immediately pre-

sented to trainees.  

 

Fig. 7. Example Selection of Worst Violation 

2.3 Instructional Design  

The most common form of remediation will assist students recognize performance 

weaknesses. For this type of remediation, the instructional design uses three levels of 

coaching. The pattern for instructional remediation is shown in Figure 4. The first 

level focuses on the high level policy that the student has misapplied. The student is 

given a question to direct the student to this policy; after the student answers the ques-

tion by entering a short response in a text box, an expert’s answer to the question is 
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presented. The student takes another turn of the game, and enters another set of ac-

tions. If the student’s actions related to the previous turn’s hint now comply with good 

policy, the student’s improvement is noted. If the student’s interaction still contains a 

violation of that principle, a second level hint is given. This hint directs the student’s 

attention to the expert’s thought processes that lead the expert to the correct action. 

Again, the student answers the question, and is presented with the expert’s response. 

The third level provides students with the answer to the question. The general format 

for this hint is, “Given factors YYY, what actions would you take in regards to ZZZ.”  

The student answers the question, and then sees an experts’ answer to this question.  

 

Fig. 8. Example Instructional Flow for Selected Remediation 

Problem reflection.  

A post problem reflection is presented to help students solidify what they learned 

from a scenario. This post-problem reflection is different from the ongoing training 

remediations, as the reflection is an intentional time to review and reflect on earlier 

actions, without the challenge presented by the scenario. When UrbanSim is used in 

an instructor-led class, the instructor holds a review of student activity at the middle 

of the game and at the end of the game. Our instruction will follow a similar policy, 

and conduct an “update briefing” with the students after the 8th turn, and an “after 

action review” after the last turn.  

The Update Briefing and After Action Review will present student performance 

across all six performance categories.  the major categories of policies that students 

use. For those concepts on which the student’s performance is good (that is one of the 

top four categories of performance), the principle is cited, with an example in which 

the student followed the principle for each of the four categories, and references to 

Field Manuals that support the principles. For the two categories on which the student 

performed poorest, the principle would be cited, with examples of the student follow-

ing the principle (if one can be found), and an example of the student violating the 

principle, with suggestions on how the trainee should have performed.  
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3 Results and Discussion 

For UrbanSim, the PEER process resulted in six major categories of policies, and 18 

sub-scores. We are implementing the instructional remediation with the Generalized 

Intelligent Framework for Tutoring (GIFT); when completed, we will conduct studies 

of this instructional design. 

The innovation of our approach is the effort to build affordable ITS based on re-

view by expert judgments of performance by real students. This approach produces 

two primary efficiency benefits for assessment: (1) We focus building scoring rules 

around the characteristics of performance taken by real students rather than taken by 

any possible student; while the scoring system also addresses theoretical aspects of 

poor performance, it spends the majority of effort investigating observed difficulties 

of students. And (2) we focus on performance rather than diagnosing underlying cog-

nitive capabilities that are inferred from performance. We believe this is instructional-

ly defensible. We will know more after instructional studies are taken.  

The instructional benefit of this approach is that much of the content was built 

based on collecting critiques of student performance. This resulted in a first draft of 

the instruction. It was revised by experts, and references to official policy were added.  
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Abstract. Innovations in computer science have presented a lot of changes, es-

pecially in the field of education and more specifically in e-learning. Affective 

Computing has also emerged recently. Research is being done in this area, but it 

does not cover an important role in this process: the tutor. This research aims to 

study the tutor, more specifically the emotional factors that can be identified 

and how they can improve the teaching and influence in the learning process. 

We developed a module in the Moodle LMS, in order to help the tutor improve 

his/her actions and the relationship among the students.  

Keywords: affective model, tutor, virtual learning environments, Moodle.  

1 Introduction  

Nowadays technology enhanced learning is becoming popular especially through 

Learning Management Systems (LMS). By LMS, students can access learning content 

and resolve activities. Teachers can consult student’s performance and promote 

changes when necessary.  

LMS are increasing in the last few years. They are becoming smarts and sensitive 

to feelings. They are able to adapt for learning needs considering cognitive and affec-

tive aspects of students [7, 9, 10]. However, there are few efforts to help teachers.  

Intelligent Teaching Assistants systems (ITAs) are Intelligent Tutoring Systems 

(ITS), which aim to assist students and teachers. They provide assistants on teachers’ 

tasks, although there are no systems that consider teacher affective model. Emotions 

are being related as essential in development to any activity. Students learn less if 

they are anxious, angry or depressive [4]; but how about teachers? They can better 

teach with positive affective states? Sutton e Wheatley [18] affirm that emotions can 

influence teacher’s cognition and motivation and, consequently, students are aware to 

teachers’ feelings.  

Recent studies show that teacher’s role in LMS and ITS seem to be forgotten [18]. 

But it is possible to find studies that describe the importance of teacher affective as-

pects [6, 18]. Cunha et al. [6] describe an empirical model based on ordinary teacher’s 

behavior to identify affective states.  

This paper demonstrates how Cunha [6] model can be applied into Moodle LMS. 

We verified each affective state and how to develop it in Moodle. Finally, we tested 

the model using controlled and real environment.  
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2 Related Work  

Our study is based on the bridge among: Learning Management Systems (LMS), 

emotions and teacher profile. Therefore, we need to comprehend how these compo-

nents are made and covered. So, we describe LMSs and their evolution stating form 

adding intelligent and affective components for both students and teachers.  

LMS are information systems that offer learning objects, assignments and commu-

nication tools. Teachers and students use those resources in courses. When LMS is 

available through the internet, it is possible to offer online courses. Moodle [12] is an 

example of LMS, which is free and open source. Moodle also allows customizing 

according to developers or the school’s needs.  

Intelligent Tutoring Systems (ITS) are a type of LMS that include intelligent re-

sources. Consequently, they allow students to expand their learning possibilities. ITS 

architecture includes student model, domain model and pedagogical model [21].  

After, ITS presented some evolution, including easiness to teachers and affective 

model to students. Intelligent Teaching Assistants systems (ITAs) consist on ITS that 

add teacher’s model and interface. This model has assistants to help (automating or 

guiding) teachers’ tasks [21]. However, teachers remain in control of the activities 

and pedagogical decisions. When teachers are helped, students are benefited, because 

teacher can spend more time doing the mediation [6].  

Recently, it is noted the need of considering cognitive and affective aspects of stu-

dents to better provide personaled learning [9]. Affective Tutoring Systems (ATS) are 

ITS that include an affective student model [1]. This model can detect frustration or 

stress, simulate agents with affective states, monitor social interaction, diagnose moti-

vation, and then to adapt the system for each student [14]. Therefore, ATS adapts as 

well as a human teacher does [2]. And, consequently, the student will feel more pleas-

ant through the learning process [1].  

It’s also possible to find ITS that implements both ITA and ATS. Alice is one ex-

ample. It considers affective aspects of students and provides intelligent assistants that 

help teachers to verify plagiarism and how correct an answer is [17].  

However, despite these studies that describe how important is to consider emotions 

in learning process, there are only a few about emotion in the teaching process. About 

teacher, we know how important it is to have a lower workload, and one way is prov-

ing automatic tools. But, there are no studies about teachers and theirs emotions in 

order to improve teaching. This is also criticized by Tretiakov et al. [19], who affirm 

that ITS has failed to recognize the real role of teacher.  

3 Motivation  

According to Carvalho [5] and Tretiakov et al. [19], the teacher should be able to 

guide the learning, to motivate student, to know technological tools, to be aware to 

student’s context, to select and to organize the content, to manage the curriculum, to 

observe learning progress, and to be open to judgements. However, affective skills 

influence more than cognitive ones [8]. Yacef [21] affirm that to help teachers to bet-
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ter teaching is an activity as important as teaching students. When teachers are able to 

recognize what they are feeling, they can better express themselves in classroom [3]. 

So, a teacher guided affectively (respecting the course content and class scenario) has 

better condition to develop the curriculum and get results more effective.  

We believe that join Affective Computing with ITA architecture can improve af-

fective tutor profile. ITA offers a set of functionalities designed to teachers. It allows 

to work better and quickly. Consequently, teachers take care more on how student is 

learning. This mediation needs affective skills to affect student positivity.  

4 Our Proposal  

The study goal is to describe how to include an affective model to teachers using 

Moodle. Although it is just a LMS, not a ITS, we choose it because Moodle allows 

customizing. Nowadays there are studies towards to expand Moodle as ITS. It allows 

creating pedagogical rules to provide personalized learning [9]. For the teachers, 

Moodle offers tools to help them in ordinary tasks, without smart or affective features.  

The second definition was about the affective model oriented to teachers. There are 

many ways to identify emotions, using external clothes or equipment as sensors, or 

making assumptions through behavioral models [2]. We choose the same technology 

used by LMS that has affective model for students, which assumptions are made by 

their interactions [9].  

We also choose the model proposed by Cunha et al. [6], whose we can predict six 

affective states from teachers’ interaction. This is an empirical model based on previ-

ous studies made by the authors. This is not a surprise for us, as the most of studies 

are recent, which technologies and proposals are new [20].  

4.1 Affective Model  

Cunha et al. [6] model aims to identify affective states of teachers whose use LMS. 

Authors believe that teacher must present communicability and sociability skills to 

better talk and give attention for all students. Punctuality and commitment to tasks’ 

deadlines. Meticulousness to be attend to all events, for example, a new post in forum. 

And, initiative, to provide new or alternative tasks and contents. They also describe 

how each affective state can be measured using variables present in most of LMS:  

 Sociability: it is the teacher’s capacity to communicate with all students in the 

same way (homogenous). It is calculated by the standard deviation of the number 

of messages sent to students. The higher the value found, the greater the chances of 

the teacher to be paying more attention to a student or to be paying less attention to 

a particular student than the other.  

 Communicability: it is measured by the amount of message size per number of 

messages. It depend on the tool used. The chat messages are shorter and direct than 

forum posts. It is also evaluated messages sent as student’s feedback in assign-

ments and quizzes. Authors explain that too short or too long messages may mean 
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bad communicability. We must notice that is not measured messages’ quality here, 

because it depends on each context.  

 Punctuality: from what was agreed with the class, the teacher's point of care inter-

actions of students, whether it be a question via discussion forum, sending a job, a 

general doubt about the course or feedback to an answer to an exercise. To deter-

mine the timeliness, we used the date of delivery of the task and the date of the 

teacher's response and the date of posting to a forum and the date of the student 

teacher's response to this forum. The difference of these dates is computed, so that 

later generate an average response time teacher.  

 Commitment: it refers to the commitment of the teacher to meet the criteria previ-

ously established and agreement. The commitment is based on the difference of the 

final delivery date of the task and the date of assessment and teacher response.  

 Meticulousness: it refers to the ability of the teacher to pay attention not only on 

the interactions of the students in the virtual environment, but also to maintain the 

perception and the solution of the consequences of these interactions. The meticu-

lousness is calculated by the date and time of the last visit of the teacher to the fo-

rum. The difference of this date with the current date is the estimated time in which 

the teacher has not accessed the system.  

 Initiative: it refers to the ability of the teacher to support the student in new actions 

in the virtual environment. We calculated how many weeks have passed since the 

beginning of the course and how many materials were placed by the teacher from 

the beginning of the course.  

4.2 Development  

We verified how Moodle organize each information in its database. For each affective 

state, we built SQL queries to get the values and then calculate. After, we established 

values to range: very good, good, regular, bad, very bad. Those values were gotten 

considering the university where the model was applied.  

Moodle offers specific customization points, for example, reports, boxes, re-

sources, questions types, etc. We choose box option, because it can be added as 

teacher wanting. Also, box is just visible to teachers, students are not able to see. Fig-

ure 1 presents the box (only in Portuguese). 

 



38 

 

Fig. 9. Box implemented into Moodle.  

Nowadays, the box shows each affective state and its value. Although, we know this 

information is not enough, because teacher may not comprehend the meaning of each 

one and how to improve it. So, it is important to give better messages, based on texts 

that guide teachers in their tasks. Those messages can be determined from affective 

states and can stimulates teachers’ upgrade.  

4.3 Tests  

As a new and empirical model, there are no previous studies proofing its accuracy. 

We did some tests to check if teachers’ actions really change affective states. We also 

double check if students have the same perception about teacher as model presents.  

In the first test, we did some simulations using a controlled environment. We cre-

ated teachers and did some actions to verify how each affective states oscillate. The 

results were satisfactory and consistent to model proposed.  

The second test involved real data. We got data from 4 undergraduate courses that 

use Moodle LMS to support face-to-face and online activities. Students of each course 

received a survey with sentences like: “I receive activities feedback quickly”. For 

each sentence, students have 5 answers options based on Likert: always, often, some-

times, rarely, never. We received 88 surveys from students.  

The results show that communicability average indicated by students are above 

than model indicated. Commitment and initiative have the same values from students 

and model, no matter whether are positive of negative. Meticulousness was the affec-

tive state with worst accuracy, because model has indicated values too below than 

compared to students’ opinion. Finally, we cannot measure sociability and punctuality 

because there were not information enough in Moodle LMS.  

With these results, we can see a relationship between students' opinions and values 

presented in the equations. It is understood that full compatibility would not be 

achieved, since the surveys reflect the views of students, which is susceptible to some 

variables of the educational process.  

5 Conclusions  

Nowadays, with the news technologies, the possibilities of its use in education have 

been increasing. This situation enabled a revolution and new teaching methods. Sev-

eral studies involving affectivity in educational processes have been developed in 

order to analyze the real impact of this aspect during this activity, but few of them 

work with the tutor itself, seeking to verify your affective aspect. Yacef [6] reinforces 

the importance that the teacher has on learning and propose new systems that make 

the teacher with a more important role in this process.  

For this study, we chose to use an affective model already defined, requiring only 

the construction of equations that simulate the oscillations of the values according to 

the actions of the tutor. These equations were implemented in Moodle through SQL 
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queries and then presented visually in the form of box. To validate the information, a 

survey was developed in which students informed their perceptions for each of the 

affective attributes.  

The results are promising and open new studies: how can affective states benefit 

teacher as well as students? How to guide teachers to better work, without step in 

their pedagogical decisions? Can those orientations really benefit educational pro-

cess? Is there another affective states that should be added to describe teachers?  

This study limitation is concerned in frailty model. Especially if model is applied 

in a course with more than one teacher. We don’t know how it will work.  

We hope that this work will contribute the quality of teaching. We believe that 

with the inclusion of the box, the teacher can regulate themselves, discovering how to 

improve on their teaching process.  
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Abstract. The purpose of this paper is to expose the differences between the el-

ements required for individual learner models to accurately assess an individu-

al’s learner state and the elements of team models to accurately assess a team’s 

learner state. A literature review investigating the science behind teamwork and 

team performance pertaining to the principles of intelligent tutoring systems 

was conducted. The initial results are presented in this paper.  

1 Introduction  

Intelligent tutoring systems have historically focused on providing individualized 

adaptive learning for a single learner. Collaborative learning, on the other hand, has 

been found to produce great benefits such as, increasing social interaction and inter-

personal relationships, improving students’ time on task and motivation to learn, and 

increasing learners’ expectations for personal success [1]. With this in mind, there has 

been a strong motivation to conduct work incorporating collaborative learning prac-

tices with intelligent tutoring systems (ITSs) to develop team tutoring systems. How-

ever, ITSs for individual learning already exhibit many challenges in terms of its 

learner modeling capabilities; therefore, the development of successful team ITSs will 

significantly increase the complexities of this challenge area.  

The purpose of this paper is to expose the differences between the elements re-

quired for individual learner models to accurately assess an individual’s learner state 

and the elements of team models to accurately assess a team’s learner state. While 

previous team state models have been theorized [2], current work focuses on develop-

ing design architectures, inclusive of behavioral markers and metrics, for each of 

these models. The design architectures will be rooted in principles of intelligent tu-

toring and the science behind teamwork and team performance. The first step of the 

current work is to conduct a thorough literature review investigating the science be-

hind teamwork and team performance as well as the principles of intelligent tutoring. 

This synthesis of the literature on teams includes both conceptual and empirical arti-

cles. Inclusion criteria is as follows: (1) search period 2003-2013, (2) sources include 

peer reviewed journals and conference proceeding, (3) databases searched include 

PsychInfo, DTIC, and ProQuest, (4) use of snowball approaches whereby the refer-
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ence lists of identified articles such as meta-analyses, major reviews, other articles 

that are found in the initial search are also reviewed for additional sources, and (5) 

disciplines searched include psychology, healthcare, military, organizational behavior, 

and sports. Search terms included, but were not limited to: ‘teams and learning’, 

‘teams and satisfaction’, ‘teams and viability’, ‘teams and performance’. This search 

yielded approximately 6,000 articles. After cross-referencing the articles from these 

search terms with the previous ones to avoid coding duplicates there are approximate-

ly 5,991 unique articles to code. Progression through this systematic review process 

will help to ensure that the design architectures to be developed are scientifically-

rooted in the literature.  

2 Elements of a Comprehensive Learner Model  

The learner model, a core module of ITSs, is the representation of learner’s current 

state of knowledge at any given time [3]. A comprehensive model would include 

information on the learner’s individual difference characteristics, his/her past and 

current competency, performance, cognition, affect, behaviors, etc. The ITS uses such 

information to adapt and customize instruction accordingly based on the learn-er’s 

state.  

The content within learner models, as shown in Table 1, is generally categorized in 

two parts: domain-specific or domain-independent information [i.e. learner-specific 

characteristics (individual differences)] [4, 5]. Domain-specific information represents 

a reflection of the learner’s state and level of knowledge or ability within a particular 

domain. Most learner models, particularly those of first generation ITSs, are con-

cerned with modeling this type of information because this allows the model to be 

more generalized across multiple populations. While this information is useful, it 

alone is not sufficient for providing the highly adaptive individualized training. Do-

main-independent information consists of all relevant characteristics of an individual 

learner. These individual difference variables are significantly different between 

learners and, collectively, are not the same for any two learners. 
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Table 3. Learner Model Content 

 

2.1 Learner States As The Source of Adaptation  

Current learner modeling research focuses on understanding the interrelationship 

between the domain-independent information and how it can best be used with the 

domain-specific information for accurately classify learner cognitive and affective 

states [6]. According the adaptive tutoring learning effect chain, as shown in Figure 1, 

cognitive and affective learner state models inform the selection of optimal instruc-

tional strategies to support higher learning gains [7]. There are also other learner 

states (i.e., motivational, behavioral, etc.) that may be important to monitor during 

this process, but cognitive and affective states are the most significant during learn-

ing. 

 

 

Fig. 10. Adaptive Tutoring Learning Effect Chain for Individual Tutoring [7] 

3 Elements to Consider for Modeling Teams 

When it comes team ITS, there is an added workload of coordinating states of indi-

vidual team members so a more comprehensive picture of the team state can be de-

veloped. More specifically, the ITS needs to understand the state (e.g., cognitive, 

affective, motivational, psychomotor/behavioral) of each team member, their individ-

ual performance, the communication and interactions of the team members, the con-

tributions of each individual’s performance and state and interactions to the collective 

performance of the team. Moreover, inputs to the “team state” might include the state 

of trust between individual team members, progress towards team goals, reassessment 
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of team goals based on priorities, and the distribution of workload for each member 

[2]. Figure 2 presents a notional team tutoring learning effect chain. 

 

 

Fig. 11. Notional Adaptive Tutoring Learning Effect Chain for Team Tutoring [8] 

Regardless of the number of individual learners to monitor on any given team, the 

team state is more complex than an aggregate collection of the learner’s individual 

states. Therefore, accurately assessing the team state is the first main challenge of 

team tutoring. One of the first steps in ensuring the accurate assessment is to deter-

mine the team outcomes that one is interested in training as this will drive the content 

that should be incorporated into each of the team state models as well as provide in-

sight into data aggregation methods.  

3.1 Important Outcome Variables for Team Tutoring  

In determining the content that should be included in the team state models one of the 

first steps is to decide upon the types of outcomes that the team tutor might choose to 

focus upon. Guided by conceptual models within the teams literature (for a review see 

[9]), we initially identified four team outcomes to focus upon: team performance, 

team learning, team satisfaction, and team viability. Team performance was charac-

terized as a judgment of how well the results of teamwork meet some set of standards 

(objective or subjective). Team performance is the outcome that has received the most 

attention in the team’s literature as it reflects how well teams are able to enact team 

processes and states to achieve a desired team goal. A review of the articles that ex-

amine team performance as an outcome include evidence for a wide variety of an-

tecedents, some of the most common include: communication, coordination, mutual 

support, reflexivity, monitoring, conflict (task, relationship), leadership, interpersonal 

processes, conflict management, organizational citizenship behaviors, trust, collective 

efficacy, psychological safety, cohesion, team mental models, transactive memory 

systems, and situation awareness.  

Team learning was also identified as an important outcome for the team tutor to fo-

cus on for several reasons. First, the ability to facilitate learning would seem to be at 

the heart of a tutor (team or otherwise). Second, it has been argued that team learn-ing 

is important in that a lack of team learning precludes a team’s ability to be adap-tive – 

something that is fundamental for success in complex environments such as the mili-

tary. In examining team learning as an outcome of interest we are referring to the 

acquisition or refinement of task-related knowledge or skills through interaction with 
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one another [10]. While our meta-analytic and conceptual analysis of the literature 

revealed fewer articles that focused on this outcome a fair number were still uncov-

ered. A review of these articles revealed several trends, including evidence for com-

munication, collaborative learning, coaching/leadership, and psychological safety as 

being positively related to team learning. Meta-analytic evidence was found for com-

munication, coordination, reflexivity, conflict, conflict management, trust, psycholog-

ical safety, and cohesion being significantly related to team learning.  

Team satisfaction is the third team outcome that is often identified within promi-

nent team models and frameworks as being important to consider, especially if the 

team will work together for an extended time or under varying levels of stress. The 

degree to which members are satisfied with the team interaction can serve as a moti-

vational driver for members. In this vein, team satisfaction can be defined as the de-

gree to which members enjoyed being a member of the team. A review of articles 

examining team satisfaction as an outcome revealed several trends, including evi-

dence for conflict, cohesion, team potency, and team trust in leadership, and trust in 

each other as antecedents of satisfaction. Meta-analytic evidence was also found for: 

communication, coordination, mutual support, reflexivity, conflict, transition process-

es, action processes, interpersonal processes, leadership, conflict management, trust, 

collective efficacy, psychological safety, cohesion, transactive memory systems. An-

other trend suggested by the literature is that team satisfaction is linked to overall 

team effectiveness.  

Team viability, while appearing less often than team performance and team satis-

faction, has also been argued to be an important team outcome, especially for those 

teams whose members are expected to have to work together in the future. Team via-

bility has been defined as the desire to remain a part of the same team for future per-

formance episodes [11]. A review articles focusing on this team outcome revealed 

several trends, including evidence for conflict, goal commitment, and team mental 

models as antecedents to viability. Meta-analytic evidence was also found for the 

following team constructs explaining significant variance in team viability: communi-

cation, coordination, mutual support, conflict, conflict management, collective effica-

cy, psychological safety, team cohesion, and transactive memory systems. Another 

trend suggested by the literature is that team viability is linked to overall team effec-

tiveness.  

3.2 Team State Taxonomy  

Now that targeted team outcomes have been identified, we can begin to think about 

those constructs (e.g., attitudes, behaviors, cognitions) which serve to facilitate such 

outcomes. In this vein, [2] began to delineate a series of six team state models (e.g., 

team performance, team competency, team cognitive, team affective, team trust, team 

communication) which when incorporated into the GIFT framework would serve to 

guide the learner assessment (see Figure 3, left hand side). While these models pro-

vide an initial starting point the set needs to be verified through conceptual and empir-

ical evidence as well as being expanded upon such that the subcomponents of each 

are apparent. It is these subcomponents that behavioral markers will be built around to 
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facilitate the assessment and adaptive tutoring portions of GIFT as related to teams. 

Based on the results of the conceptual and empirical review, we compared our find-

ings to the original categories proposed by [2]. The results of which appear on the 

right hand side in Figure 3. 

 

 

Fig. 12. Team State Models 

Of note is that at an initial glance the high level categories seem to align with those 

team aspects which have been shown to be most predictive and focused upon within 

the teams’ literature. In unpacking the team state models on the left, we expand the 

team performance state model to include the four team outcomes (performance, learn-

ing, viability, and satisfaction) to provide a fuller picture of what constitutes effective 

team outcomes. This expanded model reflects quantitative or qualitative evaluations 

of the status of team outcomes during any portion of the team’s performance period. 

Current discussions are ongoing in terms of refining the name of this state model to 

more accurately reflect the content contained within.  

With respect to the team competency state model here we include those individual 

team member characteristics which have the potential to impact or influence the ac-

complishment of team goals. These characteristics may include, but are not limited to 

knowledge, skills, ability, and experience. Some of the competencies reflect surface 

level characteristics (i.e., immediately observable) while others reflect those which 

are only apparent after interaction. The specific constructs which underlie each of 

these categories are currently being unpacked.  

The third state model, team cognitive, reflects an evaluation of the shared cogni-

tive state of all team members. This can include the degree to which members (a) 



47 

 

structure knowledge in a similar manner, (b) understand the roles, expertise, and ex-

pectations of fellow members, and (c) have a shared impression of aspects of the 

team’s status. Exemplar constructs here are shared mental models, transactive 

memory systems, and situation awareness.  

The fourth state model, team affective, refers to those constructs which describe 

the general feelings that team members have towards one another during team interac-

tion. This can include but is not limited to feelings regarding the team’s ability to 

accomplish their goals and the team’s emotional sentiments towards one another. 

Exemplar constructs here include, collective efficacy, cohesion, justice, effort, and 

cooperation.  

The fifth state model, team trust, reflects the shared belief that all team members 

will fulfill their role responsibilities, perform delegated tasks, and not attack fellow 

team members for expressing their opinion. Exemplar constructs within this model 

include trust and psychological safety.  

The final state model that was originally identified by [2] was the team commu-

nication model. This model reflects observable behaviors between group members 

which either directly impacts task progression/completion or indirectly facilitates the 

synchronization between team members. As such, it is broader than mere communi-

cation and might be more closely aligned with a ‘team interaction model’. Exemplar 

constructs include: coordination (mutual support, reflexivity, monitoring), communi-

cation, conflict, conflict management, leadership, organizational citizenship behav-

iors, interpersonal processes, as well as the more recent work on action/transition 

processes.  

Lastly, our literature search reveals two factors that could not be easily integrated 

into the state models presented in [2]. However, they are obviously important consid-

ering their prominence in the literature. Currently, work is in progress to determine 

whether these two factors could fold into one of the pre-existing state models or if 

they are distinct enough to require the creation of a new state model.  

4 4 Conclusions and Future Work  

This paper has only begun to highlight the complexities in moving from an individual 

learner model to a team-based learner model. Specifically, we have predominantly 

begun to highlight the differences in the type of content that may be included in each 

of these types of models. There are many other complexities in making this transition 

that will be covered in forthcoming papers. For example, the many of the identified 

constructs differ in terms of their nature – task generic, task specific, team generic, 

team specific [9, 12]. These distinctions speak to the degree of generalizability of 

their importance across tasks and teams. Another aspect of complexity lies in the 

assessment of such constructs. Within the teams literature the predominant form of 

assessment has been self-report Likert type measures. Within an intelligent tutoring 

framework the desire would be to identify behavioral markers of each construct that 

can be automatically captured by the system. Finally, there are also challenges in 

terms of how to aggregate the data to arrive at a team index [13]. All of this to high-
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light to fact that the transition from an tutor designed to train individual skills to one 

focusing on team skills is not an endeavor easily undertaken and one in which chal-

lenges are tackled in an iterative manner.  

This paper has identified the primary elements that belong in the team state mod-

els. The next step of this effort is to develop the behavioral markers and metrics to 

assess these elements; however, how to measure and develop these markers and met-

rics is a great challenge. The need to have these behavioral markers and metrics as-

sess team state in a domain-independent fashion produces even greater complexity. 

Ultimately, these models will be incorporated in the Generalized Intelligent Frame-

work for Tutoring (GIFT), a domain-independent framework that can be used to gen-

erate ITSs and conduct ITS research. 
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Abstract. Learner models are one of the most important parts of any tutoring 

system. Due to the complexity of social systems, it gets more challenging to 

track personal data and to build a model of learner’s state when dealing with 

teams. This research suggests leveraging the available literature on team dy-

namics to make a system dynamics model of teaming. This model will offer a 

more accurate representation of the complexity involved. An example system 

dynamics model of team trust is created based on a previous qualitative study of 

team trust [3]. Its benefits include a holistic understanding of trust structure in 

teams, the ability to evaluate and predict trust level in teams given current indi-

vidual states, and providing a testbed to evaluate multiple remedies to team is-

sues. The authors suggest that using this system dynamics (SD) modeling ap-

proach with GIFT as the individual learner model is a valuable initial approach 

to adding full team functionality to GIFT. 

1 Introduction 

Sottilare et al. emphasize the important role of learner models in understanding the 

learner’s state in individual learning [1]. They expand this to team tutoring, where the 

input becomes relationships and states between individuals in teams. Fletcher and 

Sottilare also introduced the importance of team shared mental models and the diffi-

culty of measuring traits like team trust, affect, or shared mental models [2]. Due to 

the complexity of individual differences and team member interactions, the team trust 

or shared mental model is not as simple as the sum of all individual states. For exam-

ple, based on Wilson’s study [3], if considering the team trust level as the sum of 

individual trust, the issue of having cliques or subgroups in the team is not consid-

ered. While subgroups are forming, certain individuals may build increasingly high 

trust and communication with each other, and be not much connected with others. In 

this case, the sum of the individual trust level may be increasing, but in fact, having 

subgroups in the team will reduce the team identity and affect the overall trust level. 

In this paper we will explore a different approach in modeling team trust level and its 

challenges. 
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2 Challenges of Making a Team Trust Model 

The current trend in learner models is making inferences from data using machine 

learning techniques [4]. As suggested by VanLehn, this can happen through empirical 

techniques using learning curves or Bayesian knowledge tracing models. The problem 

in team learner models is that the learning environment has many changing variables 

that are not easy to record. Also, the same group of people can act differently based 

on the complexity of the task domain and the role assignment [1]. Considering the 

amount of variability in such systems, using pure machine learning techniques to 

elicit generalizable rules would require a very large amount of observations as a train-

ing set. As team tutoring systems are relatively new, there aren’t many available 

sources for data to build these models. 

On the other hand, the dynamics of teams have been studied in different disciplines. 

Many of these studies assess and describe the dynamics of team characteristics de-

velopment such as trust in teams [3]. Also psychologists have delved into more detail 

and evaluated the effect of personal characteristics and emotions in forming trust in 

teams [5,6]. 

Comprehensive literature reviews on team dynamics [7,8,9] offer a larger picture 

of what we know about dynamics of teams. This understanding can serve as a basis 

for forming dynamic team models. When the literature is reviewed, the amount and 

complexity of influencing factors can get overwhelming to analyze at once. This is 

due to the complexity of such systems arising from the amount of interrelations and 

feedback loops. Also, some elements of the system may change with a time delay. 

Due to our cognitive capacity and human’s mental models, analyzing such complex 

systems is almost impossible. It is necessary to have a method of presenting all the 

information and the relationships dynamically. 

3 Possible Approach 

System dynamics (SD) is a method that provides a holistic view of complex systems. 

It has been widely used in different disciplines, mostly in business and policy making. 

SD is a helpful method in unraveling the unexpected behaviors of complex systems. 

System dynamics models are developed to mitigate our limitations in analyzing the 

four main sources of complexity that we can’t easily comprehend: dynamic complexi-

ty (due to the rapid changing environment), feedback loops (interrelations of ele-

ments) in a system, time delay (in reactions) and the effect of stuck and flow (effect of 

accumulation and dispersal of resources) [10]. The authors believe the complexity of 

trust or shared mental models in teams is no less than any other complex social sys-

tem. 

An SD model can be helpful initially to give a holistic understanding of the dynam-

ics of trust in teams. Once mathematical models are added to it, we have a simulation 

model that represents the overall trust state in a team. This model is now ready for 

validation. Once validated, given the current state of individuals, the model can eval-

uate the team trust level and simulate the future trend of trust under various scenarios. 
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This means that while the tutoring system is gathering data on the individual states 

and trust between individuals, the SD model can serve as a team trust model. In addi-

tion, in cases where we have a trust issue in the team, there might be several possible 

ways to address that. With the simulation we can examine the results and select the 

most effective one. In the following section an example is given to demonstrate how a 

system dynamics model of trust in teams can be made based on analytic studies. 

3.1 Previous Work 

Similar approaches have been taken to model team dynamics and have shown the 

potential capacity of this method. Kefan et al. have used SD to model an entrepre-

neurial team’s risk-based decision-making [11]. The model considers many environ-

mental aspects and also makes a number of assumptions about the logical way of 

decision making of team members. Their model provides a basis to analyze team 

decision making. However, its model is not based on specific literature on team com-

munication. 

Kim et al. have introduced a team performance model named team crystallization 

that simulates team performance at a nuclear installation [12]. The model uses as 

inputs the number of team communications, the state of the power plant, and different 

control strategies. Using sophisticated mathematical models and leveraging neural 

networks, the model is able to simulate the team performance under various condi-

tions. This model, however, doesn’t study any other team elements than communica-

tion, and doesn't use feedback loops. 

4 System Dynamics Team Trust Model Example 

As an example, a study on trust in distributed teams [3] is used to make a simulation 

model using Vensim software. According to Wilson there are three key factors that 

contribute to trust in such teams: group identity, relationship and familiarity. While 

Wilson's results are valuable, questions remain, such as, "If we changed multiple team 

factors at the same time, what will happen to trust?" and "What are the exact relation-

ships between these factors? Does one contribute 60% to trust while the others con-

tribute the remaining 40%?" Lastly, this research doesn't address feedback loops, e.g., 

"If trust falls, does that impact team identity?" An SD model answers these questions. 

To construct an SD model, one needs both results like Wilson's to define the structure 

of the model, as well as case studies or expert opinion to assign the numbers. Once 

the model is made, the critical step of validation is required. The challenges of the 

validation process are discussed in section 5 of this article. An initial SD model based 

on Wilson's results is represented in Figure 1. 
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Fig. 13. SD Model of Trust in Teams, Based on Wilson, 2013 

Each of Wilson's primary factors (shown as boxes) are affected by other variables that 

are represented in the model. The group identity, as explained by Wilson, is affected 

by the quality of team structure design, selection of team  members and the level of 

respect the members give to differences. Also, role of strong leadership and training 

for diversity tolerance were mentioned as influencing elements in building team iden-

tity. The greatest threat to group identity was considered subgroups. The model repre-

sents all the mentioned relationships with the identity rate (arrow), which accumulates 

the group identity level over time, much like water filling a bucket. In this model low 

identity rate represents high subgrouping potential and vice versa. Feedback loops in 

social systems play an important role in explaining complex behaviors of a system. 

To include feedback loops in our model, we added the effect of trust rate in group 

identity rate. This means that once trust is falling, the group identity drops as well and 

vice versa. Also a feedback was added form trust rate to communication rate. Similar-

ly the two other elements of the system, familiarity and relationship were modeled. 

4.1 Simulating Team Scenarios 

Assuming the model is validated, one of the benefits of an SD model is simulating 

different team scenarios. For example, what if the leader changed partway through a 

project? To show some outcomes of this particular model, we considered a scenario 

where the team design and member selection was not done carefully, and thus sub-

groups form. Also, the team leader is not successful in helping the team to build trust 

by enforcing communication or building team identity. The model is set to simulate a 

period of 100 time intervals which could represent 100 weeks. The trust level is a 

value between -5 and 5 starting at the initial state of 1. In this case the model shows 

the trend of team trust level. Imagine noticing this negative trend in week 10 and con-

sidering two options: either bring in a strong leader or have the members take a train-

ing intervention course. We test the effect of each and observe the results. 

Figure 2 demonstrates the results under conditions of not doing anything, adding a 

strong leader in week 11, having the team take an effective training course in week 
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11, or doing both. In this case, doing both has the most influence. We can observe that 

in this model, the effect of a strong leader is higher than the effect of a training inter-

vention. Having this SD model, many other scenarios can be tested as well. 

 

Fig. 14. Team Trust Level Under Different Scenarios 

This model is solely based on one article, and thus may not be the best representative 

of trust in teams. Additionally, this model needs to be developed further to incorpo-

rate the dynamics of shaping subgroups based on individual behavior. However, the 

model illustrates the power of an SD approach. 

When modeling abstract measures such as trust, we are more interested in the 

overall trends (rising or falling) in teams, rather than the actual values. By assigning 

some initial state numbers to the input values, we can test the model under various 

scenarios. Ideally the initial state numbers will come from the individual learner mod-

els. In order to validate the model, the weights need to be validated by case study data 

or in the early stages of model implementation. 

5 Limitations and Challenges 

Implementing a robust system dynamics model has some inherent challenges. First of 

all, every simulation model needs to be validated before the results can be considered 

dependable. The validation of the model requires actual data. Some research articles 

publish their collected data, and in this case, they can serve as a validation source. 

Otherwise, in the early stages of running the tutor, the team learner model needs to be 

refined and tuned until validated. In addition, in the literature, some research studies 
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may not agree with each other. In that case we may need to have different models 

based on those ideas and validate them during the initial testing process. 

6 GIFT Suggestions 

The GIFT’s sensor module has a very strong framework for inputting several streams 

of sensor data. Also, the built-in learner module of GIFT enables using the individual 

data to update the learner’s affective state and learner model. However, for the team 

learner models, there needs to be a means to incorporate the SD model. Although 

these simulation models are easy to implement in simulation tools, it takes lots of 

effort to develop such a tool from scratch. Therefore, the authors suggest for the early 

stage of SD implementation, GIFT could facilitate an easy way to communicate with 

some existing SD software packages. However if using SD or other simulation mod-

els were proved to be helpful, then GIFT should consider incorporating such simula-

tion as part of its learner model. 

7 Conclusion 

The structure of intangible and hard to assess features such as trust in teams is so 

complex that requires a holistic approach to understand and analyze. Using the analy-

sis of teams in the literature and making a system dynamics model can first of all help 

the ITS team better in understanding the dynamics of the field. Secondly, the system 

dynamics simulation can construct a proper team learner model. Third, the model can 

serve as a laboratory to test several scenarios on teams and explore their behavior. 

Although validating such models may take some time, the validation process can 

happen in a shorter time than data-based models. Given GIFT's ability to collect all 

the sensor data through the sensor module, adding the ability to incorporate SD learn-

er models or communicate with external SD sources will enhance team learner mod-

els. 
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