
  
 

  



  
 

  



  
 

Design Recommendations  
for  

Intelligent Tutoring Systems 
 
Volume 10 
Strengths, Weaknesses, Opportunities and 
Threats (SWOT) Analysis of Intelligent 
Tutoring Systems 

 
 
 

 
 
 

Edited by: 
Anne M. Sinatra 

Arthur C. Graesser 
Xiangen Hu 

Gregory Goodwin 
Vasile Rus 

 
 

 
 

 
A Book in the Adaptive Tutoring Series 



 
 

 

Copyright © 2023 by the US Army Combat Capabilities Development Command – Soldier Center 
 

Copyright not claimed on material written by an employee of the US Government. 
All rights reserved. 

No part of this book may be reproduced in any manner, print or electronic, without written  
permission of the copyright holder. 

 
The views expressed herein are those of the authors and do not necessarily reflect the views  

of the US Army Combat Capabilities Development Command - Soldier Center. 
 

Use of trade names or names of commercial sources is for information only and does not imply endorsement 
by the US Army Combat Capabilities Development Command - Soldier Center. 

 
This publication is intended to provide accurate information regarding the subject matter addressed herein. The 

information in this publication is subject to change at any time without notice. The US Army Combat 
Capabilities Development Command - Soldier Center, nor the authors of the publication, makes any guarantees 

or warranties concerning the information contained herein.  
 

Printed in the United States of America 
First Printing, March 2023 

 
 
 

US Army Combat Capabilities Development Command - Soldier Center 
Simulation and Training Technology Center 

Orlando, Florida 
 
 
 

International Standard Book Number:  
978-0-9977258-3-4 

 
Special thanks to Jody Cockroft, University of Memphis, for her efforts in coordinating  

the workshop that led to this volume. 

 
 

Dedicated to current and future scientists and developers of adaptive learning technologies



 

i 
 

CONTENTS 

 

Introduction to SWOT Analyses 3 

Section I – GIFT and Intelligent Tutoring System SWOT Analyses 7 

Chapter 1 ‒ Generalized Intelligent Framework for Tutoring 
(GIFT) SWOT Analysis 9 

Benjamin Goldberg and Anne M. Sinatra  

Chapter 2 ‒ Intelligent Tutoring Systems SWOT Analysis 27 

Robert Sottilare and Kurt VanLehn  

Section II– Intelligent Tutoring System Components SWOT 
Analyses 41 

Chapter 3 - Learner Modeling in Intelligent Tutoring Systems 
SWOT Analysis 43 

James Lester, Anisha Gupta, Fahmid Morshed Fahid, and Jay Pande  

Chapter 4 - Instructional Strategies in Intelligent Tutoring Systems 
SWOT Analysis 53 

Jong W. Kim, Steve Ritter, Michael Krusmark, and Tiffany S. 
Jastrzembski  

Chapter 5 ‒ Authoring Tools in Intelligent Tutoring Systems SWOT 
Analysis 63 

James E. McCarthy and Anne M. Sinatra  



 

ii 
 

Chapter 6 ‒ Domain Modeling in Intelligent Tutoring Systems 
SWOT Analysis 71 

Vasile Rus  

Section III – Advanced Elements of Intelligent Tutoring Systems 
SWOT Analyses 81 

Chapter 7 ‒ Assessment in Intelligent Tutoring Systems SWOT 
Analysis 83 

Diego Zapata-Rivera and Xiangen Hu  

Chapter 8 ‒  Team Tutoring in Intelligent Tutoring Systems SWOT 
Analysis 91 

Peter W. Foltz and Stephen B. Gilbert  

Chapter 9 –  Self-improving Systems in Intelligent Tutoring Systems 
SWOT Analysis 101 

Min Chi, Xiangen Hu, and Gautam Biswas  

Chapter 10 - Data Visualization in Intelligent Tutoring Systems 
SWOT Analysis 115 

Judy Kay, Arthur C. Graesser, and Anne M. Sinatra  

Chapter 11 – Competency-Based Scenario Design in Intelligent 
Tutoring Systems SWOT Analysis 127 

Patrick Kyllonen, Robby Robson, Judy Kay, and Bob Pokorny  

Biographies 147 

 
  



 

iii 
 

 
 

INTRODUCTION TO SWOT ANALYSES 
 
 

Anne M. Sinatra1, Arthur C. Graesser2, Xiangen Hu2,    
Gregory Goodwin1, and Vasile Rus2 Eds. 

1U.S. Army Combat Capabilities Development Command – Soldier Center –  
Simulation and Training Technology Center 

2University of Memphis Institute for Intelligent Systems 

 

 

 

 

  



 
 

4 
 

This book is a resource for those who are new to intelligent tutoring systems (ITSs), as well as those with 
a great deal of experience with them. This is the tenth book in our Design Recommendations for Intelligent 
Tutoring Systems book series. The focus of this book is on Strengths, Weaknesses, Opportunities, and 
Threats (SWOT) Analyses of varying components of ITSs. Each chapter in the book represents a different 
topic area, and includes a SWOT analysis that is specific to that topic and how it relates to ITSs. This book 
can be read in order, or a reader can choose a specific topic area and move directly to that chapter.  

Each SWOT Analysis describes the current state of the topic area, and how the lessons learned from the 
analysis could be applied to the Generalized Intelligent Framework for Tutoring (GIFT) (Sottilare et al., 
2012; Sottilare et al., 2017). GIFT is an ITS architecture that is open-source, modular, and domain 
independent (Sottilare et al., 2017). Each book in the design recommendations series has addressed a 
different ITS topic area, and how the work in each chapter can relate to and inform the GIFT architecture. 
GIFT has continually been in development, with features consistently being added to improve functionality, 
as well as reduce the skill requirement for authoring content in GIFT. GIFT is freely available in both 
downloadable and Cloud versions at https://www.GIFTtutoring.org.     

There have been a series of yearly Expert Workshops that started in 2012 as part of a cooperative agreement 
between the University of Memphis and US Army Research Laboratory (in 2018, the GIFT team as part of 
a reorganization, became part of US Army Combat Capabilities Development Command – Soldier Center). 
These workshops each had a relevant ITS topic area, and included invited experts from academia,  
government, and industry.  Each workshop led to a book in the Design Recommendations for Intelligent 
Tutoring Systems book series. These books captured the themes of the workshops in the form of 
collaborative chapters between experts who participated.  

The tenth expert workshop topic was SWOT Analyses of Intelligent Tutoring Systems. This workshop was 
structured in line with the topic areas that the first 9 expert workshops covered (see Table 1). There were 
presentations on each of these areas and in most cases two experts each presented their SWOT analysis of 
the topic area. Additionally, there was an overview presentation on GIFT, and an overview ITS SWOT 
analysis. Table 1 indicates the topics of each workshop, and the associated book publication. 

Table 1. List of the topics of the first 9 expert workshops, the workshop date, and the book publication date. 

Topic Workshop Date Book Publication Date 

Learner Modeling September 2012 Volume 1 – July 2013 

Instructional Management July 2013 Volume 2 – July 2014 

Authoring Tools June 2014 Volume 3 – June 2015 

Domain Modeling June 2015 Volume 4 – July 2016 

Assessment Methods May 2016 Volume 5 – June 2017 

Team Tutoring May 2017 Volume 6 – August 2018 

Self-Improving Systems May 2018 Volume 7 – October 2019 

Data Visualization August 2019 Volume 8 – December 2020 

Competency-Based Scenario Design September 2020 Volume 9 – February 2022 

https://www.gifttutoring.org/
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Sections of the Book  

This book is organized into three sections that cover SWOT analyses in different groupings:  

I. GIFT and Intelligent Tutoring Systems  

II. Intelligent Tutoring System Components 

III. Advanced Elements of Intelligent Tutoring Systems 

Section I covers a general overview including a GIFT SWOT analysis (including the history of GIFT), and 
a general ITS SWOT analysis. Section II is made up of SWOT analyses of traditional components of ITSs 
and includes: Learner Modeling, Instructional Strategies, Authoring Tools, and Domain Modeling. Section 
III covers SWOT analyses of advanced elements of ITSs including Assessment Methods, Team Tutoring, 
Self-Improving Systems, Data Visualization, and Competency-Based Scenario Design. 

References 

Sottilare, R.A., Brawner, K.W., Goldberg, B.S. & Holden, H.K. (2012). The Generalized Intelligent Framework for 
Tutoring (GIFT). Orlando, FL: U.S. Army Research Laboratory Human Research & Engineering 
Directorate (ARL-HRED). 

 
Sottilare, R., Brawner, K., Sinatra, A. & Johnston, J. (2017). An Updated Concept for a Generalized Intelligent 

Framework for Tutoring (GIFT).  Orlando, FL: US Army Research Laboratory.  May 2017.   
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CHAPTER 1 ‒ GENERALIZED INTELLIGENT FRAMEWORK FOR 
TUTORING (GIFT) SWOT ANALYSIS 

Benjamin Goldberg and Anne M. Sinatra  
U.S. Army Combat Capabilities Development Command (DEVCOM) Soldier Center 

 

Introduction 

The focus of the 2021 Soldier Center/University of Memphis expert workshop was centered around a 
SWOT (Strengths, Weaknesses, Opportunities, and Threats) Analysis of Intelligent Tutoring Systems 
(ITSs) and the functions that make those platforms work. During the three-day event experts in the field 
presented their SWOT perspectives across numerous research and development themes. Each topic area 
was tied to a previous Design Recommendations for Intelligent Tutoring Systems book volume theme, 
including: Intelligent Tutoring Systems in general, Learner Modeling, Instructional Management, 
Authoring Tools, Domain Modeling, Assessment, Team Tutoring, Self-Improving Systems, Data 
Visualization and Competency-Based Scenario Design. 

Across the better part of the last decade, this aforementioned series of books were used to assist in guiding 
the design and implementation of the Generalized Intelligent Framework for Tutoring (GIFT). Ultimately, 
GIFT was designed as a domain-agnostic and environment-independent architecture based on documented 
best practices. To drive its implementation, a set of standard tools, data models, and workflows were 
established to guide the Adaptive Instructional System (AIS) creation process. All of the technologies have 
evolved over the years based on the use cases and stakeholders driving their development, and we have 
made significant progress since the initial public release of GIFT back in 2011.  

But how far have we come, and what challenges lay ahead? In this chapter, we do our own critical SWOT 
Analysis of the GIFT architecture and reflect on the successes and challenges experienced across the 
execution of this program. In GIFT, instead of needing to recreate the entire AIS infrastructure for each 
implementation, the framework stays constant, and the content can be changed. There are authoring tools 
in GIFT that are used to add and create content as part of the ITS. Each of the 9 previous workshops and 
book volumes not only discussed the general research area, but also provided recommendations for how to 
improve GIFT in context of the topic. Similarly, the 2021 workshop included discussions of how the SWOT 
Analyses specifically can be used to improve GIFT. In this chapter, we go an additional step and conduct a 
SWOT Analysis of GIFT itself. 

Background and Supporting Research 

The evolution of GIFT has been heavily influenced by the use cases and learner populations engaged across 
the program’s history. A big emphasis of GIFT’s development was to establish a set of generalizable tools 
and best practices that harness the benefit of intelligent tutoring and apply them explicitly across military 
relevant skill and competency domains. These technology objectives were documented within the Army 
Learning Model 2015 document (Army, 2011), and directly justified a research investment to build 
capabilities to meet future Army training and education requirements.  

To support these objectives, specific research vectors were established that influenced the set of capabilities 
examined and iteratively developed, with established use cases creating the context to guide project 
execution. These vectors looked at elements across the core components of an AIS, such as: (1) how to 
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model the learner and team within a learning and military organization, including elements of their 
cognitive, physical, and emotional ability, (2) how to model the domain and task environment used to infer 
performance and track proficiency, (3) how to model pedagogy (i.e., the art of instruction) and establish 
coaching agents that can manage feedback and adapt the experience, and (4) how to manage all of these 
interconnected processes across an ecosystem of learning and simulation resources that span Live, Virtual 
and Constructive (LVC) type interactions and data sources. Figure 1 provides a timeline of GIFT use cases 
and development, which are described in more detail throughout this chapter. 

 

 

Figure 1. Timeline of GIFT Use Cases and Development. 

Learning in Intelligent Tutoring Environments Lab (LITE) Formed 

The adaptive training research program kicked off in 2010 through the creation of the Learning in Intelligent 
Tutoring Environments (LITE) Lab at the Simulation and Training Technology Center (STTC). It started 
as a small team of four, with a near-term focus on establishing a modular and extensible architecture that 
would be applied against all research questions investigated by the LITE Lab (Sottilare et al., 2012). As a 
guiding use case, the first GIFT proof of concept looked at supporting automated assessment and adaptive 
training in the Army’s legacy Games for Training program.  

First Gateway Module to Interoperate GIFT with an External Training Environment 

The first gateway module to interoperate GIFT with an external training environment was created for 
Virtual Battle Space 2 (VBS2). A scenario was designed with the VBS2 mission editor and involved a 
trainee executing a patrol around an identified compound. The scenario provided an excellent sandbox to 
experiment with different data driven techniques to monitor interaction within a simulation environment, 
and to assess that interaction against real-time performance criteria. In this instance, we designed and 
implemented GIFT condition classes (i.e., re-usable conditional logic configured with scenario specific 
parameters) based on game state information extracted from Distributed Interactive Simulation (DIS) 
standardized data packets, with the use of the VBS scripting language. This allowed us to establish the 
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message sets across all core GIFT modules to support capture of data, use of data to assess performance, 
and performance assessments that drive real-time feedback and adaptation strategies (e.g., change the 
weather from clear to foggy). 

To further improve on this VBS integration, another VBS scenario was applied using an Army Games for 
Training program of record validated Training Service Package (TSP). This scenario involved clearing a 
building of enemy combatants and added additional condition classes to handle engagement tasks that 
measured and assessed tactics and behaviors. The resulting exemplar further demonstrated that the approach 
being applied in GIFT was easily extensible across scenarios and task domains supported in a single training 
environment. These scenarios were used to iteratively refine the data communicated across GIFT’s 
modules, and to better understanding the logic required to translate game state information into valid 
metrics used to monitor and assess performance. For more information on GIFT’s modular design and 
implementation during the earlier years in the program, see Sottilare et al. (2012). 

Integration with Tactical Combat Casualty Care Simulation (TC3Sim) Serious Game 

With a baseline infrastructure in place that supported a single training application, it was time to expand to 
a new use case to support the domain-independent and environment-agnostic requirements linked to our 
program, as well as to drive forward on our first empirical evaluation examining the influence of AIS 
technologies in a military skill domain. In 2012, we selected a second Games for Training product to 
develop within called TC3Sim (TC3 stands Tactical Combat Casualty Care). The game was developed to 
provide first-person type exposure to scenarios and events that require the knowledge and procedural 
application of combat lifesaving skills (e.g., triage, hemorrhage control, burn care, preparation for transport 
and medevac, etc.). A socket-connection was created with TC3Sim through a Simple Object Access 
Protocol (SOAP) Gateway specification, enabling real-time capture and routing of game play data through 
GIFT’s core modules. We then designed 23 automated assessments linked to a mission context that 
challenged two types of medical assistance: Care Under Fire and Tactical Field Care. The authored 
assessments were validated with Subject Matter Experts and then aligned to coaching prompts within a 
GIFT Domain Knowledge File (DKF). For this development, we highlighted GIFT’s first integration with 
an external assessment engine (i.e., a data-driven service developed outside of GIFT). The DKF worked 
with a tool called SIMILE to manage and control the real-time performance classification (Mall & 
Goldberg, 2014). We collaborated closely with the United States Military Academy (USMA) at West Point, 
and conducted an empirical evaluation examining the impact of real-time assessment and coaching on 
transfer performance.  We also further investigated whether the modality of coaching had a significant 
effect on the performance variables we were monitoring. Results highlighted a significant improvement in 
performance when receiving real-time coaching via GIFT.  The results also showed benefit for inclusion of 
a pedagogical agent to serve as the feedback delivery vessel, as that method for system interaction follows 
principles and heuristics informed by Social Cognitive Theory (Bandura, 2001). For a full review, see 
Goldberg and Cannon-Bowers (2015). 

Personalization Research and the Logic Grid Puzzle Tutor 

In the same 2013 timeframe, an additional experiment was conducted using GIFT to examine the impact of 
personalizing materials during the tutoring process (Sinatra et al., 2014). A logic grid puzzle tutor was 
created using Visual Basic for PowerPoint and macros. A PowerPoint Show with macros was included as 
part of a GIFT course that taught participants how to solve logic grid puzzles, and then asked them to answer 
questions and solve additional puzzles afterwards. There were three different versions of the PowerPoint 
tutor that were created which represented different conditions: self-reference, popular media, and generic. 
The logic puzzle tutor included different names in it during the learning phase depending on the condition. 
In the self-reference condition the participant entered their own name and the names of friends; in the 
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popular media condition character names from the Harry Potter series were included; and in the generic 
condition, general names were included. Consistent with the self-reference effect (Symons & Johnson, 
1997), it was anticipated that if the participant had a personal tie to the names included in the material (self-
reference) they would perform better than if they received generic names. Further, it was investigated 
whether names from popular media would have a similar impact. It was found that general enjoyment of 
thinking/learning as represented by the need for cognition (NFC; Cacioppo et al., 1984) interacted with 
transfer performance (score on a difficult logic grid puzzle), such that those with a low NFC score appeared 
to actually be negatively impacted by the inclusion of self-referential names, which may be consistent with 
the seductive details effect (the inclusion of extraneous details of interest which may lead to distraction) 
(Harp & Mayer, 1997). There was no negative impact found for those who were high NFC. For transfer 
performance, there were no significant differences found for either those who were Low NFC or High NFC 
between the popular culture and generic conditions (Sinatra et al., 2014). The generic condition version was 
released with GIFT as a showcase course in GIFT that can be run as an example. 

Affect and Emotion in TC3Sim 

Starting in 2014, we began research examining the affective modeling requirements in GIFT and the use of 
sensors to drive learner model updates. With an in-place TC3Sim integration, a new project was initiated 
that examined both sensor-based and software-based affect detectors. A goal of the learner modeling 
research vector in GIFT is to utilize low-cost unobtrusive methods to monitor affective states that impact 
learning and retention. For this experiment, we integrated wearable physiology sensors and a Microsoft 
Kinect within GIFT’s sensor module. To further support affective modeling, we integrated the Baker 
Rodrigo Ocumpaugh Monitoring Protocol (BROMP) to align human observed affect labels synchronized 
with all data sources via GIFT (Baker, Ocumpaugh & Andres, 2018). This established a multi-modal 
infrastructure to drive model and classifier development. New scenarios were authored in TC3Sim with 
scenario characteristics for inducing affective responses (e.g., adding fog to induce fear, adding incurable 
patient to induce frustration, etc.). Multiple data collections were executed to drive model creation, training, 
and validation. The states of frustration and boredom showed the highest accuracy in being detected within 
a trained affect classifier when evaluated through a cross-fold validation. We then integrated GIFT with an 
open source version of a tool called RapidMiner to drive real-time classification based on our offline trained 
models. With this real-time affect monitoring capability, we established pedagogical interventions that 
would be automatically enacted if an upward trend of frustration is detected. For a breakdown on those 
experimental findings, see DeFalco et al. (2018).  

Counter Insurgency in UrbanSim 

In parallel to the affect research described above, a new use case was established using a discrete game-
based simulation developed at the Institute for Creative Technologies (ICT) called UrbanSim (McAlinden 
et al., 2008). The game environment was designed to train mission command type contextual scenarios that 
were launched within a counter insurgency campaign. We integrated the platform with GIFT with specific 
attention to studying self-regulated learning and practice behaviors that align with metacognitive skills and 
abilities in a discrete-event simulation environment (Maidstone, 2012). The goal was to study how trainees 
used the resources and components within the environment while executing tasks, and then to model 
optimal and inefficient self-regulated interaction patterns and behaviors based on performance outcomes. 
These metacognitive skills were modeled in a way to highlight transferability across tasks and 
environments, so as to train specific skills that will benefit self-regulated learning requirements. If sub-
optimal behaviors are recognized, automated coaching strategies can be injected that aim to instill proper 
self-regulated strategies rather than provide corrective feedback. The outcome of this effort established a 
new hierarchical learner model to be operationalized in GIFT, with current efforts using its formalization. 
See Biswas et al. (2019) for an overview of the work. 
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Adaptive Marksmanship in the EST2 

Moving forward from TC3Sim and Urbansim, two new challenging endeavors were initiated: (1) intelligent 
tutoring for a psychomotor skill and (2) intelligent tutoring in a dynamic team context. In the psychomotor 
domain use case, we leveraged the Army simulation-based Engagement Skills Trainer 2 (EST2) program 
of record used for initial hands-on training of Basic Rifle Marksmanship (BRM) tasks and fundamentals. 
A trainee interacts with a fit/form/function simulated rifle and engages targets on a projection screen 
through calibrated infrared sensing and hit-detection technology. The environment is a rich data source as 
the weapons are outfitted with embedded behavioral sensors (e.g., aim point, trigger pressure, cant angle, 
buttstock pressure, etc.). When integrated with GIFT, we added additional wearable sensors to examine 
heartrate and breathing patterns in addition to the system data types. We took this extended system to Fort 
Benning and worked with the world class Service Rifle Team within the Army Marksmanship Unit. 
Through this data source we successfully established validated models of expert performance in relation to 
the BRM fundamentals of steady position, proper breathing, trigger control, and aiming. We then utilized 
these models to inform new GIFT condition classes that analyze real-time data captured during a training 
run against the representative expert models (i.e., answering the question on whether or not a trainee was 
exhibiting proper fundamentals). This would drive adaptive coaching decisions after each training trial, 
enabling a personalized BRM experience. The methodology and outcomes of that process can be accessed 
through Goldberg et al. (2018). An empirical test on training effectiveness was conducted, but results have 
not yet been publicly published. 

Team Tutoring 

In this same timeframe, we also initiated a significant investment in the team tutoring space, which we are 
still working today. This involved an extensive meta-analysis/review of the literature to guide initial designs 
(see Sottilare et al., 2018), along with prototyping efforts to establish architecture requirements to support 
this new learning audience. The prototyping started with a conceptual exploration of how to represent the 
team formation and assessment requirements within GIFT’s software baseline at the time. A “simple” two-
person scenario was developed in the VBS3 game environment that challenged the distributed team to 
monitor and communicate (i.e., inform vs. acknowledge) the activity of non-player characters in their 
environment. If a hostile character (e.g., carrying a weapon) was leaving a team member’s zone and entering 
another team member’s zone, they were instructed to communicate that transfer, with an acknowledgment 
on the other end. This use case challenged the utility of GIFT’s DKF, and led to multiple modifications and 
extensions to drive these interdependent assessments running in parallel. For an overview of the research 
and early pain points in implementation, see Gilbert et al. (2018) and Ostrander et al. (2020). This work 
was later scaled up to a three-player version which introduced additional challenges in assessment, and 
different responsibilities for some of the teammates (Ouverson et al., 2021). The team-based intelligent 
tutoring research continues today, with significant advancements in GIFT’s domain modeling techniques, 
automated assessments, and team coaching functions. Work in the area of team tutoring is ongoing, and the 
proceedings of the tenth annual GIFT Users Symposium documents the most up-to-date implementations 
and works-in-progress at the time of writing of this chapter (Sinatra, 2022); the proceedings can be accessed 
for free at https://gifttutoring.org/documents/159.  

Integration with CTAT, EdX, and MOOCs 

Another area of research investment focused on the role of GIFT as an AIS resource within an enterprise 
level Learning Management System and using an ecosystem approach to drive the learning progression. 
There were two initial efforts in this area. The first examined the utility of GIFT in supporting Massive 
Open Online Course (MOOC) platforms (e.g., EdX, Coursera, etc.) through the Learning Technology 
Interoperability (LTI) Standard (IMS, 2012). In this use case, we integrated directly with Carnegie Mellon’s 

https://gifttutoring.org/documents/159
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Cognitive Tutor Authoring Tool (CTAT) and established that system as an available course object in GIFT 
by making GIFT an LTI consumer. We then integrated directly with the LMS edX to enable a GIFT course 
as an available activity within their platform by making GIFT an LTI provider. This allows an authored 
GIFT course to be utilized as a resident resource to LTI compliant LMSs, while also allowing a GIFT course 
to utilize other LTI providers within its course structure.  This approach enables a shared lesson experience 
that can navigate across several problem sets and scenarios, each utilizing disparate systems and 
technologies. Through these mechanisms, an evaluation was executed using the Big Data in Education 
MOOC (https://www.edx.org/course/big-data-and-education), facilitated by Professor Ryan Baker at 
University of Pennsylvania. For a full breakdown, read Aleven et al. (2018).  

GIFT’s Engine for Management of Adaptive Pedagogy (EMAP) and Data-Driven 
Tutorial Planning 

Another focus area within the GIFT program centered on personalized course sequencing. Specifically, this 
focuses on operationalizing instructional design theory with underlying data analytics to assist non-
technical audiences in building adaptive lesson materials at the macro-adaptation level (i.e., selecting what 
happens next to support a defined learning objective). This led to the establishment of GIFT’s Engine for 
Management of Adaptive Pedagogy (EMAP). The EMAP operationalized Merrill’s (2002) Component 
Display Theory and established configurable quadrants of learning based around a Rules, Example, Recall 
and Practice design paradigm. This led to a pedagogical agent that would make informed decisions on 
persistent data captured in a learner model, and would apply metadata to align learner attributes with 
evidence-based instructional strategies grounded in literature (Goldberg, Tarr, Billings, Malone, Brawner 
& Sottilare, 2012). 

A second project in this area centered on establishing data-driven tutorial actions that take advantage of 
reinforcement learning techniques and create self-optimizing pedagogical features that improve over time. 
This project built on top of GIFT’s EMAP (Goldberg, Hoffman & Tarr, 2015) by establishing a remediation 
phase of learning interaction. The remediation phase was delivered after an assessment, and aligned with 
the concepts and learning objectives that performed the weakest, thus requiring mediation. To personalize 
the remediation experience further, the Interactive, Constructive, Active, Passive (ICAP) learning activity 
framework (Chi, 2009) was operationalized across a set of Markov Decision Processes that were designed 
to identify what to focus the remediation on, and what type of interaction is required to manage the 
issue/impasse being experienced at the learning level. These techniques were implemented using 
multimedia learning content centered on foundations of Counter Insurgency tactics. A study was executed 
using Amazon’s Mechanical Turk platform, with outcomes showing necessary policy shifts in remediation 
logic as a learner progresses through an extended time window of interaction. For a review of the work, see 
Spain et al. (2021). 

Land Navigation and GIFT Mobile App 

An additional exciting area of research we kicked off in this timeframe was examining the utility of GIFT 
in more dynamic and eXtended Reality (XR) environments. The initial endeavor in this area involved 
developing GIFT’s first mobile application, which enabled experiential active learning linked to physical 
locations within a defined area. For this capability, we partnered with USMA and their Simulation Center 
and Department of Military Instruction to implement and pilot a GIFT mobile app lesson that targeted land 
navigation skills and procedures. The goal was to a create a personalized and self-guided “terrain walk” 
with embedded tasks, assessments, and adaptive coaching. As a trainee walked a defined route, the phone 
would vibrate and initiate specific tasks based on their location. This would require the trainee to engage in 
comprehensive land navigation tasks, with inputs and assessments managed through GIFT’s tutor user 
interface. The application was evaluated within the USMA Beast Course, with 130+ New Cadets engaging 

https://www.edx.org/course/big-data-and-education
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with the technology instead of the traditional one-instructor-to-many-students guided terrain walk. See 
Goldberg et al. (2018) for an overview of the technical implementation to drive this training interaction. 
One highlight of the assessment outcomes was that all students qualified when formally assessed three days 
after the training intervention. 

Aircraft Maintenance in Virtual Reality 

The other endeavor in the XR space explored immersive training practices that leverage the latest in Virtual 
Reality (VR) head-worn devices. This effort was executed in collaboration with the Boeing Company 
through an established Cooperative Research and Development Agreement (CRADA). The project served 
two primary functions. First, we examined the extension of GIFT’s assessment and pedagogical supports 
by establishing interoperability with Boeing’s intelligent tutoring system platform. This embedded 
Boeing’s in-house tutoring resources as an integrated course object within GIFT, enabling an additional 
tutoring service to interoperate within the GIFT infrastructure. This is significant, as it enables external AIS 
services and tools to be leveraged within GIFT, establishing an open system architecture that drives 
platform interoperability. The second objective was to then examine assessment supports leveraging data 
generated during a full VR engagement (i.e., extending game-based assessment techniques to support data 
and interaction types enabled through a full head-mounted virtual engagement). We leveraged the HTC 
Vive headset with content in Unity. This new interaction mode was applied to a use case on procedural 
training of performing maintenance activities on a P8 aircraft. The resulting system was used in a USMA 
capstone effort, with an effectiveness analysis looking at the impact of blended AIS techniques across GIFT 
and Boeing’s immersive VR interactions. See Rea, Rengel, Buck, Goldberg and Rovira (2019) for a full 
overview of the training effectiveness results. 

GIFT’s Alignment with the Army’s Synthetic Training Environment 

The GIFT program was tasked to support the Army Future Command’s investment in the Synthetic Training 
Environment (STE). The STE is being designed to update and modernize the core tools, methods, and 
environments the Army utilizes to deliver its collective simulation-based training requirements. This 
includes utilizing advancements in gaming and extended reality environment technology, while also 
applying data-driven functions and utilizing intelligent tutoring type services. In this instance, the initial 
goal was to interface a human instructor/observer to the platform, and to use different strategy and 
visualization techniques to help them best control the training experience. 

As a starting point, this required a capability to interface a user with an AIS and provide human-on-the-
loop functionality. The GIFT Game Master prototype was developed in 2019 which included a human 
observer controller to be involved in the GIFT interactions in real-time. The Game Master provides an 
interface to visualize numerous data streams being provided to and produced by GIFT while learners are 
engaged in an external training application scenario (e.g., VBS4). An observer can view map-based 
information such as unit locations and engagements, and real-time automated assessments and pedagogical 
decisions managed by GIFT DKF. Furthermore, the observer can actively participate by providing 
assessments of the learner and applying scenario injects as needed. The Game Master includes playback 
functionality that displays a timeline after the training scenario has been completed, which can assist with 
After Action Reviews. For more details on the Game Master and its integration into GIFT, see Goldberg, 
Hoffman and Graesser (2020). 

Also in 2021, a new configuration of GIFT called Real-Time Assessment (RTA) was developed, with an 
emphasis on de-coupling GIFT’s real-time tutoring processes from the rest of the framework. This enables 
GIFT to operate a data service within any open system architecture, with user experience and interface 
facilities managed through a separate client. This capability was delivered to STE to support upfront 
intelligent tutoring and adaptive training requirements native to GIFT, while removing the other support 
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functions not associated with real-time tutoring processes. Unlike previous configurations of GIFT which 
require both instructors and learners to use the various GIFT webpages to manage and use GIFT, the RTA 
configuration deploys GIFT as a service with no user interface. The functionality GIFT provides is accessed 
through a socket connection managed in the GIFT Gateway module. That allows external systems to 
initialize GIFT with a specific DKF, then receive GIFT learner state and pedagogical request updates in 
real-time. These external systems can thereby decide how to handle this new stream of information and 
display it in their own user managed devices. 

Master Gunner Course Pilot Study 

During this engineering focus, GIFT was also explored on its utility within an Army institutional use case. 
In 2021 GIFT was used in a pilot study for the Maneuver Center of Excellence’s (MCOE) accredited Master 
Gunner course at Ft. Benning. Instructional materials for three topic areas were utilized to create full GIFT-
adaptive tutoring lessons based on GIFT’s EMAP adaptive course object with ICAP remediation. The 
authored courses were provided to students prior to their first day of class via GIFT Cloud. This allowed a 
real-world instance of GIFT to be used and tested within a course’s program of instruction, and the results 
of the pilot were promising with positive outcomes on assessments, as well as positive feedback from 
students about the GIFT system (Sinatra et al., 2022). 

STEEL-R 

The last use case reported in this chapter examines GIFT’s role in an ecosystem paradigm that incorporates 
competency development, persistent data management, and builds from the Advanced Distributed Learning 
(ADL) Initiative’s Total Learning Architecture (TLA; Walcott & Schatz, 2019). It extends the TLA by 
using experiential learning theory as its guiding construct (Kolb, 2004) and examines capabilities to drive 
longitudinal data capture with context for the purpose of long-term skill acquisition modeling. With these 
defined goals, the STE Experiential Learning for Readiness (STEEL-R; Goldberg et al., 2021) architecture 
and data strategy was created.  STEEL-R integrated GIFT with key components and processes from the 
TLA (Walcutt & Schatz, 2019) and uses standards and data-science principles where feasible (Hernandez 
et al., 2022). This was primarily supported through the implementation of the xAPI (eXperience Application 
Programming Interface) data specification and developing an xAPI Profile linked to GIFT’s DKF. This 
extension to GIFT enables automated production of formative and summative assessment statements in 
xAPI at the interaction, process and procedure levels, with careful attention for tracking when a skill is 
being applied and under what context that skill is being performed (Robson et al., 2022). The STEEL-R 
data strategy is being applied to build competency frameworks and profiles linked across cognitive, 
psychomotor, affective and team-oriented competencies, with a goal of explicitly defining what is required 
for an individual or team to be successful at their assigned job. The STEEL-R capability is under active 
research and development, and will serve as the foundational architecture to support future competency-
based experiential learning research being managed at DEVCOM Soldier Center. 

SWOT Analysis 

As demonstrated in the section and timeline above, GIFT’s domain-independent design has been influenced 
and guided over the years by several different topic areas and serves many different functions. However, 
the implementation methodology and program objectives also conversely provide several challenges. In 
order to assist in objectively evaluating GIFT’s progress to date and framing how to improve its 
functionality, we have created the following self-assessed Strengths, Weaknesses, Opportunities, and 
Threats (SWOT) analysis for GIFT. In the following sub-sections, we define and summarize specific 
variables across the SWOT categories, followed by short narrative descriptions for each of the categories.  
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Overall SWOT Analysis 

The following SWOT Analysis Table (Table 1) provides an overview for the reader, and are expanded upon 
in the section sub-headings below. 

Table 1. Summary of Strengths, Weaknesses, Opportunities and Threats (SWOT) Analysis for GIFT 

Strengths 

GIFT is domain-independent, free and open-source 

GIFT is flexible open-system architecture, designed for re-use, and adheres to evolving standards 

GIFT is continuously evolving through research investments with regularly updated public releases 

Provides data-enabled evidence of practice and adheres to xAPI specification 

Incorporates Course Objects and Pedagogical Management based on ITS best practices 

Multiple use cases across multiple learning domains to assist new users, with emphasis on serious games 
and dynamic simulations 

Supports individual and team learning opportunities with customizable data outputs 

Supports mobile technology content, interaction, and GPS tracking 

GIFT Portal supports a large and diverse community of contributors 

GIFT development has been guided by experts and practitioner communities: The Design 
Recommendations book series, Expert Workshops and GIFT User Symposiums 

GIFT is well published and cited across high impact journals and conferences 

GIFT comes in three versions, and the Cloud version does not require a download/installation for use. 
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Weaknesses 

Limited Fielding and Data outside of experimental protocols 

Limited automation linked to course authoring and DKF configuration; Re-design required to make it 
more user friendly 

GIFT is a research tool; not all features and tools are fully developed and stable 

Limited resources in program execution; Documentation not always current 

Lack of Internationalization 

Lack of self-contained user management system, requiring external user authentication 

GIFT Course Ontology mismatches 

Rigid domain logic linked to external training environments 

Being a generalized framework limits specificity 

Lack of mature data analytic tools and visualization dashboards 

Challenging user-centered requirements 

 

Opportunities 

IEEE Standards Working Groups and AIS Consortium interest of GIFT in commercial sector 

Evolution of 5G and future data networks and strategies 

Outreach via GIFTSym and online conferences 

Integration into commercial LMSs 

Investment in Competency-Based Training across all DoD emphasizing need 

GIFT interoperability with evolving Total Learning Architecture 

Maturation and Adoption of eXtended Reality (XR) Learning and the Metaverse 

Improvements in Artificial Intelligence (AI) 

COVID-19 pandemic emphasized the need for adaptive computer-based learning technologies 
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Threats 

Lack of adoption due to commercial competition 

A growing user base with rapidly evolving needs 

Uncertain long term funding strategy 

Too many priorities, not enough time 

Data and network security requirements 

General privacy concerns 

Instructor hesitation and the need for cultural buy-in 

Strengths 

GIFT is domain-independent: GIFT is designed to support multiple domains addressing cognitive, 
metacognitive, psychomotor, and affective learning objectives. The principle of domain-independence 
means that the domain module contains all of the domain-specific content.  

Designed for individual and team learning opportunities: GIFT is also learner-independent in the sense that 
it provides mechanisms to model, assess, and influence both individuals and  organizational team structures 
that drive the domain GIFT is being harnessed to support. These distinctions are explicitly highlighted 
within the use cases available to the public and under government purpose rights. 

GIFT is flexible and serves as an open-system architecture: GIFT is flexible and can be applied to support 
multiple training environments and learning resources. GIFT is designed to operate under different 
configurations and across multiple data sources and types and supports individual and team tutoring 
requirements. In addition, GIFT can serve as an open system architecture to enable future extensions and 
support interoperability with evolving capabilities and data sources matured in industry or through other 
services and labs. This will promote longevity and enables an ability to leverage innovative capabilities that 
optimize current methods (e.g., integrating a new confusion classifier that will support real-time assessment, 
and providing new context to inform adaptive strategies) or retire current tools and methods that are 
obsolete. 

Provides evidence of practice: GIFT collects logs, video, and audio files during a session that provide 
detailed information on the events recorded during a training interaction. GIFT also writes xAPI statements 
to a Learner Record Store (LRS). These artifacts populate a data set that can be used to determine 
competency and make other overarching generalizations of individuals and team, while providing data for 
tracking longitudinally (Hoffman & Goldberg, 2022). 

Drives re-use: Enhancements to GIFT are shared with the community on a frequent basis through software 
releases and a hosted GIFT Cloud instance. GIFT utilizes standards (e.g., xAPI, DIS) and free/open-source 
platform data formats (e.g., JSON, Protobuf). GIFT also integrates with third party systems such as VBS3, 
Unity, Unity WebGL, TC3Sim, UrbanSim, Android/GPS, EST2, SAMT, and several more. Providing these 
plug-in solutions promotes re-use and extensibility. 
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Framework to implement ITS best practices: Within the goals of driving re-use, GIFT allows creation of 
custom course objects that support operationalized learning and best practice application. An example is 
the evolving Adaptive Course Flow object that builds on Merrill’s Component Display Theory to sequence 
a flow of interaction, while incorporating Chi’s ICAP framework (Chi & Wylie, 2014; Spain et al., 2019) 
to manage adaptive remediation selection. These approaches can be leveraged by practitioners and guide 
configurations to support these best practice approaches. As an aside, there are few, if any, applications that 
exist and are still used today where researchers and practitioners in ITSs can see what others are 
recommending, implementing in their own research, sharing with others, and leveraging a community 
backed initiative. GIFT provides a framework supported by different types of users, from Information 
System Developers (ISDs) to software engineers.  

Multiple use cases across multiple learning domains: There are many different use cases that were 
developed (as demonstrated in the introduction above), which cover various topics. These use cases utilize 
a wide variety of environment types leveraging gaming, mixed reality, and mobile computing technologies. 
Each use case highlights one or more unique learning objective that is influenced by GIFT’s ITS assessment 
and pedagogical functions.  

Flexibility in data output: GIFT is researcher friendly. It provides a researcher the flexibility to output 
specific data types using the Event Report Tool. Raw log files are easily accessible, and data types and 
reporting structures are fully customizable using GIFT’s source-code. 

GIFT Supports and Adheres to Evolving Standards: As AIS standards continue to develop and become 
adopted, GIFT aligns with them as much as possible, and informs where feasible. This includes active 
participation on IEEE’s Industry Consortium on Learning Engineering (ICICLE; IEEE, 2023), as well as 
participation on several working groups sponsored under their Learning Technology Standards Committee 
(LTSC), including Reusable Competency Modeling and Data Standards, Adaptive Instructional Systems, 
and Learning Object Metadata. 

Online Access: The GIFT Portal (GIFTtutoring.org) enables a large and diverse user base, and includes an 
open forum for development and troubleshooting support. The portal also makes it easy to download the 
open source desktop version of the software. GIFTCloud (https://cloud.gifttutoring.org/dashboard/#login) 
is hosted by Amazon Web Services and provides access to the core tools, methods and workflows to build, 
deliver, and evaluate a GIFT authored lesson without requiring installs and system processes running on a 
local machine. 

GIFT Development Guided by Experts and Practitioners: The Design Recommendations book series, 
Expert Workshops, and GIFT User Symposiums have been assisting in guiding GIFT development and 
improvements over the past decade. The GIFT User Symposium specifically tracks recommendations, 
projects, and contributions. 

GIFT is well published in high impact journals and conferences: GIFT’s development over time has been 
documented in the literature, and many of the studies conducted with GIFT have been published in journals 
and conferences. 

Integration into the Army’s Synthetic Training Environment (STE): GIFT will serve as the STE’s ITS 
service, providing a multi-open system approach for managing multi-modal data capture, objectives 
assessments, feedback and coaching, adaptive injects and ITS-influenced after-action-reviews (AARs). 
This will theoretically establish a transition path to push maturing capabilities and research directly into the 
fielded solution. STE can also provide a rich data set through its fielding back to the research community 
to enable AI research methods reliant on big data. 
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GIFT is continuously updating and maintaining releases of software: There have been consistent yearly 
releases of a regression-tested desktop version of GIFT. The Cloud instance of GIFT is frequently updated 
as new functions and capabilities are developed. 

GIFT supports Game-Based Training: GIFT provides tools and methods to create objective assessments in 
serious games and dynamic simulations. There are multiple examples that highlight the use of GIFT 
condition classes to convert game state information (e.g., DIS, HLA, Google Protobuf) into performance 
and behavior derived metrics that are used to assess performance. There are several examples across the 
use cases listed above, and documentation to assist developers in building new condition classes. As an 
open-system architecture, GIFT also supports               interoperability with what we call External Assessment 
Engines.  

GIFT is free and open-source: GIFT can be downloaded for free, or accessed via a free account online. 

GIFT supports mobile learning and GPS tracking: GIFT works on mobile devices and GPS location has 
been demonstrated to be able to be utilized by the system. A mobile event course object is available to 
users, and provides the framework to create a GPS enabled learning experience configured to a physical 
location. A current use case is training Land Navigation procedures. 

GIFT comes in three versions: GIFT has an installable desktop version, an easy to access cloud version, 
and an image you can run on your own server, enabling a controlled instance of GIFT Cloud managed under 
an organization’s security and IT policy. GIFT Cloud works on multiple operating systems and does not 
require a download. 

Weaknesses 

Limited fielding and data: Most data collections are in support of developing and evaluating a specific 
functionality or pedagogical approach. There are limited ‘big data’ sets to date to properly train/validate 
models and policies. It is difficult to evaluate the effectiveness of GIFT in schoolhouses and training 
environments. 

Limited automation linked to course authoring and DKF configuration: There are still considerable 
authoring and configuration requirements to enable a GIFT managed lesson with interactive and adaptive 
scenario content. This requires intimate knowledge of the GIFT features and workflows to take full 
advantage of its adaptive functions. To achieve use at scale, research is required to automate as much of the 
lesson creation and assessment configuration as possible.  

Not all features and tools are fully developed and stable: As GIFT is primarily a research project, the 
features and research tools are developed based on need. Currently there are certain elements such as 
instructor dashboards and gradebooks that are not yet built. A features priorities list continues to evolve 
based on user needs in particular applications. 

Limited resources in program execution; Documentation not always current: GIFT was built upon research 
vectors driven by Army directives. Compared to larger government acquisition programs and commercial 
applications, the GIFT team is small and limited in resources. This limitation prevents being able to fully 
explore every feature and use case. But our small size also makes us nimble enough to investigate more 
approaches and integration targets. Whereas documentation does exist for the features and processes in 
GIFT, it is not always updated when changes are made to the GIFT system. Maintenance of software 
systems is of course expensive.   Consequently, there occasionally is outdated information. 
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Lack of internationalization: While a small effort is underway to support a Spanish translation of some of 
GIFT user interfaces (UIs), there needs to be a more dedicated approach in order to acquire users in other 
languages and promote GIFT as a true standard/best-practice. This involves better involvement across 
international professional societies, and building upon the relationships and collaborations across the 
Advanced Distributed Learning (ADL) Initiatives international landscape. 

Lack of self-contained user management system: GIFT currently relies on GIFTtutoring.org as the user 
management system. This requires users to register on GIFTtutoring.org in order to authenticate when 
logging into the GIFT Dashboard. For GIFT installations that are located in secure or closed networks and 
those that are not affiliated with the core GIFT community, another user management system is needed. 
There is no best practice established in this arena.  

GIFT course ontology mismatches: The current GIFT course ontology does not necessarily match what is 
found in the community. GIFT courses may be more traditionally considered as lessons. This difference in 
presentation and vocabulary may result in some confusion when first approaching GIFT. There is an 
opportunity to align the terminology of GIFT with more commonly used interpretations, and to make sure 
that the meaning of the terms used are clear. 

Rigid domain logic linked to external training environments: Logic within some of the adaptive features 
(such as the Domain Knowledge File, DKF)) are very rigid. There is not much flexibility in the approaches 
for creating DKFs. There are potentially easier or more open ways to reach similar results. 

Being a generalized framework limits specificity: Due to keeping the system as general as possible it 
sometimes makes it more difficult to design interfaces or fully represent all information that might be 
relevant to a specific domain. Translating strategies (i.e, general system actions) into tactics (i.e., specific 
implementation of a strategy) is required for each external training environment interfacing with GIFT. 

Lack of mature data analytic tools and visualization dashboards: Data logs can be visualized and explored 
via the Game Master, but data extraction and analysis is currently limited to export tools and .csv files. 
There are no current visualizations of performance outputs that can be easily viewed and interpreted at the 
training objective and skill acquisition level. 

Challenging user-centered requirements: GIFT has mostly focused on the researcher interfaces and there 
is no distinction between user roles. Students and instructors see the same interfaces when they login. There 
has been a recent effort to limit permissions to certain courses, but more work is needed on creating different 
interfaces based on the user type. 

Opportunities 

IEEE and AIS Consortium Adoption: An open-source version of GIFT will be shared through IEEE’s 
Adaptive Instructional Systems (AIS) consortium, providing a mechanism for industry and academia to 
build and commercialize from a standard baseline. This will potentially provide a rapid evolution of 
capabilities that meet the training and education needs across multiple sectors, not just the Department of 
Defense (DoD). 

Evolution of 5G and future networks: This advance removes any data bandwidth/latency issues preventing 
scalable solutions in the cloud. This is big for working with data-intensive training environments 
incorporating mixed reality (Virtual Reality and Augmented Reality), advanced intelligent sensing 
facilities, wearables, and a hybrid architecture approach. 
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Outreach via GIFTSym and online conferences: As many conferences have pivoted to online versions in 
the past few years there is an opportunity to reach additional individuals who may not have participated in 
an in-person version of the conferences. There is an opportunity for more people to engage with and learn 
about GIFT from online versions of GIFTSym. 

Integration into commercial Learning Management Systems:  GIFT would benefit from exploring and 
integrating with other platforms such as Learning Management Systems (LMSs). As has been the case in 
the past, integration leads to increased functionality and access to a larger user community. 

Investment in competency-based training across DoD services: There is growing interest and attention in 
the area of competency-based training across all DoD services, with an emphasis on data-driven methods 
to track and influence training and education paradigms. This aligns with the goals and capabilities provided 
by GIFT, creating an opportunity to highlight GIFT’s utility as a core Government Off the Shelf (GOTS) 
technology to facilitate meaningful data capture at the learning interaction level. In addition, there are 
evolving best practices for long term learning profiles that support the creation of longitudinal learner 
models with data that tracks performance over time. 

GIFT interoperability with the Total Learning Architecture (TLA): Complimentary to the competency-
based training opportunity, the advancement and adoption of the ADL’s TLA enables GIFT to reach a 
broader audience by working as an assessment and tutoring service within the larger infrastructure. GIFT’s 
xAPI profile establishes a data pipeline directly between a training interaction managed by GIFT and an 
enterprise instantiation of the TLA. 

Maturation and adoption of eXtended Reality (XR) learning and the Metaverse: There is a wide adoption 
of virtual/augmented reality occurring in everyday life, in addition to opportunities regarding the metaverse. 
This provides great potential to provide engaging experiential learning opportunities in classroom and home 
settings. This proliferation creates an opportunity to embed intelligent tutoring functions to optimize these 
interactions, with GIFT’s framework serving as an important starting point. 

Improvements in Artificial Intelligence: GIFT will benefit from the serious maturation of Artificial 
Intelligence (AI) and is well positioned to benefit from AI open libraries. As an open system architecture, 
GIFT is designed to make use of evolving and maturing capabilities through its modular service-oriented 
design. As AI continues to advance in the areas of learning science, GIFT will be able to integrate and 
leverage those functionalities without significant engineering requirements. 

COVID-19 and distributed learning emphasis: The COVID-19 pandemic emphasized a need for adaptive 
training and learning technologies.  The pandemic also accelerated the timeline for the use of these 
technologies. This will accelerate the development and adoption of tools to better support learner needs in 
a distributed, self-regulated capacity. 

Threats 

Lack of adoption through commercial competition: There is a threat to large scale adoption based on 
commercial competition and building standards to promote industry benefit. As seen from the urgent need 
for at-home education and training made apparent during the COVID-19 pandemic, many companies 
increased their product capabilities in response. Another concern is a potential unwillingness to adopt a 
technology that was not developed in-house. There may be academic labs or businesses who prefer to create 
their technology themselves rather than using an existing software solution. Barriers to establish a standard 
centric framework for AIS evolution can be impacted as a result. 
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A growing user base with rapidly evolving needs: Designing for all users, current and future, to maintain 
concurrency and relevancy is a challenge. While GIFT and the GIFT authoring tools have intentionally 
been kept flexible to be used for many different uses, it can also lead to some confusion for authors. It is 
important to provide structure, supporting documents, and usability design that helps the author understand 
what needs to be completed for their specific use. If they get overwhelmed or confused, they may not use 
the system. 

Uncertain long term funding strategy: While GIFT currently aligns with priorities and goals, there is not a 
guarantee that will always be the case. Sustainment models are not fully defined, and adoption outside of 
the government will be required to maintain its utility as an open framework to drive AIS utilization. 

Too many priorities, not enough time: Aligned with evolving user needs, there are so many 
recommendations that are provided by the GIFT community, it is nearly impossible to reconcile all of them. 
Maturing a model to support community needs outside of the research investment space will be critical to 
scale and sustain the use of GIFT outside of the research investment. 

Data and network security requirements: There are stringent security requirements for use in a military 
operational unit, which may make it difficult for GIFT to be adopted for use in military training. Investments 
are required to certify GIFT's core framework to work on secure networks, and to establish workflows to 
streamline this process accordingly. 

General privacy concerns: Protecting user data is a critical necessity for any future enterprise level adaptive 
learning solution. Keeping current with data protection policy and requirements is critical to establish a 
GIFT capability that can evolve and support user data needs.   

Instructor hesitation and cultural buy-in: An instructor may have a concern that robots and AI will 
eventually replace their job function. Creating a culture of buy-in is critical to the success of AIS use at 
scale. There are instructors and organizations that may be hesitant to adopt technology that could 
potentially replace traditional approaches. 

Discussion and Conclusions  

Our SWOT analysis of GIFT revealed a large number of strengths, weaknesses, opportunities and  threats. 
There were many positive strengths identified within GIFT, primarily including its flexible nature 
(generalizability, open source, domain-independent), the documentation of its development in the literature 
and at the GIFT Portal, and its consistency (adopting Standards, having a release cycle, etc). While a number 
of weaknesses were identified, they tended to be items that as of yet have not been a primary focus of 
development, but have been noted by the GIFT team through the years, such as improving user interfaces, 
implementing user roles, improving authoring tools, maturing data visualization tools, and demonstrating 
GIFT in more domains. There were many opportunities that were identified which generally fell into the 
categories of: implementing emerging technologies, integrating with other systems, and incorporating 
improvements into the GIFT system (e.g., long term learner profiles, authoring tools). A number of threats 
were identified which include threats to adoption (e.g., commercial replacements, stringent security 
requirements, instructor hesitation), as well as threats to development (e.g., too many priorities, designing 
for all users, funding limitations). In some cases, work is currently addressing some of the gaps that exist 
within GIFT. In other cases, new gaps and opportunities for the future have been identified.  

While many of the chapters contained within this book address elements of intelligent tutoring systems in 
general, the current chapter focused on the Generalized Intelligent Framework for Tutoring software. The 
process of completing this SWOT analysis helped to highlight the elements of GIFT that are most 
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successful, as well as identified opportunities and areas for improvement. This analysis and the 
recommendations for GIFT that are associated with the additional chapters in this book will help provide a 
path forward as GIFT continues to develop. 
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Introduction 

This chapter examines general trends for intelligent tutoring system (ITS) capabilities using the strengths, 
weaknesses, opportunities, and threats (SWOT) analysis methodology. ITSs are a type of computer-based 
training and education technology categorized as an adaptive instructional system (AIS) that accommodates 
individual differences (tailoring) to facilitate learner knowledge acquisition (Wang & Walberg, 1983; Tsai 
& Hsu, 2012) and to guide one-to-one learning activities that exercise skills defined by learning objectives 
(Sottilare & Brawner, 2018).  ITSs use artificial intelligence (AI) and other advanced technologies to help 
people learn more effectively and efficiently (AIS Consortium, 2021). 

Analysis Scope 

The scope of our SWOT analysis is broad and considers emerging ITS technology, tools, and methods from 
both academic institutions and high-tech providers along with the state-of-practice commercial products. 
Given our SWOT analysis is about general trends across all ITS technologies (tools and methods), we use 
examples to highlight the state-of-practice and the state-of-the-art, but do not heavily focus on any single 
ITS technology or architecture (e.g., AutoTutor or the Cognitive Tutor). Our analysis also considers 
instances of how ITS technology is being used now, who uses it, how regularly they use it, where they use 
it, and for what specific purposes. Consideration is also given to the need for standards, and interoperability, 
accessibility, scalability, extensibility, maintainability, granularity of data, and usability trends in current 
and emerging ITS technology. In addition to learners (students), we also consider other users: course 
authors (creators), content curators, real-time learner monitors, and subject matter experts (SMEs) also 
known as domain knowledge providers. Finally, in our analysis we embrace the idea that weaknesses and 
threats can be distilled down into opportunities.  

Strengths 

While the attributes in this section are not present in all ITSs, the strengths described below are present in 
a majority of ITSs and are considered to have advantages over previous technologies, tools, or methods:  

Effectiveness: Some ITSs have been empirically demonstrated to be as effective as expert tutors (VanLehn, 
2011). Kulik and Fletcher (2016) conducted a meta-analysis of findings from 50 controlled evaluations of 
ITSs and the median effect in the 50 evaluations reviewed raised test scores 0.66 standard deviations over 
conventional methods (e.g., traditional classroom training, an increase from the 50th to the 75th percentile). 

Engagement: ITSs, when paired with virtual characters or game-based training environments to support 
one-to-one tutoring, can be much more engaging than classroom training.  

Granularity:  ITS are often implemented with user interfaces that collect fine-grained data on user 
performance. The advantage of granular data is that it can be manipulated (e.g., aggregated or 
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disaggregated) to support adaptation in a variety of conditions and situations.  In particular, ITSs can 
provide fine-grained feedback and hints.   

Personalization: ITSs can tailor their actions to the learner’s needs. ITSs can change what they say and do 
depending on the learner’s performance, workload, emotional states or other individual differences. 

Accelerated learning (Efficiency): The personalization features in ITSs also provide the opportunity to 
reduce the time required for a learner to reach proficiency because most of the instructional contact time 
with learners is focused on learning gaps instead of prior knowledge. 

Cognitive domains: ITSs, commercial and academic, have primarily focused on the cognitive domain to 
support problem solving, decision making and procedural tasks bringing a higher level of understanding 
about the nature of cognitive domains compared to community experience with other domains (affective, 
psychomotor or collaborative). 

Recommender systems: To guide learners in their quest to increase their knowledge and skills, ITSs are 
designed to continuously track their progress toward goals and recommend/select content needed to reduce 
learning gaps (differences between learner competency and established learning objectives). 

Pairing ITSs with other technologies: ITSs are being paired with virtual, augmented, and mixed reality 
(XR) technologies to support training domains that require more visual stimuli (Gilbert, Intelligent Tutoring 
System PADLET, 2021). There are good examples of successful implementations that link ITSs with game-
based training environments to support adaptive instruction. 

Weaknesses 

While the attributes in this section are not present in all ITSs, the weaknesses described below are present 
in a majority of ITSs and are negative drivers of ITS cost, efficiency, and performance:  

Authoring systems: ITS authoring systems used to create adaptive instructional courses are often complex 
and require expert knowledge including instructional design, domain knowledge, or computer 
programming skills (Sottilare, Intelligent Tutoring System PADLET, 2021). The systems often have 
complex procedures and do not provide necessary guidance to complete a functional course. 

Non-cognitive domains: ITS architectures have primarily focused on the tutoring of cognitive domains 
and have largely ignored affective (value or ethic-based) domains, psychomotor domains, and collaborative 
domains of instruction. GIFT and a few ITSs have recently begun the process of addressing architectural 
requirements for designing, authoring, deploying, and evaluating the effect of instruction in these domains. 
Slowly, more diverse and complex domains are being represented in adaptive courses (Sottilare, Intelligent 
Tutoring Systems PADLET, 2021). 

Multi-modal ITSs: Many ITSs provide some prescriptive interaction between learners and the tutor. This 
interaction is highly constrained (e.g., multiple choice inputs and responses) and mostly text based 
(Sottilare, Intelligent Tutoring System PADLET, 2021). While AutoTutor remains the primary shining 
example of a conversational tutor, a growing number of ITSs are integrating virtual character frameworks 
(e.g., University of Southern California – Institute for Creative Technologies’ Virtual Human Toolkit) that 
provide both an embodied conversational agent and the logic required for natural language understanding 
and generation of appropriate responses. The ability to integrate virtual human frameworks with ITSs will 
be essential to providing mixed initiative dialogue at scale.   
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Measures of ITS effectiveness: It is difficult to evaluate ITS effectiveness in terms of their ability to 
influence learner performance (Sottilare, Intelligent Tutoring System PADLET, 2021). ITS performance is 
often based on changes in learner performance and compared to traditional classroom training as a baseline. 
It is important to be able to produce an apple-to-apple comparison of system performance and some analyses 
have skewed effectiveness results by also including the impact of improved content. For example, a study 
(Fletcher, 2011) reported an effect size of 2.81 sigma in comparing a digital tutor and an integrated learning 
environment teaching information systems technology. However, part of the published impact was due to 
a refreshing of content and not entirely due to the adaptive capabilities of the tutor. We must also be 
consistent in describing learner behaviors and their relationship to learning outcomes. For example, 
mapping user clickstreams in the user interface is important to understanding learner behaviors during the 
adaptive instructional process. It is important to note that while there may be a relationship between learner 
behaviors and available datastreams, it might not be useful as a measure of learner performance or ITS 
effectiveness (Gilbert, Intelligent Tutoring System PADLET, 2021).  

Development & maintenance costs and return-on-investment (ROI): ITSs are complex systems that 
require expert knowledge to design, develop, test, deploy, and evaluate. ITSs used by large populations 
may demonstrate a sufficient ROI to merit the investment, but specialized ITSs used by small learner 
populations often fail to provide a sufficient ROI (Fletcher & Sottilare, 2014). How can we reduce 
development time and costs to encourage community investment in ITSs? Automation may hold the key to 
reducing development and maintenance costs (total ownership costs). 

Accessibility: ITSs are designed to be compatible with common internet browsers (e.g., Chrome, Safari, 
Edge) and are often accessible from laptops, workstations, tablets, and smartphones. While this might be 
perceived as a strength, ITSs designed to operate with heavy computation loads (e.g., machine learning 
algorithms to classify learner workload or other states) may not be usable on smartphones that generally 
have a low computational capacity. This computational limitation may limit accessibility to ITSs in 
marginal populations where laptops and workstations are not widely available. ITSs are often not designed 
to easily accommodate disabled students, which can thwart adoption by some institutions.  ITSs are often 
not designed for use in languages other than the author's language. 

Lack of fine-grained personalization: ITSs can personalize by selecting tasks but rarely by selecting 
appropriate messages on the step level.  The technology is sufficient to support fine-grained personalization, 
but the theories of how to adapt feedback, help messages or other interventions to individuals are lacking. 

Lack of mixed initiative dialogue (one-shot communication): If learners do not understand a feedback 
or help message, most ITSs do not permit learners to ask questions about it and get an on-point response 
from the ITS.  Confused learners often ask confusing questions. 

Lack of learner control: ITSs are generally designed to guide learning experiences and control the process 
of adaptive instruction. Areas where learners might be given more control include controlling the choice of 
a virtual instructor’s appearance and interaction, controlling the choice of learning peers, initiation and 
selection of on-demand learning topics, control over their learner model and their information, control over 
the domain and teaching approach, and control over the amount of control the learner has over ITS processes 
(Kay, 2001).  

Sustainability: ITS are often designed for powerful performance rather than easy maintenance or 
component reuse. ITSs are often poorly documented, making it difficult to pass security scans required by 
many institutions of their courseware. The ability to reuse components from one ITS in another ITS is 
currently nearly 0% due to the lack of interface and data standards.  
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Human instructor involvement:  Human instructors can watch the tutoring unfold, but have little control 
over it at the step level.  Unless they were involved in developing the ITS, they may disagree with the ITS’s 
interactions with the learner, and may be limited by their ability to alter ITS interactions. The ability for 
teachers to have some influence over ITS interactions with their students may go a long way in building 
their trust of ITSs and other education technology. 

Speech, groups and teams during collaborative learning:  Learners interacting with each other in small 
groups or teams often leave the ITS out due to its limited understanding of their speech and the inability to 
generate appropriate responses. 

Lack of bonding:  Students often develop a bond with human teachers that they do not develop with ITSs, 
and this impacts their compliance and motivation.   For example, a teacher can successfully ask students to 
collaborate, but students may ignore an ITS that asks them to collaborate. 

Prescriptive (less flexible) systems: A defined domain should have well-written and measurable learning 
objectives. A well-defined objective for a geology course should describe a learning outcome (e.g., the 
student will be able to distinguish between igneous and sedimentary rock samples), should be learner-
oriented, and be observable (or describe an observable product). Ill-defined domains (e.g., law and medical 
diagnosis) require some interpretation of facts/information by the learner to successfully achieve a learning 
objective. Achieving an objective in an ill-defined domain may be one of many successful paths or 
outcomes.  

While there has been a heavy concentration on the development of ITSs in well-defined domains such as 
computer programming and mathematics (Sottilare, Intelligent Tutoring Systems PADLET, 2021), there 
has also been ITS applications in science domains, reading comprehension, language learning and other 
domains that are not entirely well-defined (Graesser, Intelligent Tutoring System PADLET, 2021). ITSs 
are currently not well suited to operate in ill-defined domains. They generally require rules or heuristics to 
assess learner performance and these rules are usually the result of decades or even centuries of study. 

Opportunities 

The opportunities listed in this section are challenges that have not yet been addressed at scale and are 
considered to have high positive impact once viable solutions are mainstream in the marketplace: 

Non-cognitive domains: Opportunities could be created with new markets for adaptive training in non-
cognitive domains. GIFT and a few ITS frameworks have recently begun the process of addressing 
architectural requirements for designing, authoring, deploying, and evaluating the effect of instruction in 
these domains. Slowly, more diverse and complex domains are being represented in adaptive courses 
(Sottilare, Intelligent Tutoring Systems PADLET, 2021). The creation of new architectures to support the 
design, authoring, deployment, and evaluation of affective, psychomotor, and collaborative courses could 
extend and exploit existing markets. Opportunities exist in institutional training (e.g., business ethics), 
sports (e.g., golf) and military team training (e.g., Army squads or Naval combat information center 
operations).  

Improved learner engagement: There are opportunities to improve learner engagement during 
interactions with ITSs. The improved realism and responsiveness of virtual humans and their integration 
with ITSs may enable bonding between ITSs and learners that has been lacking. Improved control over the 
attributes of virtual humans representing instructors and learning peers is also likely to improve learner 
engagement. 
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Self-improving systems: The ability of ITSs to improve their performance with each experience will mean 
better predictive accuracy of learner states and better decisions in selecting/crafting learner interventions 
(Sottilare, Intelligent Tutoring System PADLET, 2021).  Reinforcement learning might be helpful in 
tailoring feedback and help messages as well as personalizing recommendations for future learning 
experiences. It might also be useful to consider how ITS users perceive their adaptive instructional 
experiences and use this information to rank content, interactions, and overall experiences to improve ITSs 
through an evolutionary process where the best content, best methods, and best interactions rise to the top. 

Improved speech understanding: The ability to understand the natural language of multi-sided 
conversations will make ITSs more valuable as they participate in and guide the learning of groups and 
teams. 

Analysis of learner questions: Collecting data on learner’s questions about feedback and help messages 
might lead to more conversational interaction and better communication. 

Easy to use authoring tools: Easy authoring processes that empower subject matter experts to build ITSs 
would improve ITS affordability and help proliferate their use. Four recommendations for new authoring 
features include: 1) automation for guided authoring and content curation processes, 2) authoring on lighter, 
more affordable platforms (tablets and smartphones), 3) automated authoring of after-action reviews 
(AARs) to recap adaptive learning experiences, and 4) knowledge management tools for adaptive course 
developers (Sottilare, Intelligent Tutoring System PADLET, 2021). 

Authoring tool standards: Often, ITS authoring tools have a high level of system or tutoring engine 
specificity (McCarthy, Authoring Tools PADLET, 2021). Authoring may be unique to the system, tool or 
framework, and the instructional and learning theories prescribed by that system. Standards or at least 
recommended practices for ITS authoring processes could be useful in streamlining authoring processes 
(Graesser, Authoring Tools PADLET, 2021). Standards might also be useful in easing the transfer of ITS 
courses and components from one framework to another. 

Interoperability Standards: Common interface and data standards for ITSs will provide an opportunity 
to reuse courses, components, models (learner, team, instructional, domain, and interface) and subsystems 
from one ITS in another. In 2019, the Adaptive Instructional Systems (AIS) Working Group under the 
Learning Technology Standards Committee was formed to support IEEE Project 2247 standards and 
recommended practices for ITSs, recommender systems and other types of AISs. The goal of the AIS 
Working Group is to model the AIS, its components, and data exchange mechanisms, define interoperability 
standards and recommended practices for AIS buyers to evaluate systems and support the ethical use of AI 
in adaptive instruction. Among the markets with large training infrastructure investments, AIS 
interoperability standards could enable the augmentation of existing training systems by adaptive 
instructional logic. This would alleviate the need to replace or totally redesign existing systems to take 
advantage of the features of AISs. 

Multi-modal ITS: While AutoTutor remains the primary shining example of a conversational tutor, a 
growing number of ITSs are integrating virtual character frameworks (e.g., University of Southern 
California – Institute for Creative Technologies’ Virtual Human Toolkit) that provide both an embodied 
conversational agent and the logic required for natural language understanding and generation of 
appropriate responses. The ability to integrate virtual human frameworks with ITSs will be essential to 
providing mixed initiative dialogue at scale. 

Supporting ill-defined domains: We recommend two approaches to support ITS development in domains 
that are not fully defined. The first approach is to integrate AI that enables the ITS to learn from its own 
previous performance so that its decisions improve with experience. Ideally, in a large learner population 
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there will be large datasets representing outcomes and the conditions of the learner (or team) and the 
environment that can be used to train and optimize ITS recognition of events and learner states along with 
instructional decisions (e.g., interventions involving changes to content difficulty and interactions with the 
learner).  The second approach is to research and develop methods that can test plausible root causes of 
performance outcomes in sparse data environments. Most ITSs focus on identifying errors and this usually 
requires well-defined knowledge of the domain. Focusing on root causes will allow ITSs to adapt strategies 
to get better outcomes and eliminate barriers to learning instead of dealing with symptoms of poor 
performance. Approaches to root cause analysis include hypothesis testing methods (e.g., abductive 
reasoning) that identify the factors (e.g., learner or environmental conditions) contributing to learner 
performance.    

Global investments: Opportunities for innovative education technology such as ITSs will continue to 
grow. According to Grand View Research (2021), the global markets for online education, artificial 
intelligence in education, and smart education & learning (all relevant to the ITS marketplace) are 
forecasted to grow at a compounded annual growth rate (CAGR) of 9.23%, 32.9%, and 17.9% respectively 
over the next 5-10 years. 

Threats 

The threats listed in this section are challenges that have not yet been addressed at scale and are considered 
to have high negative impact if no viable alternatives or solutions are developed in the next 3-5 years: 

Adoption of ITS technology: As user communities search for viable education technology solutions, the 
adoption of ITS technology is limited by ITS effectiveness, efficiency, engagement, culture, and 
affordability (Sottilare, Intelligent Tutoring System PADLET, 2021). The effectiveness and efficiency of 
ITSs in delivering adaptive instruction is well documented, but evaluation methods for the marketplace to 
consider, compare, and contrast ITS capabilities are lacking. An inability to fully understand the salient 
characteristics and features of ITSs in the marketplace threatens their widespread use in domains outside of 
mathematics, physics and computer programming where there is less of a track record of use. Engagement 
has always been an important aspect of learning and will continue to drive some buying decisions in the 
ITS marketplace. For example, a tutor with more visual appeal may be selected over a system with more 
learning impact. Culture can take many forms, but trust is an important component of culture.  

Culture does not necessarily influence how much we trust, but does influence the way we trust. Since ITSs 
have a significant AI element within their design and AI is often viewed with skepticism and 
misunderstanding, ITSs can also be viewed as mysterious and even threatening.  Moreover, instructors’ 
professional identity can be threatened by adding a second “teacher'' to their classroom.  ITS providers 
should consider their messaging and be transparent in how their products work to build trust in various 
communities. They should be active in supporting the ethical use of AI in their products and develop 
objective measures to help buyers distinguish between the ITS features in their products and other vendor 
products.  

Affordability plays a role in the effectiveness of capabilities available to different cultures. Affordability 
also directly limits access. According to Alsop (2021), only 7.7 percent of households in Africa were 
estimated to have access to a computer at home, but O’Dea (2020) reports the percentage of smartphone 
owners is about 40% across sub-Saharan African countries. It will be important for ITS providers to 
understand how their users will be able to access ITS capabilities and adapt their capabilities to optimize 
user access. 
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We cannot end our discussion of culture without touching on system internationalization (Gilbert, 
Intelligent Tutoring System PADLET, 2021). System internationalization is the design and development of 
a product, application, or document content so that it can be localized/transformed for target audiences that 
vary in culture, region, or language. It goes beyond replacing English with, for example, French.  This type 
of data-driven approach will help lower the barriers to ITS acceptance. 

Overuse of hints and other ITS support strategies: Some ITSs use hints too frequently which can detract 
from instead of enable learning (Graesser, Intelligent Tutoring System PADLET, 2021; Sottilare, Intelligent 
Tutoring System PADLET, 2021). According to Durlach and Spain (2014), hints along with cues and 
prompts are methods used to provide support to learners during instruction (adaptive or otherwise). If 
enabled, some student abuse hints, game the system and invent strategies for evading learning and avoiding 
failure (Bell, Nye & Kelsey, 2019). To support a learner efficiently, “a teacher should predict how much 
support a learner must have to complete tasks and then decide the optimal degree of assistance to support 
the learner’s development” (Ueno & Miyazawa, 2017, p. 415). Abuse of support strategies leads to hollow 
learning experiences where the learner may be assessed as proficient, but fails to achieve any deep learning 
in the domain of instruction.  

Cohort cohesion: The practice of keeping groups of learners together for a defined period is often at odds 
with the concept of personalization which allows fast learners to master content before slow learners. The 
motivation to master content early is low in a cohort unless there is additional content to support learning 
at various levels of achievement (e.g., expert learner, mastery learner, proficient learner, basic learner). 
While cohort cohesion is not specific to adaptive instruction, it is exacerbated by personalized learning.  

Low technology acceptance: Teachers have concerns that ITSs and other education technologies will cost 
them their job (Sottilare, Intelligent Tutoring System PADLET, 2021). There is anxiety about the efficiency 
and effectiveness of ITSs and whether improved ITSs could mean that human instructors might not have a 
future in classrooms. Decision makers for ITS purchases have concerns that ITS effectiveness does not 
justify the cost (Sottilare, Intelligent Tutoring System PADLET, 2021). Buyers and users are concerned 
that there are not enough low-cost options in the education technology marketplace (Sottilare, Intelligent 
Tutoring System PADLET, 2021). 

The Adaptive Instructional Systems (AIS) Consortium (www.aisconsortium.org) advocates for education 
technologies such as ITSs and intelligent mentors. They see AISs as tools for use by teachers that will help 
them manage heavy workloads in large classes and make them more productive. The AIS Consortium 
stands for the ethical use of ITSs (and AI in education and training) to help students learn. The AIS 
Consortium does not see ITSs as a credible threat to replace human instructors. 

Academic freedom: The freedom to continuously improve their teaching to fit their personality and 
experience are perceived by some United States (US) teachers as a core benefit of their job and professional 
identity. They view ITSs, or any other educational software that does not allow them to change lessons to 
their satisfaction, as a limitation to their authority in the classroom. Standardization of lessons might be 
acceptable in China and Europe, but are not widely accepted in US public schools. 

Standardized certifications versus personalization: Although making a high-stakes hiring decision 
warrants delving into the candidates’ personal attributes, making a low-stakes hiring decision (e.g., hiring 
a plumber to fix a leak) requires standard certificates. The potential for individually-tailored outcomes 
enabled by the personalization of ITSs may be perceived as a small demand in some markets, but global 
projections show steady double digit growth opportunities in the next 5-10 years (Grand View Research; 
https://www.grandviewresearch.com/press-release/global-education-technology-market). 

http://www.aisconsortium.org/
https://www.grandviewresearch.com/press-release/global-education-technology-market
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SWOT Analysis Recap 

The tables in this section provide an overview of the ITS SWOT analysis discussed in the previous section 
of this chapter. We have organized recommendations for future actions into six areas to highlight 
opportunities and reduce both ITS weaknesses and threats: 

● Improving authoring and curation tools and methods (Table 1) 
● Improving real-time and long-term performance (Table 2) 
● Improving the accuracy of learner and team models (Table 3) 
● Improving domain modeling and assessment processes (Table 4) 
● Improving instructional strategies (Table 5) 
● Improving ITS interfaces (Table 6) 
● Improving the fit of ITSs into existing educational cultures (Table 7) 

 
It is important to note that not all the recommendations provided are technology focused. Some are policy 
or standards developments that build confidence and trust for ITS technologies and solutions. It is also 
important to understand that the recommendations being made in the opportunities column of each table 
may not represent the need for totally new features. While these capabilities exist in some ITSs, they are 
not widespread nor are they standard features within every ITS as we are recommending.  

Table 1. Recommendations for improving authoring and curation tools and methods 

Weaknesses & Threats Opportunities 

Low usability of ITS authoring systems and 
processes 

● Improve automation and guidance for 
authoring processes 

● Improve automation of content curation 
processes 

● Improve author knowledge management tools 

● Enable authoring of effective adaptive courses 
without knowledge of computer programming 
or instructional design 

● Enable easy integration of capabilities that 
increase the engagement, efficiency, and 
effectiveness of ITSs (e.g., integration of 
virtual humans and existing instructional 
infrastructure) 

● Develop ITS authoring standards for interfaces 
and processes to enhance transfer of authoring 
knowledge from one ITS to another  

Limited accessibility ● Improve ITS accessibility by extending 
authoring processes to support adaptive course 
creation for tablets & smartphones  
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● Extend the types of ITS-compatible browsers 
to improve accessibility  

● Facilitate internationalization 

● Facilitate use by those with physical 
impairments. 

Limited concentration of ITSs in non-cognitive 
domains of instruction 

● Authoring processes and templates for non-
cognitive domains of instruction (affective, 
psychomotor, and collaborative) 

High ITS authoring costs  ● Reduce ITS authoring costs by reducing the 
skills required to author ITSs 

● Reduce ITS authoring costs by promoting 
reuse through ITS interoperability standards 

 

Table 2. Recommendations for improving real-time and long-term domain performance 

Weaknesses & Threats Opportunities 

Lack of bonding with students ● Make it easy to integrate realistic and 
responsive virtual humans into ITSs in the 
roles of both instructors and peers 

● Enable learners to control the appearance and 
other characteristics of virtual humans in ITSs 

Communications limitations ● Improve natural language understanding and 
generation in ITSs 

● Improve multi-modal communications in ITSs 

● Improve the ability for human instructors to 
influence ITS communications 

● Improve the communications capabilities of 
ITSs during collaborative interactions 

Learner control limitations ● Enable mixed initiative dialogue to improve 
learner control (e.g., learner question asking) 

● Enable more control choices for learners (e.g., 
choice of instructor and peers, ability to initiate 
dialogue and selection of on-demand learning 
topics) 

Overuse of support strategies ● Use experimentation and reinforcement 
learning to determine better policies for 
offering and withholding support.  
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● Develop better methods for detecting student 
gaming and other abuse of support strategies. 

 

Table 3. Recommendations for improving the accuracy of learner and team models 

Weaknesses & Threats Opportunities 

Inaccurate models of individual learners and teams 
limit the effectiveness of ITSs 

● Enable machine learning classification and 
predictive analysis of learner states in both 
dense and sparse data environments 

● Improve ITS accuracy and performance by 
designing ITSs as self-improving systems 

● Design ITSs to allow for flexible learner and 
team modeling based on domain, measures of 
assessment and data sources (e.g., sensors) 

● Design ITSs to enable identification of root 
causes of learner performance (Sottilare & 
Hoehn, 2021) 

 

Table 4. Recommendations for improving domain modeling and assessment processes 

Weaknesses & Threats Opportunities 

Lack of interoperability standards for domain 
models and assessment processes 

● Develop interoperability standards and 
recommended practices that enable portability 
of domain models, expert models, and 
assessment standards across ITS platforms 

● Develop interoperability standards for verbal 
and non-verbal communications  

Lack of visualization for domain progress with 
respect to learning objectives 

● Provide visualization in the form of an open 
learner model that highlights learner progress 
toward learning objectives 

● Provide visualization of individual learners 
with respect to various segments of the learner 
population (e.g., classroom, school, all 9th 
grade algebra students) 

Lack ability to support more ill-defined learning 
domains 

● Provide the ability for ITS developers to author 
effective tutors in ill-defined domains (e.g., 
law, medical assessments) without defining 
every possible outcome 

● Provide automated processes to feed ITS 
knowledge acquisition and assessments  
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Table 5. Recommendations for improving instructional strategies 

Weaknesses & Threats Opportunities 

Lack of evidence-based methods to model the 
effectiveness of various instructional strategies 
(e.g., mastery learning, metacognitive strategies, 
content selection strategies) 

● Develop evidence-based methods to model the 
effectiveness of various instructional strategies 
under varying learner and course conditions  

● Develop and maintain long-term learner 
models to track the impact of instructional 
strategies within individuals and populations 

 

Table 6. Recommendations for improving ITS interfaces  

Weaknesses & Threats Opportunities 

Lack of standards for ITS interfaces ● Develop interface standards for integrating 
discrete event training simulations 

● Develop interface standards for integrating 
virtual humans with ITSs 

● Develop interface standards for integrating 
physiological and behavior sensors with ITSs 

● Develop interface standards for learner-tutor 
verbal communications  

 

Table 7.  Recommendations for improving the fit of ITSs to existing educational cultures 

Weaknesses & Threats Opportunities 

Adoption of ITS technology ● Large organizations (e.g., military training 
researchers & developers, education-related 
societies such as AI in Education, and the AIS 
Consortium) with significant investments in 
ITS tools and methods should continuously 
address concerns that limit their adoption.  

Low technology acceptance ● Develop an ability of an ITS to explain its 
pedagogical decisions and policies to users, 
both in general and as they apply to specific 
episodes of learner interaction with the ITS.  

● Understand and develop evidence-based 
modeling of ITS users and their populations, 
which should help reduce acceptance barriers 
and increase ITS adoption in current low use 
communities (e.g., low income or low-tech 
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marginalized groups) 

Academic freedom to customize instruction ● ITS flexibility might be greatly improved, but 
this could also be at the expense of usability. 
To balance flexibility and usability we 
recommend high usability for novice 
authors/instructors and maximum flexibility 
for more knowledgeable ITS 
authors/instructors so these users can tailor ITS 
features to their specific needs. 

Standardization certification versus 
personalization 

● While learners may be able to learn a 
personalized set of competencies, we 
recommend that they be advised about what 
competencies are required for certificates.  

 

Discussion and Recommendations for Future Research 

In addition to the recommendations provided in Tables 1-7, there will continue to be a need for modeling 
the interaction between learners and ITSs to understand the effect of ITS actions on individual learners and 
teams. While the processes for modeling learners are mature, there is still room to improve the modeling of 
both individual learners and teams in context, and then understand the most effective way to use this 
information to optimize ITS actions. System flexibility will also continue to be an important aspect of ITS 
design. Individual user (learners, instructors, authors) differences along with local policies will require 
robust ITS architectures that can enable both novice and expert users. The ability to automate or guide 
processes will make ITSs more beneficial and affordable. Finally, standards and recommended practices 
will guide ITS designers and developers, and enable higher degrees of reuse. 

Recommendations for GIFT Overall 

Based on our findings, we have developed a set of general recommendations for ITSs (Tables 1-7). In this 
section, we provide specific recommendations for the Generalized Intelligent Framework for Tutoring 
(GIFT).  

Usability: How can we make it easier for subject matter experts to author adaptive courses in GIFT? First, 
we can exploit AI methods to guide authors in the development of GIFT courses. The development of a 
course creator status view will help authors with authoring tasks including content curation (search, retrieve, 
tagging, and storage of content), traceability of learner activities to learning objectives, assignment and 
tracking of measures of assessment, and development of domain-dependent learner interventions.  

Standards: GIFT is noted for various architectural principles that have made GIFT a de facto standard for 
AIS interoperability and as a largely domain independent framework. The researchers and developers of 
GIFT have been diligent in sharing their thoughts about its design, development and experimentation in the 
literature and the use of GIFT in various domains of instruction. GIFT has been integrated with various 
training capabilities including simulation and game-based training systems (also known as serious games). 
This record of using GIFT as an exemplar to overcome various AIS limitations over the last 10 years has 
cemented its place as a leading AIS framework. IEEE AIS standards activity under Project 2247 continues 
to use GIFT as a basis for discussion in developing AIS models, interoperability standards, recommended 
practices for evaluation and the ethical use of AI in education technology. To continue this legacy, we 
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recommend that GIFT be used as an experimental testbed to evaluate desired outcomes in the AIS 
marketplace. 

Transfer of GIFT Principles: There is a perception that GIFT is strongly associated with the US Army 
and Department of Defense (Robson, Intelligent Tutoring System PADLET, 2021). Are there plans to 
promote GIFT to be used more broadly? The AIS Consortium has recently negotiated with the US Army 
to transition the GIFT 2021-2 version for open-source and commercial use as the Global Learning Toolkit 
(GLT; aisconsortium.cloud). The GLT as a forked baseline of GIFT went online in October 2021. The AIS 
Consortium now provides the GLT as an open-source ITS architecture to any user worldwide and 
commercial entities within the AIS Consortium plan to extend GLT with new services offered either as 
open-source or commercial plug-ins. The ability to use GLT will enable learning and instructional 
principles in GIFT to be analyzed by a larger user population resulting in modifications and more robust 
ITS capabilities.   

Conclusions 

ITS performance (decision-making) and accuracy may be greatly improved through automation and built-
in guidance that tracks the progress of both adaptive course authors and learners. Methods are needed to be 
able to support ITSs processes in both dense and sparse data environments. Standards will enable more 
flexibility for buyers and users, promote reuse, and help build trust in ITS technologies. ITS development 
costs may be reduced over time as reuse increases and the skill required to create and use ITSs decreases.  
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CHAPTER 3 - LEARNER MODELING IN INTELLIGENT TUTORING 
SYSTEMS SWOT ANALYSIS 

James Lester, Anisha Gupta, Fahmid Morshed Fahid, and Jay Pande 
North Carolina State University 

Introduction 

Learner modeling has long been a central functionality of adaptive learning environments. Because robust 
learner models can drive adaptivity, the field of AI in education has been engaged in a decades-long 
exploration of learner modeling. Research on learner models has traditionally been concerned with 
representing and inferring learner knowledge components and skills competencies (Pelánek, 2017; 
VanLehn, 1988; Yudelson et al., 2013). Classic research on learner modeling has ranged from models of 
learners’ knowledge and skills (Pelánek, 2017) to models of learners’ plans, goals, and preferences 
(Chrysafiadi & Virvou, 2013), and recent years have seen the emergence of increasingly powerful inference 
methods (Gupta et al., 2021; Putra et al., 2021). 

In this chapter, we present a SWOT analysis of learner modeling. First, we discuss the strengths of learner 
modeling produced by 50 years of advances in the field. Next, we turn to weaknesses, which have arisen in 
large part because of the field’s historically relatively narrow focus. We then move to a discussion of 
opportunities presented by advances in underlying technologies. We next discuss threats that will be 
important to address, particularly considering the increasing adoption of AI-driven learning technologies in 
a wide range of education and training settings. Finally, we turn to the future of learner modeling, where 
increasingly accurate learner models will inform a broad range of pedagogical adaptations. 

SWOT Analysis 

Strengths 

Learner modeling research is extraordinarily robust. State-of-the-art learner modeling functionalities are 
remarkably robust (Biswas et al., 2019; Chrysafiadi and Virvou, 2013; Owen et al., 2019; Shute et al., 
2021). There is a rich history of learner modeling that began in the 1970s (Wenger, 1987). The earliest 
intelligent tutoring systems had primitive overlay models (Carr & Goldstein, 1977), and over the course of 
the evolution of AI learning technologies, probabilistic learner modeling techniques, such as Bayesian 
Knowledge Tracing (Gervet, 2020; Pelánek, 2017; Yudelson et al., 2013), have become increasingly 
prevalent. Learner modeling has become a cottage industry in the Artificial Intelligence in Education 
(AIED), educational data mining, and learning analytics communities, and there is now an enormous 
literature on learner modeling.  

Historically, learner modeling has been notably strong for well-defined domains. Because of the relatively 
straightforward representational requirements of subject matters such as mathematics, physics, and, to some 
extent, computer science and computational thinking, there was an abundance of work in the 1980s on 
learner modeling for well-defined domains. Those efforts met with considerable success and contributed to 
the dominance of well-defined domains as a focus for research in AI in education for many years.  

Open learner modeling has also proven to be a great strength in learner modeling (Abyaa et al., 2019; Bodily 
et al., 2018; Bull & Kay, 2007). With the goal of making adaptive learning environments’ representations 
of student competencies inspectable to students, open learner models have emerged as an increasingly 
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attractive family of learner modeling functionalities. While there are no doubt computational and user 
experience design challenges remaining to be addressed, all indicators suggest that open learner modeling 
will continue to make great headway going forward. 

Weaknesses 

Despite major advances that are continuing unabated, learner modeling also suffers from significant 
weaknesses. Many of these stem from the relatively narrow range of target learner phenomena that have 
been modeled. Because learner modeling has historically had a strong cognitive focus, cognitive learner 
modeling capabilities have grown at a steady pace, while other learner modeling capabilities have lagged 
behind. Affective learner modeling (Hernandez et al., 2010; Yadegaridehkordi et al., 2019) has been the 
focus of increasing attention, but it is far behind cognitive learner modeling. Although learner affect 
unequivocally plays a critical role in learning, and even though two decades of work have produced 
significant advances, affective learner modeling remains considerably weaker than cognitive learner 
modeling.  

While limited work has been done on affective learner modeling, work on metacognitive learner modeling 
is even more limited. Although a good bit of work has been underway on metacognition and AI in education 
(Azevedo, 2005; Azevedo et al., 2010) and self-regulated learning (Nietfeld et al., 2014; Sabourin et al., 
2013a; Sabourin et al., 2013b; Segedy et al., 2015; Shores et al., 2009;  Taub et al., 2016; Taub et al., 2020), 
we have not established a core set of metacognitive learner modeling functionalities, nor have we created 
standard representational and inferential frameworks for encoding and reasoning about metacognitive states 
and abilities, despite the extraordinary importance of metacognition for most learning tasks and contexts, 
and most learner populations. It should also be noted that younger learner populations pose significant 
challenges for metacognitive learner modeling, both because metacognition in younger learners is not fully 
developed and because observing and drawing inferences about metacognitive processes in younger 
learners is particularly difficult. Further, designing metacognitive learner models for attention and 
awareness, as well as for reflection (Carpenter et al., 2020) and planning, is not well understood.  

Another weakness in current learner modeling is the limited research that has moved beyond learner 
modeling for individual students. Collaborative learning is highly effective, and collaboration is a twenty-
first century competency that is essential for students to acquire (Laal et al., 2012; Smith et al., 1992). 
However, almost all learner modeling is designed to represent and draw inferences about students learning 
“solo.” While it might seem that classic learner modeling methods could be used for groups of learners, 
e.g., creating one learner model for each of a pair of learners in a dyad or creating three learner models for 
each learner in a triad, this approach would fail to capture the dynamics of collaborative learning. Computer-
supported collaborative learning (Jeong et al., 2016; O’Malley et al., 2012; Pugh et al., 2021; Sun et al., 
2020) introduces the opportunity (and the need) to model student communication, coordination, and group 
dynamics. For example, game-based collaborative learning (Saleh et al., 2019; Saleh et al., 2022) calls for 
collaborative learner modeling. However, our understanding of how to model collaboration phenomena is 
highly underdeveloped compared to conventional learner modeling. At least two types of capabilities are 
currently missing: modeling collaborative learning phenomena during the course of collaborative learning, 
and modeling students’ collaboration competencies per se. Creating learner models that provide these 
capabilities presupposes learner model designs that are grounded in sociocultural theories of learning 
(Wang et al., 2019; Danish & Gresalfi, 2018), which is challenging because the vast majority of work on 
learning modeling has been driven by cognitivist learning theory. 

Another weakness of conventional learner modeling is its limitations in supporting learning in ill-defined 
domains. As noted above, well-defined domains such as mathematics readily lend themselves to 
straightforward learner modeling approaches, but modeling students learning for ill-defined subject matters 
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poses considerable challenges. For example, how should learner modeling operate in adaptive learning 
environments for teaching skills such as negotiation, persuasion, public speaking, conflict management, 
leadership, and social skills more generally?  

A final notable weakness of learner modeling is its use of impoverished data streams. Since the early days 
of research on AI in education, coarse performance data, such as students’ responses to multiple choice 
questions, have been captured because that was all that was available. However, with the emergence of rich 
data streams spanning video, audio, biometrics, and granular behavior trace data, such as that generated by 
game-based learning environments (Rowe et al., 2011), it is evident that current learner modeling methods 
have not caught up with the availability of data produced by current learning environments. 

Opportunities 

Opportunities abound for learner modeling. As a result of current and future advances in underlying 
learning environment technologies, as well as a consequence of emerging conceptualizations of learning, 
learner modeling research can profitably take many directions. Narrative-centered learner modeling 
presents many opportunities (Lester et al., 2014; Mott et al., 1999). For example, as powerful narrative-
centered learning environments emerge, they will generate granular story-driven learning interaction traces. 
Narrative-centered learner modeling frameworks can then be developed that leverage these rich data to 
model a wide range of student competencies. Narrative-centered learning environments can also be driven 
by multi-timescale story-based problem-solving interactions playing out over seconds, minutes, weeks, and 
perhaps even months. These multi-timescale narrative episodes can provide insight into student learning 
that spans both cognitive and affective components of learning. Further, the data from these multi-timescale 
narrative episodes can model both cognitive and affective components of narrative-centered learning. 

Advances in pedagogical agents (Johnson & Lester, 2016; Johnson & Lester, 2018; Johnson et al., 2000) 
are introducing unparalleled opportunities for learner modeling. Pedagogical agents with full spoken 
language communication capabilities complemented by a broad array of non-verbal communication 
capabilities (both interpretation and synthesis) will enable a new generation of embodied conversational 
learner modeling. Learner models will be driven by mentor agents, learning companions, and teachable 
agents that can engage in rich dialogue, which can then drive robust inference in learner models for learners’ 
knowledge, goals, plans, and preferences. Facilitator agents that interact with both students and teachers 
can further increase the inferential power of embodied conversational agent learner modeling. 

Accelerating improvements in natural language processing create opportunities for new forms of learner 
modeling. They open possibilities for text-based learner modeling that can draw inferences about students’ 
text-based reflections (Geden et al., 2021), as well as their text-based short answers and essays 
(Ramalingam et al., 2018; Putra et al., 2021). Integrating evidence provided by analyses of student text will 
significantly strengthen learner models previously relying on conventional data streams. Text-based 
conversational dialogue (Min et al., 2016; Min et al., 2019; Wiggins et al., 2019) also introduces new 
possibilities for learner modeling, and spoken language dialogue-based learner modeling will provide new 
opportunities for learner models as well, including those utilized in conjunction with embodied 
conversational agents as described above. These also include new possibilities for affective learner 
modeling through prosody and sentiment.  

Biometrics and expanding sensor capabilities also create new opportunities for affective learner modeling. 
As biometric sensors become increasingly commoditized and, therefore, increasingly available, they will 
enable affective learner modeling that is not only more powerful than what we have today, but also delivers 
these capabilities in a broader range of learning contexts. Emerging biometric sensor technologies also 
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introduce the opportunity to create learner models for psychomotor skills that operate at levels of granularity 
that were, until very recently, fully unimaginable.  

New virtual reality (VR) and augmented reality (AR) technologies create extraordinary possibilities for 
“full-presence” learner modeling. Integrating adaptive learning technologies with VR and AR creates the 
opportunity to design learner modeling capabilities that are deeply responsive to learners in immersive 
environments, which will provide voluminous spatial and temporal data about learners’ movement and their 
interaction with artifacts and other learners. This in turn will contribute to learner models that can accurately 
reason about learners with considerably richer sources of information than learner models of the past had 
access to. 

Multi-context learner modeling presents significant opportunities as well. Rather than developing learner 
models for only formal learning contexts (e.g., K-12 school classrooms, Army school houses) or informal 
learning contexts (e.g., museums), beginning to instrument learners as they move across learning contexts 
introduces the possibility to create learner models that can leverage evidence about learner competencies 
in a variety of settings. As a result, one can imagine learner models that are inherently “portable,” i.e., they 
can effectively model students in multiple settings and even draw on evidence from learners interacting in 
previous settings for transfer to new settings.  

Finally, while lifelong learning and lifelong learner modeling have long been considered the ultimate 
challenge for learner modeling, they also represent the ultimate opportunity. It will soon be technically 
feasible for learner models to operate at timescales of years. The prospect of lifelong learner modeling of 
course raises many serious concerns, as noted below, but it also introduces the opportunity to create student-
adaptive learning experiences that can draw on an enormous amount of learner experience for 
unprecedented levels of pedagogical tailoring. 

Threats 

Rapidly advancing learner modeling capabilities pose significant threats. Many of these threats center on 
issues of fairness, accountability, and transparency (Gardner et al., 2019; Kizilcec et al., 2020; Paquette et 
al., 2020). As is widely recognized, learner models are only as good as the data on which they are trained. 
As a result, training on biased data will produce biased learner models, which can then adapt pedagogy in 
ways that are far from beneficial and are actually harmful. It will thus be essential to preemptively address 
learner model bias through learner model training. In a similar vein, it will be important to formulate policy 
around learner modeling accountability. For example, what organizations and parties are responsible if a 
learner model were to operate with prejudicial behavior, and how can we formulate policy that most 
effectively addresses these learner modeling issues before they occur? 

The lack of transparency in learner modeling poses a significant threat as well. While learner models that 
use classic machine learning frameworks are typically transparent, learner modeling frameworks that are 
based on deep learning are not. As deep learning becomes increasingly powerful, it will likely see rapid 
uptake in learner modeling, which does not bode well for transparency. In the same ways that other machine 
learning-based models utilizing deep learning require transparency, such as those in healthcare, finance, 
and law, so does machine learning-based learner modeling. Further, learner models must serve many 
stakeholders, including students, teachers, administrators, and parents, placing an even greater burden on 
model transparency. 

Finally, ownership issues in learner models pose significant threats. The question of who owns the data in 
a learner model will be the subject of increasingly vigorous debate. The learner model represents a particular 
student’s competencies, so it seems the student would own the data. However, school districts may argue 
that they own the data, and industry will no doubt make similar claims. Questions about where the learner 
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model data resides (or where it should reside) will likely further complicate ownership issues, all of which 
intersect heavily with the privacy issues noted above. 

Overall SWOT Analysis 

Table 1 presents a summary of the strengths, weaknesses, opportunities, and threats for learner modeling 
research. 
 

Table 1. Learner modeling SWOT Analysis. 

Strengths 
• Robust probabilistic learner models 
• Increasingly powerful machine learning 

frameworks (e.g., deep learning) 
• Learner modeling for well-defined 

domains 
• Open learner modeling 

Weaknesses 
• Affective learner modeling 
• Metacognitive learner modeling 
• Collaborative/team learner modeling 
• Learner modeling for ill-defined domains 
• Impoverished data streams 

Opportunities 
• Narrative-centered learner modeling 
• Learner modeling with pedagogical 

agents 
• Learner modeling with natural language 

processing 
• Learner modeling with biometric and 

sensor technologies 
• VR/AR learner modeling 
• Multi-context learner modeling 
• Lifelong learner modeling 

Threats 
• Fairness and bias in learner modeling 
• Learner modeling transparency 
• Accountability and ownership in learner 

modeling 

Discussion and Recommendations for Future Research 

We have reached a critical juncture in the history of learner modeling research. With the advent of deep 
learning-based models, we have seen rapid advances in the capabilities of learner modeling. Progress in 
deep learning-based learner modeling frameworks will no doubt continue, with previous successes in well-
defined domains being extended to ill-defined domains. We will also see the continued emergence of 
increasingly sophisticated open learner models, which will have intelligent user interfaces mediating 
interactions between learners and powerful learner model backends. Despite these advances, it is imperative 
that learner modeling research address the weaknesses pervading current work. The field needs to address 
significant deficiencies in affective learner modeling, metacognitive learner modeling, and 
collaborative/team learner modeling. It must also push on limitations in modeling learners’ knowledge 
components and skills in ill-defined domains and expanding the range of data streams that can inform 
learner modeling.  

The field is now presented with unprecedented opportunities. With the emergence of a new generation of 
AI-driven narrative-centered learning environments, we can now envision, create, and experiment with 
narrative-centered learning models. In addition, as embodied conversational agents become increasingly 
capable of engaging in robust conversational interactions with learners, we can devise pedagogical agent-
driven learner models that are deeply informed by verbal and non-verbal communication. More generally, 
dramatic increases in natural language capabilities will support both speech-based and text-based learner 
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models. The field should also leverage new opportunities introduced by the emergence of VR and AR to 
fundamentally re-envision how learners interact with learner models. While pursuing these opportunities, 
it is essential that we address core issues in fairness, accountability, and transparency of learner models, as 
adaptive instructional systems are only as good as the learner models that drive them. 

Recommendations for GIFT Overall 

Given the strengths, weaknesses, opportunities, and threats discussed above, we recommend that future 
work on GIFT address five key areas in learner modeling. First, collaborative learner modeling and team 
learner modeling will be central to adaptive instructional systems going forward. We can no longer rely on 
single-learner learner models; we must enable GIFT to have access to team learner models that explicitly 
represent and draw inferences about team knowledge, skills, and problem-solving strategies. Second, as 
increasingly powerful narrative-centered learning environments come online, enabling GIFT to have 
learner models that are “narrative-native” will introduce learner modeling capabilities that operate 
effectively in scenario-based education and training. Third, GIFT should have robust NLP-driven learner 
modeling capabilities that support learner modeling from text and speech. With the emergence of 
pedagogical agents that can engage in rich conversation, which often will take place in narrative-centered 
learning episodes, GIFT will need to provide spoken-language learner modeling that enables it to draw 
inferences about learners through language. Fourth, as additional interaction modalities become 
increasingly common, GIFT will need to support multimodal learner modeling. For example, trainers will 
likely expect GIFT to model trainee skills based on interaction data from VR-based and AR-based 
experiences. Finally, GIFT will need to support learner model transparency. While learner models that are 
opaque will be common as a result of deep learning-based models’ growing prominence, explainability in 
GIFT learner models will become increasingly valuable.  

Conclusions 

Learner modeling has an extraordinarily bright future. With accelerating advances in AI, learner models 
will assuredly become more accurate, efficient, and ubiquitous. Performance on machine learning, natural 
language processing, and computer vision benchmarks will continue their dramatic climbs, which will 
produce increasingly powerful learner modeling frameworks. With rapid improvements in machine 
learning for temporal and spatial data and parallel advances in multimodal machine learning, we will see 
the emergence of learner models with exceptional predictive accuracy for a wide range of learning 
phenomena, learner populations, and learning contexts. 

Soon we will see a rapid succession of new generations of learner models that offer fundamentally new 
capabilities. These will begin appearing in education and training systems operating in the field, and the 
data they generate will feed a virtuous cycle of ever more powerful learner models that support an 
increasingly wide range of adaptive learning. Because of the enormous impact that learner models will have 
on the effectiveness of adaptive learning environments, continuing successes will fuel the demand for even 
greater capabilities and introduce even more opportunities. At the same time, the threats noted above will 
play out on an even larger stage, which will no doubt force innovation in both technology and policy. 
Today’s learner models, whose capabilities far exceed those of years past, will pale in comparison to those 
of even a few years from now. Together, these developments will promote the creation of learner models 
that support extraordinarily effective education and training.  
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Introduction 

Instructional strategies can be thought of as a two-layer process including an outer loop, and an inner loop 
in a computer-guided training system.  In the outer loop, strategies can be applied to select learning activities 
that are generally specified in a goal-oriented learner model.  That is, the outer loop ideally can support the 
different activities for different learners, in recognition that knowledge builds on prior knowledge.   During 
this outer loop process, the inner loop process supports achieving the learning goals by providing 
assessment and feedback and by supporting individual student strategies to complete the activity. 
Knowledge component modeling can support both the inner and outer loops (Goldin, et al., 2016). Within 
the inner loop, steps taken in the activity are associated with knowledge components (KCs), allowing the 
system to build up a profile of the components on which students are proficient and those that still need 
more practice. When the activity is completed, outer loop processes can use this knowledge component 
profile to select an appropriate next activity for the student.  This two-layer process can be implemented as 
an intelligent tutoring system (ITS) to help the learner to complete the learning activities and objectives.  
The instructional strategies can be further reinforced by using the Artificial Intelligence (AI)/Cognitive 
Science and machine learning (ML) techniques to improve learning and retention of knowledge and skills—
e.g., spaced practice trials would slow learning but increase retention (Walsh, Gluck, Gunzelmann, 
Jastrzembski, & Krusmark, 2018).   In this chapter, based on the SWOT (Strengths, Weakness, 
Opportunities, and Threats) analysis, we describe research-supported understandings with regard to 
learning data analytics and predictive tools for advancing instructional strategies.   

With inner and outer loop strategies, improving instructional strategies in an ITS would require two major 
capabilities: (a) ability to deal with multi-skills learning, and (b) ability to advance prescriptive personalized 
learning for the individual learner.  Instructional strategies with personalization and multi-skills acquisition 
would need symbiotic interplay of the outer and inner loop processes.  They can be bolstered by predictive 
analytics on learning and decay – i.e., when the learner needs an additional practice trial for reinforced 
retention.  The current technologies of computational cognitive models with the support of AI/ML 
techniques have started to address this research question (e.g., Sense, Wood et al., 2021), and to support 
such predictions to an extent.  Based on these points, we will provide instructional strategies in terms of 
SWOT analytics for further research and integration with an ITS (e.g., GIFT, or other relevant platforms 
including AutoTutor, OpenTutor, and D2P).   

It can be helpful to think of three perspectives on knowledge components: cognitive, educational and 
analytic. From a cognitive perspective (see Koedinger et al., 2012), KCs reflect the underlying mechanism 
that the brain uses to solve problems. KCs represent mental process as well at the 10 s (seconds) unit task 
level in Newell’s time band (Newell, 1990); unit tasks usually last 10 s.  Furthermore, they could be ideally 
represented in cognitive constructs – i.e., production rules with a set of declarative knowledge in a cognitive 
architecture, ACT-R (Anderson, 2002; Anderson et al., 2004). While, in theory, the complete set of KCs 
required to complete a task could be represented in a domain model, in practice, there are far too many, so 
systems tend to represent a small subset of the cognitive processing that is actually required to complete a 
task. 
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The educational perspective on KCs focuses on the educational intent of an instructional system. Such 
systems often have external educational objectives (also called competencies or standards in different 
educational contexts). KCs represent a finer-grained view of the educational objectives of a system. For 
example, one of the Common Core State Standards for Mathematics used in several US states is “8.ee.7b: 
Solve linear equations with rational number coefficients, including equations whose solutions require 
expanding expressions using the distributive property and collecting like terms.” This standard expresses 
the educational goal, but it is too broad to provide instruction because, for students to master this standard 
requires the student to learn and practice many underlying KCs. For example, in a system like MATHia 
(Ritter et al., 2007), solving equations of the form “𝑎𝑎𝑎𝑎 = 𝑏𝑏” involves KCs representing the ability to solve 
such equations when 𝑎𝑎 is a positive integer, when 𝑎𝑎 is a negative integer, when 𝑎𝑎 is -1 (a special case 
because mathematical notation writes -1x as -x) and several other cases, in addition to the KCs underlying 
more complex linear equations. These KCs represent difficulty factors (Baker et al., 2007) that make some 
equations harder for some students to solve than others and also help to divide the space of activities 
(equations to solve) in a way that allows the outer loop to sample it much more efficiently than picking 
problems from the space of problems represented by the standard 8.ee.7b. 

There are many possible partitions of a standard like 8.ee.7b that could be used to guide instruction. The 
analytic perspective on KCs helps to guide this partitioning in a way that is most educationally efficient. 
Building on the cognitive perspective, we treat the KCs as parameters in a model that predicts student 
learning and performance (Cen et al., 2006; Goldin  et al., 2016). If, as in the cognitive perspective, KCs 
are the things that get learned (and get better with practice), then we should see KCs improve along a power 
law of learning, which is that the time to complete a task speeds up with practice according to a power 
function. If we see deviations from power law of learning (and, particularly, if we see drops in learning for 
particular activity types, then we know that the modeled KCs do not correspond to the actual KCs that 
students are using to solve problems.) This perspective explains why we treat equations with positive 
coefficients differently from equations with negative coefficients. There is no logical or mathematical 
reason to do so, but, empirically, the data show that students at this level in their education who are able to 
solve 𝑎𝑎𝑎𝑎 = 𝑏𝑏 equations where 𝑎𝑎 is a positive integer may not be able to solve such equations when 𝑎𝑎 is a 
negative integer. Data-driven discovery of new knowledge components thus leads to improvements in the 
efficiency of educational systems (Liu & Koedinger, 2017). 

Combining these perspectives, we can see that the function of KCs is to generalize terms for describing 
concepts, facts, cognition, and knowledge in a way that provides guidance to the outer loop in activity 
selection and also supports a foundation for data-enabled assessment and improvement in learning. The KC 
modeling approach provides a practical connection between learning science and education. 

However, assessment of learner performance is somewhat limited – assessment in ITSs provide only a 
snapshot of current capabilities of the learner rather than a prediction for the future (Pavlik Jr  et al., 2017).  
It is necessary to understand what an assessment might imply for long-term proficiency for improved 
predictive readiness.  The two approaches of multi-skills learning, and predictions on personalized learning 
and decay using Predictive Performance Equations (PPEs) can help us to instantiate such technical gaps of 
instructional strategies (Gluck et al., 2019).  Using PPE, we can better track KCs that can be interpreted by 
learning performance, prediction on learning, and retention.  PPEs can address the spacing effect to predict 
when to retrain (e.g., Gluck,  et al., 2019; Walsh, Gluck, Gunzelmann, Jastrzembski, & Krusmark, 2018).  
We continue improving PPEs to capture both different learning rates and decay rates in terms of the process 
of declarative to procedural learning and retention.  In terms of the three stages of learning and retention, 
the learner goes through from the declarative to the procedural stage (which is summarized in a cognitive 
theory, and implemented in a training architecture, D2P). A large complex task can be decomposed into 
multiple subtasks and subskills.  We need to be aware that they might be learned differently and be forgotten 
differently.  These attempts can help to achieve our mutual goal of improving personalization, and 
predicting optimal training schedules for longer retention.   
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When it comes to tracing KCs, as a formative assessment technique, learning (and forgetting) curves can 
provide important insights of how to assess performance and define adaptivity levels.  In general, task 
completion time follows a power law of learning (and forgetting) representing a speed-up effect.  
Assessment of performance can be ranging from milliseconds to years; spanning of seven orders of 
magnitude (Anderson, 2002).  This is useful in designing an adaptive instructional system since a large task 
can be meaningfully decomposed.   

One of known pitfalls of learning (forgetting) curves is that a larger domain model or a large student sample 
size is likely to exhibit a better fit than a smaller one, even if the system does not teach the students any 
better (Martin et al., 2011).  For example, a larger task can be decomposed, but subtasks would be learned 
differently (Kim & Ritter, 2016).  Thus, a simple comparison of a learning (forgetting) curve in a large task 
seems not sufficient enough to support personalized instructional strategies.  Furthermore, a near-term 
assessment by comparing learning (forgetting) curves would not be related to the long-term stability of 
learning (e.g., Schmidt & Bjork, 1992).   

SWOT Analysis 

We need reliable predictions on learning, and particularly decay as well to advance inner and outer loop 
behavior of an ITS.  Scientists demonstrate that learning happens in stages, and the process of learning and 
forgetting can be represented by declarative and procedural knowledge in a cognitive model (Anderson, 
1993).  One of the clearly sharable goals by domains in Cognitive Science and Education is to provide 
improved learning and longer retention of acquired knowledge and skills by the stages of learning and 
retention (see Kim & Ritter, 2015) .  To achieve the goal, more personalized instructional strategies would 
be necessary because one size does not fit all, and instructional schedules should be optimized accordingly.  
When do we need massed or spaced practice?  Do we really know what is learned and forgotten in an item 
level detail?  When do we need to retrain?  All these fundamental research questions are related to 
improving instructional strategies.  We analyze this issue by taking a SWOT analysis approach to succinctly 
summarize technical challenges and scientific directions.  

Strengths  

Knowledge component modeling is useful to examine performance changes and guide data-driven 
improvement (Xiangen Hu, Instructional Strategies PADLET, 2021).  A learner model with KCs can 
specify how the learner would acquire knowledge and skills (probably multi-skills) in a task through the 
stages of learning (e.g., from declarative to procedural stages).  The learner model can generalize the terms 
for describing pieces of cognition or knowledge including production rules, facts, principles, concepts, and 
schema (Koedinger et al., 2012).  The model can be implemented as a rule-based cognitive model that can 
track student learning and performance in real time.  A production rule-based model can help in thinking 
about what knowledge may be needed to perform a particular task, how that knowledge might be 
decomposed to capture what the learner would do, and how widely specific knowledge components will 
transfer (Aleven & Koedinger, 2013).   

PPE, Predictive Performance Equation (Gluck et al., 2019), has been developed to pursue the goal to trace 
and predict decay for future performance – i.e., predictive information about when to relearn, seeking 
optimized training schedules.  Based on the KC-based model in an ITS, we can trace the process of learning 
and forgetting to prescribe learning schedules for longer retention; data tagged by each KC over time can 
be collected from the laboratory or the field.   

A larger task can be meaningfully and functionally decomposed to smaller unit tasks (Lee & Anderson, 
2001).  Similarly, multi-skills can be decomposed for meaningful analytics that allow us to predict student 
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performance.  Multi-skills can be decomposed into measurable units of knowledge and skills that can 
represented as KCs. Integrating a KC model in an ITS can support advanced learning analytics to predict 
learning and decay.   

Table 1. A summary of strengths.  

 

Knowledge component modeling is useful to measure performance changes in an ITS.  

Knowledge component models help an ITS to be more data-driven.  

GIFT can incorporate a knowledge component model (e.g., PPE) to provide adaptive training 

schedules. 

Weaknesses 

In cognitive science, scientists generally investigate performance changes (declarative to procedural) in 
milliseconds, but educational outcomes could be months and years. That is, assessment of performance can 
be ranging from milliseconds to years; there are spanning orders in magnitude. Tracing KCs needs to be 
specified in detail by addressing the spanning orders, so that they can be computationally implemented in 
the inner and outer loops of ITSs.  This scalability issue can further bring: (a) time scale difference from 
inner and outer loops, (b) differences in scales of hierarchical multi-skills levels, and (c) individual 
variations for learning and decay.  To successfully utilize PPE in ITSs, we need adequate data fidelity, 
based on objective performance metrics, and data from repeated measures to assess learning and decay.  
AFRL has conducted extensive research on fatigue (e.g., sleep deprivation), and skill acquisition.  The lab 
findings need to be generalized to the field, addressing scalability issues.  In addition, computational costs 
for simulation and prediction can be weaknesses when knowledge and skills with KCs and the number of 
the learners in the wild are taken into consideration.  

KCs are best used for educational objects that constitute domain knowledge and require proceduralization. 
They provide poor support for learning objectives where practice is relatively unimportant (for example, a 
short exposure to a concept like absolute value might be sufficient and thus more efficient than a serious of 
tasks related to the concept), and they may be less useful for tracking more general strategies or approaches 
to learning.  For example, in addition to content standards focused on things like solving linear equations, 
the Common Core State Standards for Mathematics include “Standards for Mathematical Practice” like 
“make sense of problems and persevere in solving them”. While it may be possible to model learning of 
such objectives, it is an open question as to whether they have the same psychological reality as domain 
knowledge from the cognitive perspective on KCs.  Thus, such objectives might not follow the same kind 
of power law of learning. At a practical level, mapping performance on a task to a discrete instance of 
“persevering,” for example, poses challenges as well. 

Table 2. A summary of weaknesses.  

 

There is a gap between outcomes in cognitive level analytics and educational outcomes.   

Knowledge components might sometimes not be able to fully support the learning objectives.  
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Opportunities 

In general, we should consider the ITS to be part of a modern learning and training environment.  This 
allows us to focus the ITS on what it does best, which is learner work that can be well modeled with KCs, 
as well as support for instructors.  One advantage of the KC approach is that KCs are explainable, so the 
ITS can produce a learner model that is understandable to both the student and the instructor, and the 
instructor can author the learning materials for the learner that responds to student failure to master 
particular KCs.  Furthermore, integrating the capability of predicting decay (e.g., using PPE) into the ITS 
can be a greater opportunity to provide advanced information for the learners and the instructors.  There are 
no training systems that the authors are aware of that can provide varying learning (decay) rates by subtasks 
and by individual learner.  These are the important measures that can enable personalized instructional 
strategies.  The aforementioned perspectives (cognitive, educational, and analytic) let us see significant 
opportunities for collaboration—i.e., it would be possible to deliver optimized, and cognitively plausible 
retraining schedules.   In addition, we can provide content selection for retraining with consideration of 
multi-skills learning and decay, achieving enhanced retention.   

Table 3. A summary of opportunities.  

 

An ITS can support training schedules based on predictive analytics on learning and forgetting. 

 

Threats 

We observe that many Department of Defense (DoD) systems are not equipped to track objective 
performance in a digitized and automated fashion.  Sometimes aggregate measures of a student's language 
learning are available, but granularity of measures at the item level would be required to improve 
personalized training.  In addition, many DoD systems are not designed to track learning over time (not 
allowing for repeated measures).  In addition, it has been acknowledged that the learning data from the field 
would engender some poor fit.  Bayesian models can be useful, but there might be expensive computational 
cost to update each individual learner’s posterior distributions by each KC.   

 Table 4. A summary of threats.  

 

A support of larger defense systems can be critical. 

 

Supporting Research 

Humans appear to be remarkably good at learning, but they sometimes tend to practice what they do know 
rather than what they do not know (Atkinson, 1972).  Similarly, when the individual learner learns 
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knowledge and skills (e.g., from a golf putting task to a calculus problem solving), the learner needs to 
know what they are not good at.  There is a consensus theory of stages of learning that has been the 
foundation for a number of tutoring systems (e.g., Anderson et al., 1990; Anderson et al., 1985; Corbett & 
Anderson, 1995; Ritter et al., 2013; Ritter et al., 2007).   

The theoretical account of the learning behavior in the three stages (e.g., Anderson, 1982; Fitts, 1964; 
VanLehn, 1996) can provide us with important insights and mechanisms to represent forgetting (Kim & 
Ritter, 2015). It is reasonable to hypothesize that knowledge is forgotten in each stage. In the first stage, 
mostly declarative knowledge would be degraded. In the second stage, both declarative (e.g., facts 
consisting of chunks) and procedural knowledge (e.g., production rules to represent steps and sequences) 
would be degraded. In the third stage, similar to the second stage, both declarative and procedural forms of 
knowledge would be degraded. These three stages would be continuous. However, for the clarity of 
theoretical explanation, we describe each stage distinctively in this section. Later, we will introduce how 
we can put the distinctive three stages together to better represent forgetting.   

A method for skill assessment is used to identify what skills (or subskills) individuals are good at or are not 
good at.  The results of an assessment can then be visualized as a learning (and forgetting) curve, which is 
typically represented as a power function (Newell & Rosenbloom, 1981).  A learning curve would be used 
for a formative and a summative study to improve adaptive instructional systems (Martin et al., 2011).  A 
summative assessment usually happens after the learner has finished being taught about a subject (e.g., a 
final exam at the end of a semester or at the end of a unit task).  In the meanwhile, a formative assessment 
happens while a student is being taught about a subject, rather than at the end of year or unit of a work, in 
order to check their progress.   

However, this theoretical understanding is not sufficient to analyze and predict the components of 
knowledge and skills training.  Assessments of each knowledge and skill component would be necessary 
for improved instructional strategies for personalization.  It is necessary to identify the skill level of those 
three components in terms of these learning stages, and that can provide suggestions of dynamic scaffolding 
and adaptive instructions.  The ITS can be an important tool that can reify the aforementioned theoretical 
perspectives. Based on the identified knowledge and skill components, an improved ITS could tag the 
knowledge and skill components that need more practice.  For example, if the learner fails to do a task, the 
learner model implemented in the ITS can automatically identify the less practiced skill from all of the 
knowledge and skill components.  Learner models based on Bayesian hidden markov style knowledge 
tracing (e.g., Baker, Corbett, & Aleven, 2008; Yudelson et al., 2013) and cognitive model based knowledge 
tracing (Jastrzembski et al., 2006) have been widely investigated to examine the efficacy of ITSs, 
identifying skill components by formative assessments and automatically tagging them if they are under-
practiced for an adaptive instructional strategy.  These efforts seek to suggest dynamic scaffolding and 
adaptive instructions based on the tagged skill components.  An intelligent tutoring framework can provide 
a type of instructional materials (video or text formats).   

As mentioned earlier, individuals appear to practice what they do know rather than what they do not know 
(Atkinson, 1972), suggesting that personalized guidance on learning is necessary to achieve improved 
learning of multi-level complex skill components.  In Airforce Research Laboratory (AFRL), PPE has been 
developed, which was initially based on cognitive model-driven knowledge tracing.  PPE is a multiplicative 
equation that both contains a learning term and forgetting term.   

PPE is originally inspired by cognitive theories of learning and memory, including General Performance 
Equation, GPE (Anderson & Schunn, 2000). It did successfully account for how the amount of study and 
elapsed time would affect retention. PPE goes beyond the GPE in that it represents how the temporal 
distribution of practice affects retention as well.  PPE accounts for the spacing effect well. The spacing 
effect is that separating practice repetitions by a delay slows learning but enhances retention.  PPE predicts 
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decay, and the spacing effect, which is used to provide refresher training.  Walsh, Gluck, Gunzelmann, 
Jastrzembski, Krusmark, Myung et al. (2018) compared different models on predictions of the spacing 
effect, showing PPE provides a reliable prediction on decay with regard to massed versus spaced practice.   

Currently, the original PPE has been being extensively tested against learning and training data from the 
field (e.g., a calendar-based CPR training for certification) and integrated with Machine Learning (ML) 
models to better account for environmental variances (e.g., noisy data on forgetting and data scarcity for a 
specific longitudinal condition)(Sense, Collins et al., 2021).  The spacing effect is known as one of the most 
scientifically demonstrated learning principles, but it has not been successfully applied to ITSs.  In addition, 
learning materials that are learned in a spaced manner can be relearned quickly; this is called spacing-
accelerated relearning (Jastrzembski, Walsh et al., 2018).  PPE is the most mature and robust model that 
can trace knowledge and skill components, and predict decay.  Thus, PPE based on theories of cognitive 
learning and forgetting is the one candidate computational model that can enable personalized adaptive 
instructions for the ITS.   

Discussion and Recommendations for Future Research 

Integrating PPE with an ITS (e.g., The Generalized Intelligent Framework for Tutoring; GIFT) will enhance 
personalization and decay prediction capability.  This will strengthen the operational functionality that 
drives GIFT, such as adaptive course flow. It also helps to identify and assess the learner state of acquiring 
knowledge and skills and to prescribe learning and relearning schedules in a spaced or massed fashion for 
longer term stability of knowledge and skills.   

A machine learning (ML) model is not able to find structure without sufficient data.  By using cognitive 
models, it is possible to inform the ML model of structure with data – an ensemble modeling approach of 
using a cognitive model and ML models.  PPE, as a computational cognitive model, seeks to take the best 
advantages of using ML models.  There have been gaps between AI/cognitive science and educational 
outcomes.  People have been trying for decades to mind this gap.  How can we make better progress? 

As one attempt to close the gap, the ensemble modeling approach can address unexplained variance and 
uncertainty between those two domains.  PPE is deterministic with parameters, and is inspired by a 
cognitive model.  Uncertainty and unexplained variances would exist when we utilize PPE to predict the 
data from the field.  We deal with massive field data (e.g., CPR training data from the field) by using 
predictive models including ML and statistical/probabilistic models.  A statistical/probabilistic model (e.g., 
a Bayesian hierarchical model) is used to infer parameters from the field data with consideration of error 
and variance as an inverse model.  We solve inverse problems by inferring the values of model parameters 
that are consistent with the field data iteratively in an attempt to reduce the gap. 

Robert Sottilare (personal communication, 2021) mentioned how integration of decay in a predictive model 
might be represented and standardized across various types of tasks.  Starting from a cognitive architecture, 
ACT-R supports cognitively plausible mechanisms and structures for both human learning and forgetting. 
Adopting the best structure would be useful to represent decay across various types of tasks.  But there are 
limitations.  ML models learn well to predict decay for a specific task, but it would fail without sufficient 
data to train the ML model.  If we give a cognitively plausible structure to a ML model, we might be able 
to address some of the problems in a similar manner.   
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Recommendations for GIFT Overall 

Based on the understanding of the aforementioned instructional strategies, we can provide design 
recommendations for GIFT and future ITSs.  It is necessary to place the ITS as a central position in the 
learning process, but other non-ITS learning activities including human-led instructions should also be 
available for the learner all the time.  The ITS can be reinforced by building and supporting data-driven 
improvements in learning environments.  Finally, the ITS should be supportive in providing the learners 
with recommendations of learning contents and personalized optimal schedules for learning (and 
relearning).   

Conclusions 

Personalized instructional strategies are intended to help the learner to acquire KCs, to practice them, and 
to achieve expertise through the progression of stages of a learning curve, which has shown to impact 
learning in various task domains including procedural troubleshooting tasks, mathematics, physics 
problem-solving, etc.  Personalized instructional strategies are limited to certain learning environments.  
They are challenged to address the requirements from multiskills learning by varying individuals. 

To achieve this, we need an improved method of assessing forgetting for long-term proficiency with 
different types of knowledge.  Our discussion asserts the necessity of an improved framework for 
assessment and its interpretation when it comes to forgetting.  Particularly, it is necessary to provide an 
improved framework to assess stability and transferability of the acquired knowledge and skills in an 
unannounced and unobtrusive way.  This problem can be approached by using and extending a computer-
based tutoring system.   

GIFT can support learning and assessment of the knowledge types discussed earlier in this chapter (e.g., 
simple recognition, cued recall, transfer of knowledge).  In GIFT, a hierarchy of concepts, which is 
implemented in the Domain Module, can be also expanded to deal with the microgenetics of knowledge 
and skills (e.g., tasks and subtasks, skills and subskills, or movements or submovements).  A microgenetic 
approach to assess forgetting in a computer-based tutoring system will help us to better identify the learner 
state and support improved knowledge and skill proficiency.  

A limitation to note here is that the GIFT modules are only able to assess the current learner state; it is 
unable to predict the future learner state. With regard to the changing forgetting rates, GIFT is currently 
incapable of using predictions from a computational model.  However, if GIFT were enhanced to predict 
the rate of forgetting, it could be used to determine and support strategies that are necessary for acquisition 
of robust knowledge and skills.  Therefore, there may be merit to addressing forgetting rates in the 
developing GIFT system, to better support learning and assessment capabilities, which will help the system 
to identify better ways to achieve long-term proficiency.  Integrating a predictive tool into an ITS is 
necessary.   
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Introduction 

Over the past 50 years, the United States Department of Defense (DoD) has been a leading developer of 
intelligent tutoring systems (ITSs, Fletcher, 1988; Fletcher 2014; McCarthy, 2008).  However, despite this 
long history and many demonstrable benefits, very few ITSs are currently in use within the DoD or the 
broader community.  There are several reasons for this, but the primary one is probably the lack of authoring 
tools and the resultant level of effort and cost associated with their development and sustainment. 

Therefore, during the 2021 Generalized Intelligent Framework for Tutoring (GIFT) Expert Workshop, 
leaders from the field convened to conduct a Strength, Weaknesses, Opportunities, and Threats (SWOT) 
analysis of ITS authoring (among other topics).  This chapter summarizes those discussions, and provides 
recommendations for improving the GIFT (Generalized Intelligent Framework for Tutoring) software 
(Sottilare et al., 2017). 

SWOT Analysis 

During the 2021 GIFT Expert Workshop, James E. McCarthy and Neil Heffernan offered presentations that 
explored their experiences developing ITS authoring tools.  During the presentations and the resultant 
discussions, participants were encouraged to offer their insights via the online Padlet tool 
(https://padlet.com/dashboard). These presentations covered the perspectives of industry and academia in 
addition to applications to government. This chapter summarizes those presentations and discussions.  In 
keeping with the goals of the workshop, the presentations, Padlets, and chapter were organized as a SWOT 
analysis. 

Strengths 

One of the primary points of discussion was a byplay between the notion that effective authoring tools do 
exist and the need to define more fully what is meant by “authoring.”  As a community, perhaps we should 
more reliably distinguish among the levels and types of authoring tasks.  For example, Heffernan described 
some of the authoring tools that he and his team have developed that allow Subject Matter Experts (SMEs; 
normally in the form of teachers) to build and maintain training systems (Heffernan, Authoring Tools Padlet 
2021).  This led to a discussion about the extent to which “content entry” qualified as authoring an ITS (Hu, 
Authoring Tools Padlet, 2021).  The group also discussed the observation that the nature of the authoring 
task (and the associated interfaces for performing those tasks should be fit to the expertise of the user 
(Anonymous, Authoring Tools Padlet, 2021)).  More generally, different users may have different levels of 
expertise, and may perform different authoring tasks.  The authoring tool should facilitate and harmonize 
the contribution of each individual, independent of their personal sophistication/expertise. 

Beyond the emergence of effective authoring examples, the attendees were also encouraged by the 
observation that the broader community is beginning to develop standards that will facilitate the authoring 
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process.  For example, in describing the Rapid Adaptive Coaching Environment (RACE) that he and his 
team developed, McCarthy noted that the development team used the W3C (World Wide Web Consortium) 
Task Model Standard (https://www.w3.org/TR/task-models/; McCarthy 2019; McCarthy, Authoring Tools 
Padlet, 2021).  Similarly, standards for inter-simulation communication, such as IEEE Distributed 
Interactive Simulation (DIS; https://standards.ieee.org/standard/1278_2-2015.html) or the IEEE High 
Level Architecture Standard (HLA; https://standards.ieee.org/standard/1516-2010.html), enhance the 
visibility of the performance context and learner actions within simulation-based ITSs.  Achieving this 
visibility is an important engineering task for these ITSs and a necessary component for associated 
authoring tools. 

Weaknesses 

After considering the strengths that enable the development of ITS authoring tools, the members of the 
Expert Workshop turned their attention to the weaknesses that are slowing progress. 

One of the first weaknesses that the group discussed was the complement of one of the strengths.  
Specifically, although there are good examples of useful authoring systems, they are few are far between.  
This dearth of examples in the development system limits the ability of ideas to cross-pollinate and evolve.  
Graesser noted that academic work in this area is hindered by the lack of publication outlets that in turn 
limits the availability of empirical studies that systematically analyze the challenges and successes of 
human and automated authoring needed by tool designers (Graesser, Authoring Tools Padlet, 2021).  
Without publication venues, the academic community is discouraged from conducting the necessary 
foundational research. 

The second weakness also reflected a topic discussed as a strength.  In some of the most successful examples 
of authoring, the authoring task was limited to content entry.  The group expressed the concern that in many 
other contexts, authors will need support for a more extensive list of authoring tasks.  Further, the group 
noted that few people possess the knowledge and skills necessary to complete the range of tasks required 
for ITS development (Graesser, Authoring Tools Padlet, 2021).  There are a couple ways to address this 
challenge.  One approach might be labeled “Team-based Authoring.”  In this approach, specific tools are 
developed that allow experts with complementary knowledge and skills to develop their particular segment 
of the ITS.  The authoring tool would coordinate these individual activities and consolidate them into a 
functional system.  McCarthy (2020) labeled an alternative approach “zero authoring.”  In this “zero 
authoring” approach, flexibility is sacrificed for simplicity, reducing the required level of expertise.  By 
pre-packing and/or parametrizing aspects of system development, authoring becomes a process of selecting 
specific approaches and providing the necessary parameters.  As a result, while the expressiveness of the 
authoring tool is limited, its simplicity is increased and the authoring process is democratized. 

The third primary weakness discussed by the group was closely related to the second.  Specifically, despite 
our best efforts, the level of effort demanded even with the best authoring tools is significant.  Concepts 
like the previously described team-based authoring and “zero authoring” would certainly address this 
concern.  However, the group also discussed concepts such as crowdsourcing the authoring task and/or 
developing self-improving tutoring systems.  

There was significant discussion of using platforms like StackOverflow to crowdsource the content 
generation and authoring portions of the development task.  Tools like these provide an easy-to-use 
interface that allow distributed participants to answer questions and/or contribute content for use in 
instructional systems.  The credibility of the content producers is continuously recalculated based on factors 
such as frequency of contribution and the frequency with which the contributor’s content is used and/or 
endorsed (Heffernan, Authoring Tools Padlet, 2021).  There was particular interest in this approach for 

https://www.w3.org/TR/task-models/
https://standards.ieee.org/standard/1278_2-2015.html
https://standards.ieee.org/standard/1516-2010.html
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content development.  For example, Hu noted that this approach might work well for content accumulation, 
but expressed skepticism of its usefulness for system development and integration (Hu, Authoring Tools 
Padlet, 2021).  Beyond that, Graesser emphasized the need for expert-provided quality control of crowd-
sourced content (Graesser, Authoring Tools Padlet, 2021). 

The fourth weakness that we discussed was the relatively static nature of ITSs themselves.  Although these 
systems generally do a good job of monitoring learners and adapting to their needs, there are relatively few 
examples of an ITS that is designed to monitor its own actions and their success or failure with respect to 
promoting mastery development in learners.  While conceivably this type of self-improving system could 
simplify the authoring task, presumably by providing guidance regarding a “good enough” initial state, the 
workshop developed a stand-alone chapter to this discussion (see Chapter 9; Chi et al., 2022) and we will 
not belabor those finding here. 

Opportunities 

The opportunities that were addressed within the Workshop returned us to the introduction of this chapter 
– the need for widespread use of a range of adaptive instructional systems, including ITSs, and the need for 
authoring tools that promote that level of use. 

In discussing ITSs with potential users, there is very little need to convince them of the tools’ usefulness.  
The effectiveness of ITSs in general has been studied with many different kinds of users/students (e.g., 
Kulik & Fletcher, 2016). Users of ITSs generally believe that the systems will work and that performance 
will be improved.  However, they are concerned with three aspects of the ITS lifecycle.  Historically, ITSs 
have been expensive and time-consuming to develop.  Many customers could probably accept that if it was 
a one-time cost.  However, that is often not the case.  Instead, many ITSs are developed in contexts in which 
the target system (or its associated performance environment) undergoes frequent changes.  This implies 
that there is a frequent (and expensive) need to update the system to keep it “current.”  For a smaller number 
of customers these costs might be acceptable.  However, what is of significant concern for all users is the 
slowness of this update process.  The timeline of the authoring process almost guarantees that an ITS will 
fall behind the target environment and run the risk of becoming obsolete, thus wasting the investment that 
the user has made.  If we could reduce the cost and timeline associated with system development and 
maintenance, the use of these training tools would significantly increase, improving instructional efficiency 
and operational effectiveness. 

The expense of system development stems from two sources.  First, the development of these systems have 
traditionally required the expertise of relatively advanced cognitive scientists, software engineers, and 
others.  The scarcity of individuals with the proper qualifications make them relatively expensive to employ.  
Second, the development task is largely manual and time-consuming.  Together, these factors (high hourly 
rate and the significant level of effort) combine to make ITSs costly to develop.  The former also makes 
development a time-consuming process.  The same factors make it difficult and costly to keep deployed 
systems “current” as systems and procedures change.  Authoring tools have the potential to address both of 
these factors.  By “outsourcing” some level of expertise to the authoring system, these tools can reduce the 
levels of knowledge, skill, and experience needed to produce effective systems, opening the development 
task to a broader collection of individuals and reducing the “hourly cost” of the peopled involved.  Similarly, 
authoring tools may simplify or even remove some system development steps.  Doing so would reduce the 
level of effort associated with each step and the associated timelines.  Reducing either of these factors by 
itself could significantly reduce the cost of ITSs.  Reducing them both would have a tremendous effect.  For 
this reason, the DoD and other users of ITSs, are tremendously interested in their development. 
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Although not the focus of many authoring studies or development efforts, it is important to note that 
authoring tools have the ability to impose a useful level of quality assurance to the development effort.  
Like almost any product, the quality of an ITS often reflects the knowledge and skill of its development 
team.  While we have come to expect a significant benefit from the transition to an ITS (e.g., instructional 
effectiveness gains of approximately one standard deviation), that gain is not a universal truth and probably 
reflects that most such systems result of the combined efforts of very senior/capable members of the 
required disciplines.  Lesser teams are likely to produce inferior results.  However, by “outsourcing” some 
of that expertise, authoring tools provide guardrails on the development process, greatly reducing the 
opportunity for developers to make poor decisions that can reduce system effectiveness. 

Threats 

Any time that a technology is emerging, care must be taken to avoid “over promising” or “over hyping” the 
ability of that technology.  The research community must avoid making promises that do not have empirical 
and replicated support.  The user community has limited patience for unmet promises. 

Moreover, some workshop participants expressed concern that the basic authoring schemas that have been 
shaping our research and development efforts may be flawed (Heffernan, Authoring Tools Padlet, 2021).  
This threat is closely associated with concerns that we do not share definitions of learning or approaches to 
evaluation (Anonymous, Authoring Tools Padlet, 2021).  If differences exist on such a primary level, the 
ability of authoring tools to produce instructional systems that promote empirically-validated learning is 
highly questionable.  It may be wise to establish a taxonomy of definitions that the community can reference 
to provide an adequate context for understanding particular attempts at authoring tool development. 

Overall SWOT Analysis 

Table 1 illustrates the primary results of the Authoring Tool SWOT analysis. 

Table 1:  Overview of Authoring Tools SWOT Analysis 

Strengths 
1. The presence of effective exemplar authoring/maintenance tools. 
2. The existence of emerging standards to facilitate authoring and inter-operation 

of authoring tools, engines, and tutoring systems. 

Weaknesses 

1. The scarcity of exemplars. 
2. The scarcity of publication venues. 
3. The scarcity of empirical examinations of authoring tools and processes. 
4. The persistent requirement for significant expertise for tutoring system 

development. 
5. The significant level of effort associated with most authoring tools. 

Opportunities 

1. The level of interest in authoring tools to reduce the cost and timeline associated 
with system development and maintenance. 

2. The general belief that the user community has in the effectiveness of ITSs. 
3. The potential for authoring tools to provide quality assurance and to guard 

against common authoring errors. 

Threats 

1. Over-promising and under-delivering can reduce the credibility of authoring 
system developers. 

2. The schemas for authoring system development may be outdated or 
idiosyncratic. 



 
 

67 
 

Discussion and Recommendations for Future Research 

The development of the Rapid Adaptive Coaching Environment (RACE) provides an interesting example 
of the opportunities and challenges associated with the development of authoring tools (McCarthy et al., 
2019).  First, as noted within the SWOT analysis, the space operations community was most interested in 
the development of RACE, and  recognized the value of ITSs (Opportunity 2, Table 1).  However, since 
space operations is a “fast-paced” environment characterized by frequent changes in technology, tactics, 
techniques, and procedures (T3P), the stakeholders recognized the challenges associated with slow/costly 
system development and maintenance (Opportunity 1, Table 1).  This recognition led them to explore the 
development of authoring tools that would allow Air Force/Space Force instructors to develop and/or 
maintain ITSs. 
 
McCarthy and colleagues began their work by exploring the available literature.  However, as reflected in 
the SWOT, the team quickly recognized that the literature was sparse (Weaknesses 1-3, Table 1) and 
largely subsumed three approaches:   

 
• Machine Learning approaches to recognize “acceptable states” as part of black-box tutoring 

systems,  
• Higher-level cognitive modeling languages to ease the process of developing a tutor’s assessment 

logic, and  
• Exemplar-based approaches that use demonstrations to define the assessment logic for procedural 

tutors.   

The RACE team focused on the third option, largely because it harmonized well with the procedural 
expertise of the instructors.  Consistent with our SWOT analysis, the development team’s efforts were 
enhanced by the use of emerging technical standards (Strength 1, Table 1).  For example, open interface 
standards allowed the team to develop an approach that allowed RACE to capture simulation events and 
operator actions in a generalized manner that was not dependent on a given simulation environment.  
Similarly, the team’s use of the W3C XML (Extensible Markup Language) Task Model1 allowed RACE 
to capture complex performance sequences in a manner that was independent of specific tutoring engines.  
Engine-specific middleware was able to ingest and apply this vendor-neutral model. 
 
Empirical evaluations of RACE indicated that it was quite successful.  Instructors with very little training 
could quickly produce high-quality intelligent tutoring environments (Opportunity 3, Table 1).  However, 
the complexity of the operational domain led to an “explosion” of acceptable coaching paths.  While the 
instructors viewed the ability of RACE to provide this coaching flexibility as a good thing, it also made 
them anxious about the level of effort that would be required to develop/maintain tutoring environments 
using RACE (Weakness 5, Table 1).  Progressive refinement of the RACE authoring approach led to 
enhancements that emphasized simplicity and reuse, but the enhancements could never fully overcome 
the perceived complexity of the general-purpose RACE authoring process.  As discussed earlier, this 
realization led the team to move toward a “zero authoring” construct in which developers sacrifice system 
power and generality to maximize ease of use (McCarthy, 2020). 
  

 
 
1 https://www.w3.org/TR/task-models/ 
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A common finding throughout the SWOT analysis was the need for the community to openly discuss 
varying approaches to authoring and that the tasks that are implied within that term.  It would be useful to 
develop, discuss, and refine a taxonomy of authoring tasks. 

Another repeating theme was the need for a greater focus on, and evaluation of, authoring processes and 
the tools designed to facilitate that process.  Workshop participants generally agreed that this line of 
research and development would be enhanced through the use of funded projects and appropriate 
publication outlets such as a design journal focused on the authoring process (Graesser, Authoring Tools 
Padlet, 2021).  In particular, it was recognized that the community lacked a comprehensive and definitive 
guide to authoring within GIFT (Hoffman, Authoring Tools Padlet, 2021). 

Recommendations for GIFT Overall 

GIFT has a number of authoring tools that have been developed over the years.  These tools provide the 
ability to create an entire GIFT lesson and have drag-and-drop functionality for bringing components onto 
a timeline.  The GIFT authoring tools have been through a number of iterations with the goal of making 
them more user-friendly and understandable by a number of different user groups (e.g., SMEs, instructors, 
instructional designers). While special attention was paid to the design of the question authoring system 
within GIFT, some of the other supporting authoring tools have either not yet been through redesigns, or 
still could be considered complex even after redesign (e.g., Domain Knowledge File; DKF).  One approach 
that GIFT has used is mirrored in the SWOT Analysis above, which is to try to lower the skill levels needed 
for the general tools such that they can be utilized by individuals without a background in computer science, 
while still including more advanced tools that do require extra knowledge and commitment to learn (such 
as authoring a DKF, which creates assessments that connect GIFT with an external software program).  

While effort has gone into simplifying the general GIFT authoring tools, there is still the possibility that a 
new user may not initially understand how to use them, and may choose not to move forward with creating 
lessons.  The SWOT analysis identified some approaches that authors could use within the system.  For 
example, creating templates and example lessons that can be utilized as a starting point, and exemplars that 
can be edited/modified by an authoring beginner with the GIFT system.  It may be beneficial to continue 
using a similar approach of improving the usability of all tools, while focusing most on tools with basic 
functionality that are likely to be used by individuals with varying backgrounds and skill levels.  It may 
also be beneficial to complete a task analysis of the way a user interacts with the system, and determine if 
there are any recurrent authoring mistakes.  The design of the authoring tools could potentially be updated 
in such a way that it reduces the likelihood of making authoring errors.  

As GIFT has many use cases, and potential users, some of the lessons learned from the RACE team may 
be applicable. There may be benefit in building an additional simplified authoring tool similar to the “zero 
authoring” approach, which would allow SMEs to easily create a GIFT lesson. This approach could 
essentially be a simplified interface for new users who do not need a high amount of customizability in the 
ITSs that they are generating. The more complex authoring tool can be retained, but a new simplified one 
may serve as an approach to encourage authors that do not need advanced features to create lessons in 
GIFT.  

There continue to be a number of opportunities to improve GIFT’s authoring interfaces, and as additional 
functionality is included in GIFT authoring tools/interface design should be a consideration.  There are also 
opportunities to examine the time it takes users to complete actions with the authoring tools, and to listen 
to their feedback/suggestions on ways to improve them.  Work has examined the usability and functionality 
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of more recent tools in GIFT such as the Game Master interface (Goldberg et al., 2022). GIFT has used a 
similar approach in the past to examine the usability of it’s general tools (Ososky & Sottilare, 2016), but it 
has been a number of years since a similar examination has been done with the more up to date designs of 
the tools.  

Conclusions 

In most circles, the effectiveness of ITSs is not debated.  Unfortunately, neither is there much debate 
regarding the high cost of these systems, the long duration of development efforts, and of the difficulty of 
keeping these systems from falling into obsolescence.  Authoring tools have the potential to increase the 
speed and reduce the cost with which these systems can be developed and maintained.  However, the lack 
of well-designed empirical studies and exemplar systems may be hindering our ability to develop such 
tools.  If we overcome these challenges, ITSs will be more frequently employed, improving instructional 
efficiency and operational proficiency. 
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CHAPTER 6 ‒ DOMAIN MODELING IN INTELLIGENT TUTORING 
SYSTEMS SWOT ANALYSIS 

Vasile Rus 
University of Memphis 

Introduction 

This chapter presents an overview of domain models and domain modeling techniques and methods with a 
focus on their application in the area of adaptive instructional technologies. Furthermore, implications and 
recommendations for future educational technologies including the Generalized Intelligent Framework for 
Tutoring (GIFT; Sottilare, Brawner, Goldberg, & Holden, 2012) are being discussed. 

Domain modeling is the task of specifying the units of knowledge, also called Knowledge Components 
(KCs), in a target domain such as physics, biology, or computer programming. More specifically, a domain 
model includes a structure that specifies the relationship among the KCs, typically in the form of a 
prerequisite knowledge structure suggesting a specific trajectory towards mastery, i.e., a particular order in 
which students should master the KCs (Goldin, Pavlik Jr, & Ritter 2016; Koedinger, Corbett, and Perfetti 
2012; Chau et al. 2020). A domain model can also link the KCs to specific learning activities or objects that 
allow learners to master those KCs through practice. We can make an argument that domain modeling 
should be expanded to include all key concepts, skills, ideas, principles, other types of knowledge such as 
procedures and processes, and the values, identity, and epistemology of the community of experts or 
professionals active in the target domain. That is, if the goal of instruction is to prepare a successful expert 
in a domain, besides the KCs in textbooks, a learner must learn, for instance, the values of the experts in 
the target domain and therefore domain models must specify those additional aspects of becoming an expert 
in a community of experts. 

A domain model is the outcome of the domain modeling process which can be manual, semi-automatic, or 
fully automated. We will address some key issues related to domain models and the authoring process of 
such domain models which is a key step in developing adaptive instructional systems (AISs). 

Indeed, the domain model is one of the key components of AISs besides the pedagogical model, the learner 
model, and the interface or interaction model (Sottilare et al., 2012). From an AISs architectural perspective, 
the domain model should provide to the other key components all the necessary information about the 
domain: (i) provide the pedagogical model with links from KCs to specific learning activities that give 
learners the opportunity to master those KCs through practice (Are the links part of the domain model? Are 
the learning activities part of the domain model?); (ii) provide the learner model a list of KCs which the 
assessment module must evaluate and update the learner model accordingly; and (iii) provide the interface 
model with information for visualization and authoring/editing of the domain model, visualize the learner 
model as an overlay model over the domain model which is used in some cases, etc. The interdependence 
and interplay among the key components of an AIS can be quite complex. The role of the domain model 
cannot be overstated as it affects almost any aspect of AISs. As an example, the pedagogical model may 
select the next instructional task and the best instructional strategies for a given student for a target KC 
provided by the domain model. Many times the strategy may need to be adapted to the target domain or 
even a particular KC. This adaptation is based on pedagogical content knowledge, a well known area of 
research in education (PCK; Shulman, 1986), which implies that domain models should include such 
pedagogical content knowledge as well. 
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This chapter will present a brief overview of domain models and of prior work followed by an example of 
a domain model and of a domain model extraction technique for building adaptive instructional systems for 
intro-to-computer programming. 

What is A Domain Model? 

Given that the goal of learning is to master a target domain, the first step of any learning effort must start 
with specifying what is to be learned, i.e., a specification of a domain or domain model. Domain models 
have been defined in various ways, some more comprehensive than others and often guided by some 
underlying theories or frameworks such as the Knowledge-Learning-Instruction framework that proposes 
decomposition of knowledge into knowledge components (abbreviated as KCs) (Koedinger et al., 2012). 
KCs may include what others call skills, concepts, schemas, or other labels. In this chapter, we will use the 
term KC and define it as an atomic unit of knowledge which cannot be decomposed anymore at least from 
a particular domain perspective. It should be noted that diversity of contexts in which a KC may occur may 
lead to a (very large/potentially infinite) number of nuanced KCs. These different incarnations with subtle 
differences among them may or may not be regarded as new/more specific KCs (i.e., the atomic nature may 
not seem atomic anymore simply because of contextual differences). The small differences in different 
contexts may imply the use of different instructional strategies and trigger different misconceptions. 

Definitions vary from focusing on key concepts to be mastered in a domain and their prerequisite structure 
as indicated by Pelánek (2020, pp. 535), “domain modeling - designing an appropriate organization of 
individual learning objects to higher-level units and specification of relations among these units.” to more 
comprehensive definitions as the one provided by Pavlik and colleagues (2013,  pp. 39): “The domain 
model contains the set of skills, knowledge, and strategies of the topic being tutored. It normally contains 
the ideal expert knowledge and may also contain the bugs, mal-rules, and misconceptions that students 
periodically exhibit. It is a representation of all the possible student states in the domain. While these states 
are typically tied to content, general psychological states (e.g., boredom, persistence) may also be included, 
since such states are relevant for a full understanding of possible pedagogy within the domain.”  

These definitions seem to focus on the key concepts of the domain (“key concepts”, “the topic being 
tutored”) and less so on other important aspects of being an expert in a field such as values and epistemology 
of experts in the domain. Furthermore, those definitions do not mention pedagogical content knowledge or 
links to pedagogical content knowledge in case such knowledge is embedded in the pedagogical model of 
an AIS as opposed to it being embedded  in the domain model. Therefore, we propose a new, more 
comprehensive definition of domain models that tries to capture all that is needed to become a successful 
expert in a domain: a domain model should include all key concepts, skills, ideas, principles, as well as 
other types of knowledge such as procedures and processes and the values, identity, and epistemology of 
the community of experts or professionals active in the target domain. While cognitive modeling of a 
domain has been around for some time, the role of values, identity, and epistemology in mastering a domain 
has been studying more recently (Bagley & Shaffer, 2009). Furthermore, domain      models should include 
other relevant knowledge such as pedagogical content knowledge or links to such knowledge if that 
knowledge is embedded somewhere else, e.g., the pedagogical model. 

When used in AISs, the underlying framework shapes the way the domain model is represented. For 
instance, in cognitive tutors (Koedinger et al., 2004) the domain model is represented mainly as a 
prerequisite knowledge structure with nodes representing the KCs and the edges representing some order 
or prerequisite relations among the KCs. In constraint-based tutors (Mitrovic et al., 2003), the domain model 
is represented as a set of constraints whereas in model-based tutors (Kumar, 2002) the structure and 
behavior of the domain is captured. In conversational tutors (Rus et al., 2013), the knowledge is represented 
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in the form of natural language statements called expectations (correct knowledge) and misconceptions 
(frequent pitfalls that beginners experience). 

Once a representation has been chosen for the domain, the next step is to do an initial domain specification. 
This can be done by an expert or it can be inferred automatically from sources such as existing textbooks 
followed by a quality assurance step done by an expert. Initial domain specifications are then constantly 
refined based on student performance data (Fancsali  & Ritter, 2020).  

Domain models can vary in their complexity from a list of key concepts to be mastered, e.g., extracted from 
the glossary or table of contents of a textbook, to more refined domain models based on student performance 
data to personalized domain models such as models that are tailored to a particular student. The latter, 
student-specific domain models may rely on performance of a ‘similar’ student in the past and/or based on 
the current students’ performance so far. Table 1 presents a brief SWOT (Strengths, Weaknesses, 
Opportunities, and Threats) analysis of domain models and domain modeling. 

Table 1. A brief SWOT analysis of domain models and domain modeling for developing AISs. 

Strengths Weaknesses Opportunities Threats 

● Domain experts and 
expertise, e.g., 
encoded in textbooks 
that can be tapped 
into (directly and 
indirectly) 

● Data is available for 
established domains,  

● Commercial and 
academic/research 
domain models being 
developed 

● Emergence of novel, 
data-driven, semi-
automated authoring 
processes for domain 
modeling 

● Initial domain model 
inference methods 

● Domain model 
refinement methods 

● Fine-grain student 
performance data 
collected at scale 

● Standardization 
efforts emerging 

• Conceptualization 

• Lack of ready to use 
domain models for 
AIS development 

• Imperfect automated 
methods (i.e., 
Natural Language 
Processing (NLP)) 

• Lack of guidance 
and agreements with 
regard to which 
domain modeling 
parts are/should be 
shareable and which 
proprietary 

o Skeleton + 
proprietary 
approach  

• No widely 
acceptable, domain 
model authoring 
process 

• Not enough 
educators/teachers’ 
involvement/adoption 

● Better define domain 
models and their role in 
AISs and in the learning 
ecosystem as well as 
their success metrics 

● improve and increase 
automation based on 
data-driven methods 

● Advances in AI/ML/Data 
Science/NLP promise 
(semi-)automation of the 
domain modeling 
authoring/refinement  

● Standardization for well-
established domain 

● Skeleton + proprietary 
approach 

● AISs/EdTech/Data 
Science literacy for 
educators 

● Much overlap with 
learner modeling 

● Solutions for secure and 
privacy-preserving data 
access and sharing 

● Conceptualization 

● Data access 
(privacy and 
security) 

● Slow progress on 
open vs. 
proprietary aspects 
of domain models 

● Authoring is (still) 
expensive 
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Among the major Strengths of state-of-the-art domain modeling would be the increasing data available in 
electronic form (e.g., textbooks, student performance data) which can be used to infer and refine domain 
models. Among the weaknesses, we note a relatively weak definition of what a domain model is. This 
chapter is meant to address this weakness by proposing a more comprehensive definition. This weakness is 
also a potential threat as a poor conceptualization of what a domain model should be could have negative 
ripple effects on other components of an adaptive instructional system. Among opportunities, we emphasize 
the role of advanced in Artificial Intelligence/Machine Learning/Data Science/NLP methods that hold the 
promise of (semi-)automating the domain modeling authoring and refinement process. Furthermore, we 
suggest the adoption of a skeleton+proprietary approach as a way to make progress towards standardization. 
In this approach, there will be a skeleton part (shared/open part of a domain model) as well as a vendor 
specific part or proprietary part of a domain model. This approach should offer a good trade-off between 
the need for standardization and the need of vendors to keep their ‘secret sauce’ secret. Among threats, we 
highlight data privacy, security, and ownership. While data is available, access to data and in particular 
fine-grained, student performance data is still a challenge. Solutions that offer a compromise between the 
need to infer patterns and trends in the data while preserving privacy and ownership are needed.  

Prior Work 

We briefly review prior efforts related to automated extraction of domain models and the related area of 
automatic domain model refinement. 

When developing domain models, there are three significant information sources: experts, textbooks 
(written by domain experts), and learner data. We highlight work focusing primarily on extracting or 
refining domain models from data (text or structured data). For instance, student performance data is often 
used as input to domain modeling methods in the form of a Q-matrix linking KCs to instructional items in 
a domain, such as solutions to problems, steps in a solution, or a student explanation. 

Such Q-matrices are useful primarily for well-defined domains and less so for ill-defined domains (Goldin, 
Pavlik Jr, & Ritter 2016). Given such a Q-matrix, one can infer a set of latent variables that can partition a 
set of instructional items based on learner responses to those items. Prediction of student performance based 
on the discovered latent skills is used to evaluate the inferred domain model. There are several issues with 
such approaches to domain model discovery: (1) interpreting what skills the latent variables represent and 
(2) the need for student performance data. The latter is quite challenging when developing domain models 
for emerging domains such as data science or nanotechnology for which student data may not yet be 
available. Often Q-matrix-based approaches start with a domain model (original model) which is another 
challenge as they require some other source of the original or start domain model. The main goal in such 
cases is to refine the start domain model based on student performance data, i.e., discovering a new set of 
skills in the form of latent variables that best predict student performance.  

Extracting a start domain model (initial version of a domain model) automatically has been explored before 
through information extraction (IE), a major subarea of Natural Language Processing (NLP), from textual 
sources such as online data sources that can also greatly help in understanding and refining existing KC 
structures. For example, consider a potential statement from Wikipedia such as “using factorization we can 
solve quadratic equations.” (not actual quote) From the text in the statement, one can easily infer that 
factorization is related to understanding how to solve quadratic equations. This can be especially useful for 
discovering new concepts as well as refining existing concepts encoded in systems such as MATHia 
(Fancsali & Ritter, 2020).  

Extracting KCs from textual sources such as textbooks has been explored. For instance, Chau and 
colleagues (Chau et al., 2020) adopted a supervised machine learning (ML) approach based on a set of 
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expert-defined features. The features they used fall into three broad categories: linguistic, positional, or 
statistical. They used an over-generation and ranking approach. They first generated a large set of candidate 
keyphrases and then applied a selection criterion or filter to rank and detect the true domain concepts. They 
compared their approach to a number of baseline methods and some off-the-shelf algorithms such as 
TextRank (Mihalcea & Tarau, 2004). 

A significant effort has been put in scaling and improving data-driven domain models for cognitive tutors, 
i.e., cognitive model refinement. The goal of ongoing efforts such as the NSF-funded Learner Data Institute 
project (LDI; Rus et al, 2020; Fancsali & Ritter, 2020) is to scale, improve, and extend data-driven methods 
to validate and refine KC models and also seeks to develop automated methods that will help to alleviate 
the cost of developing such KC models in the first place. Learning Factors Analysis (LFA; Cen et al., 2006), 
a semi-automated approach to refine cognitive KC models, has been shown to improve the statistical 
accuracy of models learned across datasets and domains (Koedinger et al., 2012). LFA is an approach that 
iteratively searches over alternative KC models by considering situations in which KCs are “split” into two 
or more KCs and two KCs are “merged” to become a single KC. For example, KCs can be “split” into new 
KCs according to difficulty factors that may pertain to a student’s ability to solve an element of a problem. 
For instance, it may be the case that students find it more difficult to find the area of a circle that is inscribed 
in a square. A hypothesized cognitive model may only contain the KC “find the area of a circle,” but 
empirically we can test whether such a KC is appropriate or whether we should “split” this single KC into 
two, one corresponding to finding the area of a circle when it is pictured alone and another corresponding 
to when it is embedded within another shape (Cen et al., 2006). Discovered models not only improve in 
terms of statistical accuracy but have also been found in a small-scale “close-the-loop” study to lead to 
more effective tutoring, resulting in improved learning efficiency and superior student learning gains. LFA 
allows the researcher to generate new hypotheses about the KCs underlying a domain and statistically test 
them to validate whether they constitute genuine improvements over previous models. The LDI team is 
working, for instance, on optimizing and scaling up LFA. LFA search (Koedinger et al., 2012) has led to 
the discovery of substantially improved models, relative to Subject Matter Expert (SME)-coded KC models. 
These results, however, are limited to a set of eleven datasets, each of which is relatively small, ranging in 
terms of number KCs from 1 to 48 and in the number of student users from 41 to 318. The LDI team is 
currently working (Fancsali & Ritter, 2020) towards scaling up the LFA search for improved cognitive 
models to a much larger corpus of data in terms of the number of students, student problem solving actions, 
and broader coverage of full curricula (i.e., increased numbers of KCs as well as doing many searches to 
refine the KC model for each topic unit in the curricula, which are modeled and tracked independently as 
students work through them). As in Koedinger et al. (2012), we expect this LFA search to not only result 
in improved KC models but to suggest changes to the content and structure of the problems given to 
students. One benefit of interpretable KC models is that they afford such analysis. 

Furthermore, the LDI team of which the author is part of is working on explainable KC models, i.e., on 
developing advanced methods to improve KC structure by seeking input from more powerful modeling 
frameworks that enable explainable statistical models. As already mentioned, one of the core tasks in 
domain modeling is to determine when to split/combine KCs. ML methods can find statistical patterns in 
data that can help determine splitting/combining criteria, but several of these methods (e.g. deep learning) 
are inherently non-interpretable/explainable. In the absence of explanations, performing splits or 
combinations simply based on the output of a machine learning algorithm may seldom lead to true learning 
gains. Therefore, some LDI team members including the author of this chapter are working on an 
explainable framework based on a neuro-symbolic approach that combines SRL (statistical relational 
learning), Markov Logic Networks (MLNs), and probabilistic soft logic (PSL) with deep neural networks. 
Our proposed approach is to learn the explanation for a KC as a (bounded) subset of MLN/PSL formulas. 
To do this, we aim to model the dependencies between KCs and problem difficulty as MLN/PSL formulas. 
Based on the data (student performance), we perform probabilistic inference and obtain a set of weighted 
formulas that best explain inference results on a specific KC. A domain expert can then verify this 
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explanation for a KC and decide on the split/combine decisions of KCs. A key technical challenge in this 
task is to tractably compute the explanations across hundreds or thousands of KCs, when the MLN can 
contain hundreds of thousands of possible instantiations (depending on the amount of student data). To do 
this, we utilize advanced approximate counting based sampling and local-search methods (Venugopal & 
Rus, 2016) and exploit parallel computing frameworks such as Spark (Cheekati et al., 2016) to obtain 
scalable explanations. 

An Example 

In this section, we highlight a domain model for intro to programming and a domain modeling method that 
automatically discovers the domain model by extracting key concepts from intro-to-programming 
textbooks (Banjade et al., 2021). The work was done in the context of developing and investigating the 
effectiveness of an Intelligent Tutoring System (ITS) for source code comprehension. 

As already noted, a typical ITS works with students through various instructional activities to help them 
master key concepts of a target domain. The underlying domain model guides the functionality of ITSs and 
has a major impact on the system’s effectiveness to induce learning gains and on the overall student learning 
experience. 

The key concepts in a target domain that students need to master are often specified by experts such as 
domain experts, pedagogical experts, and ITS designers. This expert-driven approach is tedious, expensive, 
time-consuming, and makes ITS development hard to scale across domains. Furthermore, expert-defined 
domain models can be error prone or inadequate for instructional purposes as “experts may forget the 
difficulties that novice learners face.” (Goldin, Pavlik Jr, & Ritter 2016; pp: 115). This can have negative 
consequences on assessing learners’ knowledge state, which leads to poor adaptivity of ITSs and, 
consequently, a negative impact on the effectiveness and overall quality of the provided instruction. 

To overcome the above-mentioned challenges, there is a need for automated or semi-automated methods. 
We highlight here a novel automated method for domain model discovery, particularly focusing on 
computer programming textbooks. Such an automation has several advantages. First, it relieves the need 
for handpicking key concepts as the textbook authors already put much effort in doing so. Second, it helps 
discover the ordering of key concepts necessary for tutoring systems as textbooks present the key concepts 
in a particular order (which could be refined based on, for instance, student performance data). Third, 
automating knowledge discovery from the textbooks will save a lot of time and effort for tutoring system 
developers. In particular, it will help with porting an ITS platform from one domain to another more easily 
thus leading to more scalable ITSs across topics and domains. 

Our approach to automatically extract domain models from textbooks was to rely on keyphrase extraction 
methods to identify a domain’s key concepts. The problem of extracting key concepts from a Computer 
Science textbook poses several unique challenges and opportunities. For instance, Computer Science 
textbooks contain domain-specific words such as for to describe the concept of loops, and therefore this 
key phrase requires special handling to distinguish it from the regular preposition “for”. Furthermore, 
Computer Science textbooks contain many code examples and their plain text explanations, so, there is a 
practical need for distinction between the two. Typical key phrase extraction methods work primarily on 
pure text. This combination of code and text in Computer Science textbooks is also a great opportunity for 
domain modeling as it facilitates the linking of key concepts to specific learning activities such as code 
comprehension activities. 

For instance, a Java code example in an intro to Java programming textbook can be linked to the key 
concepts it covers by inspecting the key concepts mentioned in the explanatory text. Furthermore, intro to 
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programming textbooks document major misconceptions students exhibit while learning programming. Our 
goal is to expand a typical domain model with the key misconceptions students have, which is critical for 
feedback opportunities in ITSs. In sum, the proposed method for automated discovery of domain models 
addressed the following four key tasks: (1) knowledge component extraction, (2) prerequisite knowledge 
structure discovery (3) linking of key concepts to learning objects/activities, which in our case, a knowledge 
object is a Java example in the textbook, and (4) misconception extraction.  

We adopted an over-generation and ranking approach to discover the key concepts of the intro to 
programming domain. Our inputs are Computer Science textbooks. There are several advantages of using 
textbooks to extract domain models. First, textbooks describe a target domain’s knowledge with an 
instructional purpose in mind. The authors of textbooks spend significant efforts to define the key concepts, 
present them in a specific order, and provide plenty of instructional activities to practice those concepts. 
Furthermore, the textbooks’ structure in chapters and sections facilitates the extraction of key concepts 
using, for instance, statistical methods. It enables the organization of the extracted key concepts in more 
complex structures such as prerequisite knowledge structures and taxonomies. 

Furthermore, as already noted, intro to programming textbooks have a peculiarity in that they contain both 
code examples and related explanatory text. Since the main objective was to extract the key concepts, the 
focus was only on the text explanations instead of code examples. The code examples generally contain 
comments in text form that explain the code as well. Often, those comments repeat concepts described in 
the surrounding explanatory text and are therefore redundant for our purposes. It is possible to extract more 
abstract concepts directly from code, e.g., by performing a static syntax analysis of the code but is beyond 
the scope of this chapter. It should be noted that there is a major disadvantage of such methods - the 
extracted concepts are harder to interpret. For these reasons, we focused primarily on extracting the text 
portions of intro to programming textbooks. To extract the descriptive text from textbooks, we developed 
a Naive Bayes classifier that can classify each line in textbooks as either explanatory text or code. This 
classifier had a classification accuracy of 94% with F-score of 0.9. The explanatory text, thus extracted is 
used for further analysis. We used Introduction to JAVA programming (Liang, 2011) for our experiments. 
We evaluated statistical and graph-based methods for domain model extraction for the target domain of 
intro to computer programming and obtained recall as high as 0.60 and precision as high as 0.75. We 
measured precision and recall at various ranks 1, 10, 20, …, and 100, i.e., precision and recall at rank 1, 
precision and recall for top 10 ranked candidate key concepts, top 20, and so on. The results suggest that 
unsupervised key phrase extraction methods can be used for domain model discovery from Computer 
Science textbooks. 

 

Figure 1. Example of a domain model for intro-to- programming. 
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Recommendations and Future Research 

Using VanLehn’s two-loop framework for AISs (VanLehn, 2006), the domain model drives primarily the 
outer loop, i.e., the domain model’s main role is to suggest potential trajectories towards mastery over the 
key concepts or knowledge components in a domain, i.e., a particular order in which students should attempt 
to master the KCs. This implies and also explains the prerequisite structure over KCs that domain models 
typically include. Nevertheless, the domain models are also needed for the inner loop because the domain 
models include misconceptions which are detected (and corrected immediately) during the inner for fully-
adaptive AISs. It should be noted that there are AISs that are not fully adaptive, e.g., they may include only 
macro-adaptivity, i.e., only outer-loop adaptivity in terms of selecting the best sequence of instructional 
tasks and the corresponding KCs. Such macro-adaptive only systems have no inner-loop and therefore no 
micro-level or within task adaptivity. That is, while the student is working on a given instructional task 
their performance is not monitored and no feedback is provided at step level. Feedback is only offered at 
macro-level, i.e., whether the student successfully finished the task or not. An examples of such a system 
is ALEKS (Falmagne & Doignon, 2011). Such macro-adaptive systems therefore need less sophisticated 
domain models compared to fully-adaptive AISs. This is important to keep in mind for developers in general 
and for GIFT, that is, depending on the goal and characteristics of the AISs, a more or less sophisticated 
process and end product for domain modeling is needed. The implications and recommendations for GIFT 
are therefore to include features that enables developers of AISs to implement and specify domains models 
that may serve the outer loop, the inner loop, or both. Other purposes should be kept in mind such as 
assessment and reporting of individual and group student performance, for instance. 

Conclusions 

This chapter provided a brief overview of domain models and of prior work followed by an example of a 
domain model and of a domain model extraction technique for building AISs for intro to computer 
programming. We provided what we believe is a more comprehensive definition of a domain model to 
include all that is necessary to prepare a successful expert in a domain, i.e., besides all key concepts a 
learner must learn the skills, ideas, principles, other types of knowledge such as procedures and processes 
and the values, identity, and epistemology of the community of experts or professionals active in the target 
domain. This more comprehensive definition should lead to more comprehensive domain models which in 
turn should lead to more effective tutors. 
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Background 

As educational assessment systems become more interactive and technology-rich, core values of 
educational assessment such as validity, reliability, comparability, generalizability, and fairness are 
expected to continue playing an important role in the design and evaluation of educational assessments 
(Mislevy, 2021). These properties also apply to those assessments embedded in Intelligent Tutoring 
Systems (ITSs). 

Different types of assessments have been designed for different purposes (e.g., summative assessments, 
formative assessments, and integrated assessment systems). Understanding the characteristics of each type 
of assessment and the context in which it will be used can facilitate the process of selecting the right type 
of assessment for the right purpose. Misalignment between assessment type and expected uses usually 
generate confusion and frustration. Some common misalignment issues include selecting a summative 
assessment to provide immediate instructional feedback (e.g., next steps to inform teaching and learning) 
or using a census model, where every member of the population takes the assessment, when a sampling 
approach would suffice to provide aggregate level results for policy makers (Mislevy, 2019). 

The current state of assessment is characterized by comprehensive assessment systems that make use of 
summative and formative assessments. These assessment systems may include the use of different types of 
tasks (e.g., multiple choice, constructed response, and simulations) in performance-based assessments that 
are used to assess content areas, domain practices, and 21st century skills (e.g., collaborative problem 
solving). They can take the form of integrated assessments that assess several skills using a single task or 
scenario (e.g., assessing both listening comprehension and speaking or writing in a technology rich English 
language task). Some of these assessments make use of process and response data and employ automated 
scoring (e.g., AI scoring engines). These assessment systems provide support for accessibility and 
accommodations. 

Advances in educational assessment, cognitive science, and artificial intelligence have made it possible to 
integrate valid assessment and instruction in the form of modern ITSs (Shute & Zapata-Rivera, 2010, 2012). 
ITSs gather evidence of learners’ knowledge, skills, and other attributes (KSAs) to provide various types 
of support (e.g., adaptive feedback and adaptive sequencing of tasks). ITSs may include game elements, 
dialogue systems, and interaction with virtual agents. ITSs can gather a variety of learner performance data 
including both process and response data. 

In this chapter, we elaborate on emerging trends in educational assessment. Also, we illustrate some of 
these trends in the context of “caring” assessment. Next, we present an analysis of the strengths, 
weaknesses, opportunities, and threats (SWOT) of assessment in ITSs. This analysis builds on reports 
describing assessment issues in ITSs as well as personal communications with researchers in the areas of 
assessment and ITSs. Finally, we elaborate on future work and provide recommendations for improving 
assessment in the Generalized Intelligent Framework for Tutoring (GIFT, Sottilare, et al., 2017). 
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Considerations about the Future of Assessment 

Bennett (2018) indicates that future assessments will be technology-based, measure new constructs, be built 
from richer underlying models of cognition and learning, make greater use of more complex and 
personalized tasks that attempt to improve learning, be better at accounting for context, be embedded and 
distributed across time, use automated scoring, incorporate new approaches to modeling and analysis, and 
provide more effective reporting.  

Several of these assessment trends are also mentioned by Mislevy (2019, 2021) who also emphasizes 
assessments that are more closely related to learning contexts. He describes assessment as an argument-
structured, contextualized process of evidentiary reasoning, with measurement machinery as part of the 
toolkit supporting its application. Thus, measurement remains important as a framework for evaluating the 
quality and quantity of information and as metrics for improving learning and assessment processes. Other 
aspects of future work include exploring the interplay of Bayesian inference and data-analytic 
methodologies, integration of general frameworks (e.g., from psychological research and domain-based 
research), and considering tradeoffs between local usefulness and broader comparability of assessments. 

Shute (2016, 2019) envisions a continuous assessment approach where technology rich environments 
include embedded innovative tasks designed using principled assessment design (e.g., Evidence-Centered 
Design, or ECD; Mislevy, Almond, & Lukas, 2003). These embedded tasks will be pedagogically relevant 
and provide socially and emotionally meaningful learning situations for students. These environments will 
provide useful feedback during the learning process (Shute, Hansen, & Almond, 2008). Lastly, she expects 
the future will bring more work on assessments that blur the line between what can be considered to be 
formative or summative. 

There are other similar visions that integrate learning processes and assessments in in digital environments.  
Baker (2019) forecasts the use of more performance-based assessments that measure multiple constructs at 
once and are used in the context of learning. The use of machine-learned computational models for specific 
tasks, a focus on “ill defined” constructs (e.g., emotion, collaboration), more applications of advances in 
speech and language processing for discourse analysis, and the use of multiple, multimodal sources of 
process and response data (e.g., via sensors) (D'Mello, Gregg, & Southwell, 2020; D’Mello, Tay, & 
Southwell, 2022).  

In general, assessment trends include:  

● Increased attention to and expansion of contexts in assessments.  
● Assessment that supports the learning process.  
● Tradeoffs to balance local usefulness and broader comparability.  
● Performance-based, technology rich environments that can measure multiple constructs at once. 
● Innovative assessments developed using principled assessment design. 
● Models that make use of process and response data. 
● Robust multimodal sensing in context. 

The Case of Caring Assessment 

The work on caring assessments (CAs) illustrates some elements of future assessments (Zapata-Rivera, 
2017; Zapata-Rivera, Lehman, & Sparks, 2020). Caring assessments consider additional information about 
the learner and learning context to create situations that learners find engaging and at the same time can be 
used to collect valid and reliable evidence of learners’ KSAs. The learner model in caring assessment 
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includes cognitive, social, emotional, and other characteristics of the learner and the learning context that 
may influence levels of engagement and performance (e.g., socio-cultural or motivational aspects). 

By expanding the scope of the learner model, it is possible to design a variety of adaptations aimed at 
supporting learners. These adaptations may include accessibility support, adaptive feedback and sequencing 
of activities, gathering additional evidence of learners’ KSAs using conversations and other activities, 
granting additional time, giving opportunities to make revisions, recommending materials/activities, and 
making changes to administration conditions. 

Some recent work in this area includes (a) exploring the role of emotions in CAs (Lehman & Zapata-Rivera, 
2018) and (b) exploring individual differences in CAs (Sparks et al, 2018; 2019). work on the role of 
emotions in CAs involves detecting emotions, tracking and responding to emotions, and examining the 
impact of emotions (e.g., emotion type and intensity) on the quality of the evidence gathered in 
conversation-based tasks (Lehman & Zapata-Rivera, 2018; Lehman, Sparks & Zapata-Rivera, 2018). Work 
on individual assessments in CAs explores the quality of responses based on variables such as grade level, 
opportunity to learn, personality variables, socio-emotional skills, and other “non-cognitive” characteristics 
related to achievement (e.g., self-efficacy; persistence, growth mindset, cognitive flexibility, and test 
anxiety). These lines of work can result in insights for the type of support needed for particular subgroups 
of learners in order to maintain and improve engagement and support learning.  

We are also looking at how to apply cognitive bandwidth recovery strategies to improve assessment of 
underserved students (Verschelden, 2017). Cognitive bandwidth recovery strategies are designed to 
minimize the negative impacts of cognitive resources dedicated to dealing with the effects of poverty, 
racism, and social marginalization. These strategies promote a growth mindset and self-efficacy. Some of 
these strategies have potential for improving the chances of minority students to demonstrate what they 
know or can do, which in turn can improve their educational opportunities through more accurate 
assessment of their knowledge and skills. 

SWOT Analysis 

In this section we describe the results of a SWOT analysis of assessment in ITSs. Information from this 
analysis was taken from research reports describing different aspects of assessment in ITSs (e.g., Conati, 
2009;  Katz et al., 2017; Mislevy & Yan, 2017; Shute & Psotka, 1994; Shute & Zapata-Rivera, 2010, 2012; 
Sinatra, Ososky & Sottilare, 2017; VanLehn, 2008), trends in assessment, and the opinions of the authors. 
Figure 1 shows a summary of the main points of the SWOT analysis. 

The strengths of assessment in ITSs include: 

● Available data (response and process data). ITSs offer the opportunity to engage learners for long 
periods of time while they learn about different topics. This creates multiple opportunities to gather 
process and response data that can be used to infer learners’ KSAs. These data can be used to refine 
learner models and the adaptive features of the system.   

● Various sources of evidence and levels of granularity. Learners’ data at various levels of granularity 
and from different sources (e.g., simulation actions, responses to dialogues, and other types 
activities, and data from sensors) can be used as evidence to support claims about learners’ 
knowledge, skills, and abilities (KSAs). Macro and micro adaptive cycles can be implemented 
using these data (McCalla & Greer, 1994; VanLehn et al., 2007).   

● Continuous, adaptive assessment and learning loop. ITSs implement a continuous assessment loop 
that aligns well with the needs for immediate adaptive feedback and other adaptive features in 
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learning environments. Learner models in ITSs maintain an up-to-date representation of the 
learner’s KSAs (Shute & Zapata-Rivera, 2010, 2012; VanLehn, 2008).  

● Actionable feedback to inform instruction. Learner model information can be made available to 
teachers and learners in the form of open learner model (OLM) interfaces, on-line reports, and 
dashboards to support learning and teaching processes (Bull, 2020; Zapata-Rivera, 2020). 

● A variety of assessment approaches including computational cognitive models, probabilistic 
models and machine learning. A variety of top-down and bottom-up approaches to learner 
modeling have been developed and used in the field of ITSs. These approaches make it possible to 
manage uncertainty in ITSs (Abyaa, Idrissi & Bennani, 2019; Chrysafiadi & Virvou, 2013; Zapata-
Rivera & Arslan, 2021). 

The weaknesses of assessment in ITSs include: 

● Evidence framework (i.e., alignment from observables, evidence to claims). Assessment in ITSs 
could benefit from implementing an evidence framework that facilitates evidence identification and 
evidence aggregation processes. This evidence framework can be useful for identifying the 
evidence needed to support claims about learners’ KSAs (Katz et al., 2017).  Reusing evidence 
across ITS is a challenge (Robson, ITS Assessment PADLET 2021; Zapata-Rivera, et al., 2017).  
In addition to an evidence framework, technologies such as xAPI can be used to support this 
challenge (Blake-Plock, et al., 2020; Johnson et al. 2017). 

● Validity and fairness issues (e.g., accessibility). One way of supporting the valid use of assessment 
information in ITSs is by improving their internal validity structure (Katz et al., 2017). Improving 
the structural validity of ITSs can positively impact the development of adaptive features and the 
appropriate use of ITSs by teachers and learners. Also, fairness issues such as improving 
accessibility support in ITSs should be addressed (Hansen, Zapata-Rivera & White, 2018).  

● Support for other purposes (e.g., summative). Due in part to the goal of providing adaptive 
instructional support for individuals, using assessments embedded in ITSs for other purposes (e.g., 
certification purposes) may require additional work. This work may involve validity studies for the 
intended purposes, reliability, generalizability and comparability analysis. 

● Support for various stakeholders (e.g., teachers and administrators). Assessment information can 
provide useful information to other stakeholders such as teachers and administrators (Zapata-Rivera 
& Katz, 2014). A list of types of assessment information for different types of users can be found 
in Zapata-Rivera, Graesser, Kay, Hu & Ososky, S. (2020). 

● Additional support for diverse students (e.g., modeling sociocultural issues and context of 
learning). ITSs could be improved by designing tasks that take into account sociocultural aspects 
of the learner and other aspects of the learning context.  Socioculturally responsive ITSs can provide 
learners with more opportunities to demonstrate what they know or can do in a context that learners 
find engaging and at an appropriate level of challenge.  

The opportunities of assessment in ITSs include: 

● Improving validity by implementing an explicit representation of evidence.  ITS platforms such as 
GIFT (Sottilare, et al., 2017; Johnson et al., 2017) can facilitate the implementation of an 
interpretation/evidence layer (Zapata-Rivera et al., 2017). Also, standardization efforts (Sottilare et 
al., 2018) can be instrumental in the creation of ITSs that can share assessment information across 
various systems in a scalable manner. 
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● Implementing approaches that take into account cognitive, noncognitive, metacognitive and 
contextual variables. ITSs provide multiple opportunities to model a variety of learner variables 
and the learner context. ITSs can use this information to refine learner models and improve on 
adaptive mechanisms designed to keep learners engaged and support learning.  

● Leveraging Open Learning Models (OLM) research to produce information for particular 
stakeholders. As learner models become more refined using response and process data to support 
assessment claims, OLM interfaces, reports or dashboards can be designed and used to share learner 
model insights with learners, teachers, administrators and other stakeholders. These insights can 
facilitate learning, teaching and other decision-making processes (Bull, 2020; Kay, Zapata-Rivera, 
& Conati, 2021; Zapata-Rivera, 2019).  

● Improving accessibility.  Opportunities for providing support for diverse groups of learners can 
improve adoption of ITSs. Gathering and interpreting assessment information from these learners 
with disabilities may require modifications to tasks and interpretation modules to guarantee proper 
access and appropriate propagation of evidence (Hansen et al., 2018). 

The threats of assessment in ITSs include: 

● Bias and fairness issues. Potential bias and fairness issues with some machine learning approaches 
is a threat to the effective use of assessment information (Loukina, Madnani & Zechner, 2019; The 
Royal Society, 2019; Toreini et al., 2020). Efforts toward making learner model inferences 
interpretable such as human-in-the-loop approaches and mechanisms to evaluate the quality of 
inferences and the effects of adaptations can be instrumental in addressing these threats (Zapata-
Rivera & Arslan, 2021). 

● Inappropriate use of assessment results. Appropriate use of assessment information can contribute 
to supporting trust and adoption of ITSs. Learners, teachers, and other users (e.g., researchers) may 
be interested in knowing how the learner’s assessment information is used by the system and by 
users to make decisions. Evaluating how users make use of assessment information provided by 
ITSs should be part of the development and evaluation cycle of ITS (Zapata-Rivera, 2020). 

● Security and privacy issues. Security and privacy issues play an important role on systems that 
adapt their behaviors to the user. Having access to the information used by the system and how this 
information will be used across systems in the same ecosystem or a different ecosystem should be 
an important feature of adaptive learning systems (Anwar & Greer, 2012; Zapata-Rivera & Greer, 
2004; Zapata-Rivera, 2020).  

Future Work 

Technologies and approaches explored in ITSs contribute to the development of innovative assessments. 
Similarly, advances in educational assessment and measurement can inform the development and 
evaluation of future ITSs. Results from this SWOT analysis help us identify areas for future work taking 
advantage of the strengths and opportunities to improve on the weaknesses and address possible threats.  

As both ITSs and innovative assessments continue to explore the use of additional sources of learner data 
(e.g., data about cognitive, noncognitive, metacognitive aspects of the learner) and context variables to 
create engaging situations that can be used to support learning, issues such as evidence identification, 
evidence aggregation, interpretability of learner models, accessibility, privacy, and security become more 
relevant. Future work in these areas will support the successful implementation of assessment in ITSs. This 
work includes continuing to leverage results from research in the area of OLM to inform the design and 
evaluation of reports and dashboards that support the needs of various users of ITSs. 
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Recommendations for GIFT Overall 

Recommendations for GIFT include: 

● Providing support for the creation of learner models that make use of cognitive, noncognitive, 
metacognitive aspects of the learner and contextual variables. 

● Leveraging OLM research to produce actionable information for different users. 
● Continuing to improve validity and fairness aspects of ITSs.  
● Making xAPI profile for ITS known and used beyond GIFT (Hu, ITS Assessment PADLET 2021). 
● Providing guidance via information or tools on what behaviors/task-performance map onto 

important theoretical constructs (Graesser, ITS Assessment PADLET 2021). 
● Offering assessment capabilities (e.g., a sensory module) that could be triggered on-demand and 

can be used to facilitate assessment implementation (Hu, ITS Assessment PADLET 2021). 
● Continuing to support standardization processes and the use of assessment information across 

systems (Sottilare et al., 2018). 
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CHAPTER 8 ‒  TEAM TUTORING IN INTELLIGENT TUTORING 
SYSTEMS SWOT ANALYSIS 

Peter W. Foltz1 and Stephen B. Gilbert2  
University of Colorado, Boulder1; Iowa State University2 

Introduction  

A good team can accomplish more than the efforts of its individual members. However, individual members 
need to have the skills to perform as a team. Skills such as interpersonal understanding, proactivity, 
decision-making as a group, and agreement in roles all increase effectiveness of group performance 
(Druskat & Kayes, 2000; Prichard et al., 2006). These skills are also recognized as being important for 
hiring decisions. In 2011, 90 executives surveyed counted teamwork in the top 10 soft skills desired in 
employees (Robles, 2012). Despite this need, the field’s understanding of the theoretical basis of teamwork 
is still evolving, and there are not systematic methods for assessing and teaching team skills (Graesser et 
al., 2020; Lai, DiCerbo & Foltz, 2017). Thus, while Intelligent Tutoring Systems (ITSs) have been 
successful in offering automated learning scaffolding for individual students, Intelligent Team Tutoring 
Systems (ITTSs), which offer software-based coaching to a team of humans, have yet to mature fully. This 
is due to a variety of factors including the complexity of capturing team data, limited techniques for 
analyzing team performance, and the need for effective skills frameworks and methods for displaying key 
team metrics.  

A key challenge for implementing ITTSs is the lack of formalized methods and technical approaches for 
measuring the quality of teamwork. On a team there are task skills (how well the team performs at a specific 
task) and team skills (qualities of the team that might transfer to other tasks). While team researchers have 
developed frameworks of skills (e.g., Hesse et al., 2015; OECD, 2017a), proposed critical factors in 
successful teaming (e.g., Salas et al., 2018), and have even proposed measurable behavioral markers for 
some of these factors (Rosen & Foltz, 2014; Sottilare et al., 2018), robust computational models of team 
dynamics are still in their infancy (e.g., Gorman et al., 2017). Concurrently, while we must consider how 
humans work together, as software agents and robots become more sophisticated, the research area of 
Human-Autonomy Teaming (HAT) has become an important related area that asks similar questions: How 
can we measure the effectiveness of the working relationship between Astronaut X and Agent A? How can 
we assess whether Soldier Y works better with Robot 1 or Robot 2?  If we can establish metrics for these 
constructs, then we could theoretically build systems that train HATs and human teams to perform better 
together.  

Whether the team is composed of a group of learners with one tutor or a tutor for each learner, an effective 
ITTS that could develop team skills as well as task skills while focusing on each team member’s individual 
needs could be invaluable. This SWOT analysis describes the current state of the art of ITTS development 
and the pathways to the future. 

SWOT Analysis 

The following SWOT analysis was conducted by drawing on the individual research findings of the authors, 
a review of the state of the research literature, investigation of existing ITTSs, as well as on the community 
of researchers who have assembled this book. The goal of the analysis was not to develop a comprehensive 
list of all possible SWOT elements, but to focus on the key elements that are involved in advancing the 
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field and then organize those elements into groups of major factors that influence the development and 
success of work in the field. 

Strengths 

The primary strength of ITTSs stems from their potentially broad applicability to a variety of domains. So 
many of today’s business tasks are performed by teams that team skills are needed by a majority of workers. 
For example, the 2016 Job Outlook Survey of the National Association for Colleges and Employers report 
that nearly 80 percent of respondents look for evidence that candidates can work in a team (National 
Association for Colleges and Employers, 2016). However, another survey (Casner-Lotto & Barrington, 
2006) showed that only 25 percent of employers characterized four-year college graduates’ teamwork skills 
as “excellent” and other work has shown that university faculty are not well prepared to teach team skills 
and do not value it highly (Chen et al., 2004). Thus, another strength is that ITTSs can fill a pressing need 
in the workforce.   

If an ITTS could teach team skills effectively, those skills would add value across multiple team tasks. 
Ideally, a set of reusable modules for teaching team skills could be created that would use the domain of 
the task as input (e.g., a communication module could be directed to give practice tasks from the pilot 
domain or surgery domain, and it would measure a team’s communication performance as well as give 
them feedback on that performance). For this cross-task generalization approach to work, we would need a 
common infrastructure that could support a variety of team tasks. These components of an ITTS should be 
agnostic to whether the team members are human or software agents, so that the system could assess team 
dynamics independently of the composition of the team.  

Weaknesses 

Much of the difficulty of team tutoring systems can be categorized as “resolving ambiguity” when 
measuring what the team is doing (Sottilare, Team Tutoring Systems PADLET 2021). For example, 
measuring communication of a team can be difficult because people may speak at the same time, which 
leaves an automated transcription system uncertain as to the current speaker. Also, even if communication 
can be accurately logged, as linguists know, analyzing individual words can be futile without understanding 
and classifying the larger context of the communication. Next, many team behaviors are non-verbal, e.g., 
nods, crossing of arms, pointing, etc., which makes them difficult to record without many cameras and a 
good computer vision body recognition system, so that the system records not only the nod from Team 
Member A, but also the response to the nod from Team Member B.  

This mix of verbal data, non-verbal data, and task performance data leads to mathematical models that 
feature rich multimodal interactions, which can be very valuable, but because of complexity and the number 
of teamwork variables, these models require a significant amount of data to be made robust. Typically, team 
studies are expensive to run and coordinate, but there is potential hope from YouTube, in which numerous 
multiplayer video gaming teams have logged their performance. For models of multiplayer game team 
behavior, at least, there may be plenty of data available.  

Another challenge in developing ITTSs is the creation and distribution of appropriate feedback for the 
teams and team members (e.g., Stevens et al., 2019). This challenge has several facets. First, the ITTS will 
likely assess the team at both a team level (How is the team doing?) and an individual level (How is Maria 
doing? How is Giovanni doing? etc.). If the ITTS is sophisticated enough to provide general feedback based 
on both levels, it is a non-trivial challenge to decide how much of that feedback to give without 
overwhelming the members. If the team tutor has two suggestions for the team overall and three critiques 
for Giovanni, should Giovanni receive all five pieces of feedback, or is that too much? While expert human 



 
 

93 
 

coaches may have an intuitive understanding of how to balance these, even potentially personalizing their 
decision based on Giovanni’s personality and how well he responds to feedback, it is difficult to make this 
expertise explicit and embody it in code. Even if there were good authoring tools for ITTSs, often the team 
coach has domain expertise but not the technical expertise to author the different cases or conditions in 
which each set of feedback would be offered.  

Opportunities 

As the field of ITTSs is still very new, there are a wide range of opportunities for advancing both research 
and development of effective training systems. The largest opportunity that exists is that there is great 
demand for training of teams. As the world has moved from an industrial society to an information society, 
there is increased need for supporting collaboration in the complex socio-technological systems that require 
people to work together effectively (e.g., Autor et al., 2003). However, the workforce is not yet prepared. 
The PISA (Program for International Student Assessment) assessment showed that only 8% of 15-year-
olds across OECD (Organisation for Economic Co-operation and Development) member countries 
performed at the highest level of proficiency in collaborative problem solving (OECD 2017b), and 
managers overwhelmingly report that graduating college students do not have the requisite skills for 
collaboration (American Management Association, 2012). Thus, a tutor that could train team skills for a 
range of domains would provide enormous return on investment (ROI) if proven effective. Also, given the 
rise in global connectivity and telecommuting, ITTSs could be beneficial in smoothing teamwork between 
members from different global cultures.  

To achieve such a generalized ITTS, there are opportunities to improve our understanding of the nature of 
teamwork and collaboration. This work can include the development of frameworks of skills and mapping 
how feedback can be applied to improve specific skills. Studies of effective and ineffective teams can 
provide empirical bases of when and how feedback can be most useful. Additionally, more research can be 
done on improving our approaches to measurement of skills. This work can include determining what kinds 
of overt and covert behaviors are effective indicators of performance and how to apply better models for 
measuring the complex multi-modal, multi-person dynamics. Such approaches can benefit from 
contributions from a variety of fields, including psychometrics, team science, dynamic modeling, and 
educational training in order to understand the effects of tasks and contexts and how they interact with the 
measurement of team skills.  

A final opportunity revolves around applying novel technology to improve ITTSs. Team tasks generate a 
wealth of data including speech, logs of actions, facial expressions, gestures, typed communication, and 
task-related outputs. These multi-modal interactions provide multiple pieces of converging evidence about 
individual and team states. Recent developments in Artificial Intelligence (AI) technology can provide 
approaches to reduce the data into features related to team skills and develop models that can predict team 
cognitive, social and affective states (e.g., Butler & Randall, 2013; Calvo & D’Mello, 2010; Richardson et 
al., 2007) . These approaches include automated speech recognition, deep-learning models of language and 
visual features such as facial expressions and gestures, reinforcement learning and dynamic models of 
changes in states, and machine learning-based methods for combining multimodal data (Grafsgaard et al., 
2014; Vinciarelli & Esposito, 2017). Overall, these approaches provide great opportunities for broadening 
the kinds of team interaction data that can be captured and modeled in order to provide more effective 
feedback.  
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Threats 

Developing tutors for individuals is hard, requiring effective models of a person’s learning state, techniques 
for tracking learner understanding, and approaches for measuring gain. Yet researchers have been highly 
successful in creating tutors for individuals. Developing tutors for teams adds another level of challenges 
on top of all the methods needed for individual assessment. For good team situations that can be tutored, 
there needs to be a balance of open, realistic interactions, while also controlling the training situation well 
enough to assess performance. The key challenges that need to be overcome in order to bring about 
successful team tutoring systems are addressing the variability in types of team tasks, the complexity of the 
team and individual assessment methods, and techniques for collecting multimodal, multi-party data. 

Team tasks can vary significantly from each other. Teams can have many varied structures, with different 
roles, leadership configurations, and characteristics of team tasks such as shared or different goals (Bonner 
et al., 2015). For example, some team tasks may have strong interdependence, like a car assembly line team, 
while some have lower levels, like a team of call center customer support agents. Yet, many of the skills 
such as shared understanding, achieving common purpose and maintaining a team organization are still 
required, but may vary based on the organizational structures and task characteristics. This level of 
variability makes it more difficult to have more generalizable methods for training. 

The level of complexity of team tasks further provides challenges for developing training situations and 
assessment methods. Training often focuses on task skills and tasks can be simulated effectively with 
synthetic task environments and computer-based simulations. However, due to the dynamics of multiple 
people interacting, it can be more difficult to create circumstances which simulate potential team situations 
that would be useful for training. For example, to create a situation where a team member fails to come to 
consensus with the rest of the team may require either an actor or an intelligent agent to play the role. Use 
of actors can be expensive, while use of intelligent agents requires development of effective AI that can 
understand the training context and have the agent intervene in ways that elicit the targeted skills and 
respond appropriately to the learners (e.g., Bergner et al.., 2016; Rosen & Foltz, 2014). The complexity in 
the team tasks also requires methods that can track the individual actions and team interactions and process 
the stream of information in a way to assess the desired team skills, to determine whether team members 
have achieved appropriate levels of those skills, and when and how the skills should be remediated. To 
achieve this requires additional research and development of frameworks of team skills incorporating 
social, cognitive and affective states, continued work on AI based assessment approaches, and psychometric 
methods to measure those skills. With such complex assessment models, it becomes more difficult to update 
them for new tasks, adapt them for new situations, as well as extract the psychometric features in a way 
that can make the judgments made by the assessment models explainable in a way that they can be turned 
into effective feedback and training for the team. Indeed, just because we can assess a team skill does not 
mean that we know how and when to intervene to remediate.  

Finally, we should recognize that data in team tasks is hard to collect. Much of the interaction data may be 
verbal, but some information may be conveyed through other modalities including hand and facial gestures 
and sharing of task artifacts. This can require instrumenting for the collection of audio, video and task log 
files, annotating with behavioral codes, and then processing the data to obtain a complete picture of the 
state of the team. Synthetic environments can allow more control over data collection. However, in realistic 
environments, such as classrooms, battlefields, and Combat Information Centers, instrumenting the data 
collection can be logistically difficult, requiring collaboration and integration with the ongoing processes 
and systems of the learning environment. 
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Overall SWOT Analysis 

Below we provide the overall SWOT analysis generated during the workshop which summarizes the above 
narrative.  

Strengths of ITTSs 

Scoring/Feedback available in more structured environments and domains. 
Common infrastructure means you can build for a variety of team tasks.  
Expanding set of reusable modules allows use of new input types and better modeling of learning 
progressions.  
Enable more practice of higher-level thinking skills. 
Could tutor on both task skills and team skills.  
Could make predictions of whether Learner A will work well with Learner B on future team working 
on a different task: cross-task generalization. 
Multi-modal interactions give multiple pieces of converging evidence (speech, language, affect, 
actions, etc.). 
Most work is done by teams, so tutors play towards skills needed by a majority of workers. 

 

Weaknesses of ITTSs 

Methods for assessing performance, scoring, and feedback in complex and/or multi-person simulations are 
not mature. 
Level of technical expertise/need for domain experts for building training insufficient. 
Currently we do not have software architecture to support one tutor knowing about both individuals and the 
team. Instead, it’s a team tutor co-present with a tutor for each individual (“crowd of tutors”), and the tutors 
cannot share knowledge with each other. Learners ask, ”Which tutor should I listen to?”  
Need a “hierarchical” tutor framework. 

Difficult to measure some team dynamics and interactions (e.g., non-verbal communication).  

Many contextual factors to control for if you want to do effective modeling of real-world situations.  
Literature on when to give feedback to individuals vs. whole team is mixed.  
Need complicated models to model rich multimodal interactions. 
What is the role of the tutor for a team? Guide, monitor, facilitator, shepherd?  
Ability to resolve ambiguity during team training and educational events is limited. 

 

Opportunities for ITTSs 

Dynamic models of learning and collaboration for tracking performance could be quite valuable.  
Automated content and assessment item creation for teams would be useful.  
Continued development of improved approaches for automated scoring of open-ended responses/team 
language would make significant contributions to the field of communication research.  
Human-in-the-loop creation/deployment of intelligent training systems would aid numerous contexts.  
AI-based explainability approaches can add transparency, accountability and interpretability of outputs 
from AI-based assessment models.  
Agent-based approaches, part of Human-Autonomy Teaming, are in high demand. 
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A good team tutor domain module for team skills would be applicable for almost any team task and 
provide an enormous ROI if done well.  
There are many athletic coaches who do this well and who could be observed/interviewed as models for 
when to give whole-team feedback and when to give individuals feedback.  
Team Tutor studies generate an enormous amount of data to be analyzed.  
Zoom Cloud Recording has great transcription and video quality, which can aid team analysis.  

 

Threats 

Challenges of collecting good, clean, exploitable data in realistic training environments are significant.  
Team tasks vary significantly (e.g., tasks with strong interdependence, like a car assembly line vs. tasks with 
very little, like a team of call center customer support agents).  
Potential user/public backlash against using AI for assessing higher level thinking skills. 
More complex assessment models lead to greater difficulty in updating, adapting, and providing 
explainability in training modules.  
Teams are complicated, with many different structures (some with different roles, some with same role, 
different leadership configurations, etc.) This complexity threatens generalization possibilities and makes this 
work expensive. 
Just because we know how to assess it, doesn't mean we can teach it. 
If student data is used to train an AI model, gaining appropriate permissions can be non-trivial.  

 

Supporting Research 

Research in Collaborative Problem Solving, Team Assessment and Team Training has been growing over 
the last decade as demand for more effective methods and training technologies has increased. Below, we 
highlight several areas of research that are supporting some of the primary areas of growth in this field.  

One key area is in defining skills and how to measure them. This work has included the development of a 
variety of frameworks which break down collaboration and teamwork skills, operationally define the skills, 
and describe approaches to measuring them (see Hesse, et al., 2015; von Davier et al., 2017; O’Neil et al., 
1995; OECD, 2017a; Sottilare et al., 2018; Sun et al., 2020).  These theories of measurement have focused 
on how to align skills constructs to evidence of behavior (e.g., Hao et al., 2019) and adopting an evidence-
centered design approach to analyzing team skills (e.g., Mislevy, Steinberg & Almond, 1999).  

Measurement of teams has also been approached by applying AI-based methods to analyze team data. 
Teams produce a wealth of data while participants interact, and a key challenge is to reduce the data in 
ways to find evidence of skills. AI-based methods are ideally suited for this approach since they can learn 
important patterns of team interactions and sift through data efficiently to detect emergent behaviors that 
are indicative of effective or ineffective team performance. Because much of the data generated by teams 
is verbal communication, advances in natural language processing have shown great promise for converting 
language streams into performance data (e.g., Cooke et al., 2012; Foltz & Martin, 2009; Foltz et al., 2006). 
Because team performance is not generally characterized as a skill occurring at any particular instance, but 
instead is the result of the processes that occur over time, process data is critical to track and monitor these 
changes. Thus, techniques to analyze the interactional dynamics based on log data are of particular note 
(e.g., Dunbar, et al., 2020; Morgan et al., 2012).  

Thirdly, the field of team science is realizing that team data is generated from many sources and therefore, 
multimodal, multiparty techniques are required to account for the rich data that occurs during any team 
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collaboration. This work can include looking at measuring factors such as speech, body movement, eye 
gaze, predictions of affect, and log data. Techniques can then be used to combine these measurements to 
paint a fuller picture of the interactions and cognitive, social and affective states of the participants (e.g., 
Calvo & D’Mello, 2010; Eloy et al., 2019). 

A final relevant growth area of note is Human-Autonomy Teaming (HAT). Other related terms are human-
agent teaming, human-robot interaction (HRI), and human automation interaction, but human-autonomy 
teaming seems to be the emergent term (Lyons et al., 2021). HATs are teams consisting of humans and one 
or more agent, but the agents are typically teammates rather than tutors or coaches as in an ITTS. All the 
same, research focused on analyzing HATs overlaps with some of the frameworks described above, 
characterizing members of HATs in terms of their interdependence, their communication, their authority 
relationships, and other ITTS-relevant factors (Ouverson et al., 2018; Sepich et al., 2021).  

Recommendations for GIFT in Particular 

Based on the findings above, and previous experience building ITTSs with GIFT (Gilbert et al., 2017; 
Gilbert et al., 2018), several recommendations for GIFT and other ITTS support systems emerge. First, 
while GIFT currently supports team tutoring via a crowd of tutors (one tutor for the team and one tutor for 
each team member), there is not currently any prioritization mechanism for balancing the influence of each 
tutor, e.g., deciding when the team member should receive feedback from their individual tutor vs. the team 
tutor, and how to ensure that the amount of feedback given is appropriate to the context. Second, team tutor 
authoring is burdened with the particular difficulty of thorough testing, with its potentially exponential 
number of training system states (e.g., based on a series of decisions by different team members). 
Automation tools that aid in this quality assurance testing will be critical. Lastly, templates for authoring 
ITTSs for different contexts would be very helpful, e.g., for an ITTS for group problem solving, decision 
making, highly interdependent tasks vs. low ones, tasks under time pressure vs. not, etc. Having a set of 
ITTS templates based on a sensible taxonomy of team structures and team tasks would save ITTS authors 
significant time.   

Discussion and Recommendations for Future Research 

In summary, there is great promise in research, development, and deployment of Intelligent Training 
Systems for Teams. The SWOT analysis permits us to identify and focus on the key elements needed for 
progress in the field. Overall, the key strengths include the ability to model team dynamics and the 
characteristics of team members that contribute to those dynamics. The key weaknesses include the 
logistical difficulty of measuring subtle team interactions and the lack of precise knowledge about how to 
best balance the mix of feedback to the whole team vs. to individual members. Key opportunities include 
the ability to tutor on team skills that span multiple task contexts and the prevalence of human coaches as 
role models. Key threats include the overall complexity and variance within team tasks, which affect both 
data collection for training ITTS and its generalizability beyond a single context. Overall, the results of 
the SWOT analysis show that ITTSs are difficult to build but have great potential and are well worth 
pursuing. 
 
To realize the potential of ITTSs will require advances in science and technology as well as changes in 
educational focus and policies. Curricular reform, which puts more emphasis on CPS skills, is growing 
with educational standards starting to incorporate required collaboration skills (e.g. Fiore et al., 2017; 
National Research Council, 2011; OECD, 2017b). These standards will flow into classrooms to ensure 
that students are trained with the requisite skills. Concurrently, industry must put more emphasis on these 
skills as requirements for graduates and/or adopt team training as part of continuing education.  
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Advances in research will require continued recognition of team assessment as inherently 
multidisciplinary and entail incorporating advances from multiple fields to move the field forward. While 
much of the prior focus of research has been on assessing cognitive skills in teams, integrating the social 
and affective states of team members will be critical. The most promising areas for research include: 
psychometric measurement for complex performance, natural language processing, multimodal fusion, 
affect detection, and dynamical time series analyses. With advances in computer-based agents, more work 
will also be needed in human-agent teams to understand how best to apply agents, both as team-members 
that can supplement human performance but also as trainers who can improve how humans perform as 
team members. Put together, these approaches can also help develop a taxonomy of the types of teams 
and tasks that are most appropriate for ITTSs and pathways to building effective training systems.  
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Overview: What is a Self-Improving Learning System/Environment 

Self-Improving systems can be loosely referred to as systems that have the capacity to monitor, evaluate and 
improve their own performance as a function of experience. Such systems need to learn from experience, 
therefore, they must include machine learning, or some other data-driven technique that supports learning 
and changes in behavior over time. In this chapter, we consider a minimalist view of human learning 
systems (such as brick-and-mortar schools, or virtual learning systems). From this perspective, learning 
systems consist of four interconnected components: Human Learners, Learning Resources, Learning 
Processes, and Learning Environments (Kuo & Hu, 2019). While learning systems are improving as a 
whole (they have improved over the years due to advances in the learning sciences and education theories, 
technology, and policy), all of the four components are also improving in their own ways: human learners 
improve when learning happens; learning processes improve when better theories of learning are 
implemented; finally advances in technology make learning environments and learning resources improve 
when appropriate technologies are applied.  

We consider a system “self” improving when it is improving without the “explicit” help of other systems. 
It is obvious that human learners have self-improving capabilities. Some of the learning resources (such as 
teachers, tutors, and human study mates) also have self-improving capabilities.  Only recently, several types 
of dynamic digital learning resources, such as intelligent tutoring systems (ITSs), have shown promise that 
certain learning resources may also have self-improving capabilities (Wenger, 2014). This chapter focuses 
on the self-improving capabilities of these types of learning resources. We can examine self-improving 
capabilities at a system level such as learning eco-systems (that contain all four components), or at the level 
of individual components. For the purpose of this chapter, we consider the “self-improving” capabilities of 
each of the four components.  Specifically, we examine the self-improving capabilities of ITSs in the 
context of the Generalized Intelligent Framework for Tutoring (GIFT, Sottilare et al., 2012).  

The remainder of this chapter is organized as follows: we will first describe the three aspects of self-
improving learning systems: self-improvable, self-improvability, and self-improving; then we will give 
three examples of ITS implementations that had certain levels of self-improving capabilities; to conclude, 
we will offer a Strengths Weaknesses Opportunities and Threats (SWOT) analysis of self-improving 
systems within GIFT and provide recommendation and future research. 

Three Aspects of Self-Improving Learning Systems: Self-Improvable, Self-
Improvability, and Self-Improving 

There are three closely related yet different aspects of self-improving learning systems: Self-improvable, 
Self-improvability, and Self-improving.  Next, we will describe them in detail. 

Self-Improvable systems can change their behaviors based on their interactions with learners, and such 
changes are driven not by hard-coded rules but by data that is gained from experiences when operating in 
an environment.  To make it self-improvable, a system should be designed with the following necessary 
properties:  

https://paperpile.com/c/6f3qLl/hgyP
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1. Existence of “master” memory (Data Store) that captures system behavior and experiences. The 
memory includes the interaction history of similar systems and learners.  

2. Existence of variable controllable components. All the variables can be changed at run-time. 

3. Application programming interfaces (APIs) that connect variable controllable components with the 
Data Store. 

4. A collection of ideal (effective and efficient) instructional strategies to guide the use of the APIs. 

The first three properties make the systems changeable, while the last property makes the system 
changeable in a way that improves student learning.  

Self-Improvability is the degree that a self-improving system improves. Inspired by the development of 
self-driving vehicles, it is useful to consider levels of self-improving capabilities prior to the existence of 
real self-improving learning systems.  Table 1 shows a total of six “Levels” of self-improvability of self-
improving learning systems that we have defined, from minimum self-improvability (level 0) to complete 
self-improvability (level 5).  

Table 1: Six Levels of Self-improvability 

Levels  Descriptions 

0 Observe the learner’s behavior (passive) and select (mechanically) a pedagogy from a pre-
specified list. For example, system behavior is independent of the learner’s recent interactions 
with the system. 

1 The selection of the pedagogy is a function of the learner’s interaction history.  

2 Prior to the selection of pedagogy, the system classifies students’ behavior based on the 
cognitive nature of the task. 

3 Prior to selection of pedagogy, the system maps students’ behavior based on the cognitive and 
non-cognitive nature of the task (to a pre-specified list). The system also observes and 
evaluates the outcome of the selected pedagogy. 

4 The system dynamically learns how to classify a student's behavior (cognitive / non-cognitive), 
based on previous scenarios.  The system also observes and evaluate the outcome of selected 
pedagogy. 

5 The system creates and validates new pedagogy that was never observed or used previously. It 
observes, evaluates the outcomes, and confirms created pedagogy. 

 
Self-improving is the process that makes a self-improvable learning system achieve levels of self-
improvability. The process includes 1) selecting/creating technology that enables appropriate input from 
the learner to the systems; 2) selecting/creating an appropriate data structure that stores system and 
learner behavior; 3) selecting/creating appropriate assessment models for both system and learner 
behavior; 4)  selecting/creating appropriate APIs that connect system components to the assessment 
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outcome (of the system and learner) and alter parameters of systems components; and 5) evaluating the 
outcome of 1-4 to make the learning system meet the desired level of self-improvability. 

Current State-of-Art Most on Self-Improvable 

In this section, we review a few examples of ITSs that meet some levels of self-improvability. 

Betty’s Brain [Level 2 – 3] 

The Betty’s Brain system is designed to make science learning an active, constructive, and engaging 
process for students (Biswas et al., 2005; 2016). A primary innovation in this intelligent and adaptive 
open-ended learning environment is that it leverages the learning by teaching paradigm (Bargh & Schul, 
1980; Biswas et al., 2005) to get students to research and construct models of science phenomena in the 
guise of teaching a virtual agent generically called Betty. Students actively engage with Betty during the 
learning process by building a causal model of a scientific process, asking her questions, and getting her 
to take quizzes that are provided by a mentor agent named Mr. Davis. Figure 1 illustrates the quiz 
interface for the Betty’s Brain system. 

Figure 1. Quiz Interface of the Betty’s Brain System 

When asked to answer questions or to take a quiz, Betty uses a qualitative reasoning mechanism to chain 
together a sequence of links and generate answers like, “If deforestation increases, the amount of heat 
trapped by the earth will increase” (Leelawong & Biswas 2008). Betty’s performance on the quizzes 
provides students with the feedback that students needed to check their map and come up with strategies 
for identifying and correcting errors and omissions in their maps. When asked, Betty can provide 
explanations for her derived answers, and this helps students identify and analyze the individual links that 
she uses to generate her answers. Betty also provides motivational feedback by expressing happiness 
when her scores on the quiz improve, and she expresses disappointment when her quiz scores do not 
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improve. Additional feedback is provided by the mentor agent in the form of learning strategies that 
students can employ when they are not performing well.      

In recent work, Munshi et al. (2022) have improved the adaptability of the Betty’s Brain system by 
tracking the learners’ performance on building the causal map, their learning strategies (e.g., their Read 
→ Map Building, or Quiz → Map Building strategies), as well as their affective state (e.g., delight, 
confusion, and frustration) and providing tailored feedback through Mr. Davis and Betty to help students 
improve their learning and map building performance as they work on the system. Machine learning 
algorithms, such as sequence mining (Zaki, 2001) and differential sequence mining (Kinnebrew et al., 
2013) supported by analytics methods, such as coherence analysis (Segedy et al, 2015) form the basis for 
the adaptability in the Betty’s Brain system that drives the feedback system to support learners Kinnebrew 
et al., 2017). Therefore, the system exhibits Level 2 – 3 self-improving characteristics by adapting to the 
learners needs. Overall, in classroom studies, Betty’s Brain has been very effective in helping students 
develop metacognitive strategies to become better learners, learn about causal models of scientific 
processes (e.g., pond ecology, climate change, and human body thermoregulation), and apply these 
models to problem-solving tasks.  

AutoTutor [Level 2 – 3] 

AutoTutor is an ITS that engages in natural language conversations with the learner, as described in 
research by Graesser et al. (1999) and Nye et al. (2014). Its effectiveness has been demonstrated in 
various fields, including computer literacy, physics, and critical thinking. The system's design 
incorporates three key research areas: human-inspired tutoring strategies, pedagogical agents, and 
technology that enables natural language tutoring ("AutoTutor," n.d.). For the purpose of this chapter, we 
highlight several components of AutoTutor that make it a self-improving adaptive instructional system 
(SIAIS); further details can be found in Hu et al. (2019).  
 

Expectation-misconception tailored (EMT) dialog: The central feature of AutoTutor is its dialog 
management, known as EMT dialog. The EMT dialog works by evaluating the learner's answers and 
providing hints and prompts based on whether the answer matches the expected answer keys or exhibits 
common misconceptions. This approach ensures that the learner receives personalized instruction and is 
guided towards a deeper understanding of the material.  

 
Avatar: AutoTutor uses conversational avatars to interact with learners, creating an engaging learning 
experience. The avatars provide hints and prompts in natural language and have unique personalities that 
can be controlled parametrically. These avatars can exhibit different attitudes and emotions based on the 
learner's behavior, which can motivate and engage learners. The ability to control the personality of the 
avatars using data makes AutoTutor an SIAIS. 
 
AutoTutor Scripts: AutoTutor Scripts are XML files that contain all dialog moves and parameters that 
guide AutoTutor's behavior. These scripts also include expected right answers and typical misconceptions 
for a given question, as well as semantic answers and regular expressions for these expected answers and 
misconceptions. By including this information in the scripts, AutoTutor is able to provide personalized 
instruction that is tailored to the learner's needs and misconceptions. The use of XML ensures that the 
content is structured and easily accessible, making it an effective tool for instruction. One key feature 
(that is relevant to the current chapter) of AutoTutor Scripts is that they include parameters such as 
thresholds for matching the answers and misconceptions. These parameters can be dynamically changed 
during runtime, allowing AutoTutor to self-improvable based on its interactions with learners. This 
adaptability ensures that AutoTutor is responsive to the needs of the learner, and can continue to improve 
its instruction over time. 



 
 

105 
 

 
AutoTutor Rules: AutoTutor Scripts contain a collection of "if-then" statements known as rules, which are 
a key component that make AutoTutor a SIAIS (Semi-Intelligent Automated Instructional System). These 
rules use the learner's coverage of expectations or exhibition of misconceptions as the condition (if), and 
the corresponding hint or prompt as the action (then). These functions are parametrically configured and 
can be altered at runtime, making AutoTutor highly adaptable to the learner's needs. 

Pyrenees Probability Tutor: A Self-improving Learning System Through Deep 
Reinforcement Learning (DRL) [Level 2]. 

 
 

 

Figure 2. Pyrenees probability tutor showing the problem, variables, equations, dialog, and student 
workspace      

 
 

Pyrenees (Figure 2) is an ITS that teaches the introduction of probability and conditional probability 
(Zhou, Azizsoltani et al., 2021;  Zhou, Azizsoltani et al., 2019; Zhou, Yang, et al., 2019). One prominent 
self-improvability of Pyrenees is through a Reinforcement Learning-induced pedagogical policy. To 
make Pyrenees self-improving over time, in partnership with North Carolina State University faculty 
since 2014, exploratory training corpora and experimental data have been collected by training 
undergraduates on Pyrenees. In the exploratory mode, the systems are constrained to make random yet 
reasonable pedagogical decisions. This exploratory corpus approach has also been widely used in 
previous research on the application of reinforcement learning (RL) to improve dialogue systems 
(Williams et al., 2005). For each semester, we apply various reinforcement learning approaches to derive 
pedagogical policies with the goal to improve student learning gains. The existing pedagogical agent’s 
policy is simultaneously updated in Pyrenees. The updated system is then used to interact with students 
with some baseline models (such as Pyrenees following the best policy from previous semesters). The 
effectiveness of the induced policies is empirically evaluated, and the newly collected student-system 
interaction logs are added to the training corpus for the next round of pedagogical policy induction. To 
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date, our exploratory and experimental corpora for Pyrenees includes more than 2000 student-system 
training interaction logs. Next, we will describe our approach in detail.  

For many learning environments, the system-learner interactions can be viewed as a sequential decision 
process and RL offers one of the most promising approaches to data-driven pedagogical decision-making 
for improving student learning.  Figure 3 illustrates how pedagogical policy induction can be represented 
as traditional RL.  At any given time t, the pedagogical agent observes the environment state s (a vector 
representation of relevant learning context features as shown in Table 2 below), then chooses an action a, 
and receives a reward r (calculated from success measures), and the environment transitions into state s'.   
The agent learns the policy by estimating the action-value function Q(s,a), defined by the following 
Bellman Equation: 

𝑄𝑄(𝑠𝑠,𝑎𝑎) = 𝑅𝑅(𝑠𝑠,𝑎𝑎) + 𝛴𝛴𝑠𝑠′,𝑡𝑡′𝛾𝛾𝛾𝛾(𝑠𝑠,𝑎𝑎)𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎′∈𝐴𝐴𝑄𝑄�𝑠𝑠′,𝑎𝑎′�, 
where R(s,a) is the immediate reward, γ is a discount factor, and we sum the discounted Q-values of the 
optimal action a' for each possible next state s' (using transition probabilities  p(s’|s, a), estimated from the 
training corpus).  Once the optimal action-value function 𝑄𝑄∗is found, the optimal policy is to take the 
action with the highest Q-value.       

 
 

Figure 3. Pedagogical policy induction 

 

For RL, as with all machine learning, success depends upon having an effective state representation S to 
model the environment. We used more than 140 state features including both cognitive and non-cognitive 
features such as the student's current knowledge level, affective state, the task, and other salient features 
suggested by literature (D’Mello & Graesser, 2010; Koedinger & Aleven, 2007). Table 2 below shows 
five categories of state feature that describe student learning process and the system behaviors.  
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Table 2. Selected Feature Examples 

 
Feature Family Selected Example Features  

Student Engagement 

Time since the last action. 
The number of Worked Examples the student has received since the last 
Problem solving. 
Total number of Worked Examples or Problem solving on the current 
problem and over the whole tutor. 

Learning Context Difficulty level of a problem. 
The number of different types of applied rules for current problems. 

Student Performance Number and percentage of the correct student problem solving steps. 
The number of subgoals achieved on the current problem. 

Student Actions 
Total number of hints/skips that students have taken so far. 
The total number of worked examples or problem solving adopted into 
problems / ignored. 

Temporal Situation Time since the tutor last provided an intervention. 
Elapsed time on the current session. 

Student Strategies Presence/absence of temporal subgoal achievement patterns.  
     
     
One primary challenge for RL pedagogical policy induction is delayed rewards. Just as supervised 
learning models depend heavily on accurate output labels, RL approaches depend heavily on an accurate 
reward function. Generally, immediate rewards are more effective than delayed rewards because the more 
delay, the harder it becomes to assign credit or blame properly. However, the most appropriate ITS 
reward is learning gains, which are unavailable until the training is complete. This is due to the complex 
nature of the learning process which makes it difficult to assess students' learning moment by moment and 
more importantly, many instructional interventions that boost short-term performance may not be 
effective long-term. We applied two different approaches: a Gaussian Processes (GP) based approach 
(Azizsoltani et al., 2019) and a general deep neural network approach to infer immediate rewards from 
delayed rewards (Ausin et al., 2021). Results from a series of experiments showed that using inferred 
immediate rewards can indeed lead to better RL policies than using delayed rewards.  

The combination of deep learning and novel reinforcement learning algorithms has made solving complex 
problems possible with deep reinforcement learning (DRL)  (Andrychowicz et al., 2020; Silver et al., 
2018; Vinyals et al., 2019).  Despite DRL's great success, there are many challenges in order for DRL to 
be applied successfully to ITSs. One major challenge is sample inefficiency: DRL algorithms often need 
millions of interactions to learn a policy. There exists, however, a sub-field of RL, named batch RL (also 
known as offline RL) which can learn the optimal policy from a small amount of data to generalize to 
unseen scenarios (Lange et al., 2012) as our recent work showed that a policy-induced by applying batch 
DRL with GP-based inferred rewards is significantly more effective than an expert-designed policy 
(Ausin et al., 2019). We further combined deep reinforcement learning and hierarchical RL to induce 
hierarchical DRL policies that would decide whether to offer worked examples or problem-solving at two 
fixed granularities: problem and step levels (Zhou, Azizsoltani et al., 2019). 
 

 

https://paperpile.com/c/37aaLS/npZX+rMyI+NMEk
https://paperpile.com/c/37aaLS/npZX+rMyI+NMEk
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The ITSs’ Six Levels of Self-improvability 

In Table 3, below, we will describe the six levels of self-improvable capabilities ITSs can provide by 
describing the input data captured and focusing on two critical components of the ITS that can leverage 
the data: learner models and pedagogical models. 

 

Table 3. Levels of Self-improvability 

For the Level 0 systems, we have: 

 Descriptions of Level 0 System 

Input Data Learner's current problem-solving actions. 

Learner Models: Learner models are based only on the observations of current categorical behavior, 
such as correct or wrong responses of simple assessment items. 

Feedback 
/Pedagogical 

Immediate. Correct/Incorrect. 

 

For the Level 1 systems, we have: 

Level 1  Descriptions of Level 1 systems 

Input Data Tracking students' activities over time. 

Learner Models: Learner models are based on activities of current AND immediate past (current 
learning episode), including non-categorical data such as response latency. 

Feedback 
/Pedagogical 

Immediate after error. But based on aggregated learner model for current learner 
episode. 
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For the Level 2 systems, we have: 

Level 2  Descriptions of Level 2 systems 

Input Data Tracking students' activities over time. 

Learner Models: Learner models aggregate information over multiple learning episodes of students. 
They are based on activities of current AND immediate past (current and previous 
learning episode) to capture learner behaviors and strategies, as well as non-
categorical data such as response latency and bio metrics. Cognitive and non-
cognitive factors are considered, such as motivation, affect, and learning 
environments. 
 

Feedback 
/Pedagogical 

Learners are allowed to explore. Feedback only after repeated instances of the same 
error. Feedback provided is over students' aggregated performance overall learning 
episodes.  

 

 

For the Level 3 systems, we have: 

Level 3  Descriptions of Level 3 systems 

Input Data Tracking students' activities using log files + speech modalities. 

Learner Models: Modeling students' metacognitive behaviors that combine cognitive and 
metacognitive processes. Learner model tracks evolutions of learners’ behaviors over 
time. 

Feedback 
/Pedagogical 

Go beyond performance to also study students' learning behaviors, i.e., their sequence 
of activities over time and their related performance.  Feedback at strategic behavior 
level. 
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For the Level 4 systems, we have: 

Level 4  Descriptions of Level 4 systems 

Input Data Tracking students' activities using multiple modalities: log files + speech + gesture+ 
video + eye tracking. 

Learner Models: Modeling students' Cognitive, Affective, Metacognitive, and Motivational (CAMM) 
processes along with their interactions with the environment, for example, with their 
instructors, and other students. 

Feedback 
/Pedagogical 

Extend feedback mechanisms to account for students' Self-regulated learning (SRL) 
processes and to help them better interact with the environment.  

 

For the Level 5 systems, we have: 

Level 5  Descriptions of Level 5 systems 

Input Data Tracking students' collaborative (teamwork) processes. 

Learner Models: Distributed cognition. Study students' learning in the context of the space they are 
learning in. Computer learning environment + other learners (collaborative learning) 
+  interacting with artifacts in the room to learn. 

Feedback 
/Pedagogical 

Extend feedback mechanisms to account for students' SRL processes in an online 
fashion. 

 

Self-improvable, Self-improvability, and Self-improving of the Six Levels of 
ITSs 

Next, we will summarize how each level of ITSs map to these three aspects: Self-improvable, Self-
improvability, and Self-improving. To make it self-improvable, a system should have parametrically 
controllable components, a master memory (data), and an API connecting the data with parametric control 
components guided by learning outcomes (so that they can be improved). Self-improvability is the degree 
that a self-improving system improves and self-improving is the process that makes a self-improvable 
learning system achieve higher levels of self-improvability. Table 4 shows a mapping of the six levels to 
the three aspects (self-improvable, self-improvability, and self-improving). 
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Table 4. Mapping the Six Levels to the Three Aspects 

Level Self-Improvable  
(offline) Self-Improvability (measures) 

Self-Improving (online/offline 
learning) 

0 
No Static No 

1 No adaptive-- reactive (locally) No 

2 
Partially adaptive-- temporal No 

3 
Yes adaptive -- multimodal 

(strategic behaviors) No 

4 
Yes 

adaptive – SRL, shared 
regulation (CAMM processes) No 

5 
Full Spatio-temporal learning 

environments Yes 

 
 

SWOT Analysis of Self-improving ITSs  

 
Advancement of theories and technologies made it possible for researchers to build Self-improving ITSs 
at the first three levels (0,1, and 2), as seen in the examples above. Thus, we will focus on providing 
SWOT analysis for the three highest levels: levels 3-5. 
 

SWOT for Level 3: 

• The strength of current technologies, especially high fidelity and speed of data collection, large 
capacity of data storage, and advanced big-data processing technique make it possible for 
recording students’ learning activity.  

• The weakness is the lack of processes that effectively utilize the large volumes of learner data.  
• The weakness offers the opportunities for learning scientists to make use of the data to propose 

and validate computationally feasible models and processes. 
• Threats: Having computationally feasible models and processes from data is the key for Self-

improving ITSs. Without this, we will only have self-improvable systems that only are self-
improving up to lower-level self-improvability.  

 

SWOT for Level 4: 

• Strength: some of the learning systems (such as GIFT, with the sensor module) have shown 
promises that the modern technology can capture and record learners’ behavior beyond log files. 
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Any computer systems currently being sold can accept multimedia inputs. This is a strength and 
sufficient condition for building the level for Self-improving ITSs.  

• The weakness here provides opportunities for learning scientists and engineers to develop 
breakthrough technologies and theories with possible new research areas. It is a playground for 
learning sciences and AI researchers. 

• Opportunities: when dealing with multimedia input (voice, emotion, etc.), that data is usually 
“noisy”. In addition, the model and/or process are not sensitive enough to establish clear relations 
between observed multimedia input (during learning) to learners’ Cognitive, Affective, 
Metacognitive, and Motivational (CAMM) processes.  

• Threats: When considering multimedia input, such as speech, facial emotion, etc., there is a 
danger of privacy and security, with potential biases. It is possible that multimedia data collected 
are biased. For example, the Self-improving ITSs may build a learner model based only on part of 
the learner’s data.  

 

SWOT for Level 5: 

• Strength: Social psychology provides theories on individual and team behavior in general. 
Existing systems started to consider learning in collaborative environments. These are strengths 
for level 5 Self-improving ITSs.  

• Weakness: There is a lack of computationally feasible model and process to allow any Self-
improving ITSs to successfully consider learners’ data in collaborative learning environments.  

• Opportunities: similar opportunities as the previous levels. 
• Threats: similar Threats as the previous levels. 

 

Self-Improvement Framework and Existing Systems 

In this section, we revisit our descriptions of the three systems presented earlier: Betty’s Brain, 
AutoTutor, and Pyrenees, and discuss their current self-improvability status plus what may be needed to 
migrate them to higher level self-improving systems. We characterized all three of these systems as Level 
3 on the self-improvability scale, which implies they are adaptive to learners’ performance and the 
cognitive and metacognitive strategies they employ to support their learning and problem solving 
processes. However, these systems have not reached the level of understanding to support students’ self-
regulation processes that focus on learners’ abilities to understand and control their learning 
behaviors, i.e., their cognitive, affective, metacognitive, and motivational processes, which help them 
to accomplish their learning and problem-solving goals (Azevedo et al, 2017; Panadero, 2017). Self-
regulation emphasizes the students’ autonomy, strategy use, self-monitoring, and self-reflection 
during problem-solving, all necessary traits for being successful life-long learners (Winne & Hadwin, 
1998; Zimmerman, 2002).  

 
Similarly, these systems are not designed to operate effectively in collaborative learning scenarios, 
where students learn to solve problems in small groups, interact with other objects in their environment 
(e.g., additional tools and experimental setups that support learning), and with humans (e.g., their 
instructors) to aid their learning and problem solving processes. Analyzing such distributed cognition 
scenarios, requires efficient collection and analysis of multimodal (e.g., vision, speech, eye tracking, 
and system log) data, which is currently not well-integrated into current computer-based intelligent 
tutoring systems (ITSs). Therefore, our current systems are still not at Level 4 of the self-improvability 
scale. 
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Last, these systems use advanced machine learning techniques, such as sequence mining, and RL to 
support pattern detection and decision making, and to improve system design to make them more 
adaptive. However, these methods are currently implemented offline, with humans analyzing the 
results generated by the machine learning algorithms to improve system performance and adaptability. 
Since learning does not currently happen online, these systems are yet to reach the levels of autonomy 
and decision making that would help them to achieve Level 5 of the self-improvability scale. 
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Introduction 

Intelligent Tutoring Systems (ITSs) can be designed to collect rich learning data. This chapter considers 
how visualizations of that data can be made useful for key stakeholders in educational settings. There are 
many potential stakeholders, including learners, their peers, teachers, parents, people who manage the 
funding, those reporting the effectiveness, system developers and researchers in education and educational 
technology. There are also many contexts for education and the way that a learning system fits into them. 
The Generalized Intelligent Framework for Tutoring (GIFT) is designed to try to accommodate all 
stakeholders by emphasizing reusability and domain independent authoring tools. . While all these 
stakeholders and contexts are important, one key area that data visualization in GIFT needs to formally 
address is learners and instructors in formal settings, which is the focus of this chapter. 

In the decades of research on ITSs and Artificial Intelligence in Education (AIED), learning data was 
designed so that the system could build and maintain a learner model; that learner model is essential as it 
drives the personalized teaching and learning that are defining features of ITSs and AIED.  A central 
question is how to also make use of that learning data, and the learner model, to create visualizations that 
help both students and instructors advance their learning and instructional objectives. One important body 
of AIED research that has tackled this challenge calls such a visualization an Open Learner Model (OLM) 
(Bull, 2020; Bull & Kay, 2016) - this is because it opened the system’s model of the learner. A more recent 
field of research, called learning analytics, has a slightly different emphasis. It explores how to capture 
learning data and to create interfaces onto that data for the teachers/instructors (Bodily et al., 2018). Both 
approaches require the design of both learner-facing dashboards and instructor-facing dashboards.  A key 
difference is that the design of the OLM is based on a learner model rather than learning data. Across all 
this research, there has been a bewildering diversity of visualizations and terms to describe them. As we 
identify the strengths, weaknesses, opportunities, and threats for ITS data visualization, we introduce 
definitions and frameworks to underpin understanding of the diverse previous work. 

A valuable foundation for the design of any visualization is to identify the key stakeholders and their needs 
that determine the purpose of visualizations. For learners, learning data visualizations can serve the follow 
purposes (Bull & Kay, 2016):  

● support metacognitive processes of planning, monitoring and reflection; 
● share and discuss data with peers to collaborate or to compete;  
● make choices about navigating through the system; 
● check the data, correct errors in the system, potentially including data that is for another person; 
● exercise the right to access and control learners’ personal data. 

 
The design of visualizations that address these needs can be guided by identifying system benchmark 
questions. These are questions that learners should be able to answer from the visualization. Table 1 gives 
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examples of these, as articulated in Kay and Kummerfeld (2019) and in Kay et al. (2022), which 
introduced the term benchmark question since this follows best practice in designing and evaluating 
interfaces in terms of the tasks that can be used in evaluation studies (Hartson & Pyla, 2012). See Table 1 
for examples of benchmark questions. 
 

Table 1. Benchmark Questions 

ID Abstract Benchmark Question Examples of concrete questions 

1 Am I making progress? 
 

In this problem solving activity, was my last 
step making progress? 

2 Am I meeting my own goals, over the short 
or long term? 

Have I reached mastery level in this topic? 
Have I reached mastery in all the topics? 

3 Am I meeting external goals  Am I on track for a pass? 
Am I behind the rest of the class? 
Am I behind the top 10% of the class? 

4 What changes might help me reach my 
goals? 

Should I stop working on this problem and 
reread the teaching materials? 

5 What is the meaning of the data and 
components modeled? 

The system models my reading skills - what 
does that mean? 

6 Can I trust the accuracy of the model? A friend did the last problem for me - so does 
this model show my knowledge? 

 
 
The first three questions are core for informing learning. To answer these questions, a student needs a 
visualization of their own data in a suitable form. For Question 1, a student needs to check their progress 
as they complete each learning activity. For Question 2, the information needs to be available in a form 
that enables the student to judge recent progress against their target.  
 
For Question 3, the visualization needs to provide more than just the individual student’s data. It should 
show that personal data matches external benchmarks. These may be mastery standards, such as the level 
of performance required to pass a subject. They may also be normative data that summarizes performance 
or other characteristics of fellow students. Importantly, the visualization should make it easy for the 
learner to compare their own data against the benchmark.  
 
Instructors need two forms of visualizations: individual and aggregate. The first, individual form is 
important for many teaching roles. For example, the teacher may meet the student to discuss their learning 
progress, help them overcome problems, and/or create a study plan. In this level, the purposes and 
questions map to the student ones above.  At the aggregate level, instructors need a visualization of 
learning data for a group of students. This is essential for teachers to self-monitor their pedagogical 
activities to improve their teaching and the students’ learning. It is also valuable for classroom 
orchestration and to enable a teacher to decide which student most needs their attention.  
 

https://www.zotero.org/google-docs/?C0s3rv
https://www.zotero.org/google-docs/?o0yYNl
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It is important to take a user perspective in designing each of the learning data visualizations intended to 
address the needs of one or more of the stakeholders. A user perspective should account for the broader 
aspects of human-system engineering for functionality, usability and desirability (Roscoe et al., 2018).  
Figure 1 distinguishes four forms of information that visualizations may have available.  The top green 
box is for learning data about a single student, for example their success on a problem-solving activity. 
The next green box is for aggregate level, such as the success for all students on that activity.  
 

 

Figure 1. Each visualization may present a user with a view of learning data (green) or learner models (blue), 
each at the level of an individual student and aggregated data from multiple students.  

The lower boxes in Figure 1 are for two forms of learner models. Much ITS work built the individual 
learner model that captures the system’s beliefs about the learner. For ITSs, the most important 
components in the learner model represent the learner’s knowledge. For example, a system that teaches 
programming in Python may have a learner model representing the user’s mastery of each of the main 
topics taught, such as variables and loops. It may also model other aspects needed to drive personalization 
of the teaching, such as the student’s misconceptions, preferences, goals, engagement, and psychological 
attributes.  
 
Figure 1 highlights the distinction between learning data and a learner model. Learning data is any data 
that a system collects about the learner as part of their learning activities and assessments in a learning 
system.  The data can be very rich and detailed. For example, a system could easily capture time-stamped 
records of all clicks. By contrast, a learner model is designed in three stages:  
 

● define an ontology of the components to be modeled,  
● mechanisms to collect just the relevant learning data for those components and  
● a method to use that data to infer the learner’s mastery of knowledge components and the values 

of other components relevant to learning.  
 

The learner model ontology provides a foundation for structuring an ITS visualization in terms of the 
learning goals that the system was created to teach. This opens the possibility for the visualization to 
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serve as a form of communication from the designer of the learning system to the learner as well as the 
instructor.    
 
Figure 1 distinguishes two forms of learner models, namely those that model an individual learner and 
those that model multiple learners. The aggregate models may range from small groups, such as a single 
class to tens of thousands of MOOC (Massively Open On-line Course) users. Unfortunately, the ITS 
literature too often uses the term learner model for both of these.   
 
The field of educational data mining has produced a body of work on learner models, often built using 
sophisticated machine learning. Here the term learner model typically refers to an aggregate learner 
model. For example, a simple learner model can be built from the data of thousands of users of a math 
teaching system that has open-ended problems.  Then suppose an individual student has taken three steps 
through a solution to solve a problem.  The teaching system can compare this with the aggregate learner 
model and inform the student about the percentage of students who correctly solved the problem after 
taking each of these three steps. If 80% of students who took the first two steps solved the problem but no 
student who took the third step did so, sharing this information could be a prompt for the student to 
reconsider the third step. Broadly educational data mining models are valuable for systems to make 
predictions about an individual, by making use of both the individual and aggregate learner models 
(Pelánek, 2017). 
 
Contemporary perspectives in the learning sciences (e.g., the second volume of How People Learn of the 
National Academy of Sciences, Engineering, and Medicine, 2018) have emphasized the idiosyncratic 
needs of individual learners, as opposed to one-size-fits-all models. This requires learner models for 
individuals. The learner models are very different for individuals versus multiple learners.  For the first 
two classes of benchmark questions in Table 1, designers need to draw on these theoretical foundations. 
For the third class of benchmark question, where the individual aims to make sense of their own learning 
data and learner model in relation to standards, educational theory also provides valuable guidance for 
supporting self-regulated learning. 

SWOT Analysis  

The experts at the GIFT workshop identified a number of strengths, weaknesses, opportunities, and threats 
in the SWOT analysis on data visualization.  Judy Kay gave a presentation on data visualization at the 
meeting, followed by a discussion among the experts and comments entered in an on-line PADLET 
software facility.  This section presents the highlights of the SWOT analysis.    

Strengths 

Advances in data visualization have benefitted from prior progress in relevant fields of research, and 
applications.  These efforts were acknowledged at the GIFT workshop, as summarized below.     

(1) Decades of relevant research in broader areas of cognitive science, human-computer 
interaction, human factors, learning technologies, data science, and information 
visualization. 

(2) Research advances in learner modeling. 

https://www.zotero.org/google-docs/?Ivbgbr
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(3) Advances in open learner models (data for the learner) and digital teaching platforms (data 
for the instructor). 

(4) Explorations of effective methods for organizing and depicting data for multiple purposes, 
such as for instructors (orchestration, whole class monitoring, reflection on overall learning) 
and for students (learning support, self-regulated learning, peer discussion). 

Weaknesses 

The experts identified a number of weaknesses in data visualization for ITSs and adaptive learning 
environments (ALEs).  Part of this can be attributed to the complexity, grain-size, and diversity of 
measures collected in these technologies, at least compared to conventional computer-based training 
that typically collects a handful of measures on learning activities, such as overall performance scores, 
progress on a small set of topics, attendance/dropout, training time, etc.  Another challenge is that 
learning materials in ITS/ALE technologies are highly adaptive to the learner and therefore presented 
under a complex set of conditions (as opposed to a rigidly scripted set of materials).  This presents 
complications in interpreting data because there are likely selection biases when presenting a 
particular pedagogical activity to a particular class of students.  The biases are hopefully carefully 
systematically addressed, but there are risks that need to be tracked and evaluated. For example, if a 
high performing learner receives more difficult pedagogical activities, how can the student’s 
performance be compared to a lower performing student?  Are particular learner populations put at a 
disadvantage when adaptive learning environments are delivered?  With respect to this chapter, this 
presents added challenges in the design of data visualization.  The weaknesses identified at the GIFT 
workshop are presented below. 

(1) Disagreement among researchers on the terms to use and their meanings, such as the examples of 
learner model presented above. 

(2) Minimal consensus on the definitions of different categories of learning environments and their 
associated methodologies for data analysis and visualization. 

(3) Barriers to communication and cross fertilization among multiple related research communities, 
such as AIED, ITS, LAK, L@S, HCI, human factors, Infoviz, etc. 

(4) Most people outside the ITS, AIED, and ALE community are not aware of or do not understand 
our work. 

(5) Challenges for stakeholders (students, teachers, researchers, public) to understand a visualization, 
such as data and visual literacy, accessibility, and cognitive bias. 

(6) Stakeholders (students, teachers, researchers, public) are not adequately trained on how to 
interpret visualizations that depict uncertainty, a key challenge for learning contexts where data is 
typically incomplete, uncertain and noisy, meaning that the results include considerable 
uncertainty. 

(7) Stakeholders (students, teachers, researchers, public) may misuse visualizations of learning data. 
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(8) Lack of principles and guidelines for addressing very different contexts, notably the very different 
demands where visualization is for fast (at-a-glance) use versus slow (reflective) use (Kay et al., 
2020). 

(9) Limited understanding of good ways to visualize long term data. 

(10) Challenges in accounting for uncertainty in learning data and honestly communicating data 
limitations. 

(11) Failure in designing learning software for easy collection of relevant data that is aligned with 
meaningful data information visualization. 

(12) Lack of established methods for bringing learners into a meaningful role in the entire process of 
collecting and interpreting their learning data, thereby giving learners agency, control and 
responsibility. 

(13) Lack of standards for what to present and corresponding lack of stakeholder awareness of what 
can be useful.  

Opportunities 

Correcting the weaknesses is, of course, an important class of opportunities in the future of ITS/ALE 
environments.  Experts at the GIFT workshop added a number of other opportunities for future research 
and development. These addressed formulating standards for data visualization design and increasing 
communication with researchers in other fields who can help us or benefit from our help to promote 
standards.     

(1) Overcoming the weaknesses identified above. 

(2) Timely definitions of alternative learning technologies, conceptual ideas, and ontologies with 
some modicum of consensus. GIFT and the IEEE learning standards movement are exemplars of 
such efforts. 

(3) Purpose-driven data design (designing data so that it will be useful). 

(4) Sharing standards with many relevant research communities that develop learning technologies. 

(5) Building bridges with HCI and Infoviz communities, with a focus on the particular nature of 
learning data and the purposes that matter for designing learning data visualizations. 

(6) Building bridges with the AI and FATE (fairness, accountability, transparency, and ethics in AI) 
communities to link learning and ethical concerns. 

Threats 

The threats articulated by Judy Kay and the experts at the GIFT workshop were very diverse and addressed 
multiple stakeholders in building, testing, and implementing ITS/ALE systems.  A systems perspective is 
needed to meaningfully respond to the threats and may take decades to mitigate because some of the threats 
involve different generations of stakeholders who have different expectations on learning as well as digital 
technologies. 

https://www.zotero.org/google-docs/?U0fKQN
https://www.zotero.org/google-docs/?U0fKQN
https://www.zotero.org/google-docs/?U0fKQN
https://www.zotero.org/google-docs/?U0fKQN


 
 

121 
 

 
(1)  Inappropriate use of data that conflicts with rights to privacy promotes a surveillance culture. 

(2)  Failure to account for all the uncertainty in learning data that may mislead stakeholders. 

(3) Failure to carefully account for the gap between the intended purpose of the data visualization 
and what has actually been possible to create. 

(4) Potential tensions between recommendations of educational theory and stakeholders who want 
social comparison information with risks of ignoring the theory. 

(5) Failure to create systems that nurture learner control and responsibility. 

Concrete Examples 

This section presents examples of visualizations to illustrate key ideas above. These examples take elements 
from previous work, such as reviewed in Bull (2020), but we have designed them purely to make key ideas 
clear. 

Figure 2 shows a very simple form of OLM similar to skill-meters. It shows an individual learner’s progress 
for a context where there are seven topics. A learner would see the initial form, in Figure 2a, with a legend 
and seven gray cells indicating there is currently no data about the learner’s progress. Figure 2b shows the 
OLM after the learner has completed a learning activity (the legend is not included in the screenshot). Now 
the cells for Topics 1, 2 and 5 have become blue, with Topic 1 indicating mastery and the other two 
indicating beginner level. Figure 2c now displays the value of cells which have changed since the previous 
stage. The next view of the OLM, in Figure 3a is after the user has completed the next learning activity. 

 
 
 

 

Figure 2a. Initial Visualization  

 

https://www.zotero.org/google-docs/?UAPo09
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Figure 2b. After learner completed the first activity   

   

 

Figure 2c. After learner completed the second activity   

Figure 2. OLM visualization to enable a learner to answer: Am I making progress? This was designed for 
quick thinking - at-a-glance. It shows three stages (a) at start up.  It also shows the legend which is not 

included in (b) or (c) which show the changes after learning activities.  

The main row of cells, each showing the current state of the learner model is similar to the many skill-
meters in AIED systems (Corbett & Anderson, 1994; Guerra-Hollstein et al., 2017; Long & Aleven, 2017; 
Woolf, 2010) and OLMs for independent learner models (Bull, 2020; Bull & Kay, 2007, 2016).  

One key decision about the design of this part of the visualization is the choice of the number of levels to 
display. In this example, we chose three levels (mastery, intermediate and beginner) in addition to the gray 
for no data. There are two important reasons for this choice. The first is based on the requirements for user 
perception of the levels for fast-thinking, at-a-glance interpretation (Kay et al., 2020). For this, it is 
important to have a small number of levels that the user can easily distinguish.  

The second reason relates to a core issue in learner modeling; there is uncertainty in modeling 
learning. There are several factors that contribute to this uncertainty. The data about the learner is 
incomplete, noisy, and uncertain. This is unavoidable. This is because the designer of a learning 
interface needs to make design trade-offs between the amount of time a learner spends doing 
assessment tasks and the need for accuracy in the model. For example, it is well known that people 
make both slips and errors in learning activities. One way to reduce the impact of slips is for the 
learner to do repeated assessments. But this may be a waste of previous learning time. Beyond the 
uncertainty in the raw data, there is uncertainty in how to reason about a collection of evidence to 
conclude how well the learner knows a particular topic. A substantial body of AIED work has 
explored many ways to do this. Some effective systems have used very simple methods, such as 
an average of scores on a small number of recent assessment activities. In light of all this 
uncertainty of the whole modeling process, it is only meaningful for a visualization to depict a 

https://www.zotero.org/google-docs/?5TbFO1
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small number of values. We still need research to determine whether learners interpret this as 
indicative of the uncertainty.  There has been valuable work that has invited the learner to self-rate 
their knowledge and their certainty in that assessment and then to see the system’s corresponding 
assessment (Al-Shanfari et al., 2017). 

We now consider the second row of cells in Figures 2b and 2c. They enable a learner to see how 
much their learner model changed in light of the data from the last learning activity. We have not 
seen this in OLMs but included it so that the learner can readily see what changed in the learner 
model. If the OLM is automatically updated when the learner completes an activity (or a part of 
an activity), an on-screen visualization could have some movement to draw the user’s attention to 
the change. Alternatively, the interface could require the learner to click the OLM to make it 
update. In either case, the design in Figure 2 enables the learner to easily see whether there has 
been any change (indicated by the presence of any cells on the Previous row). In a classroom 
setting, this could be valuable for a teacher who could move around the class, glancing at the 
OLMs to see both the current state and the recent changes. This aspect of the design is aligned 
with more general design principles (Zapata-Rivera et al., 2020) for ITSs. 

We have briefly described how the design of the visualization in Figure 2 was driven by the user 
goal to answer our first question in Table 1, Am I making progress? This design may also support 
the second question, Am I meeting my own goals? This will be the case if the learner can make 
sense of the three levels and align them with their personal goals.  

Figure 3 shows how a version of OLM designed to enable the learner to answer the third question 
in Table 2, Am I meeting external goals?  The first row of cells is identical to that in Figure 2b. 
The second row shows the performance of a particular population the user selected to compare 
themself against. Any such visualization comes with the well known risks of social comparison 
(Hanus & Fox, 2015; Khan & Pardo, 2016) but people frequently use it to assess themselves 
(Festinger, 1954) and it has been used in OLMs (Brusilovsky et al., 2015). For this chapter, it is 
important as one example of a visualization designed for slow, considered thinking (Kay et al., 
2020). The remaining questions in Table 1 also require slow thinking. Additional design elements 
are needed for each of them.  

 

Figure 3. OLM visualization to enable a learner to answer: Am I meeting external goals? This was designed 
for slow thinking as the learner carefully compares their progress with that of students in the top 10% of the 

cohort.  

These examples illustrate the way that the benchmark questions can be used to drive design of visualizations 
of learning data and OLMs.  This reflects a user-centered design approach that starts by determining which 
of the questions are important for each of the stakeholders. Once that foundation has been established, 
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standard user-experience and Human Computer Interaction (HCI) methods (Hartson & Pyla, 2012) need to 
design, implement and evaluate the visualizations to assess whether they do enable the stakeholders to 
actually answer these questions. 

Links to GIFT  

GIFT has been in active development as a research project since 2010. GIFT has many goals which include 
being able to be used for research, as well as in a classroom environment. Due to constraints that come from 
attempting to cover all domains, and all uses of ITSs, there are certain elements of GIFT that are further 
developed than others. Specifically, the tools that are of use to researchers generally require less interface 
design and have less demanding usability considerations because the researchers have high digital and data 
literacy.  In contrast, interfaces that are meant for less technical end users have not yet been adequately 
addressed in many cases. For instance, there is an ability for an instructor to extract data from their student’s 
performance in the ITS. However, it requires using a data extractor tool and selecting the information to 
include in the output report. Many of these options for inclusion in the report are highly technical, and do 
not necessarily use terminology that is aligned with that of instructors. There is a current gap, and an 
opportunity to implement data visualizations in GIFT, to help support the understanding of student 
performance for both the instructor, as well as the student themselves. 

Examining data visualizations that have been created for other ITSs and frameworks is beneficial for the 
GIFT project. In particular, it is important for commonalities between systems that cover many different 
topics to be examined to allow GIFT to retain flexibility in the topics that are covered, while also adding 
utility for instructors and students. It is important for GIFT to make design choices that consider Figure 1, 
about the desired level view of students that can be examined, and the approach to be used. In the case of 
GIFT, as it is generalized, both data at the student level, as well as the cohort level is highly applicable. It 
may also be relevant to use the defined learner model as a structure for presenting information to the 
instructor, such as how students performed on concepts and topics, errors that they made, and number of 
attempts to master the material. A further consideration of the design of data visualization tools for GIFT 
is for team training, and how the learner is performing themselves, as well as their contributions to a team 
task, and the overall team’s performance. 

As with the other tools that were created for GIFT, the approach that will likely work best for developing 
data visualization tools within GIFT is to start with a traditional classroom focus which focuses on 
individual student and cohort performance. This initial design can be made with future goals for team 
tutoring in mind, but can produce a fully functional and realized data visualization tool that addresses the 
performance of individuals and classes. 

The SWOT Analysis of Data Visualization in ITSs will be highly relevant to GIFT’s development of data 
visualization tools and interfaces. The highly generalized nature of GIFT is challenging as it requires the 
system design to remain as flexible as possible.  It also requires the GIFT tool development to take into 
account visualization approaches of many different systems in varying topic areas. 
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Educational Testing Service1; Eduworks Corporation2; University of Sydney3; Affinity Associates LLC4 

Introduction 

Overview 

This chapter defines competency-based scenario design (CBSD) and discusses strengths, weaknesses, 
opportunities, and threats (SWOT) to this approach. We define scenarios and competencies from different 
perspectives, and we discuss implications of these definitions for the concept and scope of CBSD. We then 
review the SWOT analysis. Strengths include that CBSD supports training approaches that have proven 
efficacious and CBSD can identify critical training needs. Among the weaknesses is that few training 
systems are currently designed to take advantage of CBSD so that high quality efficacy evidence for CBSD 
training is limited. Among the opportunities are that human tutoring works, when implemented well, and 
the ITS (intelligent tutoring system) promise has always been to meet human tutoring standards. Threats 
include the danger of overhyping. We suggest how the Generalized Intelligent Framework for Tutoring 
(GIFT) might improve, by demonstrating value in the market, and by expanding the kinds of assessments 
that can be easily accommodated, such as situational judgment tests and collaborative problem-solving 
tasks, as well as the provision of technology for scoring ill-defined, subjective, and complex tasks. We 
conclude with a discussion of the benefits of fielding a widely used competency training system for general 
competencies to get feedback on the nature of successful competency performance. 

Background 

CBSD is an approach to designing instruction that teaches and assesses competencies in scenarios. A 
competency is “the set of skills, knowledge, abilities, attitudes, behaviors, and habits of practice required 
in the performance of an activity or task within a specific context" (IEEE, 2022)2.  

A scenario is simply a description of a sequence of hypothetical events or “imagined future” events (Mor, 
2013, p. 195). But in software design for human-computer interaction (HCI), scenario-based design is a set 
of techniques in which the system future state is described at an early point in the design process (Rosson 
& Carroll, 2012). Scenarios are stories that involve an agent and a goal. Scenarios describe the setting, 
participants (actors and agents), tasks, goals, objectives, and capabilities of the participants, tools available, 
and actions and events that lead to an outcome (Carroll, 2000). In the training context, scenarios might 
represent tasks or problems that need solving: “scenario-based learning (SBL) is a method of using 
specifically designed scenarios for interactive teaching <affording> immediate feedback, team 
collaboration, real-world thinking, and application in a safe environment where negative outcomes do not 
harm stakeholders or equipment” (Allen Interactions, 2022). A training scenario might involve training 

 
 
2 Similar definitions, from an organizational psychology perspective, have been expressed by Fleishman et al. 
(1995), Bartram et al. (2002), Bartram (2011), and Campion et al. (2011). Chouhan and Srivastava (2014) (also 
Stevens, 2012) provide histories of definitions and adopt Bartram’s (2011). 
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objectives (e.g., competency development), a scenario narrative, and trainee tasks or observations (i.e., 
assessments), with optional storyboards and tools (Graffeo et al., 2015, p. 1488).  

By our definition, the following training systems are ones that have included elements of competency-based 
scenario design: 

SHERLOCK (Lesgold et al., 1988): an early CBSD effort; a practice environment for complex 
troubleshooting jobs on the avionics systems of F-15 (later, F-18) aircraft in the U.S. Air Force. 
Trainees are given malfunctioning electronic modules to troubleshoot (see also, Pokorny et al., 
2013). 

The Tactical Language and Culture Training Systems (TLCTS) (Johnson & Valente, 2009): 
an environment in which students rapidly learn foreign languages and culture through agent 
interactions, spoken language training, and tutoring. Students carry out a civil affairs mission by 
entering a town, establishing contact with locals including the local leader, with all of these 
represented as Artificial Intelligence (AI) characters in an interactive 3d game. 

Negotiation Training (Johnson et al., 2019). This system trains participants to claim and create 
value in a negotiation exercise with a virtual partner by exchanging information with their partners, 
exploring tradeoffs (log rolling), anchoring with early offers, avoiding early concessions, and 
expressing willingness to walk away, receiving personalized feedback throughout the exercise. A 
version of this exercise was implemented in GIFT. 

Mission Essential Competency (MEC) training for F-15 Mission Training Centers (Colegrove 
& Bennett, 2004): live, simulated, and virtual training for aircrew based on 18 sortie missions. The 
system is adaptive and competency-based. 

STE Experiential Learning - Readiness (STEEL-R), which gathers data from synthetic, semi-
synthetic, and live environments and includes a competency-based data strategy based on GIFT, 
the Competency and Skills System (ADL, 2020), and a competency-based exercise design tool 
(Goldberg et al., 2021; Hernandez, et. al., 2022). 

CBSD is an approach to developing ITSs. It is a method for designing a certain kind of training experience 
(scenarios, GIFT’s domain module) for a certain kind of training (competency training, in GIFT’s 
pedagogical module) to elicit certain kinds of evidence (evidence for competence in GIFT’s learner 
module).  

Prior to presenting the SWOT analysis and lessons that can be brought to GIFT development, we first 
examine in more depth definitions of competencies and scenarios. Our goal is to draw ideas from diverse 
literatures to help inform GIFT development. 

Competencies 

The competencies movement, favoring mastery evidence over seat time, has been influential in education 
and training.  

Higher Education 

In higher-education, the Carnegie Unit and the credit hour are firmly established in the American education 
system to measure progress toward degrees, but there are calls for reform towards competency-basic metrics 
(Silva et al., 2015). Demonstrating competencies can be an alternative to accumulating credits as a means 
for degree attainment. As Western Governor’s University (WGU) (2022) puts it in their promotion 
materials:  
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What is competency-based education? Simply put, it measures skills and learning rather than time 
spent in a classroom. Students progress through courses as soon as they can prove they've mastered 
the material, rather than advancing only when the semester or term ends. 

At WGU students access courseware and demonstrate competency through objective assessments or graded 
papers or presentations. Competencies are the knowledge and skills that would be acquired from taking a 
course, and courses and competencies are much the same as in traditional higher education, as are the types 
of degrees issued. Southern New Hampshire University, a prominent competency-based example, issues 
undergraduate, graduate, and MBA degrees in over 180 traditional academic programs such as history, 
economics, and nursing. McClarty and Gaertner (2015, p. ii) point to the crucial role assessments play in 
competency-based education (CBE). They argue that the “viability of CBE programs hinges on the 
credibility of these programs’ credentials in the eyes of employers. That credibility, in turn, depends on the 
quality of the assessments CBE programs use to decide who earns a credential.” 

K-12 Education 

In U.S. K-12 education, too, CBE emphasizes evidence of mastery over seat time. CBE is defined by 
meaningful assessment that provides actionable evidence, personalized pathways with learning 
progressions, varied pacing, emphasis on transferable skills (e.g., problem-solving, creativity, 
collaboration), differentiated (i.e., personalized) support, equity strategies, and rigorous learning 
expectations (Levine & Patrick, 2019; Tan et al., 2017). General principles exist for defining 
competencies—"explicit, measurable, transferable learning objectives” (Freeland, 2014, p. 13), but no 
specific competency-defining procedure is used and instead the process is decentralized with different 
schools and districts defining them in different ways (Freeland, 2014, p. 13-15). Still, there is considerable 
discussion of the benefits of CBE targeted to practitioners (Reich & Huttner-Loan, 2020). There are also 
proposals for assessing competencies (Burrus et al., 2023). But little research has been conducted thus far 
on CBE efficacy and implementation (an exception is Steiner et al., 2015, who reviewed personalized 
learning). 

Medical Education 

Medical education has embraced the competency model particularly in graduate medical education (i.e., 
post M.D. or D.O. receipt in the U.S.) with competency-based residency as an alternative to the traditional 
time-in-training model (Ebert & Fox, 2014; Mills et al., 2020; Stodel et al., 2015). The Accreditation 
Council for Graduate Medical Education ([ACGME], Al-Temimi et al., 2016) has identified six 
competencies for which students must provide evidence: patient care, medical knowledge, practice based 
learning and improvement, systems based practice, professionalism, and interpersonal skills 
communication, each of which is specified further (e.g., communication includes communicating with 
patients, with other physicians, as a member of a team, in a consultative role, and by maintaining good 
records). This illustrates the breadth and nature of competencies—competencies are broad, not narrow, and 
soft skills are emphasized. Residents provide evidence in the form of Miller’s (1990) pyramid (which 
includes the levels knows, knows how, shows how, does), through multiple-choice tests, surveys, patient 
surveys, and other indicators, set by the program.  

Workforce 

In organizations, competencies are used for talent management--aligned recruiting, hiring, training and 
development, compensation, and promotion and succession management. Because human resources 
organizations such as Saville & Holdsworth Limited (SHL) (Bartram, 2011; Bartram et al., 2002) have 
identified a market for assisting other organizations in defining competencies specific to those 
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organizations, it is instructive to review how SHL provides such assistance. SHL created a general 
competencies framework, drawing from competency models from other organizations (at the time of 
development, those included Hay, PDI, and Lominger), then tailors the competencies to industry and 
organization clients.  

     In defining competencies, SHL (Bartram et al., 2002) highlight some of their specific features. 

● Competencies are behavioral repertoires and not the same as knowledge and skills; 

o they also are not the same as competence. Competencies relate to underlying behavior; 
competence is an attainment level of the competency; 

● Competencies can be hierarchically defined. For example, SHL defines the “Great Eight” 
competencies (Bartram, 2005): leading and deciding, supporting and co-operating, interacting and 
presenting, analyzing and interpreting, creating and conceptualizing, organizing and executing, 
adapting and coping, and enterprising and performing.  More fine-grained competency 
breakdowns exist specifying 20 dimensions and further into 112 components.  

● Competencies are associated with job types. SHL distinguishes Management, Customer Contact, 
Directors; However, an even more elaborate job type characterization comes from the U.S.’s 
occupational database, O*NET (O*NET OnLine, 2022), which differentiates 900 occupations 
(accounting for all occupations in the U.S.)  each of which contains many job titles; O*NET is 
organized into 19 sectors and hierarchically arranged within sector down to the occupation and 
job type levels.  

● Competencies can be characterized by level of complexity. O*NET (O*NET OnLine, 2022) 
defines five job zones (Zone 1 to Zone 5), ordered by education and experience requirements.  

●  The competency framework is then used to build custom, organization-specific competency 
models.  

In education, competencies are defined by the curriculum. In organizations competencies are typically 
defined through competency modeling (or competency mapping), a process to determine what workers must 
be able to do for the organization to be successful (Campion et al., 2011; Chouhan & Srivastava, 2014; 
Stevens, 2012). Competency modeling identifies competencies linked to business objectives by 
distinguishing top from average performers; it allows for progressions across levels and is cast in 
organization-specific language. The process is initiated with articulation of objectives by executive 
management. This is a contrast to traditional job task analysis, which surveys workers for the tasks they do. 
Competencies are not lists of knowledge, skills, abilities, and other factors (KSAOs), but start with what 
the organization wants workers to be able to do, “backing into the tasks and KSAO’s” (Campion et al., 
2011, p. 227). Campion et al. (2011) define best practices in competency modeling—how they are 
identified, organized, and communicated, and how they are used for organizational development and 
alignment of Human Resource (HR) systems.  

CareerOneStop (2022), a partner of the Americanjobcenter network and sponsored by the U.S. Department 
of Labor, has created a competency model clearinghouse, which provides industry models, lists use cases, 
provides resources, and includes a build-a-model tool that helps organizations build a competency model, 
based on a competency library. The Society for Human Resources Management ([SHRM], n.d.) has created 
a Competency Model (defined as a set of competencies) for HR professionals based on 111 focus groups 
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for 1200 HR professionals following best practices guidelines (Campion et al., 2011; Shippmann et al., 
2000).3  

Military  

Colegrove and Alliger (2002) defined mission essential competencies as higher order, job-contextualized 
functions less general than ones found in typical business environments (Tossell et al., 2006). Like the seat 
time versus mastery issue in CBE and Computer Based Training (CBT), Colegrove and Bennett (2004 
abstract) argued that competency-based aircrew training emphasizes “the required proficiency rather than 
the number of times the mission has been performed.” They suggest that competency-based training 
provides “the ability to compare individual aircrew performance to a defined proficiency level, maintain 
acceptable levels of performance and target areas requiring improvement,” thus “focus(ing) on mission 
performance rather than mission type” (p. 2). Thus, the Colegrove and Bennett (2004) application to aircrew 
training shares the perspective from organizational psychology that competencies are defined with respect 
to organizational objectives (“mission performance”) and based on outcomes (“required proficiency”), and 
that there is a clear pathway to improved proficiency (“target areas requiring improvement”).  

Psychometrics and Measurement Science 

As noted in both the competency-based education (McClarty & Gaertner, 2015) and competency-based 
training literatures (Campion et al., 2011, p. 229), assessment plays a crucial role in establishing 
competency proficiency levels—seat time is downplayed and competency evidence is highlighted. Thus, 
competency-based design will by its nature emphasize assessment due to its reliance on assessed 
proficiency rather than experience counts and other proxies. As such, it is useful to consider psychometrics 
and measurement science perspectives on proficiency assessment as there are numerous psychometrics 
frameworks and concepts that are relevant to the task of assessing proficiency. We suggest several possibly 
relevant concepts here.   

Performance standards (and performance assessments, performance level, performance-level 
descriptors)  

The Standards for Educational and Psychological Testing American Educational Association, American 
Psychological Association, National Council on Measurement in Education [AERA, et al.], 2014) 
(hereafter, The Standards) defines performance standards as “descriptions of levels of knowledge and skill 
acquisition contained in content standards, as articulated through performance level labels (e.g., “basic,” 
“proficient,” “advanced”); statements of what test takers at different performance levels know and can do; 
and cut scores or ranges of scores on the scale of an assessment that differentiate levels of performance.” 
(p. 221). The Standards provides similar definitions for related concepts. There is a large literature on the 
use of performance standards and related concepts for designing assessments, setting standards and 
cutpoints, and reporting (Czisek, 2006; Hambleton & Pitoniak, 2006; Lane & Stone, 2006).  

 
 
3 SHRM identified 9 competencies: Business Acumen, Communication, Consultations, Global and Cultural 
Effectiveness, HR Expertise, Leadership & Navigation, Relationship Management, and Ethical Practice, that can be 
used to identify strengths and areas for growth, design professional development activities, design talent acquisition 
plans including selection assessments, identify department strengths and gaps, and communicate the role HR can 
play within the organization. 
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Formative versus reflective latent variable models and network psychometrics.  

Reflective latent variable models state that a latent variable, such as cognitive ability or a personality trait 
causes item responses (and test scores). Such models are the foundation for concepts such as reliability and 
factor analysis, classical test theory and item response theory. However, competencies may be 
multidimensional constructs (e.g., the social and intellectual parts of leadership may be independent; can 
do and will do aspects of competencies may be independent) and so reflective, unidimensional latent 
variable models are not suited to determining psychometric properties of competencies, such as reliability 
or validity (Edwards & Bagozzi, 2000). Alternative specifications such as multidimensional item response 
theory (MIRT) (Reckase, 2009), formative latent variable models (Bollen & Bauldry, 2011) or network 
psychometrics (Borsboom, 2022) may be useful. Wang et al. (2018) demonstrate how cognitive diagnostic 
modeling (CDM) can be used in student modeling, and Deonovic et al. (2018) show correspondences 
between item response theory and Bayesian Knowledge Tracing. 

The reason dimensionality is important from a training perspective is that training on one aspect (or 
dimension) of a multidimensional construct would not be expected to transfer to a different aspect (or 
dimension)—training the social aspects of leadership would not transfer to the intellectual decision-making 
aspects. But training on any aspect of a unidimensional construct would be expected to transfer to other 
correlated aspects of that construct—training on a word processing system transfers to other word 
processing systems (Singley & Anderson, 1989). This is not to say that there is not transfer across positions; 
there is (Gathmann & Schönberg, 2010). But that is because to be successful at a position requires learning 
all aspects of that position. Initial training per se on one aspect will not transfer to an independent aspect. 

Learning progressions/Learning trajectories 

Learning progressions (LPs)4 “are theories that describe students’ knowledge and skills of a certain content 
area in an increasing order from simpler to more sophisticated” (Pham, 2019, p. 28); or “hypothesized 
descriptions of the successively more sophisticated ways student thinking about how an important domain 
of knowledge or practice develops as children learn about and investigate that domain over an appropriate 
span of time" (Corcoran et al., 2009, p. 37). Also, “most students' understanding will move through these 
intermediate conceptions in roughly the same order, though perhaps at quite different rates…” (Corcoran 
et al., 2009, p. 42). Learning progressions are different from stage theories, such as Piaget’s (1952) and 
Kohlberg’s (1958) in that they can be seen as “modal paths, meaning paths that most students take” (R. 
Bennett, personal communication, November 4, 2022) rather than necessary developmental stages 
(Confrey, 2018, p. 9). Learning progressions or learning trajectories are useful because, theoretically, they 
can serve as testable models of learning (Choi & Mislevy, 2022). Practically, they can provide the basis for 
curriculum materials and practices, instructor training (professional development), and diagnostic 
assessments (Confrey, 2018, p. 14). The psychometrics framework of CDM is suited to accommodate 
learning progressions (Chen et al., 2017; de la Torre & Douglas, 2004; Kizil, 2015; Rupp et al., 2010); also, 
hidden Markov models and dynamic Bayesian networks (Choi & Mislevy, 2022; von Davier et al., 2021) 
are suited to test as well as possibly to discover learning progressions (Jia et al., 2021).   

Hierarchical relationships 

In both Bartram (2011) and Campion et al.’s (2011) characterizations, competencies exist at multiple levels 
of abstraction from a low level (Bartram proposes a competency system with 112 components) to a high 

 
 
4 Confrey (2018) points out that learning progressions as a term dominates in science education, but that in 
mathematics education learning trajectories is more common. The latter term may denote more finer cognitive 
distinctions, but the two terms are often treated interchangeably. 
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level (Bartram [2011] proposes 8; Campion et al. [2011] suggest “a few”). A psychometric measurement 
system must be capable of modeling and reporting on competencies at multiple levels in the hierarchy. Kay 
and Lum (2004) propose ontologies (essentially, hierarchical student models) to enable ontological 
inference, inferring student knowledge at one level based on evidence from a different level. Shute and 
Zapata-Rivera (2012) present a related proposal. Within psychometrics, a similar function is served by 
hierarchical item response theories (Johnson et al., 2006; Rijmen, 2011), hierarchical cognitive diagnosis 
models (de la Torre & Douglas, 2004; Ma et al., 2022), and network approaches that can handle hierarchies 
(Borsboom, 2017; 2022). Perhaps the fundamental difference between proposals such as Kay and Lum 
(2004) and psychometrics approaches are that the latter approaches model measurement error using 
identified models and evaluates model fit to the observed response data. This has implications for the 
confidence one has in assertions about student knowledge based on response evidence.  

Scenarios 

There are two senses of scenario in CBSD. Scenarios, or design scenarios, are an approach to human-
computer interaction (HCI) design, an alternative, at least in emphasis, to the functional design approach 
(“rational decomposition into features and functions,” Carroll, 2000, p. 316) traditionally used in software 
development. Scenarios can be stories, simulations, use cases, or storyboards (Alexander & Maiden, 2004), 
and their role in system development is to highlight how users will interact with the system, what their 
needs will be; and to enable early prototyping and system evaluation (Carroll, 1995): “…they are 
simultaneously concrete and incomplete; they are at once dreams, design arguments, scientific analyses, 
and software specifications…they are all about us by being all about the contexts within which we 
experience and act” (Carroll, 2000, p. 316). 

Training applications of scenarios may refer to this software development aspect, but they also refer to two 
other roles of scenarios: as providing learning and practice opportunities, and as contexts eliciting evidence 
for the skills or competencies being taught. Consider the following definitions of scenarios, simulations, 
and scenario-based learning: 

● SCENARIOS: “information-rich task/problem contexts that are closely aligned with real-world 
situations that professionals face on their jobs….rather than stripped-down abstract 
simplifications.” (Sinatra et al., 2022, p. vi). 

● SIMULATIONS: “an educational tool or device with which the learner physically interacts to 
mimic an aspect of clinical care for the purpose of teaching or assessment” (Cook et al., 2013, for 
health professions education). 

● SIMULATIONS (second definition): “approximations of practice in which the complexity is 
reduced … can help engage learners in specific aspects of professional practice and are promising 
in order to avoid confusion and efficiently use resources for learning and instruction. These 
approximations of practice can be realized in higher education with simulations, which allow 
students to use authentic problems and also to create a learning environment to practice and 
facilitate the acquisition of target complex skills…” (Chernikova et al., 2020, higher education). 

● SCENARIO-BASED LEARNING: “SBL (also called “problem-based learning” or “case-based 
learning”) is an instructional environment in which participants solve carefully constructed, 
authentic job tasks or problems. While solving the problems, they are carefully guided to learn 
the associated concepts, procedures, and heuristics of expert performers.” (Clark, 2009). 
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Simulations, scenarios, and scenario-based learning are not identical concepts, but they overlap 
considerably and it is useful to consider them together. Having realistic scenarios is generally useful in 
training but Sinatra et al. (2022) also point out that a realistic scenario might sometimes not be useful 
because the real-world situation has changed or the scenarios are unable to elicit evidence for a competency 
being trained. 

Scenarios in the Military 

There is a long history in military settings of using scenarios to simulate performance environments for 
training, including combat and air training environments. Tossell et al (2006) describe an application of the 
United States Air Force’s Mission Essential Competency (MEC) framework to training in the Air and Space 
Operations Center (AOC). Training is conducted at many levels, such as classroom training, large-scale 
exercises (e.g., Blue Flag exercise), on-the-job training, and most recently, in the synthetic training 
environment (STE) being developed by the U.S. Army Futures Command. There, AI generated simulations 
“not only construct and replicate tough and realistic scenarios for Soldiers, but also collect detailed data on 
how Soldiers react under pressure, further informing training needs and operational planning methods and 
continually increasing training thresholds” (Thompson, 2022). While projects such as STEEL-R (Goldberg 
et al., 2021; Hernandez et. al., 2022) look to integrate CBSD into synthetic and live environments in the 
future, CBSD is currently already in extensive use in part-task trainers or simulators, which provide focused 
training on key competencies, particularly ones that have been identified as essential and critical to 
improved trainee performance. In this scheme, simulated training scenarios or vignettes are formed from 
collections of tasks, which in turn derive from training objectives and mission essential competencies, 
knowledge, and skills.  Specifically, what are referred to as developmental experiences are shorter, focused 
scenarios designed to provide the greatest number of knowledge and skill elements in a simulation, that is, 
rich scenario events providing targeted opportunities for learning.  

Psychometrics and Measurement Science 

Psychometrics, particularly item-response theory (IRT), assumes that responses are a function of both 
person and item characteristics, providing a framework for modeling responses in scenarios. Scenarios 
reflect complex items, with multiple potential influences on item responses, such as knowledge of the 
context as well as a requirement for the skills that the construct or sets of constructs being evaluated 
represent. Because of the multidimensional nature of scenarios, cognitive diagnostic models (CDMs) (Xin 
et al., 2022) may be particularly well suited for the modeling of scenario responses. With CDMs, one 
specifies the constructs that may be invoked in a set of scenarios (or items) in the form of a Q-matrix, a 
binary matrix of items by item-required attributes. These binary item-attribute relations are typically 
specified in advance by experts (Culpepper, 2019) in a confirmatory sense (i.e., 1 if the attribute is required 
on the item, 0 otherwise), but exploratory approaches that discover appropriate Q-matrices are also possible 
(Ma & Hu, 2021). CDMs also include capabilities for modeling growth and change in competencies over 
time (Kaya & Leite, 2017). 

Some other key concepts relating to the psychometrics of scenario response modeling are reliability and 
construct irrelevant variance. Reliability is the means “to quantify the precision of test scores and other 
measures” (Haertel, 2006, p. 65). One way to increase reliability is to increase test length, or as applied 
here, the number of scenarios in which a trainee would participate (assuming each scenario elicits a 
response) or the number of response-eliciting events within a scenario. With a test like a vocabulary test, it 
is straightforward to increase reliability, r, by increasing by a factor of k the number of vocabulary items 
(for example, k = 2 increases reliability to 2r/[1 + 2r]). It may not be as simple to double the number of 
scenarios or response-eliciting events, depending on the nature of the scenario.  
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A SWOT Analysis of Competency-Based Scenario Designed Instruction 

This background provides a definition of competency-based scenario design (CBSD) from the perspective 
of different research and practice communities. CBSD is several things: it is a scenario approach to 
designing HCI environments, a training approach that uses scenarios to train on, and a way to design 
competency-based education or training. We identify strengths, weaknesses, opportunities, and threats 
related to CBSD instruction from these different perspectives. 

Strengths 

CBSD supports training approaches that have proven efficacious. CBSD, as discussed in this chapter, 
supports ITS training that uses scenarios. But do ITSs and scenarios produce learning gains relative to a 
typical-instruction baseline. The definition of ITSs varies (Kulick & Fletcher, 2016)—a traditional 
definition reflects GIFT structure (an ITS is one that includes domain, pedagogical, and student models); 
an alternative defines ITSs as providing prompting, hinting, and support feedback during rather than only 
after problem solving (VanLehn, 2011). Defining ITSs with this latter definition, combined with author and 
expert ITS designation, Fletcher and Kulik (2015) found that ITSs were efficacious, relative to conventional 
instruction, although with considerable variability. They estimate an average effect size of .66 SD, but as 
Nickow et al. (2020) point out, Kulik and Fletcher included non-experimental studies and lab studies, which 
likely show larger effect sizes than field studies. Ma et al. (2014) and Nesbit et al. (2014) similarly found 
evidence for ITS efficacy (.43 SD for Ma et al., 2014) for ITSs. These studies did not include (or identify) 
scenario ITSs, but scenario training, when defined as simulations, also has been shown to produce gains.  
Simulation training (compared to non-simulation instruction) has been shown to improve outcomes in 
medicine (Lorello et al., 2014) and in higher education more generally, moderated by including reflection 
(more beneficial for high prior knowledge learners) or scaffolding with examples (relatively more beneficial 
for low prior knowledge learners) (Chernikova et al., 2020).  

CBSD can identify critical training needs. CBSD leads to systems that train competencies, and many 
aspects of the competency modeling process are useful for identifying the most important training 
requirements for an organization. Competency modeling starts at the top, considers the organizational 
context, links competencies to organizational goals and objectives, including future objectives, and 
promotes discussions about proficiency levels. The process can be rigorous in identifying competencies 
and levels, using traditional job analysis techniques such as subject matter expert (SME) interviews, 
brainstorming with focus groups, survey methods, critical incident techniques, and employee surveys that 
get ratings of competency importance and the degree to which the competency differentiates high from 
average organizational performers (Campion et al., 2011). This process for identifying competencies 
ensures that training focuses on professional development that will be the most important to an organization. 

Competencies are the right grain size for training. The competency modeling process, particularly as 
implemented in workforce settings, ensures that important competencies are the ones selected for training. 
The process also is designed to identify the right grain size for training, and for Human Resources (HR) 
systems alignment generally (for personnel selection, compensation, promotion, as well as training). 
Because through competency modeling managers have articulated the organizational need, developing 
training to serve that need is relatively easy to justify, as is competency-based evaluation of the training 
and trainees.  

If the goal is to train on scenarios, which CBSD is for, scenario design is a useful approach. This pertains 
to scenario design as an HCI strategy (Carroll, 2000). Scenario settings, actors, goals, intentions, actions, 
and resolutions can be discussed with designers and users (instructors and trainees) early in the design 
process. For example, Alliger et al. (2004) describe the process of developing scenario training through a 
series of workshops involving SMEs focused on the competencies for a position, and the specific training 
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needs for that position. Such discussions can involve preparing prototypes using sketches, storyboards, 
wireframes, videos, and rapid prototyping tools. Scenarios force attention on contextual details and 
temporal dynamics. Scenarios are flexible representations tied closely to use. They are easily developed, 
shared, manipulated, and categorized for later use. They can be used for ideation in scenario-mapping 
exercises.  

Scenarios allow trainees to practice on rare but important or critical events. Lesgold (2012) points out that 
one of the benefits of scenarios and simulations is that they allow trainees to practice on rare but important 
or critical events. These can be safety related, as in emergency procedures or working in hazardous 
environments, or just opportunities to practice competency-related skills that are not typically required, 
such as diagnosing or troubleshooting rare conditions. Lesgold (2012) argues that this feature of scenarios 
alone can often justify the expense of training system development. Scenarios provide an environment to 
prepare people to respond effectively to events one hopes do not occur but that require rapid action in high-
pressure situations. 

Scenario training promotes transfer of training. By their nature, scenarios are designed to reflect aspects 
of the real-world environment for which the competency is being trained. The similarity between the 
practice environment and the real-world environment should affect transfer of training. Transfer of 
training—transfer is a function of similarity—is a powerful, reliable, and general phenomenon operating 
through skill transfer settings ranging from narrow cognitive skill acquisition (Singley & Anderson, 1989) 
through transfer from workplace training to on-the-job performance (Blume et al., 2010; Ford et al., 2018) 
to shifts in career paths (Gathmann & Schönberg, 2010; Robinson, 2018).  

Weaknesses 

CBSD supports training approaches that sometimes produce results no better than typical instruction. 
Several meta-analyses have shown small or no benefits for ITSs. Steenbergen-Hu and Cooper (2013) found 
negligible ITS effects on mathematical learning, although Kulick and Fletcher (2016) attribute that finding 
at least partly to Steenbergen-Hu and Cooper’s (2013) overly broad definition of an ITS, which included 
less effective instructional systems. A review of studies of Carnegie Learning’s Cognitive Tutor curriculum 
concluded “mixed effects,” “no discernible effects,” and “potentially negative effects” on Algebra, general 
mathematics achievement, and geometry, respectively, in addition to concluding that several studies 
conducted provided “no evidence” due to their design (What Works Clearinghouse [WWC], 2016, Table 
1). A review of competency-based education (CBE) found that little research has been conducted thus far 
on CBE efficacy and implementation (Steiner et al., 2015, reviewed personalized learning).  

 

There have been few studies producing high quality evidence for the efficacy of CBSD training, or ITS 
training for that matter. An issue here is that the U.S. Department of Education has stringent standards of 
evidence5. Their three tiers of positive evidence are Tier 3 Promising (requires positive and no negative 
effects from well-designed experimental or quasi-experimental research), Tier 2 Moderate (requires 
additionally multiple sites and large samples [N > 350], and most meta-analytic weight being based on 
findings rated “Meets WWC Standards Without Reservations”), and Tier 1 Strong (additionally requires 
experimental research, that is, randomized control trials). Thus, positive conclusions about educational 
interventions, such as those cited in the Strengths section of this chapter, may at least partially be 
attributable to relaxed evidence standards; many studies included in the meta-analyses do not meet WWC 

 
 
5 The standards are also evolving. The cited document was reviewed under WWC Procedures and Standards 
Handbook Version 2.0 (2008), whereas the Current Standards Version is 5.0 (August, 2022). See 
https://ies.ed.gov/ncee/wwc/handbooks  

https://ies.ed.gov/ncee/wwc/handbooks
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standards. Training research is equally susceptible to relaxed evidence standards and has the additional 
burden of not being enforced with anything like a WWC evaluation.  

Defining competencies is challenging and there are no standards. Competency-based education is not 
new—Gallagher (2014, p. 18) traced it back to the 19th century and argues that there always has been “an 
individualized approach to education in which students demonstrate the acquisition of predetermined 
competencies, typically in a self-paced manner and through performance assessments.” He also pointed out 
weaknesses in the concept of competency-based education, such as the difficulties in defining competencies 
and levels, the lack of evidence for competency-based education efficacy, the lack of support from teachers 
and students, the simultaneous proliferation and narrowing of competencies over time, and the finding that 
students most in need are the least likely to benefit--disadvantaged students are often the first to drop out. 
In the workforce context, Stevens (2012) similarly points out that competencies are difficult to define and 
there is a lack of rigor in developing competency models and in assessing competencies.  

CBSD training is still relatively novel. Although there are by now several meta-analyses on ITS training, 
cited in this chapter, and a few on simulation-based training, also cited, we could find no meta-analyses of 
CBSD training, indicating relative novelty. Where strong efficacy evidence exists, adoption is facilitated, 
but with no evidence, adoption will be more difficult. The introduction to new ways of doing things is 
always challenging, and there is a burgeoning science and best practices surrounding managing 
organizational change, dealing with change management models and overcoming obstacles, such as 
employee resistance, communications, turnover, and costs (SHRM, 2017). As Lesgold (2012) points out, 
the decision to adopt or develop a new training system is risky for a training director comfortable with 
familiar approaches, and less comfortable with new technology, particularly when it requires a significant 
financial investment.  

It is important to avoid “Teaching to the Scenario.” “Teaching to the test” or item-teaching (as opposed to 
curricular-teaching) is decried in education for raising test scores but not the underlying knowledge and 
skills (Popham, 2001).  It can lead to a narrowing of the curriculum (Levin, 2012) and depressed long-term 
performance and interest in the subject (Carrell & West, 2010). It is possible that teaching to the scenario 
could produce similar negative consequences. Sinatra et al. (2022) mentioned the consequences of scenario 
training when the real-life situation changes, an instance of too-narrow training. If not cost prohibitive, 
having multiple, diverse scenarios is a mitigation strategy. A related problem is that non-essential scenario 
features, or, using testing language, construct-irrelevant features might introduce learning and responding 
requirements unrelated to the training construct of interest. A “motivate and inspire subordinates” 
competency might involve interacting with members whose cultural background the target is unfamiliar 
with or uncomfortable with. Other examples include the appearance (e.g., race/ethnicity, gender, 
stigmatized appearance) of a partner in a negotiation task, off-putting scenario aesthetics, or sluggishness 
in system responsiveness, any of which could affect both training efficacy and inferences drawn from the 
target’s performance.  

Opportunities  

Human tutoring works, when implemented well, and the ITS promise has always been to meet human 
tutoring standards. In the most comprehensive study to date of the effects of human tutoring (i.e., one-on-
one or small group supplements to classroom instruction) based on randomized controlled trials, Nickow 
et al. (2020) estimate a pooled effect size of .37 SD on learning outcomes, with stronger effects for earlier 
grades, in school rather than after school, and when administered by teachers rather than by parents. 
Although more modest than Bloom’s (1984) two-sigma claim, Nickow et al. (2020) suggest that 
implementation and dosage issues may account for much of the variation between studies. The key finding 
is that tutoring per se is a robust and powerful educational strategy operating across program and study 
characteristics, and so the ITS aspiration of mimicking human tutoring remains a promising opportunity. 
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Competency-based scenario training is a relatively new phenomenon, providing first-mover advantage 
opportunities. Our review reveals an extensive database on ITSs and their efficacy and a considerable 
database on scenario or simulation training and their efficacy, but much less, if anything, on scenario-based 
ITSs. No meta-analyses have yet been conducted on this class of training. There are well-developed 
methods for identifying competencies as discussed, particularly in the workforce, and yet relatively little 
on targeting scenario training to those competencies. This suggests a first-mover opportunity for CBSD. 
First-mover advantages are the competitive advantages participants gain by being first to market, including 
ownership of the intellectual property and the ability to gain a loyal customer base, one reluctant to switch 
technologies later. 

Targeting training to competencies is a natural fit for organizations with competency-aligned HR systems. 
As discussed in the introduction, competency modeling and competency-based approaches are used to align 
HR systems so that personnel selection, compensation, promotion, and succession planning are based on 
the same set of competencies. In this context, aligning training to those same competencies is a natural step. 
Competencies can reflect a broader range of knowledge, skill, ability and other factors than are sometimes 
the target of training. Soft skills are amply reflected in competency definitions (Bartram, 2002). Training 
soft skills is relatively novel, although there are some analyses of the efficacy of such approaches (Arthur 
et al., 2003; Martin-Raugh et al., 2020), albeit not necessarily conducted within a competency framework. 
This presents an opportunity. 

There is an opportunity to increase the use of psychometric and measurement models in student modeling 
and evaluation. This is an opportunity for ITSs generally but may be particularly relevant to CBSD. There 
have been some efforts to date, such as Deonovic et al. (2018) who connects Bayesian knowledge tracing 
to item response theory models. Another natural connection is with cognitive diagnostic modeling and 
multidimensional item response theory, which are beginning to be deployed for this purpose (Su et al., 
2021; Su et al., 2022).  

There are opportunities to increase our understanding of why ITSs and CBSD training works. Although as 
we have documented, there is evidence for ITS and simulation training efficacy, there are also 
circumstances producing no discernible instructional effect. We understand some reasons—transfer to 
content that differs from the precise content tutored is difficult. But generally, we do not have a complete 
understanding of when, under what circumstances, and why ITS and CBSD training is effective, or most 
effective. VanLehn (2011) presented hypotheses for why human tutoring is effective: diagnostic 
assessment, individualized task selection, sophisticated tutoring strategies, dialogues, domain knowledge, 
motivation, feedback, scaffolding, interaction/construction—but suggested only the latter three, and 
possibly motivation, were not refuted by evidence. This led to the useful interaction granularity hypothesis, 
that tutoring is effective to the degree to which it provides feedback within or after a problem-solving step 
vs. after an answer is entered, with the finding that step-based tutoring was most effective6. But there remain 
puzzling and inconsistent findings – why does control group instruction that relies on “materials derived 
from ITS interactions” (Kulik & Fletcher, 2016, p. 68), which is not interactive, apparently provide an 
improvement over traditional control group instruction? Why does implementation matter so much and 
how can it be fixed? This calls for more research. Development of CBSDs and ITSs and evaluating them 
in large-scale studies should pay dividends in contributions to our understanding of how individuals and 
teams learn, barriers to learning and to good implementation, and best training practices. Benefits may 
accrue to ITS, instructional science, and learning sciences more generally. 

ITSs are not yet prominent in corporate training, but the market is huge and growing. As seen in our review, 
most ITS and simulation applications are found in education, particularly K-12 education and medical 

 
 
6 This was counter to an expectation that sub-step tutoring would be most effective, but Kulik and Fletcher (2016) 
suggested that this might have been due to different kinds of control groups used in the two kinds of studies. 
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training, along with military training. Corporate training in the U.S. is a $46B market and expected to grow 
with e-learning training modules. This represents a major opportunity for CBSD.   

Threats 

There is always the danger of overhyping. The Gartner Hype Cycle refers to a normal course of evolution 
for innovations initiating with an innovation trigger (a new technology gets attention) through to a peak of 
inflated expectations (hype outweighs evidence) then through a trough of disillusionment (early adopters 
complain), a slope of enlightenment (early adopters see benefits) and finally the plateau of productivity (the 
technology goes mainstream). This is not a scientific model but is supported by enough anecdotal evidence 
that many tech sector observers expect this kind of transition to mainstream use. Overhyping is not a threat 
to CBSD or to ITSs specifically but to AI technologies generally (Ciocca et al., 2021).  

Comfort with the familiar. Within the education and training industry traditional commercial systems based 
on traditional training models can be viewed as competitors to an intelligent system approach. Installing 
new systems requires a financial investment and possibly changes in ways of doing things. Lesgold (2012) 
points out that resistance is reduced with good documentation, integration with operations, availablity of 
system training, availability of staff familiar with the new system, and tools to support rapid courseware 
prototyping and development.  

There may be a perception of expensiveness for CBSD systems. Favorable cost-benefit arguments for CBSD 
use are necessary, which can include the elements of reduced training time, better alignment between the 
competencies and how they are trained, and the opportunity to enable practice for rare but important cases.  

Suggestions for GIFT 

A major challenge for GIFT is demonstrating market viability, for the core markets of the K-12, higher 
education, workforce, and military sectors. Each sector has unique issues. In K-12, executing well-designed, 
sufficiently statistically powerful studies on the appropriate target populations, in the appropriate target 
settings, particularly using randomized control trials, is necessary to obtain moderate and strong efficacy 
evidence. Establishing such evidence is a requirement for funding from various U.S. Department of 
Education programs. The other sectors do not post nor enforce comparable efficacy and implementation 
standards7 but research consumers in all sectors are becoming increasingly sensitive to issues of the strength 
of evidence regarding appropriate inferences that can be drawn from studies, including meta-analyses. U. 
S. Department of Education (2016) guidelines, such as on relevant, evidence-based intervention selection, 
the use of logic models (theories of action), and attention to implementation issues such as local capacity, 
are useful for instructional interventions across all sectors, and the trend towards holding research studies 
to high evidence and implementation standards is likely to continue. GIFT viability will be enhanced to the 
extent that it is a component of research studies that produce strong efficacy evidence and a well-developed 
implementation plan.  

GIFT could expand the kinds of assessments that can be easily accommodated, such as situational judgment 
tests and collaborative problem-solving tasks. Stealth assessments can be conducted during the learning 
activity itself, but there is typically interest in generalization to tasks or environments outside the ones that 
are the direct target of instruction. In some cases, survey instruments are used to assess learning from CBSD 
environments despite their limitations. But there is a potential missed opportunity when a rich scenario-

 
 
7 In the workforce, Kirkpatrick and Kirpatrick’s (2006) four levels of evaluation—reaction (affect), learning 
(knowledge), behavior (transfer), and results (return on investment)—are helpful and well known, but not enforced 
by any regulatory agency.  
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based design for training is not accompanied by an equally rich assessment environment. To accomplish 
this, GIFT could provide technology for scoring ill-defined, subjective, and complex tasks. An example 
would be a system to video record a trainee’s performance (e.g., interview, role play), retrievable for scoring 
using playback (e.g., pause, fast-forward) and annotation and input tools. More generally, support for a 
wider variety of assessment tools would be helpful for assessing knowledge and skill gains resulting from 
instruction. This may also require database accommodation for the kind of process data (keystroke, 
conversation) such assessments may generate (Hao et al., 2015), or developing and validating a catalog of 
mappings from performance data gathered by GIFT to assertions of skills and competencies, as is done by 
the STEEL-R architecture. 

General Discussion 

There is strong interest in competency-based scenario design within the realm of training approaches. The 
Air Force Research Laboratory recently released a $67M broad agency announcement for innovative 
research related to “competency definition and requirements analysis, training and rehearsal strategies, and 
models and environments that support learning and proficiency achievement and sustainment during non-
practice or under novel contexts” (AFRL, 2020; pp. 2-3), a clear indication of a market interest.  

There are challenges to widespread adoption of CBSDs. Like any new technology, there are potential 
implementation barriers due to a financial investment requirement and a change to business as usual. The 
value of such change must be justified with a cost-benefit argument. Here we suggested several 
components, particularly, increased learning based on strong efficacy evidence and the provision of 
opportunities to practice on important but infrequent events. An additional challenge is change 
management, old habits die hard, but with clear and convincing cost-benefit demonstrations these can be 
overcome. 

There are also challenges specific to GIFT, notably, how CBSD can be facilitated through the structure of 
GIFT. Suggestions here, to position GIFT to serve as a universal portal or to provide extended assessment 
capabilities, may vary in how difficult they are to achieve, but regardless of what is done, it is important to 
develop a strategy that will demonstrate clear market advantages to the GIFT framework. 
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