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Preface 

This virtual workshop was conducted in conjunction with the 22nd Artificial Intelligence in Education Conference 

(AIED). The AIED 2022 conference was a hybrid conference being held both in person at Durham University in 

England, and online. This workshop was an entirely online virtual workshop that occurred as part of the conference. 

This workshop focused on different applications of team tutoring within intelligent tutoring systems (ITSs).  The 

workshop included examples of approaches that have been used to implement team tutoring, and approaches that have 

been used to overcome the challenges of team tutoring. The workshop included a discussion of commonalities in the 

presented work, and the next steps forward for team tutoring research. Work presented at the workshop is included in 

the following proceedings papers.  
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Toward Competency-Driven Team Performance  

Measurement and Coaching in GIFT 

Randall Spain1, Andy Smith1, Jonathan Rowe1, Benjamin Goldberg2, and James Lester1  
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Abstract.  A critical step toward the effective assessment of team performance is identifying the set of team 

competencies that should be measured during training to guide team performance diagnosis. This work describes 

our application of a model of team competencies in an assessment framework to drive automated team-based 

coaching capabilities in a crew gunnery training course we are creating using the Generalized Intelligent Framework 

for Tutoring. We present an assessment model that identifies crew coordination competencies at the individual and 

team level and discuss team process and team outcome measures we are using to measure and diagnose crew 

performance during training.  

Keywords: Team performance assessment, teamwork, teamwork competencies.  

1 Introduction 

Defining team competencies is a principal step in developing team performance measurement. Competencies reflect 

measurable patterns of knowledge, skills, abilities (KSAs), behaviors and other characteristics that individuals need 

in order to perform work roles or job functions successfully. Team competencies reflect the collective KSAs team 

members must demonstrate to accomplish shared goals. Examples of team competencies include shared task models, 

knowledge of team role interaction patterns, shared situation awareness, and team cohesion [1]. To promote the 

development of teamwork skills, adaptive instructional systems (AISs) for teams must include assessment models that 

map teamwork competencies to observable actions, conditions, or state information that reflect evidence of these 

KSAs. Defining these models can be a challenging task, as most team competencies are multifaceted and require a 

keen understanding about the interplay between the teamwork and taskwork required to support effective team 

performance [2, 3]. In addition, AISs have historically been designed to support individual assessment and learning. 

Extending assessment models and frameworks to support team training is a current area of active research. 

In this paper we discuss how we have adopted a model of team competencies developed by Cannon-Bowers et al. 

[2] to inform the creation of an assessment framework to drive automated team-based coaching capabilities in a course 

we are creating using the Generalized Intelligent Framework for Tutoring (GIFT). The team-based coaching 

framework is being designed to provide automated coaching to gunnery crews performing crew gunnery training 

exercises in Virtual Battlespace 3 (VBS3), a simulation-based training environment used by the U.S. Army. The 

framework distinguishes different types of team competencies and has implications regarding whether assessments 

should be modeled at the individual or team level.  

In addition to describing our use of Cannon-Bowers et al.’s model to guide the development of a team assessment 

and feedback framework, we discuss how the distinctions among team performance outcomes and processes have 

implications for defining reward functions in reinforcement learning-driven pedagogical planning frameworks in AISs 

for teams. We conclude with an overview of our current assessment model and by discussing upcoming research 

activities that aim to evaluate the effectiveness of different forms of coaching actions on team training performance.  

2 Related Work 

A critical step towards the development of effective team training scenarios in AISs is identifying the team 

competencies that should be assessed during training to facilitate team performance diagnosis and remediation [3, 4].  
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In this work, team performance diagnosis refers to the process of accurately linking, measuring, and interpreting the 

behaviors and changes that lead to effective and ineffective performance during training.  Teams have characteristics 

and engage in behaviors that distinguish them from individuals. These characteristics and behaviors, often referred to 

as team competencies, mediate and moderate team performance and team effectiveness.  

At last year’s AIED team tutoring workshop, we discussed ongoing research using GIFT to investigate 

reinforcement learning (RL) based coaching policies for promoting team performance in the domain of crew gunnery 

training [5]. We described our approach towards collecting a corpus of multimodal training data including video, 

communication, and simulation-trace data from the U.S. Army gunnery crews who are completing simulation-based 

training exercises to prepare for crew gunnery qualification and how we planned to use the dataset to induce data-

driven coaching policies for promoting individual and crew gunnery performance. 

A key objective of our team’s work over the past year has been to develop and integrate a crew gunnery assessment 

model into our GIFT-based course that can guide the assessment of crew performance and diagnose deficiencies in 

team performance. Our goal has been to measure team processes and outcomes and to assess performance at the team 

and individual levels. In this work, we adapt the definition consistent with previous team science research in that the 

term process refers to “the collection of activities, strategies, and behaviors employed in [the] task accomplished” [3], 

whereas team outcomes refer to the outputs of team performance [6]. 

There are several reasons for including team process measures in an assessment model in addition to team outcome 

measures. First, process-oriented measures allow evaluators (e.g., human observers and AIS-based systems) to gather 

evidence regarding the actions and behaviors a team engaged in to achieve a specific outcome. These measures allow 

for a granular diagnosis of flaws that may have led to a team’s subpar performance. Focusing solely on outcome 

measures, such as task completion time or task completion accuracy, overlooks how team behaviors affected 

performance.  

Second, flawed processes can occasionally result in successful performance. For instance, a team may reach the 

outcome standards set for “passing” training but, the process the team engaged in to reach these standards may not 

reflect effective teamwork skills. In these scenarios, flawed behaviors and team actions can be mistakenly reinforced 

[3]. These types of oversights have significant implications for devising data-driven coaching models that aim to 

provide coaching and feedback to improve team processes and team performance. If the model is developed by only 

considering team performance outcomes alone, then the model could ultimately reinforce flawed team processes 

which could result in negative training value. Therefore, AIS developers should consider assessing both team 

processes and team performance outcomes.   

To guide the development of the team measurement model we have adopted a framework developed by Cannon-

Bowers et al. [2] and expanded upon by Cannon-Bowers and Salas [3] that delineates different levels of team 

competencies. The first level includes individual-level KSAs required to perform job functions. The focus here is on 

taskwork concepts, such as task specific role responsibilities and procedural knowledge, that are needed at the 

individual level to support effective team performance. The second level includes team-oriented competencies that 

are held at the individual level. These competencies are transportable across teams (team-generic) and directly 

influence team performance regardless of the team member involved. Examples include communication skills, 

leadership skills, and attitudes towards teamwork. An example is information exchange, which is a dimension of team 

development, but is performed at the individual level and should thus be measured and remediated at the individual 

level. The third level includes team-oriented KSAs that are held at the team level and are specific to the task and team 

involved (context-driven competencies). Examples include skills such as shared situation awareness and attitudes such 

as team cohesion.  

The distinction between these levels is important as it has implications for what is measured and at what level the 

team competencies are measured (e.g., is the skill measured at the individual or team level?). It also has implications 

for how feedback and coaching decisions are derived and delivered to teams to support the development of effective 

teamwork skills. For example, effective communication may be conceptualized as an important teamwork skill, but 

one that is held at the individual level, and therefore best measured (and trained and remediated) at the individual level 

[3]. On the other hand, collective efficacy (i.e., the team’s belief that it can cope with task demands) is rooted at the 

team level and is team specific, and can be measured meaningfully only at the team level. Consequently, effective 

feedback and coaching to enhance collective efficacy may best be delivered at the team level as well.  

In summary, identifying and conceptualizing team performance measures according to whether they reflect 

individual or team-level competencies and whether they are process- or outcome-oriented is a necessary step toward 

the development of competency-driven assessment approaches for team-training.  In the next section, we discuss our 

work toward developing an assessment in GIFT to support crew gunnery training.  
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3 Team Performance Measurement for Crew Gunnery in GIFT  

Team performance measures should be able to describe, evaluate, and diagnose team performance. This is a necessary 

prerequisite and a critical challenge for devising computational models that provide instructional support and coaching 

in AISs for teams.  

In recent years, GIFT has become an important tool for investigating how these challenges can be addressed. GIFT 

is an open-source service-oriented framework for designing, developing, and evaluating AISs [7]. GIFT provides 

developers with a suite of authoring tools for rapidly creating adaptive courses to support individual and team training 

events in web-based and simulation-based training platforms. Recent enhancements to GIFT support team tutoring 

opportunities. Notable enhancements include the ability to model team structures in GIFT’s assessment architecture, 

the addition of new condition classes and scenario adaptations to support automated assessment of team behaviors and 

team performance in simulation-based training environments, and the ability to deliver adaptive feedback and 

coaching messages at the individual and team level [8]. 

3.1  Crew Gunnery Training and Assessment   

In our current line of work, we are investigating how data-driven models can be devised to provide crews with 

automated coaching and guided instruction to support the acquisition of crew coordination skills [9–11]. We have 

developed a crew gunnery course using GIFT that evaluates crew performance as they complete crew gunnery training 

tables in VBS3. VBS3 is an immersive virtual training environment that the U.S. Army uses to support individual and 

collective training. Specifically, we are using a set of VBS3 missions that emulate real-world training and qualification 

courses that U.S. Army gunnery crews complete in preparation for live-fire training and qualification (Figure 1). The 

virtual scenarios were developed at the Warrior Skills Training Center (WSTC) in Fort Hood, Texas and offer crews 

the opportunity to practice and rehearse crew coordination activities in a controlled environment. 

The VBS3 crew gunnery scenario involves a series of six engagements. Each engagement requires gunnery crews 

to coordinate actions in order to carry out the direct fire engagement process as outlined in TC 3-20.31-4 (Direct Fire 

Engagement Process). A key component of the direct fire engagement process is the coordination of actions and 

behaviors among the vehicle commander, gunner, and driver. During an engagement, crew members coordinate 

actions and exchange information pertaining to potential threats in the environment. When a threat has been identified, 

crews engage in a fire command sequence, which is a well-defined protocol for communicating information and 

actions to facilitate a coordinated response to a threat. During the fire command process, the vehicle commander and 

gunner follow a prescriptive set of directives and spoken commands and acknowledgements for engaging identified 

targets.  

 

 

 

Fig. 1. Crew Gunnery Training in VBS3 
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The current U.S. Army gunnery standards, i.e. TC 3-20.31 (Training and Qualification Crew) provides standards 

that guide the evaluation of crew performance. Crews earn points that range from 0 to 100 points for each engagement. 

The points are calculated using a rubric that incorporates a combination of the firing vehicle’s position, target type, 

target movement, target range, and target neutralization time to determine the engagement score. Timely engagement 

and termination of targets is critical for earning high evaluation scores. Crews can also receive point deductions for 

violating the actions outlined in the fire command protocol and for committing safety violations. After each 

engagement the points are aggregated to determine if the engagement was “passed”, which is achieved by scoring 70 

or more points.  

This point-based approach to evaluation reflects a training outcome measure. But as indicated in an earlier section 

of our discussion, including both outcome and process measures is critical for developing team performance measures 

to support effective diagnosis of crew performance and support remediation. To support a more granular analysis of 

crew performance and to better measure the processes that impact crew performance, we have developed a crew 

assessment model that includes a series of concepts and supporting subconcepts that align to the Observe, Detect, 

Engage, and Report phases of the direct engagement process. These concepts are further classified into engagement-

specific activities that crew members must complete. To guide the development of our assessment model we reviewed 

the crew gunnery training and qualification curriculum (TC 3-20.31), reviewed relevant field manuals, interviewed 

former crew gunnery evaluators and Subject Matter Experts (SMEs), and reviewed a task analysis of the crew gunnery 

domain [12].  

3.2 Aligning Crew Competencies to Team Performance Measurement Levels 

As previously discussed, measuring performance at the individual level and at the team level is a recommended 

best practice for team performance measurement [3]. Table 1 provides a selected set of team competencies that we are 

modeling in our crew gunnery assessment model in GIFT. The table includes the course concept associated with the 

competency and a description of the guiding assessment question. Utilizing the framework proposed by Cannon-

Bowers et al.  [2] and further discussed by Cannon-Bowers and Salas [3], we have also distinguished individual-level 

competencies, team competencies held at the individual level, and team competencies held at the team level to guide 

our measurement model. The competencies are organized into two general phases of the direct fire engagement 

process: Observe and Engage. 

During the Observe phase, crew members are required to search and scan the environment for potential threats. 

Crew members should engage in coordinated search behaviors so that sectors are fully and accurately scanned.  To 

facilitate diagnosis of crew scan behavior, we are utilizing two condition classes in GIFT: assigned sector and detect 

object. The assigned sector condition class assesses whether team members are searching within their assigned sectors 

of responsibility [8]. The detect object condition class assesses how long it takes one or more team members to 

properly detect an object (i.e., potential threat) after the object has entered the team member’s field of view [8].  

These measures provide insights and a means for assessing team members' observation and scanning behaviors that 

can affect target engagement times. Another important teamwork skill we are assessing during this phase of the task 

is crew coordination. Specifically, we are examining inter-crew communication to identify if and how crews 

coordinate actions in order to establish scanning responsibilities during the direct fire engagement process. Assessing 

these behaviors is critical for diagnosing and remediating crew performance, because a breakdown in crew coordinated 

search could impact target engagement times and overall engagement scores.  

In addition to assessing crew coordination during the Observe phase, we are measuring critical crew coordination 

behaviors that occur during the Engage phase of the direct fire engagement process. Once a threat has been identified, 

crews engage in a fire command sequence, which is a well-defined protocol for communicating information and 

actions to facilitate a coordinated response to a threat. Here we are interested in measuring crew communication and 

information exchange between team members. Because the crews are trained to follow a specific verbal protocol it is 

critical to assess whether crews are using correct terminology and engaging in closed loop communication. These 

three facets of crew communication – information exchange, phraseology and closed loop communication – can lead 

to communication breakdowns when not applied appropriately and ultimately impact shared cognition among crew 

members and crew performance.  
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Table 1. Crew gunnery team performance competencies and measurement levels. 

Engagement 

Phase  

Course  

Concept  

Guiding  

Question   

Team 

Competency  

Measurement 

Level  

Observe  Search assigned 

sector  

Are crew members 

scanning their assigned 

sector? 

Task-specific role 

responsibility  

Individual level 

competency  

Observe  Overlapping  

sectors  

Did crew members 

coordinate scan 

techniques to ensure 

sector search 

(scanning) are 

overlapping? 

Information 

Exchange   

 

 

Team competency 

held at the 

individual level  

Observe  Target  

identification 

Did the crews 

accurately recognize 

threats in the 

environment? 

Cue-strategy 

association  

Individual-level 

competency  

Engage  Accurate and 

complete fire 

command 

Did the crew member 

exchange the right type 

of information to the 

right person during the 

engagement? 

Information 

Exchange 

 

 

 

Team-competency 

held at the 

individual level  

Engage  Accurate and 

complete fire 

command  

Was the fire command 

succinct and did it 

contain correct 

terminology? 

Phraseology  Individual-level 

competency 

Engage  Coordinated  

actions during the 

fire command  

Did the crew commit 

any procedural 

violations during the 

engagement? 

Team role-

interaction patterns  

Team-competency 

at the individual 

level  

 

The current iteration of our crew assessment model utilizes an observed assessment condition class to facilitate the 

measurement of crew communication and coordination for the fire command sequence tasks. The observed assessment 

condition class allows a human observer to assess concepts defined in a GIFT-based training course using the GIFT 

GameMaster interface. This interface facilitates a “human in the loop” AIS interaction model for assessing 

performance and injecting scenario adaptations during collective simulation-based training events. GIFT GameMaster 

enables observer controllers to visualize unit progress through a live map view; monitor completed tasks, active tasks, 

and upcoming tasks; provide manual performance assessments; and inject scenario adaptations to shape unfolding 

simulation-based training scenarios at run-time [8]. GameMaster also enables instructors to provide pre-configured 

feedback messages and coaching, or tailor their own message, and select to whom feedback and coaching is delivered 

(e.g., an individual, a subset of the team, the entire team). A significant goal of our current research program is to 

replace this manual-assessment component with a natural language processing-based team communication analysis 

approach that can be used to automatically assess crew communication practices during the VBS3 training exercise 

[13].  

In addition to course concepts outlined in Table 1 which reflect team process measures, we are also measuring task-

specific team performance outcomes.  Specifically, we are measuring (a) the amount of time in seconds it takes the 

crew to issue an alert that a target is in the environment and (b) the length of time in seconds it takes crews to terminate 

the target once the target is in the locked position. Together, these team process and team outcome measures are being 

used to investigate rewards that can be modeled in a data-driven framework to facilitate automated coaching [10].  

An advantage of using the framework proposed by Cannon-Bowers et al. [2] to identify team training 

measurement levels is that it provides a theory-driven framework for formalizing where team performance should be 

measured and where remediation should be directed. We have found it to be especially helpful for developing an 

assessment framework that links course concepts with team process measures as well as feedback and coaching 

statements that can be delivered to crew members.  In addition, it links team-generic and team-specific competencies 

to KSAs that can impact team performance.  Team-generic competencies refer to competencies held by individual 

team members and can influence team performance regardless of the teammate involved. They are transportable across 
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teams. Examples include communication skills, leadership skills, and attitudes towards teamwork. Team-specific 

competencies refer to the set of competencies that are required to function effectively on a specific team. These are 

content-specific behaviors and processes that need to be demonstrated to perform effectively within the team. 

Developers of AISs for team tutors can use these distinctions to identify competencies that are likely to be important 

for different types of team training objectives.  

4 Conclusion and Future Direction 

A critical step toward the effective assessment of team performance is identifying the set of team competencies that 

should be assessed during training to guide team performance diagnosis. In this paper we discuss how we are utilizing 

a competency framework developed in previous team science research to guide the development of a crew gunnery 

assessment model for an adaptive training course.  

In the upcoming months, we will collect training interaction data utilizing the GIFT-based crew gunnery course 

we are developing and use this data to investigate the effectiveness of different forms of adaptive team-based feedback 

and coaching. We will utilize the crew gunnery assessment model to facilitate team performance measurement and 

evaluate their effectiveness for developing and revising data-driven team-based assessment models in AISs.  
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Abstract. In simulation-based training, effective in-time feedback is one of the most important factors that support 

high learning outcomes and trainee success. This feedback is often provided during after-action review (AAR) 

debriefing sessions after a training simulation and typically involves comparison of trainee actions and performance 

to expert baselines. With the increased use of computer-mediated simulations and low-cost sensing devices, it has 

become more popular to combine traditional instructor feedback during AAR with automated performance 

evaluations computed from collected trainee data. However, end user (both instructor and trainee) trust and 

understanding of these automated methods represent significant barriers to adoption and widespread use. Motivated 

by these barriers, in this work we explore the relationships and similarities between existing AAR structures and the 

tools and technologies used in explainable Artificial Intelligence (XAI). Based on this overlap, we presented a 

theoretical framework to integrate contrasting-case exemplar techniques from XAI into existing automated 

performance assessment tools to improve the transparency, trust, and usability of these automated assessments in 

support of AAR and continued training. We support our theoretical framework through the presentation and 

discussion of two case-study examples from highly distinct domains: military fire team training and nurse training. 

With continued research and development, the XAI integration that we propose here could help increase stakeholder 

trust in and acceptance of automated evaluations systems and improve the AAR process overall. 

 
Keywords: Explainable AI, AI in Education, Simulation-Based Training, Human Performance, Automated Assessment, 

Human-Centered Computing, Human-Computer Interaction   
 

Introduction 

Simulation-based training environments offer many affordances that streamline the learning process for complex 

workplace skills compared to traditional learning environments: simulations are easily repeatable and controllable; 

simulations offer physical and psychological safety for otherwise dangerous tasks; data can be easily collected from 

simulations to provide evidence-based assessment of learners. Thus, it is not surprising that simulation-based training 

(SBT) has been widely adopted for training complex cognitive, psychomotor, and teamwork skills for the workplace 

across a wide variety of domains [1]. One of the critical factors to promoting effective learning gains in SBT is 

presentation of evaluation and feedback to learners after the simulation session [1, 2]. Typically, this feedback is 

provided during a discussion-based debriefing session, also known as after-action review (AAR), following the 

training. During AAR, instructors and trainees review the trainees’ actions and performance to highlight and discuss 

both tasks that went well and areas for improvement [3, 4]. These discussions often focus around comparing trainee 

actions and performance to the ideal intended actions and performance as defined by field experts, and in the case of 

group or team training, comparing actions and performance between trainees [5, 6, 7]. However, this feedback is 

traditionally based on instructor observations, which are prone to errors due to the high cognitive load of observing 

and remembering the details of the training simulation. Because of the increasing prevalence of computer-mediated 

simulations, it has become increasingly available and popular to collect multimodal data about trainee actions and 

performance from the simulation environment and use this data to support AAR and reduce the issues of traditional 

instructor observations. By analyzing collected trainee data using the methods developed in the fields of intelligent 

tutoring and artificial intelligence (AI), it is possible to streamline the AAR process by providing automated 

evaluations and data evidence to supplement traditional instructor feedback and expand the discussions among 

trainees.  

However, since these data-driven evaluations are produced using AI techniques, such as deep learning algorithms, 

they often suffer from the issues of interpretability and explainability that are pervasive throughout many AI models 

and methods [8]. While some progress has been made within the field of explainable AI, these techniques have only 

very recently started discussion in the education and training sector, and these issues of explainability still represent a 

major barrier to the widespread adoption of these data-driven AAR techniques. If stakeholders do not understand how 
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these automated evaluations are generated, they are likely to mistrust them and advocate against their adoption. In 

addition, if instructors and trainees do not understand how to use the data-driven AAR technology, they are likely to 

revert back to traditional AAR techniques and underutilize the new technology. Motivated by these barriers, in this 

paper we explore how the traditional structure of AAR can be combined with techniques from the field of explainable 

AI (XAI) to aid in the adoption of automated evaluation techniques. Specifically, by adopting techniques from local 

comparison-based XAI methods, our approach extends the traditional performance metrics provided by automated AI 

systems to also present contrasting case exemplars that complement the existing structure and discussion of AAR. We 

present examples from two case studies, military fire team training and nurse training, and show the presentation of 

contrastive exemplars within each domain can aid in the explainability of the automated evaluations, leading to 

increased trust in the system and expanded discussion during the AAR. 

Background 

The focus of this work is on how the traditional structure and techniques used in AAR can be combined with techniques 

from explainable AI to lower the barriers to adoption of automated analysis techniques for SBT into AAR. To help 

frame this discussion, in this section we briefly review each of these three subfields and present the important 

background and terminology for this combination framework.  

2.1 Debriefing and After-Action Review 

Within SBT, one of the critical factors that mediates learning outcomes is adequate evaluation and feedback [1, 2]. 

Most commonly, to avoid interrupting the normal flow of events in the scenario, this feedback is provided in a 

discussion with instructors and peers shortly after the training session. While this discussion and feedback time goes 

by several different names depending on the specific domain, in the two domains that we study here, nursing education 

and army training, they are referred to as debriefing and AAR respectively [3, 4]. For the remainder of the paper, we 

will use AAR to refer to this post-simulation discussion and feedback session. During AAR, the trainees and the 

instructors review the events of training in order to interpret and understand the sequence of events that unfolded, how 

the trainees responded to the unfolding events, the links between trainee responses and expected performance, and 

how to improve overall performance in the future. Overall, the idea of AAR is that by analyzing trainee performance 

and the associated events that led to it, trainees will be given new insights for self-reflection, comparisons to peers 

and experts, and a better understanding of the components that make up effective performance. As a theoretical model 

of AAR, we adopt the model proposed by Hanoun et al. [4] which breaks down the AAR into three phases: (1) 

collection, (2) diagnosis, and (3) feedback. These phases are illustrated in Figure 1. 

The collection phase refers to the methods and process of gathering trainee data from the simulation environment. 

This can take a variety of forms depending on the affordances of the simulation environment. In its most basic form, 

this involves an instructor or other evaluator watching the training occur and building a mental model of the events 

and trainee performance. Because of the very high cognitive load associated with tracking trainee performance live in 

this manner, training environments are often supplemented with one or more cameras that capture video of trainee 

actions in the simulation. In this way, the AAR can then be based on instructor observations, supported by playback 

and review of the video. This helps to ensure that important events are not missed by the instructor, and trainees get 

to review exactly what they did in the particular situation. Beyond the video capture, many modern SBT environments 

are designed using computer-mediated simulations, which allows collection of additional log data about simulation 

events. Finally, some SBT programs add additional data collection instruments that can collect a variety of other 

trainee data. For example, eye tracking glasses enable collection of trainee gaze and attention data, wearable biometric 

sensors enable collection of data about trainee stress levels, and proximity sensors enable tracking of trainee 

movements throughout the environment. All these additional sensors can further extend automated evaluations to 

generate more insights and become more robust. We review these approaches in the next section. However, at a 

baseline, most SBT environments include at least instructor observation and video camera. 
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The diagnosis phase refers to the methods and process of evaluating trainee performance and behaviors based on 

the data from the collection phase. These evaluations can be manual, performed by the instructor or other experts, or 

they can be automated, performed using AI techniques as discussed in the next section. Regardless of how the 

diagnosis phase is performed, it breaks down into three steps. First, build task performance measures refers to the 

process of analyzing the collected data to produce specific performance measures that are relevant in the context of 

the current training scenario. For example, in an emergency response domain, one potential performance measure 

would be the time between receiving an emergency call and arriving on the scene. Often, especially in the case of 

automated evaluation, performance measures are defined ahead of time; a series of domain experts will evaluate the 

training and develop a set of performance measures that span the requirements for effective performance. Then, 

immediately after training when the data becomes available, the predefined performance measures are computed from 

the collected data. Second, assess task performance refers to the process of evaluating the performance measures 

against a set of pre-set constraints. Returning to the emergency response example, our response time performance 

measure could be compared against a pre-defined temporal window that defines acceptable performance. Response 

time within this window would be assessed as satisfactory performance, while outside this window would be assessed 

as unsatisfactory or deficient performance. Finally, compare actual performance to intended refers to the process of 

comparing the trainee actions and performance measures to expert or expected performance. This comparison to 

intended performance provides trainees with insights and actionable changes that they can make to their task execution 

to improve performance in the future during the feedback phase of AAR. 

Finally, the feedback phase refers to methods and process of presenting the results of the diagnosis phase to the 

trainees, so that they can improve their performance in the future. This phase breaks down into two primary steps. 

First, review comparison results presents the results of the comparison step of the diagnosis phase to the trainees. As 

the trainees review the differences between their own actions and performance compared to optimal performance, they 

can begin to discuss the causal relationships that lead to the actions, decisions, and behaviors that the trainees 

exhibited. Fundamentally, this step is about answering the question, “why was my performance different than the 

intended 

performance?”. 

After this, discuss 

performance further 

opens the discussion 

to focus on what the 

trainees can do to 

improve 

performance in the 

future. After 

reasoning about 

why they performed 

differently than 

intended, trainees can begin to generalize these cause-and-effect relationships to determine what they can do next time 

to perform better. 

2.2 Automated Performance Evaluation 

With the advent of modern computing technology, many SBT environments have begun to adopt computer-mediated 

simulations as a major component of their architecture [3]. These computer-mediated simulations offer higher fidelity 

to trainees, as they can adapt realistically to trainee actions in the environment, but they also offer additional benefits: 

(1) the ability to create variations of a scenario in a simple cost-effective manner to enrich the training process; and 

(2) the ability to streamline data collection for analysis of trainee performance and behaviors to streamline AARs. 

Computer simulations are capable of keeping detailed logs of trainee actions in the environment, thus reducing the 

cognitive load on instructors and decreasing the potential for missed data. In addition to these logs, computer 

simulations are often capable of synchronizing the capture of video data and other sensors with the simulation logs, 

providing a more complete picture of the simulation to review during AAR. With this increase in the volume and 

accuracy of simulation data, along with advances in the fields of AI and intelligent tutoring, it has become increasingly 

accessible to automate performance evaluation of trainees for use during AAR [9, 10, 11]. 

Fig 1. The three-phase AAR framework adapted from Hanoun et al. [4] (section 2.1) and labels of 

tasks performed using either automation/AI or human-centered tasks (section 2.2). 
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While a variety of analytic techniques and models can be used to perform automated performance evaluation, the 

design and computation of performance assessment largely follows closely to the diagnosis phase of AAR described 

in the previous section. First, before the simulation begins, a group of domain experts design a set of performance 

metrics that measure and span the concepts targeted during the training [9]. When performing automated assessments, 

it is important to also consider how the performance metrics will be calculated when defining them. Designers must 

ensure that each performance metric has an associated algorithm capable of calculating the metric from the collected 

data. These computation algorithms often utilize tools and methods from signal processing, machine learning, and AI, 

and they are created through collaboration between simulation domain experts, the instructors, and experts in 

computational fields, such as computer scientists [9, 10]. Next, after a simulation completes, the data collected from 

that simulation is passed into the previously designed algorithms to compute the performance measures. However, 

this is where most automated performance evaluation systems stop. The computed performance metrics are given back 

to instructors and trainees, often in the form of analytic dashboards, and it then becomes the responsibility of these 

stakeholders to continue the AAR process into the comparison and discussion phases.  

However, this passed responsibility can often cause breakdowns in the AAR process. First, if instructors and 

trainees do not understand the computational decision making – i.e., how the performance metrics were computed – 

they likely will not put much faith in the results. This is especially the case when the automated assessments contradict 

the instructor’s viewpoints and feedback in some way. This lack of transparency from the algorithms leads to a lack 

of trust by end users, and ultimately, this will cause end users to abandon the system. Second, if instructors and trainees 

do not understand how to use the results of the automated evaluations, then they will likely significantly underutilize 

the system. Often, instructors are provided with complex analytics presented in dashboards that the instructors were 

not trained on, and that were created without first performing a needs analysis. This can lead to the instructors using 

the automated evaluations at a cursory level but missing the greater detail and new insights that these tools can provide. 

To remedy these issues, we propose integrating some of the techniques from XAI in order to extend the automated 

performance assessment systems into the next stage of the AAR process to provide comparisons and promote 

discussion. 

2.3 Explainable AI 

As systems built using the tools and technology from the field of AI become more pervasive, it becomes increasingly 

important to ensure end users have a sense of trust and understanding of these systems. Within the education and 

training sector, this is no different; learners and instructors must be able to understand how AI systems work, how the 

systems affect them, and whether the systems are trustworthy [12]. This need for understanding and trust has led to 

increased research and development in XAI, which refers to the tools and techniques used to introduce trust between 

end users and AI systems by providing methods of understanding how the AI works and how it makes its decisions 

[8]. 

Within XAI, there are several unique goals that each focus on a different aspect of the overall explainability, and 

research in XAI typically focuses on improving a small subset of these goals. In this work, we adopt the XAI model 

developed by Fiok et al. [8], which breaks down XAI into seven goals. These goals are summarized in Table 1. From 

this set of goals, in this work, we focus specially on transparency and trust. Transparency in XAI refers to how well 

end users understand the model’s decisions and decision-making process. Within the context of SBT and automated 

performance evaluation, these decisions represent the performance metrics associated with each trainee, and the 

decision-making processes represent the algorithms used to calculate these performance metrics. As previously 

discussed, if instructors and trainees do not understand how the performance metrics were calculated and what factors 

contributed to them, then they will likely disregard the automated assessments and rely only on instructor observations. 

Trust in XAI refers to how confident users are in working with the AI system and using its outputs. Within the context 

of SBT and automated performance evaluation, this means that instructors and trainees are able to use the evaluations 

generated by the system to promote meaningful discussions during AAR and to take the insights that they gain from 

the AI evaluations to change their behaviors in future training to improve performance. If users do not understand how 

to use the automated evaluations that the system generated and do not understand how these evaluations apply to their 

own training, then they will only use the system at a very surface level and not gain the full benefits that it offers. 



15 

 

 

Several classes of methods have been developed to address explainability in AI systems. Khosravi et al. [12] 

categorized these methods into two major classes: global approaches and local approaches. Global approaches to XAI 

focus on explaining the overall model prediction, typically by examining how the input features affect predictions. 

One example of this global approach is to examine feature relevance. By comparing perturbations in the input features 

to an AI model, feature relevance systems can assign a score to each input feature based on how much that feature 

contributes to the overall decision. These global models have unique advantages, especially for system designers, as 

it allows them to examine the overall model behavior to ensure reliability, causality, and fairness. On the other hand, 

local approaches to XAI focus on explaining specific prediction instances rather than the overall model. These local 

approaches have unique advantages as well, especially for end users, who are generally less concerned about overall 

system behavior and more concerned about how the system affects their individual use cases. These local approaches 

are generally based on examining specific exemplars of the model, and can help end users reason about transparency, 

usability, and trust. 

Within local approaches to XAI, one technique which is particularly applicable to SBT and team training is 

comparison-based approaches. In comparison XAI, specific instances are used to locally explain the outcomes of other 

instances by comparing and contrasting the input features and final decision outputs for each of the instances. For 

example, many automated plagiarism detection systems present comparisons between two texts as evidence to explain 

why they predicted plagiarism [9]. Noting the similarity of these comparison-based methods to the diagnostic and 

feedback phases of AAR, in this work we focus on the application of comparison-based XAI approaches to automated 

performance evaluation systems. In the next section, we will discuss these similarities in more depth and present the 

theoretical framework for our approach.  

Theoretical Framework 

In this section, we describe the proposed framework to integrate techniques from XAI with the three-phase model of 

AAR. Specifically, we utilize the similarities between comparison based local XAI approaches and the structure of 

the diagnostic phase of AAR to combine the two techniques into a singular framework that extends the existing 

structure of automated performance evaluation systems for SBT. This new theoretical framework is illustrated in 

Figure 2. 

Table 1. The seven goals of explainable AI, summarized from Fiok et al. [8] 

 

XAI Concept Description 

Transparency Do end users understand the model’s decisions? 

Reliability 
Is the system robust against changes to parameters 

and inputs? 

Usability 
Is the system capable of providing a safe and 

effective environment for end users? 

Trust 
How confident are the users in working with the 

system and using its outputs? 

Fairness 
Are the model’s decisions free from bias and fair 

over protected groups? 

Privacy 
How does the system protect sensitive user 

information? 

Causality 
Do small changes to the inputs of the system 

produce the expected changes to the output? 
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The new framework 

follows largely the same 

structure as existing 

techniques for automated 

performance evaluation. 

First, in the collect phase, 

data is collected about 

trainee actions in the 

simulation environment 

using a variety of sensor 

devices (cameras, log files, 

etc.). Then, this data is 

passed to the diagnostic 

phase, where it is used to 

compute a set of expert-

designed performance 

metrics. As previously described these metrics are designed to evaluate and span the complete range of tasks that 

trainees are expected to perform in the given context. The metrics are computed via AI algorithms which process the 

raw trainee data collected from the environment. However, at this point, the proposed framework deviates from the 

existing methods. In current systems, these performance metrics are typically provided back to instructors and trainees 

at this point, and it is the responsibility of these end users to interpret the automated evaluations and use them to help 

inform comparison to intended performance and further discussion during the feedback phase. In the new framework, 

this last step of the diagnosis phase (highlighted in yellow in Figure 2) is instead performed by the AI system using 

comparison based local XAI techniques. Instead of transitioning from automated tasks to human-centered tasks during 

the diagnostic phase, our new framework allows the transition to occur between the diagnostic and feedback phases, 

thus completing the automation of collection and diagnosis and improving the transparency and actionability of the 

performance metrics. 

This critical last step in the diagnosis phase of AAR represents the comparison of actual trainee performance to the 

theoretical intended performance (exemplars as provided by experts). This comparison is nearly exactly the same 

technique used in XAI to explain local decision making. By comparing the AI model’s outputs, in this case the trainee 

performance metrics, in one instance to another instance (e.g., examples of better trainee performance, or examples of 

expected performance as defined by the experts and instructors), end users will be able to better understand and 

evaluate how the performance metrics were computed, which, in turn will help them gain better insights on how to 

improve performance in the future.  To perform this XAI-inspired comparison, we rely on contrasting an individual 

trainee’s data with two other exemplars that we briefly outlined above: expert performance and peer performance. 

Comparison to expert performance is a cornerstone of traditional feedback in AAR. Typically, expert instructors 

watch the trainees’ actions in the simulation, and then highlight things that the instructor would have done differently 

if they were performing the exercises. To mimic this idea computationally in the AI system, we setup an expert-model 

exemplar when initially designing the performance metrics and the training scenarios. For example, returning to the 

example of the emergency response domain and our response time metric, the comparison methods might examine 

the path taken by ambulance from dispatch to the emergency scene. When initially designing the training scenario, 

the instructor (or other expert designer) would specify the optimal or expert path for the ambulance to take that would 

optimize the response time. Then after the trainees complete the simulation, this expert path would be compared to 

the path taken by the trainees. If the trainees took an unnecessarily long path to the emergency scene, or ignored 

information on congestion along their chosen path, then their response time will generate scores that would fall in the 

inadequate interval. However, in addition to the raw score, trainees could be shown the differences between their path 

and the expert path, with explanations from the expert as to why they chose a particular path. The overall idea is that 

trainees not only get a score, but also an explanation why that score was low compared to an expert, thus promoting 

further discussion during the feedback phase on how they may improve their decision making to choose better paths 

in the future. 

Beyond comparison to expert exemplars, we can also perform comparison between individual trainee 

performances. By directly comparing trainee performance, we can help to highlight differences in the decision-making 

Figure 2. The theoretical framework to combine existing 3-phase AAR structures with 

comparison-based XAI techniques to improve the transition between automated and human-

centered tasks. 
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processes between people at the same level of expertise. Computationally, we can choose trainee exemplars to 

compare using a further than K-nearest approach. First, with a further than K-nearest neighbors approach, the AI 

system would compare the performance metric scores of each pair of trainees, and select a set of contrasting exemplars 

(i.e. one score high and one score low). In this way, the high-scoring trainees provide examples of how trainees can 

incrementally improve performance, and not just have to jump to the expert-defined “best” performance. Further, the 

differences between the high-scoring students and low-scoring students can help explain using the scoring scheme to 

determine how low-scoring trainees might change their actions to improve performance in the future. Second, with a 

K-nearest neighbors approach, the AI system would again compare the performance metric scores of each pair of 

trainees, but this time select similar examples (i.e. both high scoring). This type of comparison may offer a different 

type of insight into trainee behaviors. For example, if two trainees both score well but had highly disparate actions to 

achieve their goals, then contrasting these exemplars could help illustrate the different strategies to approach the same 

problem while still maintaining task success. In the next section, we will show examples of both trainee-to-expert and 

trainee-to-trainee comparison on two case study domains, and how presenting these contrastive exemplars can help 

promote discussion during the feedback phase of AAR. 

Case Study Examples 

To demonstrate the approach presented in this paper, we utilize two case studies from different domains and show that 

the same methods apply across both domains to establish the generality of our approach. This section we will briefly 

review the two studied domains, military fire team training and nurse training, and discuss the unique aspects and 

performance metrics for each domain. 

 

4.1 Military Fire Team Training 

The fire team training took place at the Ft. Campbell US Army installation and focused on the Enter and Clear a Room 

(ECR) dismounted battle drill. Training of the drill was conducted using the Squad Advanced Marksmanship Trainer 

(SAM-T) system, which is a mixed-reality environment for simulating live-fire weapons training drills. For the ECR 

drill, the SAM-T is setup using three screens configured in a U-shaped arena. The fire team moves around in the space 

created by the arena to simulate moving through a physical room, and they interact with a digital simulation projected 

onto the three screens. The digital simulation is interfaced with the soldiers’ weapons, allowing them to realistically 

fire at on-screen entities. Other interactions with the digital simulation are mediated by on-site instructors, who watch 

the team’s actions and update simulation parameters in real-time. In ECR, the team is tasked with entering an unknown 

room, neutralizing any enemy combatants, and securing any civilians. To perform our automated evaluation 

techniques, we collected data from the simulations including two cameras, which captured audio and video of the 

soldier actions in the physical space, simulation log files, which captured digital simulation events such as weapons 

firing and digital entity movements. For more information about the fire team training, see [9]. 

For the case study in this paper, we focus specifically on one of the performance metrics used to evaluate this 

domain: move-along-walls. The move-along-walls metrics evaluated whether the soldiers in the fire team stayed close 

to the walls of the room while entering. From a doctrine perspective, soldiers should move along the walls of the room 

in order to minimize potential blind spots at their backs. To compute this metric, we utilize computer vision-based 

motion tracking techniques applied to the video data to track the soldiers’ movements throughout the room. In each 

frame of video, we 

can measure the 

distance between the 

soldier and the closest 

wall. Then, we 

average this distance 

across the entire 

simulation and 

normalize it between 

zero and one based on 
Figure 3. Motion paths illustrating the move along walls metric for 3 contrasting examples 
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a maximum threshold distance to obtain the final performance metric score. To perform exemplar comparison, we 

compare the final scores of the soldiers and present the movement paths that they took through the room against both 

expert examples and peer performance. 

Figure 3 shows the motion paths of the fire team throughout the simulation room for three contrasting examples of 

the move-along-walls metric. First, the left-hand image in Figure 3 shows an example of an expert motion path for the 

team, representing an idealized performance based on Army training doctrine. The middle image in Figure 3 shows 

an example taken from the case study where the fire team performed high on the move-along-walls metric. Finally, 

the right-hand image in Figure 3 shows an example taken from the case study where the fire team performed low on 

the move-along-walls metric. In this case, we see two separate instances of the contrastive exemplar technique. First, 

trainees can compare their actual performance to idealized performance to identify issues with their current 

performance and discuss ways to improve in future training. For example, in the high trainee performance instance, 

the team might notice and discuss that the soldier represented in blue cut directly to their destination rather than 

moving right to the wall and then down as shown in the expert example. Given this issue apparent in the visualization, 

the team understands why they received a low performance score (i.e., AI transparency), as well as discuss how they 

can rectify this issue in future training (i.e., AI trust). Second, trainees can compare their performance to their peers. 

In this case, the team acts as their own peer exemplars. By viewing the comparison between the high-performing 

instance and low-performing instance, the team can begin to recognize what was different between the two instances 

that may have contributed to the gap in performance evaluations. In this example, the team might notice that in the 

high-performing instance, the soldiers represented in green and red both moved closely along the back wall, while in 

the low-performing instance, these soldiers penetrated deeper into the room on their initial entry before moving across. 

Both examples, expert comparison and self (peer) comparison, provide unique insights into the team’s overall 

performance and can help them to understand why they scored how they did and increase discussion about how to 

improve in the future. 

4.2 Nurse Training 

The nurse training program took place in a simulated hospital room equipped with standard medical equipment which 

has been modified to interface with a high-fidelity patient manikin. In each simulation, nurses enter the hospital room 

with the goal of performing a routine clinical assessment of the patient. However, during the assessment, the patient 

exhibits symptoms of a new medical condition. After observing the new symptoms, the nurse is responsible for 

evaluating the patient to determine a potential diagnosis, performing any relevant procedures to stabilize the patient's 

condition, and contacting the medical provider to update them on the new condition and receive new orders. All the 

participants for this study were undergraduate (BSN) level nursing students in their first year of coursework, and the 

simulations we study in this paper were part of the students’ normal degree requirements. No changes to the content 

of the simulations were made by the researchers. To perform our automated evaluation techniques, we collected data 

from the simulations including two overhead video cameras which captured video and audio of the entire hospital 

room, eye tracking glasses which captured egocentric video and audio of the participants along with their gaze 

coordinates, and log files which captured the manikin’s simulation parameters (vital signs, etc.). For more information 

about the nurse training simulation, see [10]. 

For the case study in this paper, we will focus specifically on one of the performance metrics used to evaluate this 

domain: dialogue-space-distribution. The dialogue-space-distribution metric evaluates how well the nurse keeps in 

communication with the patient throughout the simulation. From a best-practice perspective, nurses should be in 

persistent communication with their patient throughout the course of diagnosis and treatment. The nurses should be 

in communication with the patient about both what the patient is feeling to monitor any changes, and about what the 

nurse is currently doing to ensure that the patient is well informed and feels safe. This metric examines the percentage 

of dialogue that the nurse performs while on each side of the patient’s bed. Since the nurses must move between each 

side of the bed to perform various clinical tasks (e.g., reading the chart vs taking vital signs), this distribution of 

dialogue can help to highlight specific tasks where the nurse might get distracted and forget to keep in communication 

with the patient. To perform exemplar comparison, we compare the distributions of dialogue between different nurses 

(peer comparison). 
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Figure 4 shows the dialogue-space distribution for two of the nurses from the case study which represent peer 

contrastive exemplars. Nurse 1 (Figure 4, left) performed 64.1% of her dialogue on the left side of bed and 35.9% of 

her dialogue on the right side of the bed. Contrastively, nurse 2 (Figure 4, right) performed 94.3% of her dialogue on 

the left side of the bed and only 5.7% on the right side. In this case, while both nurses performed more of their dialogue 

on the left side of the bed, there is a clear difference in the overall dialogue behaviors of the two nurses, making these 

contrasting exemplars ideal candidates for the AI system to highlight for further discussion during the feedback phase 

of AAR. During this feedback phase, the instructor could utilize the difference between these distributions to engage 

a discussion about best practice for dialogue with the patient. Was there a specific reason that nurse 2 did not engage 

in much dialogue when on the right side of the bed? What are some of the common causes that lead to lack of 

communication with the patient? How can nurses ensure that they communicate with the patient sufficiently often so 

that patients do not feel they are being ignored? What strategies were used by nurse 1 to keep these best practices in 

mind that might be useful to other trainees in the group? By presenting the trainees with these contrasting peer 

examples, they can use the AI-generated evaluations to learn from one another and contribute to a larger discussion 

about how to improve everyone’s skills. 

Conclusions and Future Work 

In this paper, we explored the overlap between existing AAR structures and the tools and technologies used in XAI. 

Based on these similarities, we presented a theoretical framework based on contrasting cases, to integrate XAI 

techniques into existing automated performance assessment tools to improve the transparency, trust, and usability of 

these automated assessments to support AAR and continued training. Our new approach leverages local example-

based XAI techniques to present end users with the automated performance assessments in an interpretable manner. 

By presenting instructors and trainees with contrasting examples of performance in the training domain, we can 

improve the users understanding of how the performance metrics were computed and promote constructive discussions 

for how trainees might improve performance in the future. Contrastive exemplars can provide comparison between 

trainee performance and an idealized expert performance, but are also particularly applicable for team training 

domains, where comparisons can be made between peers at the same level of expertise to promote learning from each 

other. We showed some initial examples of expert and peer contrastive performance to generate explainable feedback 

in two distinct domains – military fire teams and nurses – and showed how presenting these contrastive exemplars can 

promote AI transparency and improved discussion during AAR. 

While the initial results from the two presented case study examples are promising, this work represents ongoing 

research in its early stages and requires future work to further develop and validate this approach. In particular, future 

work will need to focus on automated methods for selecting useful contrastive contextualized examples to generate 

meaningful explanations. While we have adopted a preliminary exploration approach using the K nearest neighbor 

algorithm (within the K-nearest bounds and outside of the K-nearest bounds, discussed in Section 3), the case study 

examples presented here were hand selected to illustrate our overall goals of the framework. We will continue to 

Figure 4. The dialogue-space distribution for two 

contrasting nurse trainees 



20 

 

develop these automated contrastive selection techniques, and extend them, for example by overlaying multiple similar 

examples to create a generic case that illustrates good and bad performance of a particular concept or technique, so 

that these examples can support end users without a lot of human intervention in the future. In addition, significant 

future work will be devoted to usability testing of this approach. Through interviews with stakeholders and instructors, 

as well as studies that incorporate this new feedback mechanism during live training events, we will fully refine and 

validate both the framework and the tools to present the results. With continued research and development, we hope 

that contrastive exemplar techniques such as these can increase stakeholder trust in automated evaluations systems 

and help to improve the AAR process overall. 
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1 Introduction 

There are major challenges in modeling how teams learn, determining methods to validate the level of their learning 

(knowledge and skills), and predicting their potential for success which indicates their transfer of skills to new training 

contexts and operational (work) environments.  In this paper, our goal is to identify a process that is congruent with 

the training and learning science literature that could lead to a practical data management process where machine 

learning (ML) is used to accurately classify current and predict future team states, specifically team learning, team 

performance, and team proficiency. An accurate, consistent, repeatable data management process would have great 

value in modeling the impact of training (both traditional and adaptive training), but especially adaptive training where 

team assessments could be used to tailor events within future training scenarios, identify remediation and feedback 

for use in after action reviews, and generate recommendations for future training consistent with organizational 

development goals. 

Adaptive training is delivered and monitored by a technology called an adaptive instructional system (AIS) that 

accommodates (tailors) training and educational experiences based on individual differences to facilitate learner 

knowledge acquisition [1,2] and guide tutoring activities that exercise skills defined by a set of learning or training 

objectives [3].  AISs use artificial intelligence (AI) and other advanced technologies to help people learn more 

effectively and efficiently [4]. Historically, it has been much more difficult to model teams and determine predictors 

of team learning, performance, and proficiency. This requires a rich dataset and a technical approach that is both 

flexible and scalable to support teams within both large and small organizations.   

Towards our goal of supporting adaptive team training, we provide a concise set of definitions for team learning, 

team performance, and team proficiency which will be expanded upon in Section 2 of this paper. Team learning is the 

collective acquisition of knowledge and skill by a group of individuals with different roles and responsibilities within 

the team. Team performance is the measurement of a group’s ability to successfully complete specified tasks, actions, 

or functions under a set of conditions in a controlled environment where measurement is possible. Team proficiency 

is an assessment of a group’s mastery of a set of tasks that represent the required operational (working) knowledge 

and skills required to function in a job or position.   

This paper also describes a data management process for assessing the value of measures of team learning, 

performance, and proficiency as part of an ML approach. ML is a subset of AI that uses data to classify/categorize, 

make inferences about relationships or trends or make predictions. Specifically, we will be discussing the use of an 

ensemble model approach that includes various types of models including deep neural networks (DNNs). DNNs have 

several advantages over classical ML methods (e.g., linear regression, clustering, decision trees, or nearest neighbor 

techniques) including the ability to automatically generate features, the ability to perform well with unstructured data, 

improved self-improving model capabilities, and most importantly scalability [5]. The use of DNNs within a stacked 

(hierarchical) ensemble model with other ML techniques will allow AIS developers to reduce risks associated with 

weak individual models and overfitting where models are so tightly coupled to the dataset used to create the model 

that they are unable to generalize well to new data. 

The ability to detect relationships between features and critical outcomes using DNNs can identify significant 

measures of assessment for all three of our outcomes of interest: learning, performance, and proficiency. The result is 

that our ML models will be able to detect strong associations that are identified using a relatively small set of critical 

features. Details of the data management process including model building and testing will be described in Section 4 

of this paper. In the next two sections, we compare and contrast team learning, performance, and proficiency (Section 

2) and extract candidate features from the team assessment literature (Section 3).  
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2 Comparing Learning, Performance and Proficiency 

In this section, we define, compare, and contrast learning, performance, and proficiency to lay the groundwork for 

determining critical measures for team learning, performance, and proficiency processes. These measures will be used 

later in this paper to identify ML features to infer current learner states and predict future learning, performance, and 

proficiency trends.  

2.1 Individual and Team Learning 

Learning is any increase in knowledge or skills that results in a relatively permanent change in knowledge or behavior 

as measured through assessments [6]. Assessments are opportunities to determine which specific knowledge or skills 

were acquired [7], but may also be opportunities to identify deficiencies that may need to be addressed during future 

learning experiences (e.g., training or education). In addition to measuring individual or team learning, assessments 

are also used to influence decisions about the curriculum, instructional content, and content delivery methods with the 

goal of improving learning programs. Assessments may be categorized as:  

• diagnostic - used to determine current knowledge or skill prior to a learning activity; an example of a diagnostic 

assessment is a pre-test 

• formative - formal and informal assessments during learning activities provide evidence for modifying teaching 

methods or learning activities; examples of formative assessments are checks-on-learning and concept mapping 

activities 

• interim - tests administered at intervals between formative and summative assessment to check learner 

comprehension and guide future instruction; examples of interim assessments are essays or projects 

• summative - assessment activities where the focus is to determine whether the goals (outcomes) of the learning 

program were achieved; examples of summative assessments are final exams or capstone projects 

Both individual and team learning are assessed using measures to determine progress toward learning or training 

objectives. Measures are task or domain dependent in that measures of assessment for cognitive tasks may differ from 

those used for psychomotor or team tasks. Team learning differs from individual learning in that it requires individual 

team members to interact and coordinate to successfully achieve defined objectives. Whereas collaborative learning 

is “a situation in which two or more people learn or attempt to learn something together” [8], teamwork is the 

“coordination, cooperation, and communication among individuals to achieve a shared goal” [9] and involves a 

domain-independent assessment of the team’s interactions. 

2.2 Individual and Team Performance 

Performance is the application of domain knowledge and skill to efficiently accomplish one or more actions, tasks, or 

functions (e.g., problem solving, optimizing decisions) [10]. The relationship between knowledge and skill is captured 

in the definition of skill,  which is both learned and applied abilities that use one's knowledge effectively in the 

execution or performance of a task [11]. Performance can be measured or observed during instructional or work 

(operational) experiences. Individual and team performance usually fluctuates based on workload, skill decay, or 

changing conditions in the instructional or work environment. For team-based activities, performance may fluctuate 

due to teamwork factors such as leadership, team cohesion, coordination, effective communications, or other factors 

. 

2.3 Individual and Team Proficiency 

Proficiency is a measure of acquired knowledge and skills along with attitudes and behaviors that lead to the ability 

to do a task successfully or efficiently [12]. Both proficiency and competency involve the application of skills to the 

performance of a specific task or set of tasks. However, the difference between proficiency and competency is that 

competency refers to a set of essential skills that are required for performance, and proficiency implies a level of 

mastery of these essential skills. For example, a learner may be competent as a land navigator in that they possess all 

of the essential skills (e.g., map reading, compass use, and landmark identification) required to move from one position 
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to another across the landscape. While all of the required skills are present, the learner may be barely proficient in 

each of them, or they may be better at some than others, or they may be fluent (highly proficient) in all of them. The 

same may be said of team proficiency as the individuals composing a team bring different skillsets (strengths and 

weaknesses) relative to the goals being pursued by the team. While it is not just a simple matter of adding the 

proficiencies of individual team members to determine team proficiency, it is an indicator of missing skills within the 

team, and may be used to understand the team’s probability of mission success.  

Proficiency may be measured at various levels (e.g., Army competency standards may equate to “at expectation” 

within an AIS).  Part of proficiency measurement is understanding how various training scenarios compare to 

operational processes and standards.  Some training is incremental in that it pulls in only part of the challenges 

(conditions) that a soldier might experience in an operational/working context. An expert will be able to efficiently 

execute a set of tasks associated with their domain of expertise. So, measures of efficiency (speed, agility, accuracy) 

are often good features (inputs) to ML models made to classify or predict proficiency. Cumulative experience 

(including training) supports the notion that a number of hours of deliberate practice are needed to harden skills, and 

of course time is a factor in skill decay. Finally, measures are needed to understand how readily a soldier might be 

able to apply knowledge and skill in new contexts, scenarios of higher difficulty, and sets of conditions or constraints 

that impart stress. 

2.4 Relationships of Learning, Performance, and Proficiency 

Since learning is the acquisition of knowledge and skill, and knowledge and skill are requisite precursors for 

performance, then learning and performance are related. Temporally, learning occurs over a period of time and 

multiple instructional experiences. While, learning results in permanent changes in behavior, it is an indicator and a 

predictor of performance, it is not a guarantee of consistent performance which can vary even among domain experts. 

Past performance is just one of many indicators predicting success in future scenarios composed of events and varying 

sets of conditions. Performance also demonstrates learning and proficiency.  

A simplified model of the relationship between learning, performance, and proficiency identifies learning as a 

prerequisite for performance, and performance as a prerequisite for proficiency (Figure 1). It also notes that 

performance is required to demonstrate both learning and proficiency, and is therefore central to assessing and 

predicting learning, and proficiency. While this proclamation passes the common-sense test, the actual relationships 

are much more complex. For example, there are temporal variables that influence assessment models for team learning, 

performance and proficiency. Learning occurs over a series of instructional events. Performance, which reflects the 

team’s ability to apply acquired knowledge and skills, occurs within a single controlled event. Finally, proficiency 

involves achievement of successful performance across multiple operational events where the team demonstrates a 

level of expertise. 

 

 
  

Fig. 1. Simplified model of the relationship between learning, performance and proficiency 

Given our understanding of the relationship and influences of learning on performance and proficiency, and the use 

of performance measures to validate learning and proficiency (mastery of skills), the next step in this process of 

examining team learning, performance, and proficiency is to begin identifying specific antecedent variables and 

predictors. An antecedent variable is present before the independent and dependent variables under study and 

moderates or helps explain the relationship of other variables. The reason to identify these variables in the literature 

is that they are often feature engineering candidates in the data management process and are useful for developing ML 
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models, and supporting our goal of accurately assessing team learning, performance, and proficiency across various 

domains of instruction. 

 

Performance is a demonstration of proficiency. Proficiency is demonstrated (applied) knowledge and skill that 

predicts, but does not guarantee future performance (the ability to use/apply knowledge). Proficiency may also be 

viewed as the potential for performance or potential for successful completion of a task, and it is represented by 

varying levels of skill development while competency signifies that the learner has achieved at least the minimum 

threshold of proficiency which is usually defined by a measurable standard. Task proficiency may include categories 

or levels such as no proficiency, elementary proficiency, limited working proficiency, professional working 

proficiency, full professional proficiency, and expert proficiency which usually contain qualifiers that describe 

knowledge, skill, and abilities at each level. While proficiency is a predictor of future performance, it is not a guarantee 

since the conditions under which tasks are performed can vary and influence performance. For example, a learner who 

has mastered skills for a land navigation task in an urban environment may encounter new conditions (e.g., heavily 

forested areas) that influence their performance. New conditions might also include changes in the condition of the 

learner (task performer) that can influence their performance – lack of practice, lack of energy, lack of sleep, lack of 

confidence, skill decay or the inability to transfer skills from prior experiences to a new experience. This is why 

performance fluctuates.  

3 Examining Measures of Team Assessment 

In reviewing the literature, our goal was to identify attitudes, behaviors, and cognition variables that significantly 

influence team learning, performance, and proficiency outcomes. To this end, we began with learning as a precursor 

for successful performance, competency (essential skills) development, and proficiency (mastery level of essential 

skills), but we also sought to understand how domain learning is represented in behaviors and assessed (Figure 2). We 

developed our ontology from this point of view. 

 

 
Fig. 2. Domain Taxonomies for Learning Activities and Assessments 

 

We began by identifying domain taxonomies (cognitive, affective, psychomotor, and team) for learning activities and 

assessments defined in the literature. Unlike the cognitive, affective and psychomotor domains, there was not a 

definitive and comprehensive single source for the team domain, but there were three candidate frameworks that 

helped us identify team learning activities and assessments, and relationships to team performance, and proficiency. 

The first was the temporally-based framework for team processes [13] addressed as a series of input-process-outcome 

cycles that represent attitudes, behaviors and cognitive processes during transition phases (involving planning, setting 

objectives, and defining strategies) and action phases (involving activities). The second framework, a taxonomy of 

teams, team tasks, and tutors [14], identified team performance context in the form of team attributes, team tasks, and 

team skills. The third framework, identified attitudes, behaviors and cognition related to cooperation, coordination, 

communication, cognition, coaching, conflict, and conditions to assess teamwork [15]. 

Based on this composite team modeling approach, we identified activities (team behaviors and processes) and 

measures of assessment associated with team learning, performance, and proficiency (Figure 3). The goal is to develop 

a list of candidate features that can be tested within models that are created and trained within a ML pipeline process 

used to classify/predict team performance states, and identify trends within the training population. 



25 

 

  

Fig. 3. A Team Learning, Performance & Proficiency Framework 

Based on the literature and our initial investigation of data relationships, candidate features for classifying and 

predicting team learning, team performance, and team proficiency should include: 

• team learning classifiers and predictors – team performance and proficiency measures including transitions 

(evidence of mission analysis, planning, goal specification, strategy development and adaptation, progress toward 

learning objectives, and markers related to teamwork behaviors 

• team performance classifiers and predictors – team proficiency measures and successful goal achievement at 

increasing levels of difficulty for representative operational tasks; specific measures of assessment including time, 

accuracy, etc.; and context descriptors (conditions of performance)  

• team proficiency classifiers and predictors – achievements during operational experiences and relevant measures 

of sustained successful performance; collective standards of expected performance based on rank, roles, and 

responsibilities within the team 

Given we have completed the identification of candidate features for our ML models, our next step is to describe a 

detailed data management process for feature engineering, model building, and model evaluation in the next section 

of this paper. 

4 A Data Management Process 

As noted above, we are proposing a ML approach to identify candidate features, and build a model to predict team 

learning, performance, and proficiency. In this section, we describe a data management process (Figure 4) for 

transforming raw data from multiple sources to create inputs or features for our stacked ensemble model. The pipeline 

includes a data cleaning process, a feature engineering process, and a model building and evaluation process. 
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Fig. 4. Data Pipeline Process 

The design of the data pipeline assumes multiple streaming sources (most difficult case) instead of a static dataset. 

Streaming data is also assumed to have both supervised (labeled) and unsupervised (unlabeled) data. To support near 

real-time processing of data 

for the ultimate selected model, our design includes the Massive On-line Analysis (MOA) framework for data stream 

mining, but our intent is to use this primarily for structuring data flow, data fusion, and data organization. For the deep 

learning network, we plan to use TensorFlow, a free and open-source software library for ML that can be used across 

a wide range of tasks but is best for the training and inference of deep learning networks. 

During the pre-processing stage, the dataset will be examined and transformed as needed. Features with significant 

amounts of missing data will be eliminated. Each feature will also be evaluated to ensure good variability since features 

with poor variability really will not help us distinguish strong associations in the dataset so we can make predictions. 

Next, we will initiate the feature engineering process. Feature examples for various domains or types of data might 

include: 

 

• physical attributes – colors, textures, contours, size, mass 

• electromagnetic spectrum attributes – frequency, phase, spectrum 

• time-based attributes – events, triggers, duration, spacing, trends 

• medical domain attributes – DNA sequences, genomes 

• textual attributes – words, grammatic dependencies 

The success of our ML approach will rely on the available data, the features selected, and model chosen. The goal of 

the data management process is to find the simplest model that accounts for the major associations in the dataset 

(reference: Occam’s razor). For our team learning, performance, and competency attributes, we expect information 

sharing, workload sharing, event triggers and other time-based measures to be important features. Our goal in feature 

engineering is to significantly reduce the number of candidate features to a few critical features for each model. To 

reduce the number, features may be combined with other features or eliminated based on redundancy or other factors. 

The benefits of taking time to conduct thorough feature engineering are enhanced generalization of results, faster 

learning process for your model, improved model interpretability, and improved statistical significance.  

The three most used feature engineering methods are filtering, wrapping, and embedding. Filtering strategies look 

at the interaction of features and eliminate features based on poor correlation between pairs of features or eliminate 

features based on the statistical significance of individual coefficients in a linear regression model.  

Wrapping strategies involve searching through subsets of data, training a model for the current subset evaluating it 

based on reserved data and then iterating through each subset.  One way to approach wrapping is forward selection 

where the evaluator starts with an empty subset and gradually adds the strongest features. Another is the opposite, 

backward selection where the evaluator begins with a full set and then removes the weakest feature during each 

evaluation. Subsets can also be selected randomly and evaluated against each other where the weakest feature in each 

match is eliminated. Finally, embedded strategies make feature selection part of the model construction process, and 
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use filter and wrapper strategies as part of the model evaluation process. Embedded strategies seek to measure the 

predictive quality of each subset.  

Once the data is prepared and we have selected features for our model, it is time to select ML approaches that are 

appropriate for our dataset and begin building and evaluating models (Figure 4). Assume we selected to build and test 

a single DNN (Figure 5) as part of our data management pipeline. DNNs are a class of ML algorithms like artificial 

neural networks (ANNs) that aim to mimic the information processing of the human brain. DNNs have more than one 

hidden layer situated between the input and output layers. Generally, accuracy will increase with more hidden layers, 

but performance will also decrease. However, accuracy is not only dependent on the number of layers, but it is also 

dependent on the quality of the model, and the quality, characteristics, and quantity of the training data.  

 

 

Fig. 5. Deep Neural Network Topography 

While a single DNN model may be adequate to assess team learning, performance, and proficiency, a stacked 

ensemble model is another alternative that should be considered. The rationale for creating a stacked ensemble model 

is to boost predictive accuracy by combining predictions of multiple, strong, diverse ML models. Each model 

contributes different strengths, and the individual weaknesses and biases are offset by the strengths of other members. 

As noted earlier, ensemble methods are commonly used to boost predictive accuracy by combining the predictions of 

multiple weak ML models to leverage their collective strengths and mitigate their weaknesses. However, a more 

effective approach is to create an ensemble of strong and diverse models that are stacked to use the power of ML. The 

simplest kind of ensemble model is the unweighted average of the predictions of the models that form a model library. 

For example, if a model library includes three strong and diverse models that are used to identify an aircraft maneuver 

event, each model takes on the same weight when an ensemble model is built. 

In a stacked ensemble model, individual model weights are estimated more intelligently by using another layer of 

ML to optimally combine model outputs and this approach is called model stacking (Figure 6). Model stacking is an 

efficient ensemble method in which the predictions, generated by using various ML algorithms, are used as inputs in 

a second-layer learning algorithm. This second-layer algorithm is trained to optimally combine the model predictions 

to form a new, more accurate set of predictions. For example, a linear regression model may be used as a second-layer 

model to estimate weights by minimizing the least square errors. Second layer models may also be more complex 

DNNs or other ML algorithms. 
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Fig. 6. Stacked Ensemble Model Development Process 

Examining winning entries from the prestigious KDD Cup, an annual knowledge discovery and data mining 

competition organized by the Association for Computing Machinery (ACM), we found the winning ML designs 

employed principles that stressed model diversity and were commonly used in building powerful, predictive stacked 

ensemble models that use: 

• a variety of training algorithms – as many as 64 different models were part of the iterative model evaluation 

process and these included neural networks, gradient boost models, factorization models, and regression models; 

an example of applying stacked ensemble modeling methods might be through the addition of a factorization model 

to a set of tree-based models (such as random forest and gradient boosting) to provide additional diversity which is 

useful because the factorization model is trained very differently than decision tree models are trained 

• a variety of features as model inputs – seven to ten features were regularly used in different combinations and 

subsets as inputs for models under evaluation; features could be selected through random sampling of features or 

through some measure of importance  

• different data subsets to train models – if you have a large dataset, it could be useful to randomly divide the data 

into subsets or randomly distribute important features across data subsets 

• different hyperparameter settings - hyperparameter are parameters whose values are used to control the model 

learning process (e.g., model weights); by contrast, the values of other parameters (e.g., accuracy) are derived from 

the training process; it might be useful to use different hyperparameter settings with different subsets of variables 

In the next section, we conclude our discussion by focusing on potential next steps to improve the predictive accuracy 

of ML solution.  

5 Discussion – Next Steps 

Most of this paper has focused on a search of the literature to identify candidate features, and a data management 

process to select features and then build and test ML models to predict team learning, performance, and proficiency. 

Our exemplar design focused on a deep learning network based on the numerous advantages that it afforded, but we 

also provide the alternative of a stacked ensemble model with integrated DNN along with other potential ML models 

(e.g., decision trees, Bayesian networks, clustering algorithms) to ramp up predictive accuracy. We conclude by 

offering four additional recommendations: 

• Employ or develop methods to enrich training repository data (better data = better predictions). 

• Extend usable training data with an online ML learning approach to enable team assessments from either static 

training data sources in a repository or dynamic training data sources (e.g., streaming data from real-time sources).  

• Use an online learning approach to process one example at a time and reduce data drift by re-training the ML model 

after each observation. 
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• Conduct research to enhance the scalability of ML-based team assessment solutions. 
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Abstract. This paper discusses several concepts for the development of a distributed trainer 

for command staff trainees learning to develop courses of action (COAs) and wargame. 

These concepts include how understanding the nature of the team tasks determines the 

taskwork and teamwork competencies and shapes the pedagogical strategies to be 

incorporated into the trainer. As well as concepts related to the difficulties in developing 

assessments for unstructured team tasks and the challenges with assessing team processes, 

we also discuss the inclination towards a positivist paradigm that relies on the presence of 

behaviors for indicators, when absence of certain behaviors can also be indicative and used 

in assessments. We conclude with a preliminary framework for organizing system features 

for the trainer, and ideas for future research. 
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1 Introduction 
 

Wargaming is a team activity conducted by command staff with expertise in various warfighting 

functions (WfFs). The team develops and analyzes courses of action (COAs) by considering 

critical events, actions, reactions, and counteractions. Their analysis typically results in an 

operational plan. Any instructional system developed for training wargaming must enable team 

task execution while also serving training objectives. The extent to which these two goals are met 

depends on the design of the assessments as well as the training experience and flow of the training 

exercise delivered by system features. In this paper, we share progress in the design and 

development of a prototype distributed trainer for U.S. Army wargaming. Our approach to 

designing assessments for the prototype involves understanding the task and competencies to be 

trained, and defining indicators or markers of those competencies for assessments. These can only 

be implemented with system features that can elicit indicative behaviors during task execution 

and training.  

 

 

2 The nature of the wargaming team task 
 

The type of team task to be trained should drive many of the system requirements for any trainer. 

Identifying the type of team task can help researchers and system developers gauge the typical 

flow of information and communications among team members and anticipate patterns of 

interactions so that requirements can be designed accordingly. A typology of team tasks had been 

proposed [1] which describes the ways in which team members work together to accomplish the 

task. The typology includes characteristics such as complexity, routineness, type of 

interdependence members have on each other which can be pooled, sequential, reciprocal, or 

team [2]. For instance, members of a team working the assembly line show sequential 
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interdependence, while co-authors on a writing team exhibit reciprocal interdependence as the 

writing is passed back and forth between members. Team tasks can also vary in whether they 

focus on managing, advising, negotiating, performing a service, executing a psychomotor action, 

or solving problems which can be defined or ill-defined [3]. The wargaming team task can be 

considered a complex, ill-defined problem-solving task characterized by team interdependence 

where members’ tasks and work sequences are unspecified and dynamic. Although it is a 

challenge to derive any interaction structure for such an unstructured team task with no defined 

stages requiring a high level of interdependency, there is semblance of some turn-taking in the 

wargaming team task. For instance, in Division level wargaming, the Chief of Staff typically 

directs the discussion of COA events and phases, and the staff representing the Intel WfF tends 

to be called on first to provide background information with intelligence about the enemy. From 

there, other staff members perform their specialized WfF roles by contributing critical function-

specific information as the team steps through various possibilities and topics in their COA 

discussion. Each team member must not only be familiar with how the different WfFs work 

together both in planning and execution, but have a nuanced understanding of the COA scenario, 

including possible repercussions of hypothesized events, and how different WfFs impact further 

COA decisions down the line. 

 

3 Competencies and pedagogical strategies 
 

An application that enables the command staff team to prepare for and conduct wargaming may 

not sufficiently support training if it does not support the acquisition of the skills and 

competencies needed for the task. The team’s training must include taskwork and teamwork, and 

incorporate assessments of outcomes and processes. 

 

3.1 Taskwork and teamwork 

 

While taskwork pertains to what the team members do to achieve the collective goal, teamwork 

focuses on how they interact and collaborate to accomplish the team task. A trainer for wargaming 

should facilitate both taskwork and teamwork in a way that is appropriate for each team member 

according to their role [4]. Teams that consistently develop good COAs and subsequently 

wargame effectively would have mastered the needed taskwork and teamwork competencies. 

There are different levels of taskwork that the trainer should assess; scenario-specific responses 

such as selecting a “route along the coast which bypasses a mountainous range”, and concepts or 

principles that drive the scenario-specific response, which include assumptions and 

presuppositions held knowingly or unknowingly by the trainee. These principles are more difficult 

to assess since they are rarely evident from superficial responses, and may require extra probing 

before they are apparent. For instance, a further prompt such as “what is the rationale for this 

selection?” may reveal that the coastal route was selected mainly for speed rather than to minimize 

risk. If a safer but equally fast route was available, then the coastal route would have been 

suboptimal for meeting the stated purpose. A trainee may arrive at a suitable scenario-specific 

response as a mistaken application of a rationale or principle. In wargaming training, it is more 

crucial to uncover these errors in decision rationale rather than to look for a nominally correct 

scenario-specific answer, especially for tactical decisions where many options may be acceptable. 

As these principles are scenario-agnostic, there is a possibility of developing such prompts which 

can be applied across different scenarios. Instructors and Subject Matter Experts (SMEs) in 

wargaming training have developed a “mental model matrix” to capture some of these scenario-

agnostic principles and topics to address.  

The matrix lays out the critical topical areas staff teams must consider for any COA, with a 

breakdown by WfF. Whether and how trainees address these topics may reveal certain patterns of 

thinking, including cognitive biases. For example, named areas of interest (NAIs) are intelligence 

collection points associated with specific locations, typically planned by an Intelligence lead.  In 

explaining how NAI placements contribute to maintaining contact with the enemy, an Intel staff 
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member may realize that they tend to seek out confirmatory evidence. An exercise that involves 

prompting trainees in this manner can help provide the training experience that promotes 

development of the right mental models and metacognitive processes. 

While instructors and SMEs seek to develop such critical thinking skills and metacognitive 

awareness in their trainees, they also recognize that the group dynamics within the team can 

substantially impact how the knowledge and skills of individual WfF staff roles are manifested, 

drawn out, and sharpened within the team. These interactions constitute the teamwork aspect or 

process by which the team performs the task. Wargaming assessments are often based on outcome 

measures such as the synchronization matrix showing the final mission plan and details of 

dependencies, or the quality of the COAs developed and selected based on criteria such as 

feasibility, suitability, and completeness. While these may reflect the quality of the team’s 

process, they are not direct measures of it. Training assessments can only provide insight into the 

team’s teamwork if the trainer captures indicators of the team’s process, which in turn requires 

the team competencies to first be defined.  

In our approach to ensure that the trainer supports the teamwork needed in wargaming, we 

identified the team competencies most relevant to COA development and wargaming analysis. 

These were leadership, team cognition, information exchange, communication quality, supporting 

behaviors, and team orientation. Teamwork during wargaming involves guiding and directing 

(leadership), cooperating and offering support (supporting behaviors), and sharing information 

with each other (information exchange) that builds a shared mental model (team cognition) in a 

clear and appropriate manner (communication quality) which shows trust and openness (team 

orientation).  

In training for these taskwork and teamwork competencies, instructors and SMEs emphasize 

the importance of having trainees master the roles of the various WfFs and understand how these 

must work closely together. They typically adopt the “Socratic” method where trainees are guided 

through shared dialogs to pose questions, evaluate the reliability of incoming information, cross-

examine assumptions by generating alternative explanations or seeking disconfirming evidence 

[5]. This type of pedagogical approach does not necessarily require high fidelity simulations or 

even lengthy and complex scenarios. It can be supported by a relatively open system architecture 

that includes a clear depiction of the vignette of interest, and allows members to respond to open-

ended prompts, raise objections and questions, work together to identify decision points, and learn 

from and build on each other’s contributions. From our analysis of the tasks and of instructional 

methods, we propose that potential pedagogical strategies that support the acquisition of the 

taskwork and teamwork competencies for wargaming include the following (see Table 1): 

 
Table 1. Summary of wargaming competencies and suggested pedagogical strategy 

 Competencies  Pedagogical/instructional strategy 

for acquiring competencies 

Taskwork 

 

Individual’s knowledge of WfFs, the 

wargaming process and the military 

decision making process (MDMP), 

military protocols and conventions, 

critical thinking skills, ability to 

perform assigned staff role  

Application of various knowledge 

and skills to a wide range of 

scenarios/vignettes and echelons. 

Teamwork Leadership in the team, team 

cognition, information exchange, 

team orientation, supporting 

behaviors, communication quality 

Group discussions and questions that 

reveal and clarify preconceptions, 

generate ideas to test hypotheses, 

identify decision points.  

Active listening practice. 

Cross-training on staff roles. 

 

It is possible that novice command teams would exhibit different patterns of interactions from 

expert teams, as will teams composed of members from different services. For instance, all-Army, 

all-Navy, or mixed-services which will be prevalent in multi-domain operations (MDO), may 
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show different patterns of collaboration due to differences in their tactics, techniques, and 

procedures (TTPs). Artificial intelligence (AI) can help extract features in team interactions that 

characterize how different types of teams wargame various types of vignettes and scenarios such 

as MDOs, operations across echelons, etc. 

 

4 Pre-defining indicators for assessments 
 

In designing assessments for our trainer prototype, we drew from concepts in the Event-Based 

Approach to Training methodology (EBAT)[6, 7], and the Event Analysis of Systemic Teamwork 

methodology (EAST)[8, 9]. These methodologies have been successfully applied to training 

command and control teamwork in aviation and military domains [10–13]. The EBAT involves 

systematically identifying and injecting events in the training exercise to elicit pre-defined 

opportunities for observing behaviors indicative of constructs of interest and training objectives. 

This encourages traceability from behavioral indicators to assessments, and training objectives 

[14]. The EAST methodology proposes making explicit (i) who the members in the exercise are, 

(ii) when tasks are performed and who they involve, (iii) where members are, (iv) how members 

collaborate and communicate to achieve task goals, and (v) what tasks members are performing, 

and what knowledge and information is shared and used [12]. Both the EBAT and EAST advocate 

explicitly for articulating and pre-defining anticipated behaviors and markers that serve as 

measures for constructs of interest. Whereas an event in the EBAT and EAST in an example 

aviation task may be “reaching cruising altitude” or “initiating the landing procedure”, events in 

dialog-based, collaborative wargaming preparation tasks could be the prompted discussion of a 

COA decision point such as anticipating the impact of enemy reinforcements on the scheme of 

maneuver. Assessment measures for this kind of event concern how well the team discussion 

covered relevant tactical, cross-functional considerations.   

To some extent, such an approach implies a positivist research paradigm which emphasizes 

positive observations or the presence of behavioral evidence, although the absence of behaviors 

can also be indicative and should be included in assessments. However, this requires specifying 

a priori expectations, which are challenging for tasks that are unstructured. For instance, in a well-

defined and structured task such as a maintenance task, we can assess absence of certain desirable 

behaviors when they are not observed in the procedural steps. In unstructured tasks, there are 

fewer expectations of when certain behaviors should be exhibited, so it is more difficult to note 

when these are absent. Table 2 presents examples of “positive” (presence of behaviors) and 

“negative” (absence of behaviors) observations that can be indicators of the teamwork dimensions 

identified previously. Some are contextualized to wargaming training in a primarily dialog-based 

exercise environment, and some are more general purpose. 

 

Table 2. Examples of indicators from teams high and low on each team dimension 
Team Dimension Presence of these behaviors Absence of these behaviors 

Leadership 

(guidance, 

direction, 

coordination, 

strategy 

formulation) 

High on dimension 

-Leader guides who should be doing 

what, and when. Active team member 

participation. 

 

Low on dimension 

-Frequent questions on where team is at 

within the exercise, staff looking at the 

wrong information 

High on dimension 

-Absence of team behaviors 

indicating boredom or 

distraction 

 

Low on dimension 

-Absence of leader probing 

questions or indicators of 

active team engagement 

Team cognition 

(knowing who 

knows/needs 

what and the WfF 

roles, critical 

thinking, 

High on dimension 

-Addresses the right role for information 

and questions 

-Discussion appropriate for the echelon  

-Shows understanding of 

interdependencies among WfFs, (e.g., 

High on dimension 

-Infrequent requests for 

clarification on staff roles 
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Team Dimension Presence of these behaviors Absence of these behaviors 

metacognitive 

awareness) 

 

 

 

 

 

 

Team cognition 

(continued) 

“Signal’s input is needed about 

maintaining comms, if Aviation takes this 

helicopter route”) 

-Questions assumptions, generates 

alternative explanations, detects missing 

information, seeks disconfirming 

evidence 

 

Low on dimension 

-Addresses the wrong WfF role for 

questions and information 

-Jumps to conclusions, reaches for easy 

explanations, too focused on a quick 

resolution even with new information 

 

 

 

 

 

 

 

 

Low on dimension 

-Members not seeking 

disconfirming evidence, not 

seeking or using 

information from other 

roles 

Information 

Exchange 

(knowing what 

info. is needed, 

how much detail 

is needed, when 

to give it) 

High on dimension 

-Volunteers information to the right role 

in a timely manner, with enough detail 

for the echelon 

-Discusses topics relevant to the echelon 

 

Low on dimension 

-Gives incomplete, untimely, or 

inaccurate information 

-Gives information for the wrong echelon 

High on dimension 

-Absence of excessive 

requests for information 

(“pulling information”) 

from staff  

 

Low on dimension 

-Absence of appropriate 

questions, not discussing 

relevant topics  

Supporting 

Behaviors 

(backup 

behaviors, load-

leveling, mutual 

performance 

monitoring, 

giving feedback) 

High on dimension 

-Shares information that assists others in 

their work or role 

-Reminds team of important information 

missed or overlooked 

 

Low on dimension 

-Adds to others’ work even when they are 

busy 

-Asks unnecessary questions that distract 

from topic at hand 

High on dimension 

-Absence of distracting 

questions or comments 

 

 

 

Low on dimension 

-Failure to assist or ignores 

others when they need 

help 

 

Team 

Orientation 

(promotes and 

supports open 

communication 

that facilitates 

mutual trust, team 

cohesion, team 

motivation, 

conflict 

resolution) 

High on dimension 

-Responsive to each other, shows support 

(e.g., like button) 

-Encourages contributions, uses “we” 

often, shares credit/blame as a team 

-De-escalates and resolves conflicts 

 

Low on dimension 

-Quick to claim credit, shifts blame 

-Defensive when questioned, pushes own 

ideas. 

 

High on dimension 

-Not dismissive of others 

-Does not fuel conflicts 

 

 

 

 

Low on dimension 

-Fails to attend to or 

acknowledge others when 

they contribute 

-Lack of participation 

Communication 

Quality (use of 

proper 

phraseology, 

awareness of 

military 

conventions) 

High on dimension 

-Uses standard conventions and protocols 

that facilitate clear communications 

-Communicates concisely 

-Adjusts communication style as needed 

 

Low on dimension 

-Uses wrong terminology that may cause 

confusion 

-Uses wrong channels, gives information 

High on dimension 

-Absence of unnecessary 

chatter 

 

 

 

Low on dimension 

-Fails to acknowledge 

others, no closed-loop 

communications 
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Team Dimension Presence of these behaviors Absence of these behaviors 

in a roundabout way.  

-Engages in unnecessary chatter 

These measures can be further expanded with more data and research with AI and machine 

learning (ML). For instance, AI-based methods may detect changes in the frequency and type of 

questions discussed by a team as they coalesce and work better together. Novel assessment 

measures may be derived from applying AI and ML approaches to extract emotion indicators 

from facial expressions, gestures, eye tracking, or vocal data. AI-based speech recognition 

methods can potentially assist in automating assessments as well.  

 

5 System features for a wargaming trainer 
 

It is relatively straightforward to assess the team’s taskwork from responses and outcome 

measures such as ratings of the tactical decisions within COAs based on criteria set out in rubrics. 

To assess a team’s processes and teamwork, the wargaming trainer must collect data of the 

members’ interactions. These interactions can be scripted into the workflow or be unscripted and 

ad hoc. Scripted interactions can be embedded in the workflow of the exercise if the team 

members are required to respond to other members’ inputs. These interactions offer the best 

opportunities for automated assessments. Ad hoc interactions are extemporaneous and can be 

initiated by any member at any time throughout the team activity. The exercise flow should be 

designed to create opportunities for both types of interactions to elicit a wide range of behaviors, 

some of which are indicators of the team competencies. Although the technology in the trainer 

can be leveraged to automate assessments, assessment opportunities for ad hoc interactions 

require observer-based assessments. Regardless of how much the interactions are scripted, they 

are initiated by members receiving information and involve them responding and taking action 

after processing the stimuli. Given this inevitability, we propose the following framework for 

system features for the team trainer (see Table 3). Such a framework can serve as a guideline for 

system development. 

 

Table 3. System features for wargaming taskwork and teamwork 
 Features to deliver stimuli  Features that accept inputs  

Taskwork -Display to allow team members to obtain 

information needed for their roles. E.g., Intel 

staff needs information on Commander's 

critical information requirements (CCIR), 

and priority intelligence requirements (PIR) 

-List of topics to cover in discussion and 

prompts. E.g., “What do you need to consider 

for this situation and what roles are 

involved?” 

-Interface for submitting 

products of taskwork, or for 

assigning taskwork. E.g., 

drop-down menu of possible 

responses and auto-complete 

options, text box for free form 

text 

 

Teamwork -Display to promote shared understanding 

across roles. E.g., common map of area of 

interest (AOI) 

-Display needs to promote awareness of 

others’ status. E.g., status board showing 

current status of all staff members 

-Interface to allow initiation 

of action directed at other 

members or responding. E.g., 

drop-down menu of possible 

responses and auto-complete 

options, text box for free form 

text, messaging with select 

member(s), “like” button to 

endorse or acknowledge 

 

6 Future work and conclusion 
 

Building a trainer to prepare command staff for collaborative wargaming requires attention to 

both task execution and achieving learning objectives. As with most team tasks, there are 
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taskwork and teamwork competencies to be developed in wargaming training.  The challenge lies 

in the fact that this team task involves few tangible artifacts and does not readily adhere to any 

type of structure. Being in a cognitive domain of learning [14, 15], the training focus is on the 

abstract and conceptual, and is difficult to operationalize and assess. In addressing the concepts 

discussed in the paper, we identified opportunities to apply AI in wargaming training that include 

learning how types of teams (e.g., novice, expert, mixed services teams, all-Army teams) interact 

and communicate, exploring if there are patterns of interactions that can be extracted for certain 

types of vignettes (e.g., operations for different echelons, multi-domain operations), training 

speech-recognition for the wargaming domain, and developing assessments from novel measures 

such as eyetracking and gesture and facial expression recognition. We hope to use the prototype 

currently under development to collect data that can help refine some of these research 

opportunities. 
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