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This book on self-improving systems is the seventh in a planned series of books that examine key topics 

(e.g., learner modeling, instructional strategies, authoring, domain modeling, assessment, team tutoring, 

self-improving systems, and data visualization) in intelligent tutoring system (ITS) design. This book fo-

cuses on self-improving systems and the application of artificial intelligence in ITSs. The chapters within 

this book specifically examine topics in relationship to the Generalized Intelligent Framework for Tutoring 

(GIFT) (Sottilare, Brawner, Goldberg & Holden, 2012; Sottilare, Brawner, Sinatra, & Johnston, 2017). 

GIFT is an open-source, domain-independent, modular, service-oriented architecture for ITSs. The design 

of GIFT allows for reusability, reduction in authoring time, and reducing the skill level needed to create an 

ITS. GIFT provides functionality to create ITSs, distribute ITSs to learners through the Cloud, conduct 

research to evaluate ITSs, and to examine instructional outcomes.   

Along with this volume, the first six books in this series, Learner Modeling (ISBN 978-0-9893923-0-3), 

Instructional Management (ISBN 978-0-9893923-2-7), Authoring Tools (ISBN 978-0-9893923-6-5), Do-

main Modeling (978-0-9893923-9-6), Assessment Methods (ISBN 978-0-9977257-2-8), Team Tutoring 

(ISBN 978-0-9977257-4-2) are freely available at www.GIFTtutoring.org. 

We believe this book can be used as a design tool for self-improving ITSs. Before we discuss aspects of 

tutoring and ITSs, it is important to clarify what we and other stakeholders mean by self-improving systems. 

Self-Improving Systems 

ITSs are all different based on the goals and focus of the authors of the systems. The materials that are 

contained within the ITSs, the learner characteristics and actions that are to be tracked, and the types of 

adaptations that are provided by the ITSs vary depending on the specific system. While these adaptations 

and the desired feedback are generally static and determined ahead of time with an ITS (e.g., if the learner 

makes this specific mistake, then present feedback number 1), there may be an advantage to dynamically 

adapting strategies and content that have been found to be most effective with other learners in the ITS.  

Utilizing artificial intelligence techniques to create self-improving systems could result in improved learn-

ing outcomes. For the purposes of the current book, we define self-improving systems in ITSs, as systems 

that continually improve by examining the positive and negative outcomes associated with tutoring, and 

adjusting the tutor to include the materials/paths with the most optimal outcomes. Within the current book 

different approaches to establishing self-improving systems, such as machine learning, are discussed, as 

well as specific considerations that should be taken into account when designing these systems. 

GIFT and Expert Workshops 

In 2012, Army Research Laboratory (ARL) with the University of Memphis developed expert workshops 

of senior tutoring system scientists from academia and government to influence the GIFT design goals 

moving forward. Expert workshops have been held each year since 2012 resulting in volumes in the Design 

Recommendations for Intelligent Tutoring Systems series the following year. In 2018, parts of ARL, in-

cluding the GIFT team, were reorganized into another organization, Soldier Center. Research into applied 

adaptive tutoring and team tutoring have continued with Soldier Center. Additionally, the expert workshops 

and books have continued with topics in line with the relevant research gaps.  

http://www.gifttutoring.org/
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The learner modeling expert workshop was completed in September 2012 and Volume 1 followed in July 

2013. An expert workshop on instructional management was completed in July 2013 and Volume 2 fol-

lowed in June 2014. The authoring tools expert workshop was completed in June of 2014 and Volume 3 

was published in June 2015. The domain modeling expert workshop was held in June 2015 and Volume 4 

was published in July 2016. The assessment expert workshop was held in May 2016 and Volume 5 was 

published in June 2017.  The team tutoring expert workshop was held in May 2017 and Volume 6 was 

published in August 2018.  We recently conducted a workshop on self-improving systems in intelligent 

tutoring systems in May 2018, and Volume 7 is the current publications.  Future expert workshops are 

planned for data visualization. 

Design Goals and Anticipated Uses of GIFT 

GIFT was designed with multiple functions in mind: 

1. An architectural framework that is modular, and has components that can be replaced and custom-

ized by ITS authors for their specific tutor. 

2. A set of authoring tools which allows subject matter experts, and those without a background in 

computer science to easily create customized ITSs. 

3. A testbed for experimental research, which allows for the examination of research questions rele-

vant to the continued development of ITSs. 

The chapters within the book provide recommendations for how to implement the methods within the GIFT 

architecture with the above functions in mind. 

How to Use This Book  

This book is organized into four sections:  

I. The Systems Perspective 

II. Machine Learning 

III. Content Authoring 

IV. Social Perspectives and Human Factors 

Section I, The Systems Perspective, explores different systemic views of self-improving systems for adap-

tive training.  This section discusses different self-improving strategies, approaches, and mechanisms for 

intelligent tutoring systems. Using GIFT as a basis, this section discusses the different implementations of 

self-improving systems, and suggestions for future systems. 

Section II, Machine Learning, highlights the different machine learning techniques that can be implemented 

in ITSs. The chapters in this section discuss a number of different machine learning techniques including 

sequence mining, discriminate subsequence analysis, multi-armed bandits, and reinforcement learning.   

Section III, Content Authoring, discusses different approaches to creating content in self-improving ITSs, 

and considerations for creating content in these specific cases. The approaches that are discussed include 
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crowdsourcing from learner data, refining content based on learner input, and algorithmically defining the 

content to be used in the ITS.  

Section IV, Social Perspectives and Human Factors, focuses on considerations of the human in the loop. 

There is discussion about how social interactions between students can be leveraged to improve tutoring, 

and how tutors can be improved using design principles of human factors. There is additional discussion of 

designing tutors for ethics, and an overall perspective on the future of intelligent tutoring.  

Chapter authors in each section were carefully selected for participation in this project based on their ex-

pertise in the field as ITS scientists, developers, and practitioners. Design Recommendations for Intelligent 

Tutoring Systems: Volume 7 – Self-Improving Systems is intended to be a design resource as well as a 

community research resource. We believe that Volume 7 can serve as an educational guide for developing 

ITS scientists and as a roadmap for ITS research opportunities.  The authors of the chapters contained herein 

are experts in their area and the references provided (their own and those of others) compose a rich web of 

working professionals in the ITS field.   

References 
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CHAPTER 1 – INTRODUCTION TO THE SYSTEMS PERSPECTIVE 

SECTION 
Vasile Rus 

University of Memphis 

 

Core Ideas 

The contributions in this section describe different systemic views of Adaptive Instructional Systems 

(AISs). These views include different strategies, mechanisms, and approaches to improve AISs. A key 

theme is that AISs are sophisticated systems that must adapt/tailor their operations to each individual 

learner. Furthermore, AISs interact with the learner and the wider environment in complex ways which 

should indicate considering a complex system perspective when modelling such systems. Based on different 

types of adaptivity (macro vs. micro) or various components of the AISs, they can be improved in a number 

of ways such as embedding learning mechanisms that will improve components based on experience, e.g., 

reinforcement learning methods, or simply intelligently selecting an external service for a given function-

ality (selecting a speech-to-text service in order to translate spoken learner input to written form). 

Individual Chapters 

The chapter by Hu, Tong, Cai, Cockroft, and Kim discusses a model of Self-Improvable Adaptive Systems 

(SIAIS) based on a “symmetric” structure in which “both human learners and self-improvable learning 

resources change/improve similarly and adapt to each other.” They present their own AIS structure built 

around the following four components: the learners, self-improvable learning resources, learning environ-

ments, and learning processes. They then argue that all four components of the AIS are improvable. 

The chapter by Tong, Rowe, and Goldberg distinguishes between the two different types of SIAIS: macro-

level SIAIS and micro-level SIAIS. After presenting their own view of the generic architecture of an AIS, 

the authors focus on the main functionality of such AISs which is adaptivity to each individual learner. 

Following in the tradition of VanLehn and Rus who identified and depicted several levels of adaptivity, 

Tong, Rowe, and Goldberg discuss two major levels: macro-adaptivity (corresponding to the so-called 

outer-loop) and micro-adaptivity (inner-loop, which seems to include also the hint-level loop). The chapter 

then describes mechanisms to enable macro- and micro-level adaptivity in SIAIS such as reinforcement 

learning or genetic algorithms.  

The chapter by Sottilare, Sinatra and DeFalco presents a new perspective on AISs as complex, self-im-

proving systems. Their thesis is that the learner, AIS, and environment interact in complex ways and there-

fore should be regarded as a complex system. The chapter identifies areas for AIS development and inte-

gration of existing capabilities to enhance the complexity, granularity and sophistication of methods used 

by AISs to make effective instructional decisions. 

The chapter by Nye, Thaker, Auerbach, and Brawner argues that one way for AISs to improve is to im-

prove its components. Components could be improved, i.e., become more effective, either by directly im-

proving “due to new data” or by intelligently selecting between different services that provide the same 

capabilities. For the latter approach, they detail their work on a Multi-Agent Architecture (MAA) frame-
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work for the Generalized Intelligent Framework for Tutoring (GIFT) whose purpose is to register and in-

stantiate arbitrary services that are associated with a specific course. They note that the GIFT MAA agents 

framework offers a possible testbed for exploring self-improving systems. 
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CHAPTER 2 - SELF-IMPROVABLE ADAPTIVE INSTRUCTIONAL 

SYSTEMS (SIAISS) –  A PROPOSED MODEL 
Xiangen Hu1,2, Richard Tong3, Zhiqiang Cai1, Jody L. Cockroft1, and Jong W. Kim4,5 

University of Memphis1, Central China Normal University2,  

Squirrel AI Learning3,  

U.S. Army Combat Capabilities Development Command – Soldier Center – Simulation and Training  

Technology Center4, Oak Ridge Associated Universities5 

Introduction  

This chapter tries to consider the fact that adaptivity as a basic fact in instruction (or teaching & learning) 

environments can be dated as early as the times of Confucius and Socrates. Adaptive instruction is probably 

a natural pedagogy from the very beginning of teaching practice. About 2500 years ago, Confucius ex-

plained this when he was asked about why he gave very different answers to the same question asked by 

different students (Eno, n.d.). Adaptivity in learning and teaching are so important that psychologists have 

tried to systematically study it in instruction for many decades at various levels of detail. For example, 

Atkinson (1974) identified two major components for Adaptive Instructional Systems (AISs): (1) the se-

quence of instructional actions taken by the program varies as a function of a given student’s performance 

history, and (2) the program is organized to modify itself automatically as more students complete the 

course and their response records identify defects in instruction strategies. (page 336); Park and Lee (2003) 

provided a comprehensive view of AISs. More recently, a group of researchers have begun to move even 

further by establishing an IEEE standards group which focuses on the systematic study and standardization 

of AISs (“Adaptive Instructional Systems (C/LT/AIS) P2247.1,” n.d.).  

For the purpose of this chapter, we consider a model of Self-Improvable Adaptive Instructional Systems 

(SIAISs). A SIAIS is an extended, compared to Atkinson (1974), but still minimalist system that included 

explicitly four distinctive components:  human learners, learning environments, self-improvable learning 

resources, and learning processes.  

● Human learners are special components in SIAISs that are assumed to be constantly self-improving 

(i.e., learning). 

● Self-improvable learning resources are human resources (trainers/teachers, for example) and some 

digital resources such as digital tutors. These are capable of changing (improving) constantly. 

● Learning environments are the diverse physical or virtual locations, contexts, and cultures in which 

students learn.  

● Learning processes are the instructional sequence for any given domain for a particular learner 

group (such as grades). 

Both learning environments and learning processes are improvable and likely adaptive. These two compo-

nents may not be able to improve by themselves. In this chapter, we focus on the components that are self-

improvable. We will define this in later section. Behaviorally, this SIAIS can be described as  

Human learners interact with self-improvable learning resources in a given learning environment 

following preset steps of learning processes.  

https://paperpile.com/c/GJON7v/rKmV
https://paperpile.com/c/GJON7v/POox/?noauthor=1
https://paperpile.com/c/GJON7v/7nHF/?noauthor=1
https://paperpile.com/c/GJON7v/FGIx
https://paperpile.com/c/GJON7v/POox/?noauthor=1
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This proposed model focuses on the relations between human learners and self-improvable learning re-

sources. Specifically, this model has a “symmetric” structure in which both human learners and self-im-

provable learning resources change/improve similarly and adapt to each other. We first offer an observa-

tion from classic Item Response Theory (IRT). 

Observed Symmetry in Item Response Theory (IRT) 

If we assume that a learner learns during tests with feedback, then the following case fits the definition of 

an AIS:  

An online test involved with M learners and N questions. Each learner is required to answer all N questions, 

and the result of each answer is dichotomous (“correct”, “wrong”). After the learner answered a question 

feedback is always given (assume this is where the instruction happens). The presentation order of the 

problems is individualized based on the response history of each learner (this is why we call it “adaptive”).  

In this AIS, the four components are the learners (M learners), the learning resources (N problems), the 

learning environment (online), and the processes (individualized presentation order and feedback). The 

model of this AIS is the classic IRT. An IRT model for this AIS considers two sets of parameters: the item 

difficulties parameters for the N problems and the abilities parameters for M learners, Rasch model for 

dichotomous data links these two sets of parameters in the following way:  the probability of learner i 

answering problem j correctly is 𝑃𝑖𝑗 =
1

1+𝑒
−(𝛼𝑖−𝛽𝑗)

. Equivalently, the probability of problem j being an-

swered by learner i incorrectly is  

𝑄𝑖𝑗 = 1 − 𝑃𝑖𝑗 = 1 −
1

1 + 𝑒−(𝛼𝑖−𝛽𝑗)
=

𝑒−(𝛼𝑖−𝛽𝑗)

1 + 𝑒−(𝛼𝑖−𝛽𝑗)
=

1

1 + 𝑒−(𝛽𝑗−𝛼𝑖)
 

As it can been seen, in this simple IRT, both the learners and the problems are mathematically symmetric. 

It is also interesting to notice that if two sets of parameters, (𝛼1, . . . , 𝛼𝑀) and (𝛽1, . . . , 𝛽𝑁) are the estimates 

of the learner abilities and problem difficulties, then if (𝛼1 + 𝑐, . . . , 𝛼𝑀 + 𝑐) is the new set of learners’ 

abilities, then the difficulties of the problems must be (𝛽1 + 𝑐, . . . , 𝛽𝑁 + 𝑐). This means, the estimate of one 

set of parameter values is only meaningful in the context of the other sets of parameters values, or the model 

makes one set of values adapt to another set of values. In this Rasch model for dichotomous data, the 

symmetry and mutual dependency of the learners and problems offers a general insight to AISs.  

Self-improvable Learning Resources 

Self-improvable learning resources are those learning resources that can update, retrieve, and utilize their 

associated memory of the learning activities.  A human learner is obviously self-improvable and constantly 

works to self-improve. Human teachers/trainers, and human study mates are also self-improvable and con-

stantly improving. Some specially designed digital resources can also be self-improvable. We consider two 

examples:  

The first example is a human tutee and human tutor without computers. Assume the tutoring session is face-

to-face and the tutor follows a typical expectation-misconception tailored (EMT) tutoring strategy (Graesser 

et al., 2001). It is obvious that both tutee and tutor are self-improvable. For tutee to self-improve, the tutee 

needs to remember and learn from prior mistakes and success when interacting with the tutor. For the tutor 

to self-improve, the tutor needs to have a memory of what have been tutored and whether the teaching was 

effective to the student. In this example, both self-improvable components (human tutee and human tutor) 

https://paperpile.com/c/GJON7v/GMLy
https://paperpile.com/c/GJON7v/GMLy


 

 

13 

 

will need to update, retrieve, and utilize the stored activities during their interaction in the tutoring environ-

ment. 

The second example is ElectronixTutor (ET) (Graesser et al., 2018). ET is created by the team from the 

University of Memphis. Behaviorally, ET interacts with a learner in the following steps: 

1. Learner login 

2. ET retrieve learner’s relevant learning history data from the Learning Record Store (LRS) 

3. ET recommends an assignable learning activity1 to the learner based on the history data of the 

learner. 

4. Learner interacts with ET with the recommended activity.   

5. ET sends interaction data to the LRS.   

6. ET combines the most recent learner’s activity with the history data of the learner. 

7. ET recommends next learning activity. 

8. Learner interacts with ET with the recommended activity. 

9. …. repeat beginning at step 5 

The more relevant data collected for a given learner, the more efficient and effective the ET will be for the 

learner. The key for ET to be a self-improving learning resource is to update, retrieve, and utilize stored 

data to recommend the next learning activity.  

In both examples, the learning environment (face-to-face or online) and the processes (the rigid steps of 

interactions) are relatively stable. After each learning activity, the human learner learns (improves), the 

memories of both the human and the self-improvable resource updates. Due to the update, retrieval, and 

utilization of memory, the self-improvable resources improve over time. Behaviorally, the two examples 

are the same in the sense that two self-improvable components interact in a given learning environment 

following preset steps of learning processes. The keys for self-improving resources to self-improve are 

the existence of a memory (data) store and ability to update, retrieve, and utilize relevant memory (data) 

from previous learning activities.  

We define SIAISs as AISs that include at least one self-improvable learning resource.  

In this section, we purposefully equate the human tutor and ET as self-improvable counterparts of human 

learners in SIAISs. In the next section, we try to show that it is actually reasonable to equate the human 

learner and its self-improvable counterpart in a formal model. 

A Proposed Model for SIAISs 

For the purpose of the current chapter, we take a minimalistic, behavioristic view of AISs that contains only 

four components: the learners, the self-improvable learning resources, the learning environments, and the 

                                                           

 
1 The assignable learning activity can be read a static document, interact with a digital tutor, or work on problems.  

https://paperpile.com/c/GJON7v/0xPt
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learning processes. In general, all four components of the AIS are improvable. For example, learning envi-

ronments such as schools, classrooms, and laboratories improve each time when there are relevant theoret-

ical and technological advancements. Through history, classroom conditions have improved from chalk 

and blackboard classrooms to a more modern classroom equipped with LCD projectors and networked 

computers. The improvements of learning environments, learning processes, and some learning resources 

are made from external effort and hence are not self-improvable. On the other hand, human learners are 

obviously self-improvable. Human resources (trainers/teachers) are self-improvable. They accumulate their 

instructional knowledge and skills by interaction with learners. Some specially designed digital resources 

such as computer based tutors are self-improvable. 

We are now ready to propose a model for SIAISs. We keep the same minimalist and behavioristic four 

component model of AISs with the Learners, the Resources, the Environments, and the Processes. From 

the previous two sections, we observed that human learners, human resources, and some specially designed 

digital resources are self-improvable if they have the capability of performing real-time updates, as well as 

being able to retrieve, and process the associated memory (data). We also showed that human learning 

resources (such as trainers/teachers) can be behaviorally mimicked by specially designed digital resources 

such as intelligent tutoring systems. SIAISs should contain at least one self-improvable resource. To dis-

tinguish different types of learning resources, we consider those resources that are not self-improvable 

(therefore are static) part of the Environments. A simple demonstration of symmetry between the human 

learner and test items in the Rasch model for dichotomous data offered a key feature (#5) of this proposed 

model for SIAISs:  

1. There are four types of components in SIAISs: The Human Learners, the Self-Improvable Learning 

Resources, the Learning Environments, and the Learning Processes;  

2. Human learners and self-improvable learning resources interact in a given learning environment 

with a preset of processes. 

3. Human learners and self-improvable learning resources update, retrieve, and process the associated 

memory (data) in real-time. 

4. Learning environments and processes are relatively static compared to the instantaneous changes 

of human learners and self-improvable learning resources. 

5. Human learners and self-improvable learning resources are symmetric in SIAISs when self-improv-

able resources are playing the roles of teachers. They are self-improvable components with their 

own properties.  

The most important features of the proposed model are a) self-improvable learning resources and the real-

time updating, retrieving, and processing of their associated memory of the SIAIS; b) self-improvable learn-

ing resources are behaviorally equivalent to the roles of human resources; c) human learners and those self-

improvable resources that play the roles of teachers are symmetric in SIAISs.  

From this definition, all our educational systems such as physical schools (with students, teachers, class-

rooms, and curriculum) are SIAISs, because they involve all four components of an AIS, and teachers are 

self-improvable learning resources. ET also satisfies minimal requirements of an SIAIS. The recommender 

in ET is a self-improvable component. 
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Recommendations and Future Research 

We consider SIAISs superior to AISs because a SIAIS has at least one self-improvable learning resource. 

The Generalized Intelligent Framework for Tutoring (GIFT) is an empirically-based, service-oriented 

framework of tools, methods and standards to make it easier to author computer-based tutoring systems 

(CBTS), manage instruction and assess the effect of CBTS, components and methodologies (“Overview - 

GIFT - GIFT Portal,” n.d.). We offer the following recommendations to GIFT, such that the CBTS au-

thored by GIFT are self-improvable and GIFT enabled AISs are SIAISs.  

This model emphasizes that the self-improvable learning resources and human learner are symmetric in an 

SIAIS. This means any of the self-improvable resources will likely be interacted with by multiple human 

learners and develop “personalities” like humans. If the environment of an SIAIS is not physical, then some 

of the self-improvable resources that are non-human may play roles like real human resources (teachers or 

study mates). It is important to start building them with care to avoid potential harm to human learners. For 

this reason, we should pay attention to all aspects of self-improvable resources. We need to understand all 

details when building, evaluating, and using them in SIAIS.  

Behaviors of self-improvable resources should be recorded similarly to that of human learners. In 

SIAISs, one of the most important properties of self-improvable learning resources is real-time updating, 

retrieving, and processing of the associated memory of the behavior of the SIAIS. These SIAIS behaviors 

will include the behavior of all four components; existing standards such as xAPI are designed to only 

capture human learning behaviors. Within the proposed model, these data standards should be extended to 

include actors that are self-improvable resources. For example, a dialog-based tutor such as AutoTutor 

(Nye, Graesser, & Hu, 2014) is a typical self-improvable resource when it is used in an SIAIS such as ET. 

All dialog movies of AutoTutor should record human learners’ behaviors the same way. The structure of 

the statements should be the same (such as actor, verb, activity). It is important to note that human learners’ 

behaviors are observed, but behaviors of self-improvable resources are mostly programmed.  

Self-improvable resources should be built based on known effective and efficient human learning 

principles. Self-improvable learning resources are behaviorally equivalent to the roles of human resources 

(such as teachers). Cognitive psychologists and education researchers have suggested effective and efficient 

learning principles (Graesser, Halpern, & Hakel, 2008; Lucariello et al., 2016; Pashler et al., 2007) for 

teaching and learning communities. They have been used in guiding the creation of educational institutions 

and training facilities. The building of self-improvable resources should be subject to the same principles 

(similar to teachers’ training). At least, any self-improvable resource should be well-documented with 

metadata during its creation.   

Models for self-improvable resources should be similar to human learner models. There have been 

studies of learner modeling from the perspective of intelligent tutoring systems (Sottilare, Graesser, Hu, & 

Holden, 2013). Within the proposed model, we should study similarly self-improvable resource models 

from the human learner’s perspective. When we consider human learners from an intelligent tutoring sys-

tem perspective, we consider the competency (such as knowledge skill, and abilities (KSAs)) of the human 

learner. Within this model, we should also consider competency of the self-improvable resources. For ex-

ample, we should consider how a specific self-improvable resource is made, what the rules are, how it is 

trained, and how well it will get along with human learners and other self-improvable resources. The math-

ematical models for human learners and self-improvable resources should be the same. Some model pa-

rameters of human learners may only be obtained/estimated from the observation (data). Most model pa-

rameters of self-improvable resources may be directly obtained.  

https://paperpile.com/c/GJON7v/8Fnu
https://paperpile.com/c/GJON7v/8Fnu
https://paperpile.com/c/GJON7v/2hUP
https://paperpile.com/c/GJON7v/PT4d+k2MV+kesL
https://paperpile.com/c/GJON7v/sR5s
https://paperpile.com/c/GJON7v/sR5s


 

 

16 

 

Conclusions 

A minimalist model for SIAISs is presented. The key components of the model include the human learners, 

the self-improvable learning resources, the learning environments, and the learning processes. Self-im-

provable learning resources can be human resources (such as teachers, trainers, or study mates) or specially 

designed digital resources (such as digital tutors) that can update, retrieve, and utilize their associated 

memory (or data). The classification of SIAIS is quite general in that it is applicable to many traditional 

education agencies such as classes, schools, or school districts. In the context of this current volume, we 

consider training systems that include self-improvable digital resources such as intelligent tutoring systems. 

We use the “symmetry” between learners and questions in IRT to show the feasibility of similar symmetry 

between human learners and self-improvable resources in this model of SIAISs. With the proposed model 

for SIAISs, we recommend to 1) Create self-improvable learning resources with the guide of effective and 

efficient learning principles. It is likely the same resources will self-improve into human-like trainer/teach-

ers and interact with thousands of students. We must take care to create them right to avoid potential harm. 

2) Some of the research theories and methodologies that have been used to study human learners can be 

used to study self-improvable learning resources because they are behaviorally similar to humans in SIAISs. 
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Introduction 

In this chapter, we distinguish between two different types of self-improving adaptive instructional systems 

(SIAISs): macro-level SIAISs and micro-level SIAISs. Afterward, we explore architectural implications of 

achieving self-improvements and propose approaches for building each type of SIAIS. 

The main design goal of a self-improving system is that it can inspect either a certain component of the 

system or the whole system itself, and then make an adjustment to improve the parts or the whole based on 

a set of performance criteria. In either case, self-improvement requires self-awareness through evaluation, 

and more importantly, a mechanism to self-correct. We decompose the architecture of adaptive instructional 

systems (AISs) and focus our attention on self-improvement mechanisms in practical implementations. We 

illustrate real-world AIS architectures and propose approaches such as using continuous inspection and 

correction, reinforcement learning, and evolutionary algorithms to design and construct both micro-level 

and macro-level SIAISs. 

Definitions 

Adaptive Instructional System (AIS) 

AISs describe a class of software that includes intelligent tutoring systems (ITSs), adaptive learning tech-

nologies, interactive media, serious games, simulations and other learning tools or methods that are used to 

personalize and optimize instruction for a particular learner or teams. AISs have the common goal of ena-

bling learning in a meaningful and effective manner by using a variety of computing technologies, espe-

cially computational intelligence.  

In a typical non-adaptive instructional system, instruction is delivered to all students in the same way (i.e., 

waterfall method), often consisting of a fixed set and sequence of reading materials, videos, and/or exercises 

to be completed by all students. An AIS, on the other hand, may use individual variability in learning 

performance, learning pace, preferences, motivation, affective states, and other learner or team attributes 

together with instructional conditions to identify appropriate learning strategies and tutor actions. Due to 

recent advances in artificial intelligence, sensing technology, and data mining methods, modern AISs offer 

novel approaches to engaging students in open-ended tasks and drawing new insights about the learning 

process. From increasing integration of natural language processing and affective state monitoring, to ap-

plications of simulations and interactive media, AISs are increasingly able to capture, process, and fuse 

high-frequency interaction data and natural rich modalities of communication, such as speech, writing, and 

nonverbal interaction during real learning activities. This provides unprecedented insight into the moment-

to-moment development of a number of learning experiences, especially those involving multiple dimen-

sions of activity and social interaction, enabling researchers to get far more nuanced and complex under-

standing of student learning processes, something that we have only begun to study at scale. 
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Self-Improving AISs 

The basic promise of a self-improving system is that it can learn from experience. Typically, the prerequisite 

for self-improvement is self-awareness. Typically, a self-improving system can inspect either a certain 

component of the system or the whole system itself and then automatically make adjustments to improve 

the parts or the whole based on a set of performance criteria. SIAISs are such systems.   

Architecture 

Basic AIS Components: 

First, we re-examine the architecture of an AIS (Figure 1). In order to achieve basic adaptivity, AISs typi-

cally include the following improvable components:  

1. Ontology 

a. Knowledge graph of KCs 

b. Knowledge graph of associated domain content 

c. Item organization 

2. Content 

a. Instructional items 

b. Assessment items  

c. Intervention resources 

d. Practice or scenario-based resources 

3. Learner Goal and Context  

a. Goals: To achieve adaptivity, there must be explicit learning goals so that adaptive deci-

sions can be made. Goals are separated from the algorithms because they are not just static 

input to the adaptive models, but also could be optimized (improved) themselves. 

b. Context: This includes everything else that is relevant for the recommendation engine to 

consider in order to make a decision, such as the learner’s state, traits, and current learning 

environment settings. 

4. Adaptive Engine (i.e., algorithms and parameters)  

a. Learner progression measurement algorithms:  The algorithm could be a knowledge-based 

heuristics or rule-based program, or it could be machine-learning based such as a probabil-

istic graphical model or artificial neural network.  

b. Task recommendation and planning algorithms  

c. Engine memory (data) 

5. Sensors 

a. Assessment sensors 

b. Student learning context sensors 

6. Interface 

7. Computer system supporting environment and components. For the purpose of self-improvement 

examination, we will treat them as static, i.e., outside of the confine of self-improvement.  

Key Processes of Adaptivity 

There are typically several key steps in most modern AISs to provide adaptivity:  
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(1) Diagnose or assess learner’s knowledge state of all or part of the target area of learning. 

(2) Recommend actions to the learner, such as interactions with different content, depending on the 

knowledge assessment of the learner (as described above). 

(3) Interact and teach the learner to understand what they have not learned to improve understanding and 

learning.  

(4) Provide novel practice opportunities with assessments and scaffolding to re-diagnose learner’s 

knowledge state post instructional interaction. 

 

Figure 1. Component architecture for AISs 

Note that on point (3) there is still wide variability in the degree to which these functionalities are imple-

mented in AISs. Most AISs have at least some type of simple error-sensitive feedback, while others have 

intricate systems for analyzing and providing feedback during the student’s learning process. We will ex-

plain more about the architecture and processes in the later sections of this paper.  
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Macro-Level and Micro-Level Adaptivity 

Adaptivity normally comes at two levels: the macro-level (sometimes called the outer-loop) and micro-

level (sometimes called the inner-loop). An illustration of this is shown in Figure 2. In a simple example of 

an AIS that involves math problems that can be broken down into multiple problem-solving steps, and in 

which the primary pedagogical mechanism is posing questions and providing feedback to learners, the outer 

loop tailors the task or problem set that a student sees, and the inner loop personalizes instruction at the 

level of individual problem-solving steps. The outer loop executes once for each task and iterates over the 

problems, giving feedback on the problem level (i.e. correct or incorrect) and selects the next problem that 

is appropriate for the student. The inner loop executes once for each problem-solving step and gives feed-

back or hints on each step. The inner loop assesses the student’s performance and updates the learner model, 

which is used by the outer loop to select the next appropriate problem for that student (VanLehn, 2006). It 

does this by looking at the skills that the student has currently mastered, evaluating the student’s knowledge 

state, and selecting the next optimal learning task(s). 

 

Figure 1. Dual loop behavior of AISs. Source: Rus & Stefanescu, (2016)  

This simple two-loop model can become complex in a more sophisticated AIS that involves different types 

of learning tasks. An outer loop interaction may involve videos, interactive simulations, and writing or 

speaking prompts in which assessment is challenging. The inner loop interaction also depends on the task. 

For a task that evaluates a student’s speaking skill, for example, the inner loop would need to evaluate the 

student’s speaking pattern against an optimal expert. This dialog-based inner loop adaptivity may require a 

separate ontology from that of the outer loop or a subset of the outer-loop ontology.  

The system would first present the learner with the most appropriate task (e.g., problem or action) for the 

student to complete. Once that recommendation has been accepted by the student, the system will initiate 

adaptive interaction with the student on the task (i.e., problem). 
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Compare and Combine the Architecture of Macro-Level and Micro-Level Adaptivity 

Figure 3 shows the component architecture of an AIS with both Macro and Micro-level adaptivity.  

Macro-level adaptivity 

The top portion (the two boxes above the learner record store (LRS)) of the sample AIS architecture shown 

in Figure 3 performs what we define as the macro-level (i.e., outer-loop) adaptive actions and tasks. The 

lowest granularity of the macro-level tasks typically corresponds to the finest-grained Knowledge Compo-

nents (KCs) or learning objectives (LOs) on the learning map (a special type of knowledge graph that 

captures the relationships among KCs or LOs).  

Micro-level adaptivity 

The bottom portion (the two boxes below the LRS) of the sample AIS architecture shown in Figure 3 illus-

trates what we define as the micro-level (i.e., inner-loop) adaptive learning actions. The lowest granularity 

of the micro-level action typically corresponds to the finest-grained learner actions that can be captured or 

recommended by the Adaptive Engine, such as a user click, a voice prompt, its corresponding response, or 

a step in the learner’s attempt to complete the task.   

 

Figure 2: Architecture illustration for AIS with 2 levels (i.e., loops) 
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Macro-level tasks and resources 

The boundary between the micro and macro level of the AIS is the macro-level task. Since each task typi-

cally corresponds to a KC or LO, we normally define four types of tasks at the macro-level: (1) assessment, 

(2) instruction, (3) practice, and (4) intervention. Practice has both assessment value and instructional value. 

Intervention sometimes does not have a direct impact on KCs or LOs. The static resources for tasks are 

typically called items. In the diagram, the item bank stores all the macro-level resources for the AIS.   

Micro-level actions and resources 

Below the macro-level tasks such as assessment, instruction or practice, the interaction between the tutoring 

agent and the human learner could be either static (e.g., watching a predefined instructional video or prac-

ticing a specific problem) or adaptive (e.g., conversing with a robotic tutor; engaging with dynamic chal-

lenges, questions, hints, explanations; interacting with game scenes or user menus).   

Commonalities between the micro and macro levels 

Conceptually, the adaptive engine at either the macro-level or the micro-level needs a minimum ontology 

such as the learning map, context-specific rules or policies (e.g., classifiers, conditions, heuristics, algo-

rithms) and a pool of recommendable actions or resources so that an appropriate resource or action can be 

used to adapt to each individual learner’s needs and actions dynamically and appropriately at the time of 

need. In either case, the actions or resources might be either static or dynamic (generated).   

Components more specific to macro-level adaptivity  

The components for macro-level adaptivity, as the name implies, are normally associated with the outer-

loop functions and more focused on planning, task selection and overall learner evaluation. The time span 

for the learner interaction is typically longer. These components will also provide the learner specific 

macro-level information to the micro-level (inner-loop) components and collect summary data about the 

task managed by micro-level (inner-loop) components.  

Components more specific to micro-level adaptivity  

The components for micro-level adaptivity tend to be much more domain-specific and customized towards 

the domain model of the KCs or LOs within the context of a specific task. In this case, the interface and 

pedagogical model design is much more dependent on the domain ontology of the KC and the real-time 

inferred assessments derived from captured interaction/input data from the student. 

Mechanisms for Self-Improvement  

Since the early days of computer science, scientists and system designers alike anticipated the creation of 

a self-improving intelligent system, citing it as a pathway toward the creation of artificial general intelli-

gence (AGI). As early as 1950, Alan Turing wrote:  

“Instead of trying to produce a program to simulate the adult mind, why not rather try to produce one which 

simulates the child’s? If this were then subjected to an appropriate course of education one would obtain 

the adult brain. Presumably the child-brain is something like a notebook as one buys from the stationers. 

Rather little mechanism, and lots of blank sheets... Our hope is that there is so little mechanism in the child-
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brain that something like it can be easily programmed. The amount of work in the education we can assume, 

as a first approximation, to be much the same as for the human child” (p. 456). 

Our goal here for SIAISs is not as grandiose as Turing’s. Nevertheless, we would like to examine the basic 

mechanisms and architecture approach for achieving self-improvement within AISs.  

Different Self-Improvement Mechanisms 

Common approaches to building self-improving systems can be categorized into the following types: (1) 

Automated continuous modification, (2) Self-modification through self-learning, and (3) Evolutionary ap-

proaches. 

Type 1: Automated Continuous Modification 

In previous industrial systems, this approach is the most commonly used and the most practical for modern 

AISs and even non-adaptive instructional systems. The basic mechanism is to have an agent within the 

system use predefined evaluation criteria to monitor the performance of system components that can be 

continuously improved. This “auto-improvement” agent will collect data about system component(s) to 

identify those that need modification and routinely update the system accordingly.   

An example routine in a SIAIS might automatically prune content and update content metadata. The process 

for each iteration of the agent would look like the following: 
 

Step 1: Compute item parameters (Item_correlation_factor_to_KC_proficiency, 

Item_difficulty, Item_discrimination) 

  

Step 2: Run automatic bad item identification; Notify (Content_editors); Re-

move (bad_items) from (Active_item_bank)  

 

Step 3: If Item_parameter reaches update threshold, Update (item_parameter) 

 

This approach works well for content, ontology, model parameters, validity of assessment items, etc. 

Type 2: Self-Modification through Self-Learning 

Many AISs utilize models induced using machine learning to drive adaptive support for students. A key 

promise of data-driven modeling techniques is their capacity for self-improvement. For example, reinforce-

ment learning (RL) provides a mechanism to enable models to self-improve through iterative accumulation 

of experience and reward. An example of a self-improvement mechanism using RL is the optimization of 

an adaptive recommendation policy, where the parameters for the current model become the target for 

continuous improvement. 

Another self-improvement mechanism is apprenticeship learning, which is a form of learning from demon-

stration (Abbeel & Ng, 2004). For example, we can use human teachers to instruct an adaptive agent 

throughout the adaptive learning process while the model improves by leveraging additional input from 

human experts. 

Type 3: Evolutionary Approaches 

For certain components of an AIS, especially models and algorithms, evolutionary algorithms such as ge-

netic algorithms or genetic programming, which optimize system parameters with respect to some well 
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understood fitness function through an iterative process, show promise. However, this approach will prob-

ably require a simulated environment to iteratively generate a large number of adaptive sequences.  

Approaches for Different Target Components for Self-Improvement 

In the AIS context, each of the components could become a target for the agent’s continuous improvement. 

For micro-level and macro-level AISs, there are differences in the role and type of these components. Since 

the different self-improvement mechanisms usually apply to specific types of components, we would prob-

ably take different approaches to designing and implementing SIAISs. The following tables compare the 

macro and micro-level SIAISs and suggest appropriate mechanisms. 

Macro-Level SIAIS 

The focus for the macro-level AIS is to optimize the learner’s task selection and learning sequence to ac-

celerate knowledge acquisition and support retention for future application. Therefore, the key is to improve 

the model, ontology, and content. The table below maps the different components to the SI approach. 

Macro-Level Components Type Improvement  
Approach Type 

1.      The adaptive engine (algorithm and parameters)   
a.      Learner progression measurement algorithm Model 2,3 
b.      Task item recommendation and planning algo-

rithms Model 2 

c.      The software code Program  
d.      The rules and heuristics Program 1 

2.      The sensors   
a.      The student learning context sensors Program N/A 

3.      The ontology   
a.      The knowledge graph of KCs Graph 1 

b.      The knowledge graph of associated contents Graph 1 

c.      The item organization Data 1 

4.      The contents   
a.      The instructional items Content 1 

b.      The assessment items Content 1 

c.      The intervention resources Resource 1 

5.      The learning goals   
a.      Static Goals Content 1 

b.      Dynamic Goals Model 2,3 

6.      The interface   
a.      Menu and Navigations Program N/A 

Micro-Level SIAIS 

The focus for the micro-level AIS is to optimize the learning within the task. Therefore, the higher priority 

work is to improve the model for content generation and interface generation. The table below maps the 

different micro-level SIAIS components to the SI approach.  
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Micro-Level Components Type Improvement 
Approach 

1.      The adaptive engine (algorithm and parameters)   
a.      Learner progression measurement algorithm Model 2,3 
c.      Sub-Task steps recommendation and planning algo-

rithms Model 2,3 

d.      The software code Program  
e.      The rules and heuristics Program 1 

f.      Engine Memory – Data Model 1 

2.      The sensors   
a.      The assessment sensors Program N/A 

b.      The student learning context sensors Program N/A 

3.      The ontology   
b.      The knowledge graph of associated contents Graph 1 

d.      The knowledge graph under KCs Graph 1 

4.      The contents   
a.      The instructional items Content 1 

b.      The assessment items Content 1 

c.      The intervention resources Resource 1 

5.      The learning goals   
a.      Static Goals Content 1 

6.      The interface   
a.      Dialog Interface Program 2 

Recommendations and Future Research 

In the previous sections, we have used component architecture analysis to help map different implementa-

tion approaches to two types of SIAISs. Future research directions include the following:  

1. Implement one to two pilot projects for both macro-level SIAISs and micro-level SIAISs by apply-

ing the discussed techniques to confirm or refute the proposed approach. 

2. Refine both the theoretical foundation and practical implementation of the models and algorithms 

in the field of SIAISs.  

3. Our initial next-step focus would be approach 2 for the adaptive engine (including models, ontology 

and goals) using RL, Generative Adversarial Networks (GANs), apprentice learning, and simulated 

students.  

The Main Challenges for Different Self-Improvement Approaches 

For any of these self-improvement approaches, there are several common challenges.  

1. The amount and quality of the data needed by any self-improvement algorithm is substantial. In 

general, AISs require substantial scale of operation in order to have adequate data to run such al-

gorithms. This issue is specifically acute for deep learning algorithms.   

2. The objectivity and quality of performance measurement indicators is also critical. Whether it is to 

make rule-based decisions or implement self-learning or evolutionary processes, it is critical to 

have high-quality, objective measurements of existing system components in terms of effectiveness 
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and results. For example, if we use learning gain as the main criterion for measuring the impact of 

content, or the effectiveness of a machine learning algorithm, any bias or inaccuracy in such meas-

urements will cause ambiguity in whether self-improvement can be consistently obtained.         

3. It can be unclear how to determine the frequency of system changes, or what criteria to use for 

guiding system changes. Currently, this is more of an art than a science in real-world systems. 

 

There are also specific challenges for the three approaches discussed above: 

4. For automated continuous modification, a primary challenge is the lack of historical interaction 

data for new or untested content items. Without longitudinal comparisons, decisions about self-

improvement prove difficult. 

5. For self-learning and evolutionary approaches, it can be difficult to obtain an adequate number of 

users to run RL with data from real students. This is true even in large-scale deployments, such as 

those typified by popular MOOC courses. Therefore, it is imperative to use simulated learners to 

generate sufficient data for training and optimization. However, the design of simulated learners 

raises a host of challenges that are beyond the scope of this chapter.  

Conclusion  

SIAISs show significant promise for the next generation of advanced learning technologies. In this chapter, 

we use an architecture-analysis approach to identify self-improvement opportunities around core AIS com-

ponents at both the macro-level and micro-level. The three suggested mechanisms—automated continuous 

modification, self-modification through self-learning, and evolutionary approaches—provide a starting 

point for the design and development of practical SIAISs.   

Initial work on domain-general approaches to developing SIAIS functionalities are beginning to emerge. 

For example, Rowe et al. (2018) have integrated a mechanism for macro-level self-improvement within the 

Generalized Intelligent Framework for Tutoring (GIFT). Specifically, they have developed an adaptive 

courseflow object within GIFT that supports data-driven models of instructional feedback based upon Chi’s 

ICAP model of active learning (Chi & Wylie, 2014). Their work uses RL to automatically induce and refine 

tutorial policies that control pedagogical decisions about ICAP-based instructional remediation within 

adaptive training courses. This is illustrative of emerging efforts to develop domain-general SIAIS capabil-

ities, and it points toward future directions for the development of AI-enhanced instructional systems that 

automatically self-improve as learners use them. Extending SIAIS capabilities to other components of 

GIFT, such as learner modeling and task selection, and extending these capabilities to team-based training, 

will be important to progress toward realizing the vision of practical, domain-general SIAISs. Furthermore, 

it will be critical to conduct rigorous evaluation studies with human learners to validate the effectiveness 

of SIAIS capabilities in run-time instructional environments. 
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Introduction 

This chapter examines the modeling of adaptive instructional systems (AISs) as complex, self-improving 

systems. According to Sottilare and Brawner (2018), AISs are “computer-based systems that guide learning 

experiences by tailoring instruction and recommendations based on the goals, needs, and preferences of 

each individual learner or team in the context of domain learning objectives” (p. 25). We contend that the 

interaction among the learner(s), the artificially-intelligent AIS that guides the learning experience, and the 

environment (e.g., simulation, media, problem set) which represents the content which the learner(s) inter-

act(s) with should be considered a complex system and specifically a complex adaptive system (CAS). It is 

not our intent to design, develop and validate a complex model of adaptive instruction in this chapter.  Our 

goal is to identify areas for AIS development and integration of existing capabilities to enhance the com-

plexity, granularity and sophistication of methods used by AISs to make effective instructional decisions. 

Toward this goal, we also provide recommendations for further development of the Generalized Intelligent 

Framework for Tutoring (GIFT; Sottilare, Brawner, Goldberg & Holden, 2012; Sottilare, Brawner, Sinatra, 

& Johnston, 2017).   

Relating Complexity Theory to AISs 

Complexity theory focuses on uncertainty and non-linearity in systems and suggests that elements of a 

system act together to influence the system’s collective behavior and interaction with its environment (Bar-

Yam, 2002). In complex systems, perfect understanding of the individual elements or processes in a system 

do not automatically translate into a perfect understanding of the whole system's behavior (Miller & Page, 

2007). In other words, the ability to model all system components or understand its processes is not a guar-

antee of the ability to accurately predict its behaviors or outcomes. While complex systems may seem cha-

otic, close examination can identify order, structure, and trends in their processes.   

If we expect a complex system to grow and learn over time, we identify the system as a CAS. A CAS 

possesses the intelligence to learn and adapt to changing conditions in its environment to optimize out-

comes. In considering the elements of a complex adaptive instructional system (CAIS), we must also con-

sider learning outcomes of interest: 

 Learning – the acquisition of knowledge or skill through experiences that are intended to change 

the long term behavior of the learner 

 Performance – the application of knowledge and/or skill to completing a task or function 

 Retention – the ability to recall stored knowledge or skill over time 

 Transfer – the ability to apply knowledge or skill acquired during instruction in a work environment 
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By targeting the outcomes in a CAIS, we can more strategically analyze the factors that contribute to these 

critical outcomes, and thereby enhance opportunities to identify/model its order, structure, and trends. The 

seeds of a CAIS have already been sown in the learning effect model (LEM) for individual learners and 

teams (Sottilare, 2012; Sottilare, Burke, Salas, Sinatra, Johnston & Gilbert, 2018). Next, we introduce the 

LEM and its associated concepts as the foundation to begin the construction of a model for CAISs.    

Introducing the Learning Effect Model (LEM) 

The major elements of the LEM include the learner, the environment, and the adaptive tutor. Functionally, 

these elements interact to support the learning experience and to reinforce or improve the decisions made 

by the adaptive tutor by improving its policies. While the LEM is and has been the basis for the design of 

GIFT, the implementation of GIFT’s design to date has been primarily based on static decision making 

methods (e.g., rules and decision trees) that are not associated with self-improving systems. A recent ver-

sion of GIFT has implemented Markov Decision Processes to support GIFT recommendations, but a true 

agent-based approach across all AIS decision making processes has yet to be implemented.  

By examining the LEM, we hope to demonstrate the advantages of agent-based approaches (compared to 

rule-based approaches) to self-improving systems. In Figure 1, agents in the adaptive tutor observe both the 

learner(s) and the environment, assess their states, and make decisions about learning strategies and tactics 

to optimize both the learning experience (near term) and learner proficiency (long term).  

 

Figure 1. Simple model of learning effect in AISs 

Why is it important to represent adaptive instruction as a complex system? Current theories of learning 

attempt to provide a simple model of instruction which might be simple to implement, but lack the com-

plexity to fully capture the learning process for either individual learners or teams. We contend that in order 

to fully represent the adaptive instructional process, we must forego simple models and embrace more 



 

 

31 

 

complex systems that account for all the variables in the system and learner interaction with the environ-

ment. Models of learning or instruction provide enticing strategies to be implemented in AISs, but these 

models are only part of a more comprehensive picture. To truly adapt strategies to individual learners and 

tailor tactics (actions) to optimize their learning outcomes, we need a complex system that represents all of 

the antecedents that influence learning and track decision outcomes to reinforce future decisions. 

The implementation (authoring process for AISs) should remain simple, but the underlying mechanisms 

are in truth much more complex and need to be modeled as a complex system. It is only through a CAS 

model that we see a realistic opportunity to accurately represent the adaptive instructional process, to predict 

future states of learners, and to understand the effectiveness of AIS decisions and actions in terms of learn-

ing, performance, retention, and transfer. “Research on learning and transfer has uncovered important prin-

ciples for structuring learning experiences that enable people to use what they have learned in new settings” 

(National Research Council, 2000, p. 4) and it is important that instructional designers apply these important 

principles, but it may be even more important to understand how to apply them and under what specific 

circumstances. The circumstances we refer to are the conditions of the learner and the environment which 

are the basis for triggering and selecting tailored strategies and tactics in AISs. 

Now that we have introduced complexity theory, CASs, and the functional elements of AISs, the next step 

is to dissect AIS decision-making processes into essential steps as they relate to the primary LEM interac-

tions with learners, environments, and tutoring agents. We begin by examining the LEM as it exists today 

and by identifying its critical decision points in the adaptive instructional process as a basis for a more 

complex and effective AIS. 

Interaction and Decision Making within the LEM 

The LEM was originally developed as a method of identifying the interactions and data flow between three 

essential elements: 1) the learner, 2) the environment, and 3) the adaptive tutor (Sottilare, 2012). Originally 

called the learning effect chain, the LEM evolved over time to include processes that acquire learner data, 

derive learner states from that data, select strategies (plans for action) based on learner and environmental 

conditions, and finally select tactics (tutor actions) with the goal of optimizing learning outcomes as shown 

in the latest version of the LEM in Figure 2 (Sottilare, Burke, et al., 2018). 

   

Figure 2. Learning Effect Model for Adaptive Instruction 
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If we dissect the processes shown in Figure 2, the colored boxes represent more granular elements of the 

learner (green), the environment (orange) and the tutor (light blue) than shown in Figure 1.  In the LEM we 

make a clear distinction between data and states.  Learner data may be behavioral (data associated with 

actions) or physiological (data associated with physical processes in the body).  Data sources include sen-

sors, direct observers or historical records.  States (e.g., emotions or motivation) are typically derived from 

data (facial markers, voice inflection or surveys). 

Behavioral data in the form of learner inputs (e.g., surveys, self-reported data or control selections), verbal 

and non-verbal actions, and other physical acts are captured by sensors for later use. Physiological data 

(e.g., heart or breathing rates) may also be captured, filtered, and processed to inform/classify derived 

learner states (real-time or stored long-term). Learner states influence the selection of strategies. Contextual 

cues from the environment influence tactics along with the selected strategy. Once a decision has been 

made about an instructional tactic, it has the potential to influence the learner, the environment or both.   

While the LEM details decisions like learner state classification, strategy selection, and tactics selection, it 

does not dictate the process or method for their selection. The mechanics of decision-making in AISs is left 

largely to the author of the system, but should be influenced by best practices in learning science. Much 

like a hammer is great for driving nails, but less effective in sawing logs, the effect of best instructional 

practices is not universally known among all the possible combinations and permutations of learner and 

environmental conditions. In the next three sections we explore learner models, instructional decisions, and 

environmental conditions to understand their roles in CAIS decision making.  

Understanding Learners in CAISs  

Learners by themselves are complex systems in that they are composed of many components which interact 

with each other resulting in probabilistic learning outcomes. The modeling of learners and processes like 

perception and learning is therefore also complex. While the LEM concerns itself primarily with learning 

outcomes, there are many other elements and processes embedded in the learner model that influence those 

learning outcomes. During instruction there are many states and traits that could be used to describe the 

learner and their readiness to learn. There are overlapping or concurrent states, uncertainty associated with 

classification methods, and other context-dependent factors.  

The interaction of learners with AISs is even more complex. A goal of this chapter is to more fully define 

the interactions, states, and processes within the learner that influence learning outcomes (e.g., skill acqui-

sition, retention, and transfer of skills), but to also extend known models of adaptive instruction such as the 

LEM (Sottilare, 2012; Sottilare, Burke, et al., 2018) to encompass the probabilistic nature of learner states.  

Our objective is to reflect the complexity of interaction between the learner(s), the AIS, and the environment 

(e.g., virtual simulation or serious game) as a system, and to understand the system design and processing 

required to reinforce system decisions (e.g., recommendations, learning strategies, and computer-based in-

structional actions) and improve their effectiveness over time. Next, we discuss a few variables of interest 

and their potential to influence learning outcomes. We begin with perception and learning. 

Perception and Learning 

“Perception yields models of the world that lies outside us,” (Johnson-Laird, 2012, p. 134). 

In order to be able to process information to be learned it first has to be perceived and attended (acted upon). 

Once the content has the attention of the individual they need to interpret, understand it, and then store it in 

memory if they choose to. Information that is provided in a tutoring context is often either in the auditory 



 

 

33 

 

form or the visual form. When provided in the visual form it traditionally includes a linguistic component 

such as reading directions or words that are associated with it. There are a number of different types of 

memory that are involved with the interpretation of information by an individual learner.  

Perceptual Systems, Memory, and Learning 

The modal model of memory (Atkinson & Shiffrin, 1968) is the traditional model that is used to describe 

the process of bringing in information and remembering it. In the modal model of memory, there are three 

main types of memory: sensory, short-term and long-term memory (Atkinson & Shiffrin, 1968). Sensory 

memory relies heavily on the perceptual system and has two different types: echoic and iconic. Echoic 

memory is auditory based and iconic memory is visual based. In order for information to get processed by 

an individual they have to pay attention or attend to it. Unattended iconic memory lasts about 1 second, and 

echoic memory approximately 30 seconds (Atkinson & Shiffrin, 1968). If the information is attended to in 

that time it can then be moved to short-term memory.  

The length of retention in short-term memory varies based on the literature, however, it is generally agreed 

that once it is in short-term memory the information has to be used, processed or repeated to ensure that 

makes it to long-term memory. Not every piece of information that is paid attention to will ultimately make 

it to long-term memory. Rehearsal, or repeating the information helps to retain it in short-term memory, 

and then ultimately can move it to long-term memory (Atkinson & Shiffrin, 1968). Long-term memory 

storage is one of the ultimate goals of tutoring.  

When designing tutoring you want to ensure that the learner pays attention to it, works with it and re-

hearses/interacts with reinforcing instances of it through feedback, interventions and questions so that it 

gets to long-term memory for later processing and retrieval. Additionally, it has often been theorized that 

there is a working memory store, which acts as an active short-term memory (Baddeley, 1992). The working 

memory can be overloaded which can then result in less information being processed and moving on to 

long-term memory.  

The working memory processes both linguistic and visual information.  Linguistic information includes the 

phonological loop which is responsible for processing auditory and verbal information including language 

and music. Visual information includes the visuo-spatial sketchpad which is responsible for processing 

visual and spatial information including image retrieval from long term memory. Ideally the amount and 

type of information that is coming in can be processed through short-term/working memory without over-

loading either of these resources, and ultimately reach long-term memory.   

Models of Perception and Learning 

In education, there is an orientation towards supporting learning experiences that facilitate pragmatic ends. 

This pragmatism can be understood both as the notion of transfer of skills or more simply as problem 

solving.  

There are two research traditions that address problem solving: research on problem representation (Gestalt 

legacy) that looks at how people understand problems, and research on how people generate solutions to 

those problems (Bassok & Novick, 2012). Gestalt psychologists demonstrated how the organizing princi-

ples of visual perception (e.g., proximity, good continuation, closure, grouping) in combination with a 

solver’s prior knowledge, effect how people understand and generate problem solutions (Bassok & Novick, 

2012).  

Problem representation is a model of a problem constructed to summarize the essential nature of that prob-

lem. This model might be rendered as an internal representation (mental model) (Lakoff & Johnson, 1980) 
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or external (e.g., diagram) (Card, Mackinlay, & Schneiderman, 1999), both of which can be manipulated 

to aid in searching for solutions. Hayes and Simon (1977) demonstrated in their famous Tower of Hanoi 

problem that people’s search for solutions depended on various perceptual and conceptual inferences that 

were drawn from specific representations of a problem’s structure. This principle implicates the importance 

of background knowledge in order to render an initial representation. In the search for a solution, these 

initial representations may undergo a change as new information informs the model. In this way, problem 

representations may evolve out of necessity to integrate this new information into the model in order to 

more effectively find the solution end state or goal.  

In essence, the relevant principles of problem-solving are rooted in notions of perception: both in how 

problems are represented, which determines or constrains generating a solution, and how these constraints 

shape the problem space to influence the cognitive activities employed in achieving a goal solution state. 

According to Dunker (1945), these cognitive activities can include: (a) categorizing objects and drawing 

inferences based on category membership; (b) making inductive inferences from multiple sources: (c) ana-

logical reasoning; (d) identification of causes of events; (e) deductive reasoning; (f) devising judgments; 

(g) using evidence to make diagnoses. 

The import of perception, then, in AISs includes devising platforms that provide the learner with enough 

relevant background knowledge so the learner can devise a flexible representation of a problem (either 

internally as a mental model or represented externally through AIS tools), that can be manipulated through 

cognitive activities in order to reach a solution end state.  

AISs include technologies such as Intelligent Tutoring Systems (ITSs), recommender systems, and intelli-

gent media and often have the ability to adjust the materials, strategies, or content that are provided to a 

learner based on the individual characteristics that are displayed during an interaction. Often times these 

adjustments can occur based on real-time performance as well as based on trait or state measures that occur 

during the interaction with the system. An ITS traditionally includes a learner model that is specifically 

designed for the domain-specific content of the tutor, and focuses on aspects of the learner that the ITS 

designer feels are relevant to the improvement of performance during the tutoring interaction. Learner mod-

els can be used to compare and contrast individual differences, previous learning experiences, prior domain 

knowledge, current performance, and states such as emotions, motivation or personality traits. While all 

learner models focus on the characteristics of the learner, they can be defined in very different ways de-

pending on the context and tutor technology – for instance, an algebra tutor’s learner model would be ex-

pected to be very different than the learner model of an individual engaging in a team learning task in an 

external computer-based game environment. 

Recommendations for Enhancements to the GIFT Learner Model 

In terms of recommendations for the design and further development of GIFT, learner models should be 

purposely built from a historical record or pool of data about the particular learner who is about to experi-

ence adaptive instruction. A model of perception, working memory, and the data in the model should be 

relevant to the domain of instruction and semantically related to prior experiences of the learner to assess 

their level of proficiency in that domain.  This will require assessment of the learner’s historical records by 

a machine learning method that can decipher the relationships between key learner attributes and experi-

ences to determine their domain proficiency with a high level of certainty.  High certainty is desirable since 

subsequent instructional decisions are dependent on the accuracy of assessed learner states.  Only in this 

way can the learner model represent the true complexity of the learner and tailor their instructional experi-

ence effectively. 

Learner models usually include both static data (e.g., name, gender) and dynamic data usually related to the 

domain of instruction. We contend that an important piece is missing that directly relates to learning – the 
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representation of the cycle defined by Jung (1932) while exploring psychological types: perception, judg-

ment, and action by the learner. The information being perceived by the learner varies, and there may be a 

difference between what has been perceived and the ground truth of what was presented to the learner. 

Working memory might also vary between learners and affect their ability to retain or recall information 

required to demonstrate learning. This can often lead to learner errors or misconceptions. Perception and 

memory are not generally represented in learner models today, but are well represented in cognitive models 

(e.g., Soar, Adaptive Control of Thought—Rational (ACT-R), Sigma). As we explore instructional decision 

making processes in the next section, we make a case for including cognitive models not only to represent 

the decision making process, but also to represent the capabilities/limitations of the learner. 

Understanding Instructional Decisions & Actions in CAISs  

There are several methods used by AISs to drive their actions. Actions range from simple recommendations 

to more complex interactions (e.g., interactive dialogues, reflective prompts). The goal of these actions is 

to optimize learning outcomes. In some cases, (e.g., the learning of fundamentals), short term learning may 

be prioritized over long term learning goals. In most cases, long term learning goals are prioritized above 

short term learning. 

There are also many methods available to drive AIS decision-making. Some are rule-based and others are 

implemented as decision trees, but rules and decision trees assume a full understanding of the existing 

conditions and the best options available. In many domains, uncertainty exists about the conditions of the 

learner and the environment, and the best options available may be sub-optimal. All the possible conditions 

may not be known and those that are known may not have obvious relationships to desired learning out-

comes.   

A better option may be an intelligent agent that observes the conditions of the learner and the environment 

and responds using its policies - knowledge of the domain (e.g., expectations, standards, rules, decision 

trees) to optimize learning.  The difference between an agent and more static methods like rules and decision 

trees is that the agent can learn, modify its policies, and make better decisions as it experiences more learn-

ers and environments (Figure 1).  Inexperienced agents can bootstrap (initialize) their policies based upon 

best practices in the literature – specifically instructional theories. “Agent architectures emphasize the in-

tegration of multiple techniques as well as programmability and flexibility” (Laird, 2012, p.11). In order to 

better understand how learning theories might help initialize agent knowledge, and how agent architectures 

might help us produce more effective agents, the next two sections touch on both of these topics.      

Applying Instructional Theories to CAISs 

Instructional theories are design-focused, goal-focused, and probabilistic. They are often described in terms 

of the likelihood that they will influence learning. Instructional theories are often confused with learning 

theories which are not prescriptive or probabilistic, but focus on how people learn (National Research 

Council, 2000; Eaton, 2012). Learning theories are generally grouped into three genres: 1) behaviorism – a 

long term change in behaviors in response to stimuli; 2) cognitivism – learning resulting from the internal 

processing of information; and 3) constructivism – mental model building based on experiences. While 

these are important in explaining how people learn, these models are not critical to design decisions for 

AISs. Next, we will sample two instructional theories used in GIFT as we examine methods to improve the 

complexity, granularity, and sophistication of decision making processes in AISs.   
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Merrill’s Component Display Theory (CDT) 

David Merrill’s Component Display Theory (CDT) (1983) is composed of four quadrants that represent 

four phases of instruction (rules, example, recall, and practice) that have been generalized across various 

instructional domains and are a basis of instruction in the AIS architecture GIFT. In the rules phase, the 

learner is exposed to content that includes facts and tenets about the domain under instruction. For example, 

if we were teaching a student about baseball, they would need to understand concepts related to batting 

(e.g., batter’s box, stance, grip, swing away, and bunt), fielding (e.g., outfield, ground balls, bases, pop flys, 

and outs), and pitching (e.g., the mound, the rubber, home plate, strike zone, balls and strikes). 

In the example quadrant, the concepts are modeled for the learner.  Again, using our baseball example, an 

instructor might model how to stand in the batter’s box, how to field a ground ball, or throw a curveball.  

The examples presented in this phase are dependent upon facts and tenets learned in the rules quadrant.  

Once the instructor has presented rules and examples the next step is to assess the ability of the learner to 

recall the facts, tenets, and examples previously presented. This is critical to the last phase which is practice, 

where the learner applies knowledge to a practical application of skill. If the learner is unable to recall the 

in information in the rules or examples quadrant, they will not be able to apply them in practice, Merrill’s 

fourth quadrant.  

Interactive, Constructive, Active, and Passive (ICAP) Framework 

In 2018, the Engine for Management of Adaptive Pedagogy (EMAP), GIFT’s recommender engine was 

extended to go beyond the CDT instructional model to include the Interactive, Constructive, Active, and 

Passive (ICAP) framework (Chi, 2009). The ICAP framework defines engagement behaviors as occurring 

in one of four modes: Interactive, Constructive, Active, and Passive. The ICAP hypothesis predicts that 

learners become more engaged with content as they transition from passive to active to constructive to 

interactive and that their learning will also increase. Instead of being limited to passive delivery of new 

content in the CDT instructional model, the ICAP framework now supports a configurable phase where the 

AIS author can select content and feedback strategies for remediation.   

Recommendations for Enhancements to the GIFT Instructional Model 

The enhanced EMAP affords GIFT capabilities to select and sequence content in a logical fashion, and 

considers engagement behaviors through the ICAP framework. The framework extends across domains, 

but the configurations are specific to the AIS under development. Much of the decision making logic is 

based upon a metadata tagging schema that associates content with learner states or pedagogical configu-

rations specified by the AIS author. While this is simpler than developing strategies from scratch for every 

AIS developed, it does contribute to the workload of the author and is only usable for the AIS under devel-

opment.  Alternatively, more complex learner models could provide learner states that can be used to drive 

automated selection of instructional sequencing and adaptations (e.g., scaffolding). 

Tutorial planning includes macro-level adaptations (e.g., decisions on next pieces of content to present) and 

micro-level (e.g., delivering tailored hints/prompts about current problems/scenarios). A computational 

model that governs the frequency, type, and mode of interaction with learners would go a long way to 

reducing the authoring workload. Rowe et al. (2015) noted several drawbacks associated with tutorial plan-

ner development: 1) labor intensive knowledge engineering processes, 2) static models that do not improve 

with experience, 3) static models that do not represent uncertainty well.  Rowe and colleagues have been 

pursuing a Markov decision process (MDP) approach for GIFT over the last few years, but bootstrapping 

or initializing these models has been a limitation of applying this approach in a large number of instructional 
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domains. We are recommending the development of simulated students to initialize MDP approaches and 

further reduce workload associated with creating complex, self-improving decision processes in GIFT. 

Applying Cognitive Modeling in CAISs 

According to the Oxford English Dictionary (2019), cognition is defined as "the mental action or process 

of acquiring knowledge and understanding through thought, experience, and the senses".  Thought, experi-

ence and senses neatly align with learning theories discussed earlier: cognitivism, constructivism, and be-

havioralism respectively. Cognition includes mental functions and processes such as understanding, atten-

tion, knowledge acquisition and generation, memory, perception, judgment, reasoning, problem solving 

and decision making, and language generation. Cognitive processes use existing knowledge to construct 

and deconstruct mental models and thereby generate new knowledge. 

A cognitive model is “an approximation to animal cognitive processes (predominantly human) for the pur-

poses of comprehension and prediction” (Wikipedia, cognitive model, 2019) and are usually developed 

using a cognitive architecture. Cognitive models are generally focused on a single cognitive process (e.g., 

image recognition). Cognitive architectures are generally focused on the structural properties of a system, 

and help constrain the development of cognitive models. According to Laird (2012) prototypical cognitive 

architectures have memory (short-term symbolic, long-term declarative, and long-term procedural) and 

processes to simulate perception, learning (e.g., declarative, procedural, conceptual), action selection, and 

action execution. Goals are also represented in the symbolic short-term memory.  There are several cogni-

tive architectures, but three popular examples include Soar (Laird, 2012), Sigma (Rosenbloom, 2013) and 

ACT-R (Anderson, 1996). 

So what is the relevance of cognitive modeling to AIS and specifically GIFT? Currently GIFT represents 

few of the cognitive functions and processes which might be used to enhance its instructional decision-

making capabilities. However, the open question is whether the benefits associated with developing and 

integrating cognitive models within GIFT outweigh the workload. Effectiveness studies should be under-

taken to answer this question or energy should be invested to provide a simplified methodology to author 

perception-decision-action processes in GIFT that can be generalized across domains. An additional area 

in which cognitive models might be useful are in GIFT’s learner module. A representation of the learner’s 

cognitive processes, capabilities, and limitations might enable GIFT to paint a more comprehensive picture 

of the learner and better tailor learning experiences. 

As noted earlier, the National Research Council (2000) identified important principles for structuring learn-

ing experiences. There are dozens of instructional strategies from rules of thumb to modeling the habits of 

expert instructors (Lepper, Drake & O’Donnell, 1997). A few common strategies that lend themselves to a 

variety of domains follow: 

 Set goals and objectives – what do you want the learner to accomplish during their adaptive expe-

rience and how will the AIS measure it 

 Tailoring instruction – this is the principle which GIFT is built upon; adapt instruction to the needs, 

goals, and preferences of the individual or team 

 Practice – provide opportunities for practice during adaptive instruction 

 Concept mapping - visual representations of functions, ideas, facts, tenets, concepts, and terms 

create by learners to organize their knowledge 
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 Summarizing and note taking – paraphrase and reflect on concepts to be learned; take notes to 

capture essential information to help support recall 

It is important to consider mechanisms (e.g., widgets) in the adaptive instruction that support the desired 

behaviors associated with each strategy. The design of these mechanisms could be improved over time by 

capturing data about their use.    

Understanding Environmental Conditions and Context in CAISs 

Finally, we are ready to explore the third component of adaptive instruction, the environment. The environ-

ment encompasses all the objectives, content, feedback, interactions, conditions, constraints, misconcep-

tions, policies, and other data that is specific to a domain of instruction. All this knowledge provides the 

context that is necessary for selection of appropriate, relevant actions by the AIS.   

Figure 1 shows the execution and constant evaluation of policies as part of the agent-based tutor or AIS.  

Policies are rules or triggers for actions by the AIS. Policies may be generalized across domains (domain-

independent) or be specific to a domain (domain-dependent). Policies are updated as their use is analyzed.  

A policy applied under a specific set of conditions yields an outcome. Over a large number of experiences, 

there may be recognition that the policy applied either increased, decreased or had no effect under the 

conditions of the learner or the environment. It could be that the performance of a policy is so consistent 

that it becomes a rule. For example, a policy that selects math problems based on difficulty and learner 

experience in the domain of instruction. More difficult problems are assigned to more experienced learners.  

However, it might be less obvious what the policy should be if it is a policy about modifying the difficulty 

of a scenario based on age of the learner and the environmental conditions. Usually, there is some degree 

of uncertainty associated with environmental conditions and the application of appropriate policies. This 

uncertainty is generally not fully represented in AIS architectures like GIFT. A greater understanding of 

the influence of conditions and elements in the AIS environment could be developed through real-time 

machine learning techniques armed with sufficient data. This would also result in more effective decision-

making more in line with the expected performance of a CAIS. 

Summary of Recommendations and Future Research 

We began by discussing complexity theory and relating this theory to AISs to make a case for something 

we labeled a CAIS.  In an effort to demonstrate, the complexity of AISs, we reviewed and extended discus-

sion about the LEM and the interactions between agent-based tutor, learner(s), and the environment that 

the learner experiences during adaptive instruction. Throughout this chapter, we discussed the view that 

CAIS decisions are made largely in the presence of uncertainty. We also stressed throughout the need for 

embedded, automated processes to manage the high level of complexity and uncertainty that are naturally 

occurring in CAISs and their components – the learner, the tutor, and the environment. 

In an effort to expand the complexity and improve the effectiveness of CAIS instructional decisions, we 

made several recommendations related to expanding the variables of interest within CAIS learner models. 

An important element of understanding learning is its relationship with perception.  In our opinion, percep-

tion is not adequately represented in AISs today. We posit that by tracking more about the learner, the CAIS 

can make more effective tailoring decisions during adaptive instruction, and by automating most (if not all) 

of these decisions, we can drastically reduce the workload of CAIS authors. We also suggested that cogni-

tive models closely related to the cognitive capabilities and limitations of the learner might also be imple-

mented in order to better understand the impact of CAIS recommendations. 
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As part of our examination of adaptive instructional processes, we also suggested that the use of cognitive 

models to represent the decision making functions of the CAIS might improve the effectiveness of instruc-

tional decisions in much the same way that chess players understand how their current moves impact future 

options. Cognitive models might also allow easier implementation of common instructional strategies (e.g., 

goalsetting, practicing, concept mapping, and note taking) to be generalized across GIFT domains. 

While we understand the need to simplify the CAIS authoring process, and laud the implementation of two 

instructional frameworks in GIFT – CDT and ICAP, we also recommend further research and efforts to 

automate the decisions associated with selection of recommendations, strategies, and tactics in GIFT. Un-

derstanding the relationship between learner and environmental conditions and CAIS options will help 

quantify the influence of those variables and allow more automated processes for adaptive instruction.  

We end this chapter by noting that complexity is not necessarily bad.  It can enable us to more fully represent 

the nuances and inner workings of adaptive instruction while still reducing authoring workload through 

automation by taking advantage of machine learning processes. 
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Introduction 

In an ideal world learning technologies should slowly improve over time, by leveraging data from prior 

learner sessions to help improve the content that exists: either by changing the content or by prioritizing 

content that appears to be more effective. Likewise, components of intelligent systems should become more 

effective: either by directly improving due to new data or by intelligently selecting between different ser-

vices that provide the same capabilities (e.g., providing hints, estimating learner knowledge). However, in 

practice such capabilities are challenging to develop: systems often require different data, longitudinal data 

needed to meaningfully improve a system might not be available (e.g., performance on later learning tasks 

after the current lessons), and protocols to improve system components are still being developed. This 

means that improvements to systems typically require a human in the loop who reviews, revises, and pub-

lishes changes (e.g., see the Cognitive Tutor; Ritter, 2015). 

This chapter describes how we have approached these problems through the Multi-Agent Architecture 

(MAA) effort for the Generalized Intelligent Framework for Tutoring (GIFT; Nye, Auerbach, Mehta, & 

Hartholt, 2017). The GIFT MAA project has added an experimental module to GIFT called the AgentCon-

tainer, which can be used to register and instantiate arbitrary services that are associated with a specific 

course (Nye et al., 2017). These services communicate using messages and from the outside are a black 

box: they could be either purely reactive or could be intelligent. A guideline for these services is that they 

should be fault-tolerant, doing their best to respond to messages based on the information that they have 

available. As such, the GIFT MAA agents framework offers a possible testbed for exploring self-improving 

systems. This chapter reports on the results of a usability study conducted to look at the ease-of-use for 

adding such services to a framework such as GIFT for new users. 

In addition to conducting a usability study, the framework has added two relevant capabilities since its 

initial architecture was published (Nye et al., 2017). The first capability is a generic ability to connect to 

external services (e.g., REST), so that GIFT can coordinate or learn from systems outside of its runtime 

environment. The second capability is the addition of “proposal pattern” capabilities, in which a default 

process exists for identifying and selecting between different services that might offer the same information 

or capabilities (i.e., same message signatures). The process of building these capabilities has given insight 

into some of the advantages and limitations of the current approach for building a multi-agent architecture 

for tutoring more generally, informing the overall question of the long-term goal of building a lightweight 

architecture for intelligent tutoring systems (ITSs; Nye & Morrison, 2013). 

Methods 

The overall approach to registering and communicating between agents, the Multi-Agent-Architecture pro-

ject, is described in Nye et al. (2017).  These agents leverage the SuperGLU framework 

(https://github.com/GeneralizedLearningUtilities/SuperGLU) in which all services and agents are loosely-

https://github.com/GeneralizedLearningUtilities/SuperGLU
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coupled and do not directly connect to each other. Instead, all services and agents connect to “gateway” 

nodes which handle relaying messages to appropriate listeners. As such, services do not directly transmit 

messages to any other service. Instead, they broadcast messages (fan-out by default) to all other services in 

the graph. The messages will then be filtered either by the receiving services or by gateways if they appear 

to be not useful to the receiving services. In this way, services do not need to know about the topography 

of the network for services and do not need to rely on hard-coded bindings to any particular service location.  

The result is an acyclic undirected graph where each service/agent connects to one (and only one) gateway 

but gateways might connect to multiple other gateways or services. In the GIFT MAA project, a special 

module was added (AgentContainer) where course-specific services could be registered and initialized 

when a course starts (and subsequently updated during course activities, though this functionality has not 

been used in practice). Figure 1 (below) shows an example of this type of structure which was used for the 

usability studies described next. A Websocket gateway (GIFT_SuperGLU HTML5 Gateway) enables lis-

tening or transmitting to a SuperGLU-compliant webpage via a Websocket frame which receives messages 

via HTML5 postMessage (on the client side). A second gateway (GIFT_VHT_Converter) exists to convert 

messages from GIFT format to a Virtual Human Toolkit (VHT) format consumed by a VHT Tutor Con-

troller. Both of these gateways connect to an ActiveMQ gateway that ties into the GIFT main ActiveMQ 

service. In this way, GIFT modules can communicate with services that run directly in-memory inside the 

AgentContainer (e.g., VHT Tutor Controller) and also with services accessible through gateways that con-

nect to remote services (e.g., an HTML Practice page in a browser reached via the GIFT_SuperGLU 

HTML5 Gateway). 

 

Figure 1: Agent Container Diagram for Usability Study 

Since the original paper describing this work, new functionalities have been added for configuration to the 

GIFT MAA branch. Specifically, an HTML configuration tool exists that enables building the graph of 

services and gateways that a course should have. This tool outputs a JSON configuration file that is asso-

ciated with the service. Additionally, interfaces have been added to GIFT to enable agents for the course 
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by checking off boxes that can a) activate the AgentsContainer module (initializing all services and gate-

ways in the AgentsConfig.json file) and b) enable specific webpages embedded in a GIFT course to send 

messages to a Websocket listener gateway (if one exists). Figure 2 shows the AgentsContainer configura-

tion authoring tool. Figure 3 shows flag for enabling the Websocket listener (SocketIOGateway). 

 

Figure 2: Agents Configuration Tool to Edit the Service Graph for AgentContainer Module 

 

Figure 3: Enabling PostMessage-to-Websocket Agent Listener for Web Page 
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Design: A series of internal usability trials were conducted to evaluate the ease of leveraging Multi Agent 

Capabilities that were designed in a GIFT branch. In particular, two types of capabilities were added. The 

first was integrating Virtual Humans as talking heads for courses, which could be enabled. The second was 

adding a general “agent container” which could be used to spin up course-specific Java modules that either 

run agents/services in the local Java app or that are connectors to externally hosted services. The use-case 

for testing this container was the ability to have any external web page in GIFT be able to send performance 

scores that were received by the GIFT learner module and used to adaptively present different content. A 

tutorial was designed that covered these different use cases. 

The trials were formative with users following a tutorial and completing a post-survey at the end. There 

were seven tutorial steps, as shown in Table 1. 

Table 1: Usability Trial Tutorial Steps 

Phase Description 

P1. Registration Making an account to run GIFT and logging in. 

P2. Running GIFT Running the GIFT program (note: we mostly just started it running for them 

to save time in later rounds, since it was just running installers). 

P3. Creating Agents-En-

abled Course 

Creating a new course with an adaptive course element that would respond 

to some performance on a web page. 

P4. Running Course Running the course and testing it out. 

P5. Custom Course- 

VHT Talking Head 

Modifying the agent configuration file to use the agent’s talking head (note: 

this is no longer required to get talking heads, so deprecated. As such, sum-

mer feedback and ratings on these are no longer as accurate). 

P6. Run Custom Course Running the modified course to see the talking heads. 

P7. Substitute Custom 

Web Page 

Replacing the web page providing performance data with a modified version 

of the web page that provides scores. 

 

System: The system was mostly the same for about half the participants, but changed substantially before 

the last set of participants. Overall, due to changes between the Spring and Summer, tutorial steps 4 and 5 

are not particularly comparable. Talking heads no longer needed that setup step (since they were drop-in 

replacements for Media Semantics) and there were also some issues with talking heads not working due to 

the course being run in Internet Explorer. The survey and protocol was not changed since we wanted to be 

able to analyze the data coherently, but in retrospect this may have been a mistake for those steps (where 

users hit some significant issues). 

Participants: The users were a convenience sample of students who were new to the Institute for Creative 

Technologies (ICT) (mostly in Learning Sciences) but who had never used GIFT before. So these ranged 

from one student programmer hired to work on GIFT MAA who had not tried it yet, to students who were 

hired to work on other projects and donated a couple of hours to do this, to a set of six visiting students who 

were visiting ICT this summer. Participants can be thought of in three blocks: Winter (3 participants in 

December-January), Spring (3 in March-May), and Summer (6 in June). The summer participants were all 

3-week visiting students, which meant they had a much more varied skill set: the prior participants were all 

Computer Science majors, while only some Summer students had any programming skills. This meant that 

they were not the ideal participants for the later parts of the experiment, which became fairly technical (e.g., 

modifying a web page). One participant in the Spring cohort only filled out a subset of the survey for some 

reason, or experienced data loss (oddly enough, had text fields input but no ratings for system components).  
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Results 

The high level variables of interest were the time it takes to set up a course with agents and the usability 

and liking ratings of the functionality involved. The total time to create a course from scratch and to modify 

it with a new web page and to enable virtual agents was under 2 hours. Table 2 presents the time spent by 

each cohort, as well as their mean ratings on a scale of Completely Disagree (1) to Completely Agree (6) 

that the system was easy and useful. Figure 4 which adds up self-reports by section for time, put the esti-

mates at about 91 minutes (67 for Winter, 90 for Spring, 105 for Summer). As such, the amount of time to 

make a first time mini course based on the tutorial was fairly reasonable, particularly since a significant 

amount of time was spent setting up the basic GIFT course. 

Table 2: Overall Self-Reported Time in Tutorial and Avg. Ratings of GIFT vs. Agents 

OVERALL N Time (in h) GIFT Agents 

ALL 12 1.7 3.4 3.5 

WINTER COHORT 3 1.7 3.3 3.5 

SPRING COHORT 3 1.0 5 5.3 

SUMMER COHORT 6 2.0 2.7 2.3 

 

 

Figure 4: Self-Reported Time per Phase of Tutorial (by Cohort, in Minutes) 

User ratings are a bit more difficult to interpret. While different cohorts had very different ratings in some 

cases (summer students were quite negative), the implications and trends for these ratings are more subtle. 

First, users seemed to not be able to rate the agents capabilities very distinctly from GIFT authoring and 

courseware itself, in this context. This is unsurprising, as they had no initial familiarity with either, and the 

tasks required for each were intermixed into a single tutorial (e.g., to get meaningful agents, you needed to 
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build a survey, add an adaptive module, etc.). In Table 2, there are some minor deviations that students who 

would be starting research at ICT rated agents subtly more highly, while summer students rated them 

slightly lower, but these are very minor differences compared to the overall magnitude of difference be-

tween cohorts about both areas overall. Likewise, while there were average underlying questions (e.g., 

about ease of use, liking, usefulness expectancy), those questions tended to be fairly well anchored to each 

other (e.g., if one was high, they all tended to be fairly high). 

 

Figure 5: Self-Reported Overall Ratings of GIFT by Phase 

With that said, looking at the ratings for different parts of the system are more useful (see Figure 5).  These 

trends show that Spring students tended to be fairly universally positive across all phases, while Winter 

students found problems in Phases 4 and 5, respectively (e.g., running a GIFT course and modifying the 

agents container JSON file). The Spring students likely rated these items higher due to bug fixes done to 

make agents more stable in between that period, as well as the addition of a visual web-based tool to con-

figure agents. Finally, one winter user was pretty harsh on the overall UI feel for GIFT (did not like the 

dual-pane design, did not like the feel, etc.)   

Among the summer students, we see that ratings are pretty similar for basic setup (Phase 1+2), but crater 

when actually using the system. To a significant degree, most of them simply found it hard to author and 

understand the system (e.g., felt that it took a lot of steps to set things up). This was not universal (one 

student liked it), but was a strong feeling. This negative attitude was amplified by bugs with the virtual 

humans not playing in Internet Explorer which some hit (which was new since the more stable Spring 

build), and which is likely an issue that will need to be confronted directly in terms of user expectations. 

Finally, they were generally less technical and struggled to modify the web page for the final steps. In 

general, while they were not the expected user population to do that kind of customization, this strongly 

reinforced that even the graphical configuration tool for setting up services was pretty alien to this cohort. 

For the agents themselves, attitudes were mixed. Some people liked them and appreciated the guidance. 

Others felt they did not necessarily need them. This is a pretty common attitude, so it is not surprising. It 

appears reinforced however by any incidences of bugs or slow-downs (e.g., agents are okay so long as they 

are not in the way, but as soon as they cause issues, people move to dump them). Particularly for a proof of 
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concept course like the one from the tutorial, this is to be expected, but this would probably be a common 

attitude among any real instructors or courseware builders as well. 

Discussion 

The results of the usability study indicate that it is possible for users to fairly quickly activate and configure 

agent-based services in a system such as GIFT.  However, the usability ratings also indicate that this process 

is non-trivial and particularly challenging to users without computer science skills. Even without program-

ming, the concepts of configuring graphs of services is not intuitive to a typical course designer. As such, 

typical users (e.g., content experts rather than computer science experts) are likely best-off having a set of 

agent configuration templates to choose from that represent common use cases (with manual configuration 

only performed by advanced users). Additionally, these studies did not demonstrate the ability of the agents 

to self-improve over time. While it is possible to plug agents into a course (and these agents might have the 

ability to apply machine learning to improve their performance), the practical realities for a generalized 

tutoring framework are not as simple. 

From a practical standpoint, a few issues must be addressed before plug-and-play self-improving services 

can be deployed for learning technologies. The primary issues which are of interest for ongoing follow-up 

work are noted below: 

 Service Availability: Where is the service? What happens if the service is unavailable? 

 Persistence: How is data stored to enable self-improvement? How do we determine what data 

streams are comparable (e.g., can be analyzed together to improve future ones)? 

 Rewards/Feedback: How can we establish reliable improvement metrics? 

Service Availability  

The work done thus far as a follow-up has focused mostly in service availability. This has been approached 

from two angles: re-use of existing (non-SuperGLU) services and graceful fail-soft policies to enable choos-

ing between services or connecting to alternate services when needed. 

REST Messenger Service: First, service gateways and connectors were developed to assist connecting to 

services beyond the current execution context. As noted, gateways can connect to any arbitrary other gate-

way (via websockets, ActiveMQ, HTML5 postMessage, etc.). However, there will always be web services 

that are not built to connect via specialized gateways and which utilize simple standards. As a result, a 

REST Messenger service wrapper was developed that enables SuperGLU services in GIFT to describe the 

API of a REST service which plugs into the gateway/service graph. 

The REST Messenger service accepts messages of type RESTMessage.  The RESTMessage has four pa-

rameters that define it:  The HTTP request verb, the destination URL, an optional StorageToken for JSON 

bodies, and a list of header key/value pairs.  When the REST Messenger receives a RESTMessage, it con-

verts it into an HTTP request and sends it to the specified service.  The body of the response it gets back 

from WebService is again packaged into a new RESTMessage and sent back to the network of various 

connected SuperGLU services. 

 

Proposal Pattern (Selecting Services): A second behavior that is important for self-improving services is 

the ability to choose between different possible services. Modern Artificial Intelligence (AI) and machine 

learning depend heavily on ensemble models, with varied data. However, not all services are consistently 

available and some services may be preferred over others (e.g., speech-to-text is best done with large cloud 
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services, but can be done locally on smartphones if lower quality is acceptable). Learning to select between 

different services and sources of information is an important step for any self-improving service. 

 

To address this problem, the GIFT MAA project has studied proposal patterns for agents adapted from 

standards-based approaches to this problem (FIPA, 2013). In a Proposal Pattern for GIFT MAA, the Sender 

service proposes a contract to the Responder services that states a) the template for the request messages 

that it will send and b) the template of the response message that it expects. In these patterns, Sender and 

Responder are arbitrary roles, determined only by their behavior in making proposals or responding to 

certain proposals that they receive (as opposed to ignoring them). In essence, the proposal allows services 

to agree on a request-response communication pattern before sending the main request. When a proposal is 

sent, services that could fulfill the pattern reply with Acceptance messages and then one is Confirmed to 

complete the three-way-handshake. In this framework, a three-way-handshake is important because ac-

cepted proposals can still be arbitrated by the Sender (e.g., accept one, accept none, accept all). As shown 

in Figure 6, the types of messages involved are: 

1. Proposal Request: Describes the Proposed Message template and the Proposed Message Acknowl-

edgement template. 

2. Proposal Acceptance: Describes a Responder service that is willing to handle Proposed Messages. 

3. Proposal Confirmation: Accepts a Responder who should reply to a Proposed Message. Multiple 

can be sent (e.g., can solicit replies from many or all Responders). Responders can also still reply 

to Proposed Message, but by default the Sender will ignore non-confirmed Responders. 

4. Proposed Message: A template for the message that the Sender will transmit after a proposal is 

confirmed (potentially sending it many times). This template determines the allowed values for 

different message fields. 

5. Proposed Message Acknowledgement: A template for the message the Sender expects in response 

to the Proposed Message. This represents the data or update signals that the Sender is seeking out. 

 

 

Figure 6: Proposal Process for Three-Way Handshake and  

One Cycle of Proposed Message/Acknowledgement 
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This pattern is a simplified version of the general case of Proposal Patterns, which can be quite complex 

for the general case (e.g., requiring description logics or often detailed constructor/factory design patterns 

to build a single proposal). In the Selection process of pairing a Responder to a Sender, the Proposal Re-

quest, Acceptance, and Confirmation are the message types that drive the interaction. They form the key 

components of the traditional three-way handshake protocol to decide which responder it would be choos-

ing to move ahead. Proposed Message and Proposed Message Acknowledgement are the message types 

that are used to describe the proposal contract. 

 

Initially, the Sender broadcasts the Proposal Request Message to all the Responders available to it. The 

Message consists of the format/type it will be expecting in the response of the main query message sent 

later. All the Responders who have the capability to comply with the contract may respond with a Proposal 

Acknowledgement Message. The Sender then can apply different rule-sets (either default or ad-hoc) to 

select a Responder (or multiple Responders) which it will Confirm. After Responders are confirmed, the 

Sender will at some points send a valid Proposed Message which is intended for specific Responder(s). 

This Proposed Message is an instance that matches the template used in the original Proposal. The Re-

sponder finally sends a message that matches the Proposed Message Reply template to the Sender. As one 

final note, while this discussion treats these communications as point-to-point, the communication in gen-

eral is still relayed using service gateways and the messages transmitted might be handled, stored, or ana-

lyzed by other connected services. 

 

The process of selecting a proposal is part of the self-improving system. In this research, we have so far 

designed pragmatic default strategies for accepting proposals when multiple exist: first-past-the-post (ac-

cept the first one), accept all (receive and handle many responses), deprioritize failures (prefer services with 

fewer timeouts), and ad hoc selection between Responder bids (e.g., collect bids over a time span and pick 

the service which is most preferred). These strategies are simple, but provide some rudimentary learning 

capabilities. In particular, deprioritizing failures means that previously-confirmed services that did not re-

spond promptly can be reduced in priority when soliciting new bids. This general, simple network strategy 

offers some basic self-improving adaptation. 

 

Proposal Pattern (Fail-Soft): In practice in a multi-agent system, there are also many possibilities where 

the message transmissions fail. In such cases, many Fail-Soft Strategies can be put in place to deal with it. 

These strategies are all controlled by configurable parameters outlined in the Proposal Message. The pur-

pose of this pattern is to enable a Sender service that previously confirmed a Responder to either retry a 

message or to cancel the contract so that it can identify a different Responder to confirm (if any is available). 

Three fail-soft criteria can be configured for the initial proposal three-way-handshake: 

1. Number of Proposal Attempts: In case the transmission of the Proposal Message fails or no 

response is received, this parameter defined the number of times the system will retry. 

2. Timeout for Proposal Acceptance: The time that the Sender will wait to receive the Proposal 

Acceptance Messages before deciding which one(s) to confirm. 

a. Fixed Duration: Reviews Acceptances received within the given number of seconds, 

b. Open Call: Keeps on Accepting and decides to Confirm Responders based on acceptance 

criteria (e.g., First-Past-the-Post, Prioritization, Accept All). 

3. Prioritized Proposal: A special version of the timeout approach is to accept proposals based 

on prioritization criteria. The specific prioritization logic can be customized by a service. This 

could mean an early termination of a proposal (e.g., highest-priority service accepted). The 

current implementation uses a deprioritization approach to prefer acceptances by Responders 

that have not previously triggered a fail-soft event that canceled an earlier proposal. 

 

The behavior for an individual Proposed Message also contains fail-soft behavior, to enable restarting the 

Proposal pattern in case of non-performance by a Responder. 
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1. # of Proposed Message Attempts: If the Proposed Message fails or no response is received 

(timeout), this parameter defined the number of times the system will retry before canceling 

the proposal contract. 

2. Timeout for Proposed Acknowledgment: The cutoff time to determine a non-response 

3. Fail Soft Trigger: The criteria applied to determine when to void the contract: 

a. Attempt Count: Break a proposal when too many failures occur overall or in a row 

b. Timeout: Break a proposal when only failures have occurred for some amount of time. 

 

The default behavior for GIFT MAA services after a Fail Soft event has been triggered is to cancel the old 

proposal and start a new Proposal Message. However, this process is not memoryless: the old failed service 

problems are stored in the session data.  These are used to re-propose with deprioritization (i.e., sorting) 

based on the number of prior failures that resulted in triggering a fail-soft event. The prioritization helps in 

the selection of the Responder after receiving a bulk of Proposal Acceptances, since alternate services can 

be selected that may be more reliable. Other types of Quality of Service/Quality of Experience metrics 

could also be used for this purpose to choose alternate services based on learning outcomes or other metrics. 

Persistence 

At present, ongoing work has not developed an ideal model for persistence in a self-improving, multi-agent 

learning architecture yet. The general problem is due to the competing demands of efficient, real-time data 

access versus well-defined service boundaries and encapsulation. Thus far, the most promising model for 

persistent data that supports self-improvement requires a three-pronged approach: 

1. Canonical Data: A data set that represents the authoritative data for learning events related to 

the user and system (e.g., such as an xAPI learning record store). This data set should not 

change (largely immutable) but is not suitable for real-time analytics. 

2. Data Views: Calculated views of the canonical data are generated that are sufficient for each 

service to use. These views are used to maintain data on examples and analytics that help past 

events improve the system for future users. These exist to prevent expensive calculations on 

arbitrary amounts of raw data for real-time application needs. 

3. Context-Specific Requests: Messages indicate which specific criteria/subsamples that the data 

views need to help each service to respond to the ongoing needs of other services (e.g., recom-

mending a class activity vs. an at-home one). These will often be session-based, so they trans-

mit a level of temporal and activity context with persistent state from other services. 

 

An implicit requirement for this approach to work is that two criteria are followed. First, all critical services 

need to contribute to the central canonical data store in order to have substantial shared knowledge. Second, 

the data views should be persistent but must be possible to rebuild from the canonical data set at any point. 

From a practical standpoint, they should also generally be modified using incremental update functions 

(e.g., notified about new data to the canonical set which triggers an update to the view). A form of this 

approach has been followed by a related project in the same group called the Personal Assistant for Life-

Long Learning (PAL3; Swartout et al., 2016). This approach has been particularly effective for dealing 

with services that require an offline mode, in which canonical data can be synchronized between a local 

device and backend services (single main point of synchronization) but services can update their data views 

accordingly based on the canonical data. In this way, it is less direct than a whiteboard architecture (e.g., 

where all services share and act on one canonical data store) but retains many of the same advantages (e.g., 

only need to update one location, with changes propagating to other stores).  Research is ongoing to consider 

how this might be used for a self-improving architecture based on the GIFT MAA approach. 

 



 

 

51 

 

Rewards/Feedback 

The most important but least-understood part of a self-improving learning technology is the reward struc-

ture that should be satisfied by that system. For a self-improving system to “improve” implies that some 

optimization criteria exist and that feedback is available to determine when improvement has occurred. 

These rewards or feedback might be automated (e.g., based on user performance/improvement) or could be 

supervised (e.g., based on instructor ratings, experimenter tags, etc.). However, the proper emphasis on 

optimizing learning is overall a complex issue: should a system optimize for near-transfer (immediate test-

ing on similar tasks), far transfer (delayed testing or less-similar tasks), preparation for future learning (rate 

of learning new tasks), on-the-job metrics, or some other reward? This is also impacted by the fact that 

learning systems often lack access to the measures that are most important to learners (e.g., far transfer, on-

the-job performance). 

 

This problem can be partially simplified by considering the reward structure on a per-service basis, where 

each service attempts to optimize a well-specified set of tasks. So then, a dialog classifier might only opti-

mize its ability to select an appropriate response to a single question, rather than to improve overall user 

satisfaction with the dialog. This approach is more tractable, but then means that each service needs its own 

reward/feedback mechanism. Overall, self-improvement is likely to be limited by the data that is available 

to assess its quality.  These limitations fall into two categories: relevance (does the service assessment align 

well to the overall system purpose) and availability (do we have the data to support this feedback signal). 

Based on these criteria, a few reward/feedback signals for self-improvement have been considered for the 

GIFT MAA project: benchmarking data, re-test performance, transfer task performance, and preparation 

for future learning. 

 

Benchmarking Data (Supervised): For some services, particularly classifiers/estimators, it is possible to 

have a set of supervised tags that provide a reasonable space of quality testing. This might be one or more 

data sets. In this case, a self-improving service could use real data to improve on a subset of benchmarking 

data (internal benchmarks) while the performance on out-of-sample data could be determined using a hold-

out set (external benchmarks). This approach can then be continued by updating data-driven models until a 

point is reached where overfitting is observed (i.e., internal benchmarks improve but external ones de-

crease). This approach can have high availability if data is easy to label, but may have low relevance if new 

user data does not follow similar patterns as the benchmarking set. This approach is most commonly applied 

to classical machine learning problems, such as classifiers or estimators. 

 

Selection Data (User Choices): For a different subclass of services, data will readily be available at all 

times. For example, Google search can be improved by identifying the rate that users click search results 

and do not need to re-search/continue to further pages. Usage of hints, clicking on recommender outputs, 

and similar services can fall into this category. However, if done in isolation with many services this could 

lead to optimizing for user attention for the sake of attention. To ensure that selection-based rewards are 

valid, it must simultaneously be determined if they are also valuable (i.e., frequency*value). Worse, the 

changes that would be required to improve such metrics may be user interaction changes that cannot be 

automated (e.g., re-designing how recommendations are presented). As such, these data sources may ulti-

mately be less valuable for directly optimizing for learning. They are likely more useful for improving 

engagement (e.g., visiting more parts of a system, reminders about when to return to a system).  

 

Re-Test Performance (Near Transfer): A second fairly general approach is to examine the rate of a user’s 

learning curve when having them perform similar tasks repeatedly. This approach aligns to what is often 

done with adaptive systems for mathematics, which considers how many practice examples are needed to 

master a topic (where mastery means reaching a certain reliability in completing certain problem types). 

While this approach can give high availability of data, it has the pitfall where the system could easily over-

fit a certain set of task examples (e.g., low relevance to practical use). For example, a system that optimizes 
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rote memorization might be able to satisfy this metric. This approach is most commonly used for generative 

systems, which can create a large number of examples (e.g., assessed simulations, math problem genera-

tors). 

 

Transfer Task Performance (Far Transfer): Transfer tasks fall on a continuum ranging from the most direct 

re-try performance, where it is not always clear what characteristics make for a reasonable and predictive 

transfer task. An ideal transfer task would be one that is more-similar to the actual use-cases where the 

learned skills need to be applied, to indicate that the acquired skills are likely to be useful. However, this 

would require building a substantial set of such tasks. Moreover, these tasks would typically be withheld 

until after reaching a sufficient performance on re-test/near transfer tasks. As such, data availability is lower 

since only a few data points are available for each learner. However, the relevance benefits may be im-

portant to prevent optimizing for fragile knowledge. The most common method to gather this kind of feed-

back is with outside tests or performance tasks. 

 

Preparation for Future Learning: A variant that combines these two metrics (near and far transfer) is to 

study the learning curve of later skill that requires the earlier skill. So then, if certain changes make learning 

faster in the future, then those changes are prioritized. However, as with transfer tasks, this requires an 

increasing amount of data to be effective. Moreover, it assumes that learning will be generally monotonic. 

However, there are cases where learning progressions result in shifting mental models that improve perfor-

mance on some skills while decreasing performance on others. 

 

Overall, when considering a generalized tutoring system, it seems unlikely that hand-crafted metrics will 

consistently be available and that the availability of data may be insufficient to do data-intensive approaches 

such as preparation for future learning (at least for every domain). As such, it seems that the low-hanging 

fruit probably include benchmarking data for services with well-defined metrics, leveraging user choice/se-

lection behavior to help optimize certain types of engagement, and a weighted combination of easily-avail-

able near transfer outcomes with a limited number of transfer tasks either interleaved or delayed to a post-

test. 

Recommendations and Future Research 

From the current state of generalized tutoring systems research, both in GIFT and in the broader space of 

learning technology, end-to-end self-improving systems remain a long-term vision. However, the technol-

ogy exists to make significant improvements to individual component services and agents that should still 

improve learning outcomes. In particular, benchmarking approaches could be highly effective for improv-

ing classifiers and estimators used for certain assessments or dialog-based interactions. User selection of 

choices generated by services could also be useful, particularly when user adoption or engagement is the 

metric of interest. Finally, with proper instrumentation and composition of learning resources, it should be 

possible for services that personalize learning to optimize the efficiency of acquiring new skills. However, 

as noted in the prior user study, these functionalities are likely too complex for a course author to access.  

Instead, authors should likely be selecting between course templates which help optimize their behavior 

under the hood. So then, a service might exist which attempts to optimize which of two other hint-generation 

services it should use with a learner (i.e., leveraging proposal patterns to select services). Likewise, a service 

might utilize failsoft techniques not just for network failures, but for intervention failures: stopping using 

the results from a service when the learner does not benefit from those interventions. The instructional 

designer would then simply pick which services could be used to personalize the course, which would then 

self-organize to optimize their overall benefit to the user through confirmed vs. dissolved proposal interac-

tions. 



 

 

53 

 

These gains will be pushing against a broader issue for tutoring systems: training groups of learners. At the 

same time that self-improving services are increasingly realistic in an ITS framework for an individual 

learner, teams mean that services must be prepared to support multiple learners simultaneously changing a 

task. This means that individual learning curves and states represent only part of the larger picture (e.g., all 

learners may be at different levels, may have different roles, etc.). This variability may make it harder for 

automated systems to optimize the behavior of their components. More generally, team training is a chal-

lenge that will impact not just self-improving components of adaptive learning systems but all components. 

However, it will also open up additional opportunities for feedback and rewards information (e.g., peer 

assessments, covering behavior where a more-expert user needs to step in and complete tasks). 
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CHAPTER 6 – INTRODUCTION TO THE MACHINE LEARNING 

SECTION 
Xiangen Hu 

University of Memphis and Central China Normal University 

Core ideas 

Effective and efficient “instructional systems” are a well-designed ecosystem that includes motivated hu-

man learners, appropriate learning resources, proper learning environments, and optimized processes that 

involve the human learners interacting with the learning resources in the learning environment. The three 

chapters included in this section have addressed the key issues and challenges of “adaptivity” of “instruc-

tional systems.” Although these three chapters focus on different aspects of the adaptive nature of “instruc-

tional systems”, they all use algorithms of Machine Learning (ML) to showcase their unique approaches 

of “self-improving” of adaptive instructional systems. 

Individual chapters 

The chapter by Ritter, Baker, Rus, and Biswas provides insights on how to apply two machine learning 

algorithms: Sequence Mining and Discriminant Sub-sequence Analysis. Sequence mining is used to analyze 

action subsequences and identify differences in learner’s approaches in solving problems. A sequence min-

ing algorithm can be used to discover important differences between high- and low-performing students in 

terms of their strategy use. Discriminant Sub-sequence Analysis is used to detect good vs. bad tutoring 

sessions by comparing the sequence of Scaffolding (S) and Fading (F) in tutoring dialogue. Adaptive In-

structional Systems (AISs) that are enhanced by these machine learning algorithms can differentiate high- 

/ low-performing students in problem solving and good/bad tutor-tutee interaction in tutoring dialog. AISs 

enhanced with such machine learning algorithms are self-improvable AIS. 
 
The chapter by Leung and Williams suggests implementing the multi-armed bandit (MAB) technique that 

has been popularized by ML researchers and widely used in other domains. The authors point out that the 

potential application of the MAB technique to self-improving learning systems in learning could be pro-

ductive. In their chapter, they have also pointed out potential challenges from ethical, technical, and imple-

mentational perspectives. One of the challenges that they have pointed out is the trust in MAB applications 

in learning systems. They suggested that implementing MABs in a well-studied framework such as GIFT 

would help to find solutions for the challenges when implementing MAB techniques in self-improving 

learning systems. 

The chapter by Shen, Shimmei, Chi, and Noboru presents two case studies demonstrating the utility of 

Reinforcement Learning (RL) to Self Improving Educational Systems. In their first case study, a RL-in-

duced reward policy was implemented in a test learning system (Deep Thought) to explore the impact of 

different pedagogical strategies on slow and fast learners. The second case study used RL techniques to 

content validation for online courseware. Their implementation of RL techniques is in the form of RAFINE 

(Reinforcement learning Application For INcremental courseware Engineering). Applying RAFINE to a 

section of inefficiently made courseware, they were able to detect ineffective instructional elements in ex-

isting online courseware with students’ learning activity log data. Both of the case studies offered insight 

on how ML techniques would help building self-improving learning systems, either at the level of optimiz-

ing pedagogical strategies or producing better courseware.  
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CHAPTER 7 – IDENTIFYING STRATEGIES IN STUDENT  

PROBLEM SOLVING 

 
 Steven Ritter1, Ryan S. Baker2, Vasile Rus3, and Gautam Biswas4 

1Carnegie Learning, 2University of Pennsylvania, 3University of Memphis, 4Vanderbilt University 

Introduction 

As instructional systems support more open-ended problem-solving, it becomes essential to understand the 

particular strategies or approaches that students take to solving problems. Increasingly, machine learning 

techniques to detect student strategies will be used in these instructional systems. One advantage of such 

self-improving systems is that, as usage broadens, they become more sophisticated in their analysis of stu-

dent behavior and ability to support a wide variety of learning approaches. In this way, such systems become 

more educationally effective, particularly for students who employ relatively rare approaches to solving 

problems. 

We consider a strategy to be a sequence of steps or operators taken in a problem space with the goal of 

accomplishing a given task or solving a problem (Newell & Simon, 1972). In theory, any variation in prob-

lem solving may represent a different strategy. In practice, however, we often group insignificant variations 

in problem solving steps into a single strategy and consider those that represent “significantly” different 

approaches to represent different strategies. Consider Figure 1. The solutions represented in Strategy A and 

Strategy B both consist of three similar steps. In the first step, the student subtracts a variable term from 

both sides of the equation (5x in Strategy A; 3x in Strategy B). In the second step, the student using Strategy 

A subtracts 4 from both sides, and the student using Strategy B adds 6 to both sides. In the third step, each 

student divides both sides of the equation by the coefficient. A student employing Strategy C combines the 

first two steps into a single step, subtracting 3x-6 from both sides of the equation. Clearly Strategy A and 

Strategy B are similar approaches and might be considered variants of a single strategy. A student who is 

able to recognize and execute Strategy C is illustrating a more sophisticated approach to problem-solving 

and might be considered to be using a strategy very different from either A or B. 

 

3x+4 = 5x-6 

-2x+4 = -6 

-2x = -10 

x = 5 

Strategy A 

 

3x+4 = 5x-6 

4 = 2x-6 

10 = 2x 

5 = x 

Strategy B 

 

3x+4 = 5x-6 

10 = 2x 

5 = X 

 

 

Strategy C 

Figure 1. Three strategies for solving an equation. 

The decision about whether to consider a different sequence of steps to be a different strategy depends on 

the goals of the educational system, so it is important to consider the reasons why we might need to under-

stand and distinguish different strategies. Identification of strategies may allow systems to: 
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 Infer the student’s level of knowledge. Sometimes, use of a particular strategy is an indicator of 

the student’s level of understanding. Lemaire and Siegler (1995) found that students’ use of more 

sophisticated strategies and of better sensitivity to appropriateness of strategies changed as students 

learned single-digit multiplication. 

 Identify misconceptions. Strategies are approaches to problem solving, but they need not be cor-

rect approaches. A student may, for example, incorrectly believe that numbers with more decimal 

places are larger than numbers with fewer decimal places (Isotani et al., 2010). In the above exam-

ple, the student may have a misconception about the negation operator, and consider 3x - 5x = 2x 

(always subtract the smaller number from the large). Identification of incorrect problem-solving 

steps relating to this misconception can greatly aid remediation. 

 Indicate student’s sensitivity to problem characteristics. In some cases, different strategies are 

more appropriate for different problem types, and part of the target of learning may be that students 

understand how to develop strategies for different problem types, and then apply appropriate strat-

egies when solving problems. For example, in solving simultaneous equations, substitution and 

linear combination are both valid strategies that can be applied to a set of equations, but, depending 

on the equations, one of the strategies may be easier to apply than the other. Proficient students 

should be flexible enough to choose the appropriate strategy for the problem. 

 Identify use of suboptimal or incorrect strategies. Like the last bullet, this may occur when stu-

dents have just learned the individual skills needed to solve problems, but have not had opportuni-

ties and practice to combine the use of these skills to solve problems. Students may combine their 

skills in suboptimal ways when trying to come up with a sequence of steps to solve a problem. 

 Provide opportunities for reflection and generalization. Exposing students to multiple strategies 

may encourage greater procedural flexibility (Crowley & Siegler, 1999; Rittle-Johnson & Star, 

2007). An educational system may wish to provide students with worked examples and problem-

solving opportunities that employ different strategies. This approach would require knowledge of 

the strategies a particular student employs. 

 Identify metacognitive strategies. In addition to strategies used to solve individual problems, stu-

dents employ metacognitive strategies, including self-explanation and use of worked examples. 

Instructional systems will be more effective to the extent that systems can identify and support 

productive metacognitive strategies. 

 Identify conceptual understanding. Work by Rowe and colleagues (2014, 2017) finds that be-

havioral strategies within learning games can be indicative of differences in conceptual understand-

ing, correlating highly with alternate measures of those same concepts. 

 Indicate students’ sensitivity to contextual characteristics. Different strategies may require dif-

ferent amounts of time to execute or different resources (such as working memory load). Siegler 

(1988) found that some students employed different strategies under time pressure than they would 

apply with unlimited time. Such sensitivities may interact with student characteristics. Beilock and 

DeCaro (2007) found that low working memory capacity students more readily switched their strat-

egies (to simpler heuristics) under pressure than high working memory capacity students. 
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Methods 

In this section, we consider several methods for determining student strategies, given a stream of data de-

scribing the student’s actions in a problem-solving episode. 

Model Tracing 

Model-tracing tutors (Corbett, 2001) monitor student activities in problem solving and attempt to map the 

student’s actions to particular problem-solving strategies. Such actions are generally classified as belonging 

to a correct strategy, an incorrect strategy or an unrecognized strategy. Since strategies (both correct and 

incorrect) are pre-specified in the model, such systems can recognize strategies that students employ. Steps 

that are not recognized as belonging to a strategy are considered to be incorrect (but uninterpretable). One 

downside of this approach is that unique or rare strategies may not be recognized. 

The strategies encoded in model-tracing tutors are typically initially discovered through cognitive task anal-

ysis (Clark & Estes, 1996; Lovett, 1998), but such systems can be extended through analysis of data col-

lected through such systems, as described here. 

In some cases, model-tracing systems can recognize cases where strategy recognition has failed and adapt 

to incorporation recognition of the new strategy in the future. Ritter (1997) describes one such method by 

which model-tracing tutors can learn to recognize new strategies. In model-tracing tutors for domains where 

correct solutions can be evaluated but not modelled, the tutor can recognize and provide feedback for more 

optimal strategies. For example, an equation solving tutor can learn more efficient strategies that are 

“demonstrated” by the student. 

Detector-based strategy recognition 

Another method for identifying student strategies is to develop a machine-learned model, often referred to 

as a “detector”, which recognizes strategies that human beings can identify but cannot easily reduce to a 

straightforward set of rules, as is necessary for most uses of model tracing. This approach relies upon first 

obtaining human labels of when the strategy is present or absent, distilling features of the data that are 

reasonably likely to correspond to that strategy, and then using machine learning to train a model that can 

replicate the human judgments.  

In the first step of this process, software is developed to display a substantial number of examples of student 

interaction to a set of human coders who can recognize the behavior. These displays can be presented 

through either a screen replay of learner behavior (e.g. Aleven et al., 2004) or a text replay (e.g. Baker, 

Corbett, & Wagner, 2006), pretty-printed log files. Then, typically, two coders code the same subset of the 

total data set and check for acceptable inter-rater reliability. After this, one or both of the coders label the 

remaining data. 

In the second step of the process, data features thought to correspond to the strategy of interest are distilled 

from the data. This step, often termed feature engineering, can vary in its degree of sophistication, from a 

single researcher brainstorming a set by herself/himself, to a more structured brainstorming process involv-

ing multiple types of expertise, to an in-depth process of interviewing the coders and discussing draft mod-

els of their reasoning processes (Paquette et al., 2014).  

In the third step of the process, off-the-shelf machine learning algorithms are used to derive a model that 

replicates the human judgments with reasonable reliability, and the resultant models are tested using cross-

validation. 
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The first strategy this approach was used to study was gaming the system, when a student misuses learning 

software to proceed without learning. Baker and de Carvalho (2008) took data on student use of a Cognitive 

Tutor, distilled text replay clips of student behavior, labeled them, and built a decision tree to capture this 

strategy. Later work extended this approach to SQL-Tutor (Baker, Mitrovic, & Mathews, 2010) and demon-

strated that better results could be obtained through a more sophisticated feature engineering process 

(Paquette et al., 2014). Related work investigated whether a player was seriously attempting to complete 

quests in an online story-based role playing game (DiCerbo & Kidwai, 2013). 

Sao Pedro and his colleagues extended this approach to modeling scientific inquiry strategies, including 

both whether a student could design a controlled experiment across a set of trials of a simulation (Sao Pedro 

et al., 2013), and whether the learner planned using a table (Montalvo et al., 2010). A refined version of 

Sao Pedro’s original detector is now used in the commercial Inq-ITS platform (Gobert et al., 2015). 

Elizabeth Rowe and her colleagues extended this approach to modeling the strategies students engaged in 

while playing a conceptual physics game, demonstrating that it was possible to capture gameplay strategies 

associated with conceptual understanding of Newton’s Laws (Rowe et al., 2014) and that these detectors 

correlated with external measures of Newton’s Laws (Rowe et al., 2017). 

Together, these examples demonstrate the feasibility of identifying student strategies through an automated 

detector machine learning approach. 

Sequence Mining Methods for Strategy Detection  

In the learning sciences and educational psychology research, strategies have been defined as consciously-

controllable processes for completing tasks (Pressley, et al., 1989). Within this framework, it is possible to 

characterize strategies as a sequence of actions that a learner performs to complete a task or subtask in the 

learning environment. Strategies are further characterized by the context in which they are applied and the 

specific relations among component activities that make up a strategy. Take, for example, learning envi-

ronments such as Betty’s Brain, where students learn about scientific processes (e.g., climate change) by 

teaching a virtual agent named Betty (Leelawong & Biswas, 2008: Biswas, et al., 2016).  They do this by 

constructing a visual causal map that represents the relevant scientific process as a set of concepts connected 

by directed links that represent causal relations. Once taught, Betty can use the map to answer causal ques-

tions and explain those answers. The goal for students using Betty’s Brain is to teach Betty a correct causal 

map that matches a hidden, expert model of the domain. The students’ learning and teaching tasks are 

organized around three activities: (1) reading hypertext resources that provide information on the science 

concepts and causal relations between the concepts, (2) building the causal map using a visual drag and 

drop interface, and (3) assessing the correctness of the map by getting the agent Betty to take quizzes and 

evaluating her answers. 

Students strategies in this environment revolve around how they combine the three activities to accomplish 

higher level goals or tasks, such as acquiring information and constructing a part of the causal map (e.g., 

human activities that cause the greenhouse effect) or correcting errors in a section of their map (e.g., analyze 

Betty’s quiz results, identify causal links that are related to incorrect answers, and correct the erroneous 

links). However, identifying students’ strategies from their activity logs is not an easy task. In open-ended 

learning environments (OELEs), such as Betty’s Brain, the fact that students have choice in the way they 

go about constructing their models, interpreting their strategies requires an understanding of the task that 

they are currently working on and an interpretation of their actions in the context of this task. 

We have developed sequence mining approaches to derive frequent action sequences when they work in 

the Betty’s Brain environment (Kinnebrew, Loretz, & Biswas, 2013; Kinnebrew, Segedy, & Biswas, 2014). 

In general, Sequential Pattern Mining (Agrawal & Srikant, 1995) algorithms are designed to find frequent 
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sequential patterns, i.e., series of action that occur in many of the students’ activity sequences provided 

(e.g., the sequential pattern A then B then C occurs in both of the sequences C → A → B → C and A → B 

→ C → A). Researchers have applied sequence mining techniques to a variety of educational data in order 

to better understand learning behaviors (e.g., Amershi & Conati, 2009; Kinnebrew et al., 2013; Nesbit et 

al., 2007; Perera et al., 2009; Su et al., 2006; Tang & McCalla, 2002).  

To extract the activity sequences of student work in Betty’s Brain for sequence mining, log events captured 

by the learning environment abstracted student activities into a few primary categories with some additional 

subcategories (Kinnebrew & Biswas, 2012; Kinnebrew, et al., 2013). The primary actions extracted from 

the logs to generate the action sequences were: 

1. Information acquisition (IA) actions: (a) Read: reading one or more of the science resource pages; 

and (b) Note: entering information into the note-taking tool provided in the system; 

2. Solution construction (SC), i.e., Edit actions: these include operations on the causal map, with ac-

tions further divided by: (i) whether they operate on a causal link or concept and whether the action 

was an addition (Add), removal (Remove), or modification (Change), e.g., LinkAdd or Concep-

tRemove; 

3. Solution assessment (SA) actions: (a) Query: students use a template to ask Betty a question, and 

she answers the question using a causal reasoning algorithm (Leelawong & Biswas, 2008); (b) 

Quiz: students assess how well they have taught Betty by having her take a quiz, which is a set of 

questions chosen and graded by the Mentor agent; and (c) Explain: students probe Betty’s reasoning 

by asking her to explain her answer to a question (either from the quiz or from a query). 

Strategies derived from analyzing students’ logs across multiple studies with Betty’s brain are discussed in 

a number of our papers (e.g., Kinebrew & Biswas, 2012; Kinnebrew, et al., 2013; Kinnebrew, et al., 2014; 

Kinnebrew, et al., 2017; Munshi, et al., 2018). We provide some illustrative examples in this chapter. For 

example, a study conducted in 6th grade science classrooms in 2015, showed frequent use of the IA → SC 

strategy, i.e., they read the resources and then added to or made changes in their causal map. In this case, 

frequent implied five or more uses of this strategy per student during the course of the intervention. When 

comparing the use of this strategy by high and low performers, i.e., those who had high versus low scores 

in their final map scores, we found that high performers used this strategy to make correct changes to their 

map (i.e., added a correct link or deleted an incorrect one) 62% (SD = 9%) percent of the time, whereas low 

performers made correct changes to their map only 53% (SD = 16%) of the time. 

To better understand how students employed this general strategy, we considered two specific variants of 

this strategy in the Betty’s Brain environment:  IA → Add a causal link to the map and IA → Correct a 

causal link in the map by changing or removing an incorrect causal link in the map. Results indicate that 

IA → Add a causal link was used by high performing students on average 23.9 (SD = 16) times, and they 

performed this task correctly 59.3% (SD = 13.1%) of the time, whereas low performers performed this 

strategy on average only 8.9 (SD = 7.5) with a 48.4% (SD = 22.2%) correct use. Similarly, for the IA → 

Correct a causal link strategy, the numbers were 5.3 (SD = 4) with 75.1% (SD = 17.2%) correct use for the 

high performers, whereas the numbers were 2.9 (SD = 3.6) with 81.1% (SD = 23.5%) correct use by low 

performers. Though the accuracy numbers are not much different, the high performers use the strategy 

many more times than the low performers, thus generating better maps and better learning gains overall 

than the low performers. Linked to this strategy, we also found that the high performers had significantly 

longer read time per pattern than the low performers. 

Another frequent pattern used by students corresponds to a debugging strategy, i.e., SA →  LinkAdd →  SA 

with two specific variants: (1)  Quiz Explanation →  Link Add → Quiz and Quiz →  LinkAdd →  Quiz. 
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These patterns suggest an informed guess-and-check strategy in which the quiz results (either the overall 

results or the information gleaned from a Quiz Explanation for a specific quiz question) are used to suggest 

a potentially-missing link, which is then added to the map. This is followed by checking the correctness of 

the “guess” by taking another quiz. As expected, for a guess-and-check strategy, the link added was usually 

incorrect (average percentage of correct additions per student = 19%, SD = 14%).  

 

 

Figure 2. Heatmap of percentage correct links added in SA →  LinkAdd →  SA over time. 

Given the more detailed information available from the quiz question explanation, we initially expected 

better performance in adding a correct link for that variant of the strategy. However, this variant actually 

had a marginally lower percentage of correct additions compared to the other variant. Further, analysis of 

effectiveness over the course of students’ work in the environment illustrated that performance (correctness 

percentage) with SA →  LinkAdd →  SA was better early and late while being especially poor in the middle. 

The performance heat map shown in Figure 2, indicates that while the high performing (HiMap) students 

performed best with this strategy early and (to a lesser extent) late in the intervention, the low performing 

(LowMap) students did not make correct link additions with this strategy until relatively late (after at least 

60 percent of their total actions on the system). This may imply that it took the low performing students 

until late in the intervention to understand how to interpret and use the quiz results. On the other hand, the 

high performers used this strategy with more success in the early phases of map building. The HiMap 

students’ effectiveness with this strategy may have dropped off once they started dealing with the more 

difficult material (for which they had little prior knowledge) toward the middle of their activities, finally 

rebounding some as they gained proficiency. In addition to illustrating the importance of incorporating the 

overall informed guess-and-check strategy in the strategy model, analysis of this high lift pattern suggests 

that there may be additional interactions with prior knowledge and skills worth investigating through further 

experiments. 

The results of combining sequence mining algorithms with additional analysis of the relations between 

actions, showed potentially important differences between high- and low-performing students in terms of 

their strategy use. Overall, an effective analysis framework applied to the rich behavioral data produced by 

OELEs has the potential to enable deeper analyses of students’ cognitive and metacognitive behavior in 

complex learning tasks. Ultimately, we believe that this analysis framework can form the basis for design-

ing richer learner modeling schemes that characterize students’ activities by analyzing their learning be-

haviors and performance with respect to their cognitive and metacognitive processes. 

Discriminant Sub-sequence Analysis from Tutorial Dialogues 

A key research question in intelligent tutoring systems and in the broader instructional research community 

is understanding what expert tutors do (Rus, D’Mello, Hu, & Graesser, 2013). This goal is motivated by 

research showing that expert tutors are very effective (Bloom, 1984). 

Indeed, understanding what expert tutors do has been a research goal undertaken by theoreticians and em-

piricist alike. A typical operationalization of this goal of understanding of what good tutors do is to define 
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the behavior of tutors based on their actions. To this end, the learner-tutor interactions are broken down 

into primitive actions and then significant differences between expert tutors and less accomplished tutors 

are reported. For instance, Boyer and colleagues (2011) modelled the learner-tutor interaction as sequences 

of task actions (e.g., opening a file) and dialogue acts, i.e. actions behind utterances, while Cade and col-

leagues (2008) used just dialogue acts to model the learner-tutor interaction. 

 

In a discriminant sub-sequence analysis approach (Rus, et al., 2017; Maharjan, Gautam, & Rus, 2018), 

tutorial dialogues are modeled as dialogue-act sequences because there are no other types of actions, e.g. 

task actions as in Boyer and colleagues (2011), considered in the analysis (Rus, et al., 2017;  Maharjan, 

Gautam, & Rus, 2018). This view of a tutorial dialogue as a sequence of actions is based on the language-

as-action theory (Austin, 1962; Searle, 1969). According to the language-as-action theory, when we say 

something we do something. Therefore, all utterances in a tutorial dialogue are mapped into corresponding 

dialogue acts using, in our case, a predefined dialogue or speech act taxonomy. The taxonomy was defined 

by educational experts and resulted in a two-level hierarchy of 17 top-level dialogue acts and a number of 

dialogue subacts. The exact number of subacts differs from dialogue act to dialogue act. The taxonomy 

identifies 129 distinct dialogue act and sub-act combinations. Further, we have a set of 17 different dialogue 

modes defined by experts as in the following: Assessment, Closing, Fading, ITSupport, Metacognition, 

MethodID, Modeling, OffTopic, Opening, ProblemID, ProcessNegotiation, RapportBuilding, RoadMap, 

SenseMaking, Scaffolding, SessionSummary and Telling. A detailed description of the dialogue modes is 

available (Morrison et al., 2015). It should be noted that automatically discovered dialogue act taxonomies 

are currently being built (e.g. Rus, Graesser, Moldovan, & Niraula, 2012) but it is beyond the scope of this 

chapter to automatically discover the dialogue acts in our tutoring sessions. 

A large corpus of about 19K tutorial sessions between professional human tutors and actual college-level, 

adult students was collected via an online human tutoring service. Students taking two college-level devel-

opmental mathematics courses (pre-Algebra and Algebra) were offered these online human tutoring ser-

vices at no cost. The same students had access to computer-based tutoring sessions through Adaptive Math 

Practice, a variant of Carnegie Learning’ Cognitive Tutor (Ritter et al., 2007). A subset of 500 tutorial 

sessions containing 31,299 utterances was randomly selected from this large corpus for annotation with the 

requirement that a quarter of these 500 sessions would be from students who enrolled in one of the Algebra 

courses (Math 208), another quarter from the other course (Math 209), and half of the sessions would in-

volve students who attended both courses. 

This research investigated which distinctive subsequences of dialogues, dialogue acts and modes comprise 

effective and less-effective sessions. To this end, each tutorial session was rated by Subject Matter Experts 

(SMEs) using a 1-5 scale (5 being best score) along two dimensions: evidence of learning (EL) and evidence 

of soundness (ES). The ES score reflects how well tutors applied pedagogically sound tactics in tutorial 

sessions. On the other hand, the EL score reflects how well students learned from tutorial sessions. The EL 

and ES scores were found to be highly correlated (Pearson coefficient of 0.7). The research categorized all 

human annotated sessions having ES and EL scores less than 2 as ineffective, and all sessions rated with 

ES = 5 and EL = 4 as good or effective sessions.  

Then sequence pattern mining was conducted using the Traminer package in R. The Traminer algorithm 

first finds the most frequent subsequences by counting their distinct occurrences and then applies a Chi-

squared test (Bonferroni-adjusted) to identify sub-sequences that are statistically more (or less) frequent in 

each group. A p-value < 0.4 threshold was used to select likely distinctive sub-sequences, with dialogue 

acts, actsubacts and mode-switches used as observations. The observations were granularized further by 

adding speaker information. 

It should be noted that a subsequence is not necessarily a contiguous sequence of observations, but the order 

of the observations is preserved. For example, (Assertion)-(Expressive) is a valid sub-sequence of dialogue 
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acts formed from the (Assertion)-(Request)-(Expressive) contiguous sequence fragment. Sub-sequences 

were generated up to length 7 from all the annotated tutorial sessions. 

The discriminant sub-sequences mined indicated that good tutors use more Expressives and prompt students 

more in sessions of high learning gains. It was observed that all discriminant sub-sequences of acts contain 

Expressive acts initiated by tutors or students. The good tutors often prompt students to confirm the students 

are following their tutoring or, to elicit further answers or reasoning from the students. Furthermore, the 

tutors’ expressions of praise (T-Expressive-Positive) and farewell (T-Expressive-Farewell) and, the stu-

dents expressing thanks (S-Expressive-Thanks) are highly predictive of effective sessions. The tutors often 

praise students to keep them engaged to the task or, when they answer correctly. The tutee expressing thanks 

(S-Expressing-Thanks) might suggest the tutee is satisfied with the tutoring. Moreover, the tutor expressing 

farewell indicates the tutoring is coming towards the end. The sessions having proper closing also might 

suggest that both student and tutor are satisfied with the tutorial Session.  

The discriminant subsequent analysis for modes revealed interesting patterns as well when analyzed 

through a pedagogical lens. Good tutorial sessions have Scaffolding (S) and Fading (F) as the dominant 

strategies i.e. the good tutors do more Scaffolding and Fading to get the problem solved by the students 

themselves. The sub-sequences S-S, F, S-F, F-F are very strong indicators of good sessions (p-value<0.05) 

while F-S, F-F-S, S-F-S also fairly indicate the sessions of top quality. Another interesting observation is 

that the Closing mode (p-value=0.0475) is also a very strong indicator of top sessions. Moreover, a Fading-

Closing (p-value=0.002) sub-sequence is even more predictive than Closing alone. We also observed that 

switching to Scaffolding or Fading modes after ProblemIdentification is more effective as evidenced by 

sub-sequences O-P-F (p-value=0.1764), P-F (p-value=0.0198) and P-S-S (p-value=0.0362). 

Discussion 

The methods described here allow us to identify differences in students’ approaches to solving problems. 

It is important to remember that not all differences may be instructionally relevant. Within each method (or 

combination of methods), instructional system designers will need to make decisions about which ap-

proaches represent strategies that are indicative of different instructional needs or differing assessments of 

students’ capabilities and knowledge. 

In many cases, it is inappropriate to talk about a student’s strategy as being a property of that student. The 

particular strategy employed may differ due to problem characteristics and also due to that student’s state 

of knowledge. A particularly interesting case is where changes in a student’s strategy over time can be 

considered a measure of the student’s learning of the target knowledge. Corbett et al. (2000) describe one 

such case. Students were asked to complete a table representing the mathematical encoding of a word prob-

lem. Novice students typically started to complete the table in an order that did not take the problem struc-

ture into account: top-to-bottom and left-to right. As students came to understand the hierarchical structure 

of the mathematical terms underlying the problem, the order in which they filled in the cells in the table 

came to match the underlying structure. In cases like this, the students’ strategy may be an indicator of the 

student’s understanding of the mathematics, somewhat independent of their success in the task itself. 

Recommendations and Future Research 

Given the importance of understanding the particular strategies that students employ when solving prob-

lems, it is essential that such systems be able to detect and respond to different student strategies. In more 

open educational environments, where different solution strategies are encouraged, the ability to understand 

varied student strategies is even more important. In fact, widely used educational systems that support a 
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wide variety of strategies may be the best source for data on the strategies that students use. Using the 

techniques outlined here, such systems may greatly benefit from becoming self-improving systems that are 

able to detect and react to novel student problem-solving approaches. 

Within the Generalized Intelligent Framework for Tutoring (GIFT) architecture, instructional systems 

would benefit from recording and sharing student strategies employed while solving particular problems, 

in addition to the activity and evaluative information already stored. Domain models might benefit from 

knowledge of likely strategies, which could be used for activity selection, especially in cases where appro-

priate strategy choice and problem characteristics are strongly linked. Task designers should take strategy 

use into account. In some cases, tasks might be designed to be maximally flexible, allowing students to 

employ strategies that they pick. In other cases, an educational goal might be to ensure that students master 

more than one strategy. For this kind of goal, task designers might design multiple variants of the user 

interface, each of which constrains the student to employ a particular strategy. 
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CHAPTER 8 – MULTI-ARMED BANDITS IN EDUCATION  
Weiwen Leung and Joseph Jay Williams 

University of Toronto 

Introduction 

Any digital educational resource has the potential to become a self-improving system, if its components 

can be enhanced by creating multiple versions and testing out which are effective (for different people), 

and using this data to provide better versions for future learners. Machine learning algorithms can be applied 

to dynamically analyze data from these experiments and present the most effective versions of a resource 

to future students, leading to continual improvement.  

Intelligent self-improving systems are becoming increasingly popular. Such approaches have been applied 

to create intelligent self-improving systems in the display of advertisements or creation of a user in large 

technology companies such as Facebook and Google, where the algorithms gradually learn consumer pref-

erences, such as presenting interface features that users engage with, or displaying advertisements that cer-

tain subgroups of consumers are likely to click on. There are two key advantages to such systems. First, 

such algorithms can automatically converge towards a good outcome with little or no human effort. Second, 

such algorithms can provide personalized experiences; in the context of online advertising, this means that 

individual users are likely to see advertisements about products that interest them.  

However, such systems are still not common in educational settings. For example, while websites such as 

Coursera, Khan Academy, or edX provide a plethora of educational material to learners, the same material 

is often presented to learners, regardless of ability. Such material is often static, as instructors may not have 

time to edit the content after it is released. It is easy to see that different users can benefit from different 

kinds of content; for example, high ability students may benefit from challenging questions while lower 

ability students may benefit from easier questions. 

The contextual multi-armed bandit is an easy way to introduce personalization and self-improvement in 

education. In its simplest form (this special case is called a “multi-armed bandit” or MAB in short), there 

is an agent who can choose from multiple actions. Each action gives a reward that is in part deterministic 

and in part stochastic. The agent generally knows nothing about the reward distribution of each action, but 

learns them over time. To give a concrete example in an educational setting, an agent could be an instructor, 

while actions could include different types of explanations to each problem. Rewards could be the actual 

learning of a student from an explanation (perhaps proxied by their test scores on future related questions). 

A typical MAB chooses between explanations (i.e. actions) randomly initially, but as students complete 

questions, explanations that are viewed as more effective are shown more frequently. Contextual multi-

armed bandits (sometimes called contextual bandits) are generalizations of MABs in that the optimal ex-

planation can vary by learner subgroup. 

Several studies have shown the potential widespread applicability of MABs in education. To give a few 

examples, MABs have shown potential to recommend the best personalized actions to learners (Clement, 

Roy, Oudeyer, & Lopes, 2015; Lan & Baraniuk, 2016), what teaching materials to display (Liu, Mandell, 

Brunskill, & Popovic, 2014), and what explanations to show (Williams, et al., 2016). However, there are 

many barriers to adopting MABs in educational settings. As such, this chapter continues by discussing 

possible challenges in MAB adoption through an economic framework. Next, it goes on to list possible 

strategies to increase adoption and trust in MABs. It then goes on to suggest possible fertile areas of research 

on MAB adoption in education. Fourth, the chapter goes on to describe implications for GIFT, and then 

concludes. 
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Challenges in Multi-Armed Bandit Adoption 

We discuss possible challenges regarding the adoption of MABs through the lens of an economic frame-

work: specifically, we analyze possible challenges to demand (from instructors) and supply (from suppliers 

such as developers).  

Demand Factor #1: Ethical considerations 

Some ethical concerns revolve around fairness: one natural question to ask when introducing MABs is 

whether two students in the same class should receive different kinds of instruction, e.g. two different ex-

planations to the same question, or even work on two different quiz problems. Other issues include informed 

consent: not having informed consent can be viewed as ethically questionable, but having informed consent 

could change the participants’ behavior as participants know they are in an experiment, and selection biases 

if some students opt-out. 

A natural counterpoint to the fairness argument is that it is too narrowly construed (List, 2011): not exper-

imenting would not be fair to future students, as they do not benefit from improved instruction. Even today 

we (and our children) are benefitting from experiments done previously. Yet another counterargument is 

that giving all students the same instructional content and support can also be viewed as doing an experi-

ment where everyone receives the same treatment. 

Certain issues such as informed consent are more delicate. Here, it is better for researchers to carefully 

weigh the possible harm inflicted against the scientific benefits of conducting the study without informed 

consent when making applications to their Institutional Review Board (IRB), and work with their IRBs to 

reach a defensible solution. In addition, alternatives to standard informed consent such as superset consent 

may be feasible (Desposato, 2014).   

Demand Factor #2: Reluctance to experiment  

Another factor is that when using multi-armed bandits, one is conducting an adaptive experiment, and peo-

ple are generally reluctant to experiment. On a personal level, Mullainathan (2017) documents his personal 

reluctance to even experiment trying something as simple as generic soda, while Larcom, Rauch and Wil-

lems (2017) show that forced experimentation with new transportation routes due to strikes led to many 

London commuters re-optimizing their travel plans, suggesting that London commuters under-experi-

mented with transportation routes. Levitt (2016) also shows that people are likely excessively cautious in 

keeping the status quo. 

We are unaware of any literature that directly sheds light on overcoming the human reluctance to experi-

ment, though the Porter hypothesis suggests that exogenously imposed constraints (e.g. government regu-

lations) may trigger innovation through experimentation (Porter, 1991). However, in the next section, we 

explain what insights from the literature on algorithmic trust may be applicable in increasing the trust that 

people have in MABs. 

Supply Factor #1: Cost of programming software with MABs 

We now consider supply side considerations. Educational software that uses MABs can be expensive to 

build. While simple MABs are not difficult to program, more complex contextual MABs can be more dif-
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ficult to program. Perhaps the most costly factor in using such systems is the need to design multiple ver-

sions of a piece of content (e.g. multiple explanations for a given quiz question), in order to test out which 

works best. 

However, it is possible to greatly reduce the time required to produce the required content through tech-

niques such as learnersourcing (or more generally, crowdsourcing). For example, learners can be asked to 

write their explanations as they solve questions (Williams, et al., 2016), which benefits both future students 

and learners themselves as self-explanations can help to reinforce one’s understanding of a topic (Chi, De 

Leeuw, Chiu, & Lavancher, 1994). In addition, some of the software created by academics has been released 

open-source (Williams, et al., 2018), which other developers (commercial and non-commercial) can poten-

tially build on or incorporate in their platforms. 

Supply Factor #2: Difficult to interface bandits with offline teaching materials 

Another obstacle is that much of teaching material is “offline” in the sense that they are completed with 

pen and paper, rather than using information technology. This limits the applicability of educational soft-

ware that uses MABs and hence its supply. The supply of software that uses MABs could be higher if 

MABs could be configured to, for example, provide personalized recommendations for problems to solve 

in physical textbooks and analyze the answers that students write on paper. 

There is no easy solution to overcome this problem. However, the increasing popularity of online learning 

will increase the applicability of MABs. Moreover, one can imagine some partial solutions even at this 

point. For example, software developers could work with textbook authors to provide problem recommen-

dations for students.   

Increasing Trust in Multi-Armed Bandits 

Having considered possible methods to increase MAB adoption, we now turn to the literature on algorith-

mic trust to understand possible factors that may lead to increased trust and hence greater continued use 

(i.e. less attrition) of MABs among those who start using MABs. (That said, these factors may also increase 

MAB adoption). 

A first plausible factor is reminding people that they should compare MAB performance against a human’s, 

rather than a perfect algorithm. In a study where participants were asked whether they want to rely on 

algorithmic forecasts of MBA student’s future success when deciding which MBA students to admit, par-

ticipants quickly lost confidence in the algorithm once they saw it make mistakes. In contrast, they were 

more forgiving of human mistakes, whether their own or other people’s (Dietvorst, Simmons, & Massey, 

2014). Another study found evidence that suggests that this could be due to people having higher expecta-

tions for algorithms compared to humans (Dietvorst, 2016). Hence, it may help to raise awareness that 

people should compare MAB and human performance against the same yardstick. 

A second plausible factor is explainability: A study found that people are averse to recommender systems, 

despite such systems producing higher quality recommendations than humans, be they strangers, friends, 

or family (Yeoman, Shah, Mullainathan, & Kleinberg, 2018). Part of this aversion is due to the perception 

that human recommendation processes are easier to understand. Hence, producers of educational software 

that use MABs should provide careful explanations regarding how their algorithms work. 

A third plausible factor is modifiability: when given the power to modify an algorithm’s forecasts, people 

are considerably more likely to rely on the algorithm rather than human judgement (Dietvorst, Simmons, 

& Massey, Overcoming Algorithm Aversion: People Will Use Imperfect Algorithms If They Can (Even 
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Slightly) Modify Them, 2016). This result held even when participants were severely restricted in how they 

could modify the algorithm, suggested that people had preferences from even a little control over the algo-

rithm. Hence, designers should consider letting end-users modify experimental parameters such as those 

which affect the exploration-exploitation tradeoff. 

A fourth possible factor is getting end-users themselves to make forecasts about which experimental treat-

ments will be most effective. In a proof-of-concept study of educational software that used MABs, instruc-

tors appeared to be humble after their initial predictions about which experimental treatments would be 

most effective were proven wrong (Williams, et al., 2018). Hence, designers can consider adding features 

that prompt people for their a priori predictions before they launch an experiment. Showing that their long-

held beliefs are not necessarily correct could make people want to continue use of software that uses MABs. 

Indeed, political beliefs are perhaps some of the most strongly held beliefs people have, but even political 

beliefs can change after people make forecasts that subsequently turn out to be wrong (Mellers, Tetlock, & 

Arkes, 2018). 

Finally, emphasizing objective aspects of certain decisions may help to increase continued use of MABs. 

In contrast to Dietvorst, Simmons, and Massey (2014), Logg (2017) found that people have preference for 

algorithms (rather than algorithmic aversion). However, this “algorithmic appreciation” only held for deci-

sions that were perceived to be objective (e.g. financial decision making), rather than subjective decisions 

such as dating. Hence, it may help to emphasize the objective aspects of certain areas (or to promote MABs 

in areas where decision making is perceived to be an objective process). 

Open Questions on Multi-Armed Bandit Adoption 

There are many fertile areas of research regarding MAB adoption. How to overcome challenges in MAB 

adoption is an example of an open question. While we went through several challenges and gave some 

plausible solutions, these ought to be empirically tested. In addition, the ideas we gave for increasing trust 

in MABs were based on the algorithmic trust literature. While some of those papers used algorithms which 

had processes similar to MABs (e.g. prediction), and others used systems which could incorporate MABs 

(recommender systems), the findings of those papers may not necessarily generalize to MABs. 

Recommendations and Future Research 

In this section, we provide design recommendations for the Generalized Intelligent Framework for Tutoring 

(GIFT) and future Intelligent Tutoring Systems, and discuss future research needs where gaps are antici-

pated to persist. 

GIFT can incorporate functionality for randomized experiments to be conducted on components of educa-

tional resources, such as hints, explanations, motivational messages, and problems. Contextual bandit al-

gorithms can then be used to automatically discover which alternative versions work for different learners, 

leading to continual self-improvement of the educational system. Currently GIFT supports extensive ca-

pacities for authoring intelligent personalized systems, but these require careful engineering and develop-

ment of the rules or other processes for personalization. By incorporating the capacity for randomized ex-

perimentation that machine learning algorithms can improve, GIFT can enable continual improvement an-

ywhere an experiment can be conducted. 

This approach can benefit from taking into account the findings of the algorithmic trust literature mentioned 

in the “Increasing Trust” section. Experimental parameters in GIFT software can be made more modifiable. 

For example, GIFT users can more easily change the degree to which the system tries less tested options 
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(as compared to choosing options with the highest expected payoff). GIFT developers can also add insight-

ful explanations about how GIFT works to the software. Teachers may be more likely to adopt GIFT if they 

are clear on how it works. Also, GIFT users can also be nudged to make predictions about the most effective 

experimental treatments, and then shown how their predictions compare with the actual results; realizing 

that one’s predictions are not always correct will highlight the usefulness of GIFT. A second recommenda-

tion is that when building and disseminating GIFT, it would be good to pay more attention to overcoming 

the human reluctance to experiment.  

There are many future research needs with respect to improving current systems. First, existing systems 

can be generalized to handle the lack of incentives to be the first to contribute content (or the “incentive 

problem”). Imagine an MAB system that assigns explanations to students. The system will likely give better 

explanations to students who complete questions later on. As such, some students may complete quizzes 

and assignments later than they otherwise would. A second problem is non-stationarity: even without the 

incentive problem, the reward function can change as students who complete an assignment close to the 

deadline may be different from those who complete the assignment well before the deadline.  

Conclusion 

This chapter started off by considering the potential widespread applicability of software that uses MABs 

in educational settings, and then went on to consider possible challenges to the adoption of such software. 

We then considered potential hindrances to the use of MABs, as well as ways these could be surmounted 

by using insights from the algorithmic trust literature. We also gave implications for GIFT, as well as areas 

for future research. We hope that future developers continue to bring in insights to the field by adapting 

innovations in other areas.  
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CHAPTER 9 – APPLICATIONS OF REINFORCEMENT LEARNING TO 

SELF IMPROVING EDUCATIONAL SYSTEMS 
Shitian Shen, Machi Shimmei, Min Chi, and Noboru Matsuda  

North Carolina State University 

 

Introduction 

Interactive e-learning systems such as Intelligent Tutoring Systems (ITSs), and educational games have 

become increasingly prevalent in educational settings. While these systems hold great promise, they are 

difficult and expensive to construct and are often brittle and inflexible in their interactions with students. In 

order to design an effective interactive e-learning system, developers must form the core of the system and 

then determine what and how to teach the desired content. Many interactive e-learning systems exist for 

Science, Technology, Engineering and Math (STEM) domains, but they are not all capable of the adaptive 

pedagogical decision-making that is central to achieving the potential learning gains afforded by such sys-

tems. These limitations are due in part to the fact that they typically rely on a small set of hand-crafted rules 

when making pedagogical decisions. Because there are a lack of validated theories of decision-making in 

interactive e-learning systems, these rules are often project-specific and are rarely evaluated. Thus, there is 

a clear need to advance data-driven approaches to pedagogical decision-making. 

Reinforcement Learning (RL) offers one of the most promising approaches to data-driven decision-making 

for improving student learning in interactive e-learning systems. RL algorithms are designed to induce 

effective policies that determine the best action for an agent to take in any given situation so as to maximize 

a cumulative reward. Optimal decision making in complex interactive environments is challenging. In ITSs, 

for example, the system's behaviors can be viewed as a sequential decision process where at each step the 

system chooses an appropriate action from a set of options. Pedagogical strategies are policies that are used 

to decide what action to take next in the face of alternatives. Each of these system decisions will affect the 

user's subsequent actions and performance. Its impact on outcomes cannot be observed immediately and 

the effectiveness of each decision is dependent upon the effectiveness of subsequent decisions. A number 

of researchers, including the authors of this chapter, have studied the application of existing RL algorithms 

to improve the effectiveness of interactive e-learning systems. In this chapter, we will describe two case 

studies on applying RL to improve the effectiveness of educational systems. 

RL & Markov Decision Process (MDP) Framework  

The Markov Decision Process (MDP) is one of the most widely used RL frameworks. In general, an MDP 

is defined as a 4-tuple 〈𝑆, 𝐴, 𝑇, 𝑅〉, where 𝑆 denotes the observable state space, defined by a set of features 

that represent the interactive e-learning environment; 𝐴 denotes the space of possible actions for the agent 

to execute; 𝑇 represents the transition probability where 𝑝(𝑠, 𝑎, 𝑠′) is the probability of transiting from state 

𝑠 to state 𝑠′ by taking action 𝑎. Finally, the reward function 𝑅 represents the immediate or delayed feedback: 

𝑟(𝑠, 𝑎, 𝑠′) denotes the expected reward of transitioning from state 𝑠 to state 𝑠′ by taking action 𝑎. Since we 

apply the tabular MDP framework, reward function 𝑅 and transition probability table 𝑇 can be easily esti-

mated from the training corpus. The goal of an MDP is to generate the deterministic policy  

𝜋 ∶ 𝑠 → 𝑎 that maps each state onto an action. 
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Once the tuple 〈𝑆, 𝐴, 𝑇, 𝑅〉 is set, the optimal policy 𝜋∗ for an MDP can be generated via dynamic program-

ming approaches, such as Value Iteration. This algorithm operates by finding the optimal value for each 

state 𝑉∗(𝑠), which is the expected discounted reward that the agent will gain if it starts in 𝑠 and follows the 

optimal policy to the goal. Generally speaking, 𝑉∗(𝑠) can be obtained by the optimal value function for 

each state-action pair𝑄∗(𝑠, 𝑎), which is defined as the expected discounted reward the agent will gain if it 

takes an action 𝑎, in a state 𝑠 and follows the optimal policy to the end. The optimal state value 𝑉∗(𝑠) and 

value function 𝑄∗(𝑠, 𝑎) can be obtained by iteratively updating 𝑉(𝑠) and 𝑄(𝑠, 𝑎) via equations 1 and 2 until 

they converge: 

 𝑄(𝑠, 𝑎) ≔  ∑ 𝑝(𝑠, 𝑎, 𝑠′)[𝑟(𝑠, 𝑎, 𝑠′) + 𝛾𝑉𝑡−1(𝑠′)]

𝑠′

 (1) 

 

 𝑉(𝑠) ∶= 𝑄(𝑠, 𝑎)  (2) 

where 0 ≤ 𝛾 < 1 is a discount factor. When the process converges, the optimal policy 𝜋∗ can be induced 

corresponding to the optimal Q-value function 𝑄∗(𝑠, 𝑎), represented as: 

 𝜋∗(𝑠) ∶= 𝑄∗(𝑠, 𝑎)  (3) 

where 𝜋∗ is the deterministic policy that maps a given state into an action. In the context of an ITS, this 

induced policy represents the pedagogical strategy by specifying tutorial actions using the current state. 

Case Study 1: Apply RL to induce Pedagogical Strategy for Deep Thought  

In this case study, Shen and Chi investigated the impact of both immediate and delayed reward functions 

on RL-induced policies using MDP framework and empirically evaluated the effectiveness of induced pol-

icies within an ITS called Deep Thought.  As described above, RL focuses on inducing effective decision 

making policies for an agent with the goal of maximizing the agent's cumulative reward. In many domains 

RL is applied with immediate reward functions.  In an automatic call center system, for example, the agent 

can receive an immediate reward for every question it asks because the impact of each question can be 

assessed instantaneously (Williams, 2008). Immediate rewards are generally more effective than delayed 

rewards for RL-based policy induction. This is because it is easier to assign appropriate credit or blame 

when the feedback is tied to a single decision. The more we delay the rewards or punishments, the harder 

it becomes to assign credit or blame properly. The most appropriate reward to use in ITSs are student 

learning gains which are typically unavailable until the entire training process is complete. This is due to 

the complex nature of the learning process which makes it difficult to assess students' learning moment by 

moment and more importantly, many instructional interventions that boost short-term performance may not 

be effective over the long-term.  Therefore, in this study, Shen and Chi explored both immediate and de-

layed rewards in our policy induction and empirically evaluated the impact of the induced policies on stu-

dent learning. 

Moreover, prior research has shown that some learners are less sensitive to the learning environment and 

can always learn; while others are more sensitive to variations in learning environments and may fail to do 

so (Cronbach & Snow, 1977). We refer to the former as high learners and the latter as low learners. It is not 

fully understood why such differences exist.  One hypothesis is that low learners lack crucial skills such as 

general problem-solving strategies and meta-cognition. In order to be effective and to honor the promises 

of learning environments, a system should support both high and low learners effectively, especially the 

low learners. In Case study 1, our hypothesis is that our induced pedagogical strategies may have different 

impacts on students with different learning competence. More specifically, in this study, we divide students 
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into Fast and Slow groups based upon their average response time and we found that the RL-induced ped-

agogical strategies had significantly more impact on Slow learners than on their Fast peers. That is, Slow 

learners in this study behave more like low learners in that they are more sensitive to effectiveness of the 

RL-induced pedagogical strategies while Fast learners are more like high learners in that they can learn 

equally effectively regardless of the pedagogical strategies employed. 

To summarize, in Case Study 1, we applied RL to induce two sets of policies: Immediate and Delayed. We 

focused on one important tutorial decision: whether to provide students with a Worked Example (WE) or 

to require them to engage in a Problem Solving (PS). Our primary research questions are:  1) would our 

induced policies improve students' learning? 2) which policy, Immediate or Delayed, would be more effec-

tive? 

Case Study 1: Methods  

Deep Thought 

Deep Thought is a data-driven ITS used in the undergraduate-level Discrete Mathematics (DM) course at 

North Carolina State University (Mostafavi & Barnes, 2017). Deep Thought provides students with a graph-

based representation of logic proofs which allows students to solve problems by applying logic rules to 

derive new logical statements, represented as nodes. The system automatically verifies proofs and provides 

immediate feedback on rule application (but not strategy) errors. Every problem in Deep Thought can be 

presented in the form of either Worked Example (WE) or Problem Solving (PS).  In PS (shown in Figure 

1) students are tasked with solving a problem using the assistantance of the ITS. In WE (shown in Figure 

2) by contrast, students are given a detailed worked example showing the expert solution for the same 

problem.  Note that by focusing on the pedagogical decisions of choosing WE vs. PS, it allows us to strictly 

control the content to be equivalent for all students. 

  

Figure 1. Problem Solving on Deep Thought Figure 2. Worked Example on Deep Thought 

Training Corpus 

Our dataset was collected from Deep Thought. It included a total of 303 undergraduate CS students who 

used Deep Thought as part of a class assignment in Fall 2014 and Spring 2015. The average amount of time 

spent in the tutor was 416.60 minutes. When the students started each new training problem, Deep Thought 

made a simple decision: should it ask the student to solve the next problem (PS), or should it provide them 

with a worked example (WE). In order to model the students' learning process, we extracted a total of 134 

state feature variables, which can be grouped into the following five categories: 
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1. Autonomy (AM): the amount of work done by the student: such as the number of problems solved 

so far PSCount or the number of hints requested hintCount. 

2. Temporal Situation (TS): the time related information about the work process: such as the average 

time taken per problem avgTime, or the total time for solving a problem TotalPSTime. 

3. Problem Solving (PS): information about the current problem solving context, such as the diffi-

culty of the current problem probDiff, or whether the student changes the difficulty level NewLevel. 

4. Performance (PM): information about the student’s performance during problem solving: such as 

the number of right application of rules RightApp. 

5. Student Action (SA): the statistical measurement of student's behavior: such as the number of non-

empty-click actions that students take actionCount, or the number of clicks for derivation Ap-

pCount. 

Inducing Immediate vs. Delayed Policies 

The reward function in Deep Thought datasets is calculated based upon the level score 𝐿𝑒𝑣𝑒𝑙𝑆𝑐𝑜𝑟𝑒𝑖 , 𝑖 ∈
[1,6], which is calculated based upon the students' performance on the last problem in each level without 

receiving any formative feedback from the system. As described below, students were trained either on 

high track or low track on each level (except on level 1) so it is hard to compare their performance directly. 

Therefore, a student's level score at level 𝑖 is calculated based on rank of the student performance score at 

level 𝑖 relative to whole population performance scores at the same level.   

Our experimental results indicate that there exists a significant correlation between students' performance 

on last level (𝐿𝑒𝑣𝑒𝑙𝑆𝑐𝑜𝑟𝑒6) and their final test score taken at the end of the semester:  𝑅2 = 0.396, 𝑝-value 

= 1.433e-11. This suggests that the students' level score indeed reflects their knowledge level. 

We designed two types of reward: immediate and delayed reward with the goal of measuring the students' 

learning gains. The immediate reward is defined as 𝑅𝑖 = 𝐿𝑒𝑣𝑒𝑙𝑆𝑐𝑜𝑟𝑒𝑖 − 𝐿𝑒𝑣𝑒𝑙𝑆𝑐𝑜𝑟𝑒𝑖−1 where 𝑖 ∈ [1,6], 
𝑅1 = 𝐿𝑒𝑣𝑒𝑙𝑆𝑐𝑜𝑟𝑒1, it reflects the change in students' performance level by level. The delayed reward is 

defined as 𝑅𝑑𝑒𝑙𝑎𝑦 = 𝐿𝑒𝑣𝑒𝑙𝑆𝑐𝑜𝑟𝑒6 − 𝐿𝑒𝑣𝑒𝑙𝑆𝑐𝑜𝑟𝑒1, which determines the change in students’ performance 

across levels. For convenience, we denote the Deep Thought datasets with immediate reward as DT-Immed 

and that with delayed reward as DT-Delay. Note that the sum of each student’s immediate rewards will 

equal their final delayed reward.  Apart from the reward functions, both two datasets are identical. 

Both Immediate and delayed policies were induced using the same general procedure. We apply the en-

semble feature selection method to the corresponding dataset.  In order to extract the state feature set that 

can represent learning context compactly and accurately, we set the maximum number of state feature size 

to be 8. The ensemble method comprises 6 correlation-based methods and 4 RL-based methods and more 

details are described in Shen and Chi (2016b). Based upon the extracted feature set, we induce our policy 

using the toolkit developed by Tetreault and Litman (2008). The effectiveness of policy is evaluated by 

Expected Cumulative Reward (ECR) (Chi, VanLehn, Litman, & Jordan, 2011b) defined as: 

 𝐸𝐶𝑅 =  ∑
𝑁𝑖

𝑁
× 𝑉𝜋(𝑆𝑖)

𝑖

 (4) 

where 𝑁 denotes the number of initial states in training corpus, 𝑁𝑖 means the number of state 𝑆𝑖 as initial 

states. The higher the ECR value of a policy, the better the policy is supposed to perform. 
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Induced Immediate and Delayed Policies 

Our best Immediate policy has a feature size of seven and our best Delayed policy has a feature size of six, 

as shown in Table 1. 

Table 1. Selected Features in Immediate Policy and Delayed Policy 

Feature Definition Category 

Immediate Policy 

TotalPSTime (𝑓𝐼1) Total time for solving a problem Temporal Situation 

NewLevel (𝑓𝐼2) Whether current solved problem is in the new level Problem Solving 

WrongApp (𝑓𝐼3) Number of wrong application of rules Performance 

TotalWETime (𝑓𝐼4) Total time for working on an example Temporal Situation 

UseCount (𝑓𝐼5) Number of different types of applied rules in Use category Problem Solving 

AppCount (𝑓𝐼6) Number of clicks for derivation Student Action 

NumProbRule (𝑓𝐼7) Number of expected distinct rules for a solved problem Problem Solving 

Delayed Policy 

stepTimeDev (𝑓𝐷1) Step time deviation Temporal Situation 

probDiff (𝑓𝐷2) Difficulty of current solved problem Problem Solving 

symbolicRCount (𝑓𝐷3) Number of whole problems for symbolic representation Problem Solving 

actionCount (𝑓𝐷4) Number of non-empty-click actions that students take Student Action 

SInfoHintCount (𝑓𝐷5) Number of System Information Hint Student Action 

NSClickCountWE (𝑓𝐷6) Number of next step click in Work Example Student Action 

 

Immediate policy used seven features 𝑓𝐼∗, which are listed in Table 1. It is interesting to note that the 

Immediate policy contained features from every category except Autonomy. Table 2 shows the induced 

Immediate policy. Each row of table represents one combination of the first four features and each column 

represents the combination of final three. The black cells indicate that the tutorial action that is associated 

with the state is PS, while the white cells indicate the action is WE. The gray cells indicate that no rule was 

learned for the state. There are a total of 86 rules for the Immediate policy, of which 21 are associated with 

PS and 65 are associated with WE. More specifically, we found that the states in the row 0:0:1:0 almost 

always associate with PS; while the states in rows 0:0:0:0, 0:0:0:1, 1:1:1:0 almost always relate to WE; the 

rules in rows 0:1:0:0, 0:1:0:1, 0:1:1:0, 1:1:0:0, 1:1:1:1 do not contain PS; there are no rules for row 0:1:1:1. 

In general, the Immediate policy favors WE. 
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Table 2. Immediate Policy Table 3. Delayed Policy 

 

 

 

 

Delayed policy used six features 𝑓𝐷∗, which are listed in Table 1. They are drawn from the Temporal Situ-

ation, Problem Solving and Student Action categories. No features are drawn from the Autonomy and Per-

formance categories. Table 3 shows the Delayed policy, where each row represents one combination of the 

first three features and each column represents one combination of last three. Each cell has the same mean-

ing as described above. There are a total of 68 rules for the Delayed policy, of which 48 are associated with 

PS and 20 are associated with WE.  More specifically, states in row 1:1:0 only associate with PS; states in 

rows 0:0:1, 0:1:1, 1:1:1 almost always correspond to PS; while the rules in row 1:0:1 only contain WE. 

Therefore, the Delayed policy is more likely to take PS. 

Immediate Policy vs. Delayed Policy. The ECR of the best Immediate policy was 137.97 while the ECR 

of the best Delayed policy was 14.06. This is likely due to the credit assignment problem. The more we 

delay success measures from a series of sequential decisions, the more difficult it becomes to identify which 

of the decision(s) in the sequence are responsible for our final performance. Furthermore, this may explain 

why, for the slow learners, the low-Immediate students learned more than the low-Random and the low-

Delayed students. The former difference was statistically significant while the latter was marginal. We 

found no significant difference between the low-Random and low-Delayed students. 

Case Study 1: Experiment  

Our primary goal of Case Study 1 was to empirically evaluate the effectiveness of the RL induced policies. 

In order to do so, we incorporated them back into the Deep Thought tutor and empirically compared them 

against a baseline policy that makes random decisions. Thus, we have three conditions: Immediate, Delayed 

and Random. Apart from the differing policies, the remaining components of the system, including the 

Graphical User Interface (GUI), the training problems, and the tutorial scripts, were the same for all three 

conditions. Next, we will describe our experimental details.    
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Participants and Conditions 

The study was conducted in “Discrete Mathematics for Computer Science'”, a course offered at North Car-

olina State University in the Spring of 2016.  106 undergraduate students were assigned to complete the 

task as one of their regular homework assignments2. 

The participants were randomly distributed into three conditions. The group sizes were as follows: 𝑁 = 30 

for Random,  𝑁 = 38 for Delayed, and 𝑁 = 38 for Immediate condition. A total of 98 students completed 

the experiment and were distributed as follows: 𝑁 = 28 or Random,  𝑁 = 37 for Delayed, and 𝑁 = 33 for 

Immediate.  We performed a 𝑥2 test of independence to examine the relationship between completion rate 

and condition. We found no significant differences among three groups: 𝑥2(2, 106) = 1.4, 𝑝 = 0.49. 

Performance Measure 

When inducing both the Immediate and Delayed policies, we calculated our reward function based upon 

the students' level scores 𝐿𝑒𝑣𝑒𝑙𝑆𝑐𝑜𝑟𝑒𝑖 , 𝑖 ∈ [1,6]. Both Immediate and Delayed policies are induced to max-

imize the students' improvement from level 1 to level 6. This can be calculated as:  

𝐿𝑒𝑣𝑒𝑙𝑆𝑐𝑜𝑟𝑒6 − 𝐿𝑒𝑣𝑒𝑙𝑆𝑐𝑜𝑟𝑒1. Here we treat 𝐿𝑒𝑣𝑒𝑙𝑆𝑐𝑜𝑟𝑒6 as the posttest score, 𝐿𝑒𝑣𝑒𝑙𝑆𝑐𝑜𝑟𝑒1 as pretest 

score, and calculate each student's learning gain as 𝐿𝑒𝑣𝑒𝑙𝑆𝑐𝑜𝑟𝑒6 − 𝐿𝑒𝑣𝑒𝑙𝑆𝑐𝑜𝑟𝑒1. In addition to raw learn-

ing gains, we also used the normalized learning gain (NLG) as the reward value. This measures students' 

learning gain by considering their incoming competence and has been widely used for measuring student 

learning performance in the field of ITSs. The NLG is defined as:  

𝑁𝐿𝐺 = (𝑝𝑜𝑠𝑡𝑡𝑒𝑠𝑡 − 𝑝𝑟𝑒𝑡𝑒𝑠𝑡)/(𝑀𝑎𝑥(𝑝𝑜𝑠𝑡𝑡𝑒𝑠𝑡) − 𝑝𝑟𝑒𝑡𝑒𝑠𝑡), that is, how much did the student learn given 

how much he/she can learn. In this study, we calculated NLG as: 𝑁𝐿𝐺 =
𝐿𝑒𝑣𝑒𝑙𝑆𝑐𝑜𝑟𝑒6−𝐿𝑒𝑣𝑒𝑙𝑆𝑐𝑜𝑟𝑒1

𝑀𝑎𝑥(𝐿𝑒𝑣𝑒𝑙𝑆𝑐𝑜𝑟𝑒6)−𝐿𝑒𝑣𝑒𝑙𝑆𝑐𝑜𝑟𝑒1
, Here 

𝑀𝑎𝑥(𝐿𝑒𝑣𝑒𝑙𝑆𝑐𝑜𝑟𝑒6) is the maximum score a student can get. We will report our students' performance 

using both the raw learning gain and the NLG. Both scores were normalized to [0,1].   

Case Study 1: Results  

As expected, no significant difference were found among the three conditions in terms of their level 1 

score: 𝐹(2, 97) = 0.04, 𝑝 = 0.96. To investigate our hypothesis that the induced pedagogical strategies 

may have different impacts on students with different learning competence, we further divided students 

into Fast (𝑛 = 49) and Slow (𝑛 = 49) groups based upon their average response time on Level 1. As ex-

pected, there was a significant difference between the Fast and Slow students on 𝐿𝑒𝑣𝑒𝑙𝑆𝑐𝑜𝑟𝑒1: 𝐹(1, 98) =
10.05, 𝑝 = 0.002 in that the Fast students had significantly higher scores than the Slow ones. Com-

bining the three conditions with incoming competence (Fast vs. Slow), we partitioned all students into six 

groups: Immediate-Fast (𝑛 = 16), Immediate-Slow (𝑛 = 17),  Delayed-Fast (𝑛 = 17), Delayed-Slow (𝑛 =
20), Random-Fast (𝑛 = 16), and Random-Slow (𝑛 = 12).  No significant difference was found among the 

Slow groups on their LevelScore1: 𝐹(2, 46) = 0.56, 𝑝 = 0.58. Nor did we find any significant difference 

among the three Fast groups on their LevelScore1: 

F(2, 46) = 0.64, 𝑝 = 0.53. 

A two-way ANOVA based upon Condition {Immediate, Delayed, Random} and Incoming Competence 

{Fast, Slow} showed no significant differences among the three conditions on overall training 

time: 𝐹(1, 98) = 0.13, 𝑝 = 0.87. However there was a significant Incoming Competence effect: the fast 

learners spent less time on task than the slow learners: (𝑀 =  387, 𝑆𝐷 =  81) for fast learners and  

                                                           

 
2 Although participation were not required, most of students complete the assignment. 
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(𝑀 =  662, 𝑆𝐷 =  83) for the slow learners and the difference was significant: 𝐹(1, 98) = 5.54, 𝑝 =
0.02. In addition there was no interaction effect. Therefore, we can conclude that the fast learners spend 

less time on task than the slow learners across all three conditions. 

Learning Performance 

Next we will report the impact of RL policies on students' performance and then discuss the characteristics 

of the induced policies. We performed two one-way ANOVAs using condition as the factor and the stu-

dent's raw learning gain or NLG as the dependent measure respectively. We found no significant difference 

among the three groups: 𝐹(2, 97) = 1.54, 𝑝 = 0.22 for raw learning gains and 𝐹(2, 97) = 2.15, 𝑝 = 0.12 

for NLG scores. While no significant difference was found, the comparatively large SD suggests that both 

fast and slow students may benefit differently from the induced policies. For example, on the raw learning 

gain scores, 𝑀 =  0.72, 𝑆𝐷 =  0.10 for the Immediate group, 𝑀 =  0.68, 𝑆𝐷 =  0.16 for the Delayed 

group, and 𝑀 =  0.67, 𝑆𝐷 =  0.17 for the Random group. The same pattern was repeated for NLG. 

A two-way ANOVA using Condition {Immediate, Delayed, Random} and Incoming Competence {Fast, 

Slow} as two factors and the student's raw learning gain or NLG as the dependent measure showed an 

significant interaction effect, 𝐹(2, 97) = 3.43, 𝑝 = 0.037 for the raw learning gain and   

𝐹(2, 97) = 3.48, 𝑝 = 0.035 for NLG. Additionally, we also found a significant main effect from the In-

coming Competence: 𝐹(1, 98) = 4.68, 𝑝 = 0.033 for the raw learning gain and  

𝐹(1, 98) = 4.90, 𝑝 = 0.029 for the NLG. Therefore the fast learners learned significantly more than the 

slow learners: 𝑀 =  0.719, 𝑆𝐷 =  0.14 for the fast learners vs. 𝑀 =  0.656, 𝑆𝐷 =  0.145 for the slow 

learners on the raw learning gain. In other words, this results confirmed our assumption that Fast learners 

can be seen as the high learners while Slow learners can be seen as the low learners. Finally, the main effect 

of Condition was not significant: 𝐹(1, 98) = 1.54, 𝑝 > 0.05. 

Figure 3 shows that the raw learning gain and NLG results are consistent with our hypothesis: no significant 

difference was found among the three fast groups on either the raw learning gain or NLG:  

𝐹(2, 46) = 0.38, 𝑝 = 0.69 for the raw learning gain and 𝐹(2, 46) = 0.64, 𝑝 = 0.53 for NLG respectively.  

On the other hand, Figure 3 shows a significant difference among the three slow groups: 

𝐹(2, 46) = 3.99, 𝑝 = 0.025 for the raw learning gain and 𝐹(2, 46) = 3.22, 𝑝 = 0.049 for NLG. Pairwise  

t-tests showed that the Immediate-Slow group significantly outperformed the Random-Slow group on both 

measures: 𝑡(27) = 2.69, 𝑝 = 0.012 for the raw learning gain and 𝑡(27) = 2.23, 𝑝 = 0.034 for NLG. The 

Immediate-Slow group outperformed the Delayed-Slow group on both measures. However, these differ-

ences were only marginally significant: 𝑡(35) = 1.67, 𝑝 = 0.098 for the raw learning gain and 𝑡(35) =
1.94, 𝑝 = 0.06 for NLG respectively. Furthermore, we found no significant differences between the De-

layed-Slow and the Random-Slow groups. Thus, our results suggest that all three Fast groups learned 

equally well after training on DT while the Slow learners are indeed more sensitive to induced policies. For 

three Slow groups, Immediate policies significantly outperforms Random ones and there is a trend that the 

Immediate policies beat the Delayed ones while no significant difference between Delayed and Random. 
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(a) Learning Gain (b) NLG 

Figure 3: Learning Performance across three groups 

 

Finally, we compared the fast and slow groups across all three conditions. For the Immediate condition, we 

found no significant differences among the Immediate-Fast and Immediate-Slow groups on either the raw 

learning gain or NLG:  for the 𝐹(1, 33) = 0.38, 𝑝 = 0.55 raw learning gain and 𝐹(1, 33) = 0.45, 𝑝 = 0.51 

for NLG. Likewise, for the Delayed condition, no significant difference was found between the Fast and 

Slow groups: 𝐹(1, 37) = 0.62, 𝑝 = 0.43 for the raw learning gain and 𝐹(1, 37) = 0.71, 𝑝 = 0.41 for NLG. 

Therefore, both fast and slow groups learned equally well when following the RL induced policies. 

For Random group, however, the Random-Slow students learned significantly less than their Random-Fast 

peers: 𝐹(1, 27) = 8.18, 𝑝 = 0.008 for the raw learning gain and 𝐹(1, 27) = 5.03, 𝑝 = 0.034 for NLG re-

spectively. 

Overall, our results suggest that the Fast learners are not sensitive to the effectiveness of the pedagogical 

strategy while the Slow learners will learn more with the effective pedagogical strategy. We found that for 

the Slow learners the Immediate policy is more effective than the Random policy, and is marginally more 

effective than the Delayed policy.    

Log Analysis 

Having compared the individual student's learning performance and the characteristics of the induced pol-

icies, this subsection will compare the log file variations across the conditions. More specifically, we fo-

cused on the total number of problems that students encountered (TotalCount); the total number of problems 

that the students solved (PSCount); the total number of WEs reviewed (WSCount); the total number of 

difficult problems that the students solved (DiffPSCount); and the total number of difficult WEs (Dif-

fWECount).  

Table 4 shows comparisons of the different counts across the conditions. A two-way ANOVA using Con-

dition {Immediate, Delayed, Random} and Incoming Competence {High, Low} on all behavior counts 
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showed a significant main effect for the Condition on all measures. Both the main effect of Incoming Com-

petence and the interaction effect were not significant.  Additionally, Table 4 summarizes one-way ANOVA 

comparisons on the different counts among the three conditions. Columns 2-4 list the three groups in com-

parison and their corresponding mean and SD scores. The last column lists the statistical results of the one-

way ANOVA comparisons. Table 4 shows that the Immediate group solved significantly fewer total prob-

lems than the Delayed group. The former solved significantly fewer difficult problems than the other two 

groups. On the other hand, the Immediate group studied significantly more worked examples on both total 

and difficult problems than the other two groups.  

Table 4. Statistical measurement of several features among three groups 

 

Feature Immediate  Delay Random Significance 

TotalCount 19.42 (2.07) 20.73 (2.08) 19.81 (2.09) F(2,98) = 3.67 𝑝 = 0.03 

PSCount 8.09   (1.37) 13.41 (1.38) 12.34 (1.39) F(2,98) = 140.14 𝑝 = 0.00 

diffPSCount 4.21   (1.90) 7.83   (1.91) 6.74   (1.92) F(2,98) = 32.60 𝑝 = 0.00 

WECount 11.33 (1.32) 7.32   (1.32) 7.47   (1.33) F(2,98) = 97.11 𝑝 = 0.00 

diffWECount 7.78   (1.69) 4.38   (1.70) 5.50   (1.71) F(2,98) = 35.78 𝑝 = 0.00 

 

Case Study 1: Summary   

In this study, Shen and Chi investigated the impact of different reward functions (Immediate vs. Delayed) 

on the effectiveness of the induced RL policies. Our results show that the two policies include substantially 

different state features and that the policies generate different patterns of decisions. The Immediate policies 

are more likely to give worked examples while the Delayed policies are more likely to require problem-

solving.  Additionally, the Expected Cumulative Reward (ECR) for our immediate policies was an order of 

magnitude higher than the delayed ECR.   

We also investigated the impact of RL-induced policies on different groups of learners. We divided students 

into fast and slow learners based upon their average response time in the first level.  Our results support our 

hypothesis that the fast learners in all three conditions learned more than their slow peers and that there was 

no meaningful differences among them across three conditions; the slow learners, on the other hand, were 

more sensitive to the learning environment. The Random-Slow students learn the least while the Immediate-

Slow group learned the most and in fact, it learned as much as their Immediate-Fast peers. Indeed, the 

Immediate-Slow students learned significantly more than the Random-Slow students, and marginally more 

than the Delayed-Slow students. Therefore, the Immediate policies appear to be more effective than the 

Delayed policies and are significantly better than the Random policy. 

Finally, our preliminary log analysis showed that students using the Immediate policies studied significantly 

more worked examples, in terms of both total and difficult problems, than the other two groups. And more 

importantly, they solved significantly fewer problems, especially difficult problems. Previous research on 

WE versus PS has primarily relied on fixed or hand-coded adaptive rules to decide whether to present the 

next question as a WE or PS, this is the first study in which we applied RL to induce adaptive pedagogical 

strategies directly from students' logs to decide whether to present the next question as a WE or PS. We 

showed that the induced policies are indeed effective at improving students' learning especially for Slow 

learners. 
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Case Study 2: Apply RL To Evidence-based Learning Engineering  

In the current case study, Shimmei and Matsuda proposed a transformative method for evidence-based 

learning engineering that provides a foundation of self-improving online courseware.  Building effective 

online courseware is remarkably costly and requires intensive knowledge in the theory of learning and 

teaching (Clark & Mayer, 2003; Slavich & Zimbardo, 2012). Like other software engineering, the iterative 

design-engineering-testing cycle (Fishman, Marx, Blumenfeld, Krajcik, & Soloway, 2004) is a norm to 

improve the effectiveness of the online courseware. In the current study, we focus on developing a device 

that automatically identifies a weakness of the online courseware content. 

The proposed method, called RAFINE (Reinforcement learning Application For INcremental courseware 

Engineering), identifies a portion of existing online courseware that is relatively ineffective given students’ 

learning activity and achievement data. Toward an effort of developing a self-improving online course 

technology, the current study focuses on our preliminary attempt to create a machine-assisted, human-cen-

tered method where a machine identifies issues on existing online courseware and provides human experts 

(e.g., courseware designers and developers) with insights into a next iteration of system improvement.  

We presume that a record of activities that students demonstrated on the target online courseware can be 

converted into a state transition graph whose states represent students’ internal learning status and edges 

represent the learning activities; each corresponds to taking an instructional element such as watching a 

video or answering a formative assessment, that were taken at certain states. We then hypothesize that the 

task of identifying ineffective instructional elements is solved by applying RL to the state transition graph. 

An intuition behind the current hypothesis is that since a policy computed by RL should indicate an optimal 

instructional element for a given state, instructional elements that frequently appear in a policy are likely to 

be effective relative to actual students’ learning indicated in the log.  

The majority of previous works on an application of RL have focused on computing optimal pedagogical 

decisions including hint messages (Martin & Arroyo, 2004), dialogue moves (Chi, VanLehn, Litman, & 

Jordan, 2011a; Tetreault, Bohus, & Litman, 2007), learning activities (Shen & Chi, 2016a), and navigation 

(Iglesias, Martinez, Aler, & Fernandez, 2009). RL has been applied to content generation such as model 

solution for logic proofs (Barnes & Stamper, 2008). To the best of our knowledge, no research has been 

applied to content validation for online courseware.  

RAFINE: Technical Overview 

RAFINE is a learning engineering method to compute the effectiveness of instructional elements of online 

courseware based on students’ performance and learning outcomes. Given learning log data that shows 

students’ learning activities, the RAFINE method converts the log data into a state transition graph G to 

apply the RL to compute a converse policy that shows the worst policy to take at any given state in the 

graph G. This section describes details of a model representation and how RL is used.  

Model Representation 

RAFINE is applied to existing online courseware where learning log data will be collected through actual 

students’ use. The learning log data contains a chronological record of individual students’ behavior on the 

target online courseware—e.g., clickstream data showing page visits and students’ response to quiz items 

annotated with the correctness. The aggregated students’ learning activities are then represented as a di-

rected graph with nodes representing learning status and edges representing learning activities as described 

below. 
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Let E be a set of instructional elements used in the target online courseware. E might include written para-

graphs, videos, and assessment items (aka quizzes). Let a learning activity be an instructional element taken 

by a particular student at a particular time while learning on the online courseware.  The learning log for 

student i (who had ni activities) is a chronological record of learning activities: 

{𝑎1, 𝑎2, … , 𝑎𝑛𝑖
 | 𝑎𝑘  ∈ 𝐸, 𝑘 = 1,2, … 𝑛𝑖}. 

We assume the presence of a skill model that contains a set of skills (aka knowledge components) that 

represent a unit of knowledge that students should learn (Koedinger, Corbett, & Perfetti, 2012). That is, we 

assume that each instructional element on a target online courseware is tagged with a single skill. The 

RAFINE method is then applied for each individual skill separately.   

Given a particular skill , we define learning status for student i at time T as an intermediate state of learning 

represented as a tuple <Page ID, Action History, Mastery Level> = <pid, ahi
T, pi

T()>. Page ID, pid, is a 

physical location of the courseware where a particular learning activity occurred (e.g., a page on which a 

video was watched).  Action History ahi
T is a binary vector <ie1

i,T, ie2
i,T, …> with iek

i,T showing whether 

student i has taken the instructional element iek by time T. Mastery Level pi
T() is a scalar showing a pre-

dicted probability of student i applying skill  correctly at time T.  

In the current implementation, edges represent learning activities each of which represents an explicit use 

of instructional elements—the actual inclusion of instructional elements depends on the implementation, 

but the current study only includes watching a video and taking a quiz. Therefore, following a link to move 

to another page does not appear as a state transition. The Page ID of any given state represents a physical 

page on which the previous instructional element (i.e., the one that corresponds to the incoming edge) was 

taken. This implies that states may have more outgoing edges than the number of instructional elements 

available on the page specified with the Page ID of the state.  Since students may take the same instructional 

element multiple times, there are also states with a loop back edge (since the Action History, which is a 

binary vector, does not change in this case).  

Converting learning log data into a state transition graph G is straightforward.  For each student, transac-

tions in the learning log are chronologically traversed while counting the number of each type of learning 

activities to update ahi
T. Mastery Level is computed using an extension of Additive Factor Model (AFM).  

The original AFM (Cen, Koedinger, & Junker, 2006) is a logistic regression model for pi
T() as a monotonic 

function of T that is a number of times the student answered a quiz for a particular skill. In the current 

model, Mastery Level is also increased when the student took another type of learning activity (i.e., watch-

ing a video and reading a written paragraph). In the current implementation, the amount of inflation is given 

a priori in an ad-hoc fashion. To reduce the number of states in the graph G, the value of the Mastery Level 

is rounded to the nearest multiple of 0.05.  

Once individual students’ learning activities are converted into state transition graphs, they are aggregated 

into a consolidated state transition graph G by merging the same states. As a consequence, student IDs and 

time (i.e., the parameters i and T used to model an individual student’s state transition graph), and states in 

G generally have multiple incoming and outgoing edges. States in G are therefore denoted as  

<pid, ah, p()>. States in G with Mastery Level higher than 0.85 are called terminal states. All outgoing 

edges at terminal states are discarded.  

Reward 

In the current model, a reward for reaching to a state s depends on how Masterly Level (ML) changed.  For 

example, a student could have reached the state s by answering a quiz correctly (hence ML was increased 

from the preceding state to the current state) or incorrectly (ML was decreased). We would like to differ-

entiate these two scenarios.   
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In the current model, a reward for the state s, R(s), with n incoming edges (therefore n preceding states) is 

represented as a n-dimensional vector 𝑅(𝑠) = {𝑟(𝑠′𝑖 , 𝑠)|𝑖 = 1, … , 𝑙} where 𝑠′𝑖 represents the i-th preceding 

state.  Since we assume that it is preferable to achieve to the mastery quicker, the reward value 𝑟(𝑠′𝑖 , 𝑠) is 

set to be small negative except for the terminal state as shown below. ml(s) represents Mastery Level at 

state s: 

𝑟(𝑠′𝑖 , 𝑎, 𝑠) = {

−0.05     (𝑚𝑙(𝑠′𝑖) < 𝑚𝑙(𝑠))

−0.14     (𝑚𝑙(𝑠′𝑖) = 𝑚𝑙(𝑠))

0.95     (0.85 <  𝑚𝑙(𝑠))

 

Converse Policy 

With the above-mentioned reward, a utility function for state s coming from state s’ given a policy  is 

defined as follows: 

𝑈𝜋(𝑠′, 𝑠) = 𝑟(𝑠′, 𝑠) +γ∑ 𝑃(𝑠∗|𝑠, 𝑎)𝑈𝜋(𝑠, 𝑠∗)

𝑠∗

 

The probability 𝑝(𝑠′|𝑠, 𝑎) will be derived from the learning log data collected from students who have 

actually used the corresponding online courseware—the ratio of students who reached the state s’ by taking 

the instructional element a at the state s relative to all students who took the instructional element a at the 

state s. 

Usually, a policy implies actions that maximize the expected utility.  However, for the purpose of RAFINE, 

we need to know which instructional element (i.e., the “action”) should not be taken at any given state. 

Therefore, we propose to modify the value iteration as follows: 

𝑈𝑖+1(𝑠′, 𝑠) ← 𝑟(𝑠′, 𝑠) + 𝛾 min
𝑎∈𝐴(𝑠)

∑ 𝑃(𝑠∗|𝑠, 𝑎)𝑈𝑖(𝑠, 𝑠∗)

𝑠∗

 

We then further propose to compute a converse policy that suggests the least effective actions:  

𝜋(𝑠) = argmin
𝑎∈𝐴(𝑠)

∑ 𝑃(𝑠∗|𝑠, 𝑎)𝑈𝜋(𝑠, 𝑠∗)

𝑠∗

 

Case Study 2: Evaluation 

Our primary research question is to understand whether or not the converse policy would accurately identify 

ineffective instructional elements relative to students’ learning outcomes. We hypothesize that instructional 

elements that frequently appear as a converse policy across many different states are likely to be ineffective; 

therefore, the converse policy would be an effective tool for the evidence-based iterative courseware im-

provement.  

To test this hypothesis, we conducted an evaluation study with the generated hypothetical learning log data 

of 10,000 simulated students. A mock version online courseware was created with three pages (Page 0, 1, 

2) each containing five to six instructional elements.  Two types of instructional elements were video and 

quiz.  There were a total of eight quiz items and eight videos. All simulated students started from Page 0.  

They had to take at least three instructional elements to move to any different page. Students were able to 

take the same instructional elements multiple times.  In the current study, simulated students randomly took 

a total of 10 to 15 instructional elements, but not more than nine per page.  
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Mastery Level was simulated by assuming a model of logistic regression. Instead of regressing the model 

parameters, logit was computed in an ad-hoc fashion. Each time a simulated student took an instructional 

element, logit was updated based on two variables—potential of learning for individual students and effec-

tiveness of instructional elements. The potential of learning was represented either as “High” or “Low.” We 

presumed that the “High” potential students reached to a mastery level quicker than the “Low” potential 

students.  In the current simulation study, 75% of the students were classified as “High” potential. The 

effectiveness of instructional elements was represented either as “Effective” or “Ineffective.” We presumed 

that students’ learning was facilitated more when they took “Effective” instructional elements than “Inef-

fective” ones. In the simulation study, 63% (5 out of 8) of quiz items and videos were assumed to be “Ef-

fective.”  

Given individual students’ potential and instructional elements’ effectiveness, students’ Mastery Level was 

computed using the sigmoid function as a probability that each individual student answers a next quiz item 

(at time t) correctly: 

𝑝𝑡(𝜎) =  ⌈
1

1 + 𝑒−𝑍𝑡⌉
0.05

 

The logit 𝑍𝑡 is a linear function of the learning history:  𝑍𝑡 = 𝑍𝑡−1 + 𝛿  where   is a constant (as shown 

in Table 5) given a priori based on the potential and effectiveness values mentioned above. 

Table 5. The amount of increase in the logit as a function of the “potential” and “effectiveness” constructs.  

 Effectiveness of  

Instructional Element 

Effective  Ineffective 

Student’s 

Potential 

High  0.20 0.03 

Low  0.15 0.001 

 

 

Table 6 is a summary of states in the simulation study showing the number of states in the state transition graph with 

specific number of outgoing edges. About 2/3 of states only have one outgoing edge—i.e., there was only one simu-

lated student who visited the state.  

 

Table 6. A summary of states generated in the simulation study.  

Num. of outgoing edges 1 2 3 4 5 6 7 8 

Num. of states 35106 7413 2152 1094 776 457 252 145 

% to total 0.74 0.16 0.05 0.02 0.02 0.01 0.01 <0.01 

 

9 10 11 12 13 14 15 16 Total 

71 57 44 9 5 2 3 66 47652 

<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 1.00 
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Case Study 2: Results 

For the following analysis, let IE-Ratio be the ratio of ineffective to effective instructional elements. When 

IE-Ratio is applied to a set of outgoing edges, it represents a ratio of ineffective to effective instructional 

elements representing actions associated to those outgoing edges.  When IE-Ratio is applied to a converse 

policy, it represents a ratio of actions (identified as a converse policy) that correspond to ineffective to 

effective instructional elements.  

We first hypothesized that the accuracy of a converse policy as a detector for ineffective instructional ele-

ments depends on the IE-Ratio among the outgoing edges—i.e., the more the ineffective instructional ele-

ments contained in outgoing edges, the higher the probability of the converse policy identifying ineffective 

instructional elements. To test this hypothesis, we plotted the IE-Ratio for a converse policy relative to a 

group of states that have the same IE-Ratio among the outgoing edges. Figure 4 shows the plot. In the plot, 

each data point represents a set of states in the transition graph G that have the same IE-Ratio among the 

outgoing edges as indicated on the X-axis.  The Y-axis shows the IE-Ratio for the converse policy relative 

to the states—i.e., the ratio of states where an ineffective instructional element is selected as a converse 

policy to the total number of states in a given data point. The 45-degree line shows a chance rate. 

 

Figure 4: The overall accuracy of a converse policy identifying ineffective instructional elements. Each data 

point represents a collection of states where IE-Ratio among outgoing edges are shown in the X-axis.  

Figure 4 apparently suggests that our hypothesis is not supported. The converse policy accurately identifies 

ineffective instructional elements regardless of the IE-Ratio among the outgoing edges. It is remarkable 

that even those states where less than 20% of outgoing edges correspond to ineffective instructional ele-

ments, the converse policy selected ineffective instructional elements with the accuracy of 70% and higher.   
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Next, we hypothesized that the accuracy of a converse policy depends on the number of outgoing edges—

there is a sweet spot on the number of outgoing edges relative to the number of unique instructional ele-

ments where the accuracy of prediction becomes high. As a reminder, a state may have multiple outgoing 

edges all with a same action (i.e., instructional element).  At an extreme case, if a state has only one outgoing 

edge, the instructional element corresponding to the edge is inevitably selected as a converse policy. Figure 

5 shows a relationship between the IE-Ratio for the converse policy (Y-axis) and the number of unique 

actions among outgoing edges (X-axis). In the plot, numbers appearing at data points show the number of 

states—e.g., there were 66 states that had 16 unique actions among the outgoing edges. Figure 5 shows a 

trend that the more the number of unique actions among outgoing edges, the better the IE-Ratio of the 

converse policy. A regression analysis with the IE-Ratio of the converse policy as a dependent variable and 

the number of unique actions among outgoing edges as an independent variable reveals that the number of 

unique actions among outgoing edges has a statistically significant predictive power for the IE-Ratio; co-

efficient = 0.63, z = 51.85, p(>|z|) < 0.001. 

 

Figure 5. The relationship between the number of unique actions among outgoing edges (X-axis) and the ac-

curacy of a converse policy, i.e., IE-Ratio (Y-axis).  

A practical question when applying the RAFINE method to an actual online-courseware analysis is how the 

courseware developer should determine which instructional elements must be revised given a converse 

policy. There are states in the transition graph G where all outgoing edges corresponds to effective instruc-

tional elements. Yet, a converse policy must select one of them as a (relatively) worse action to take.  We 

hypothesized that those actions that frequently appear as a converse policy are more likely to be ineffective 

instructional elements. Figure 6 shows the frequency of individual instructional elements (listed on X-axis) 

selected as a converse policy among states that have 16 unique actions. In Figure 6, the hatched and solid 

bars show effective and ineffective instructional elements respectively. The figure shows that ineffective 

instructional elements are 35 times more likely to be selected as a converse policy than effective instruc-
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tional elements. The difference in the mean frequency between effective and ineffective instructional ele-

ments was statistically significant: Meffective = 0.3±0.2 vs. Mineffective = 10.5±10.3, t(5) = 7.73, p < 0.05, d = 

3.17.  

 

Figure 6. The frequency of individual instructional elements selected as a converse policy among states that 

have 16 unique actions. 

Case Study 2: Summary  

The current simulation study provided an empirical support for the hypothesis that RL, with a twist for the 

converse policy, would function as a tool for detecting ineffective instructional elements in existing online 

courseware with students’ learning activity log data.  To our surprise, our first hypothesis—the more out-

going edges for ineffective instructional elements a state has, the higher the accuracy of a converse policy 

detecting ineffective instructional elements—was not supported. If there is an ineffective instructional ele-

ment(s) that students took at any certain states, it is highly likely that it is selected as a converse policy.   

Our second hypothesis—there is a right amount for the number of unique instructional elements among the 

outgoing edges that maximize the accuracy of a converse policy. The current data indicate that the accuracy 

of the converse policy increases as the number of unique instructional elements per state increases.  This 

finding suggests to us to only pay attention to the converse policy at states that have the largest number of 

unique instructional elements (i.e., 16 in the current study).  

We found that, provided learning log data showing students activities on a given online courseware, the RL 

technique can be used to identify ineffective instructional elements on a given online courseware. The 

learning log data are translated into a state transition graph where states represent students’ intermediate 

learning status and edges represent instructional elements (i.e., “action”) students took.  The value iteration 
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technique is used to compute the least optimal action (called the converse policy) while finding actions that 

minimize expected utility.  

As the popularity of MOOCs (Massive Open Online Courses) are rapidly increasing, studying transforma-

tive methods for evidence-based learning-engineering is critical for the future of self-improving online ed-

ucation. The proposed RAFINE method provides courseware designers and developers with insights into the 

iterative improvement of the courseware contents based on authentic students’ activities and learning out-

comes. Creating self-improving online courseware at scale requires various different scaffolding for de-

signers and engineers. The current study made a contribution toward this line of research in a form of the 

machine-assisted, human-centered learning engineering.  Further research is needed to enhance the inte-

grated development environment for online course engineering where a machine suggests potential revision 

to overcome the deficits.  

Recommendations and Future Research  

There are several caveats in Case Study 1 which provide enlightenment regarding future work. First of all, 

we retrospectively split students into Fast vs. Slow groups using response time because we do not fully 

understand why the differences between Fast vs. Slow groups exist. To answer such a question, we need to 

perform deep log analysis for our future work. Second, although we detect different performance among 

the different RL-induced policies, it is still not clear what makes them effective or why they are effective. 

Future work is needed to shed some light on understanding the induced policies and to compare the machine 

induced policies with existing learning theory. Third, we mainly compare the RL-induced policies with a 

Random policy in our experiments and it is not clear if the same results would hold if we compare them 

against a stronger baseline such as those used in previous research (Salden, Aleven, Schwonke, & Renkl, 

2010; McLaren, van Gog, Ganoe, Yaron, & Karabinos, 2014; Najar, Mitrovic, & McLaren, 2014). Further-

more, previous work (Renkl, 2002; Atkinson, Renkl, & Merrill, 2003; Gerjets, Scheiter, & Catrambone, 

2006; Taylor, O’Reilly, Sinclair, & McNamara, 2006) has shown that adding self-explain steps in WE and 

PS (prompting for self-explanation) can significantly improve students learning. In the future, we will ex-

pand our research scope on not only WE vs. PS but also on whether or not to ask students to self-explain. 

To effectively apply the RAFINE method to learning log data, students must have freedom to determine next 

instructional element to take. If the online courseware is exceedingly linear and everybody follows the same 

path, then the policy becomes of no use. A recommendation for Generalized Intelligent Framework for 

Tutoring (GIFT) authors is therefore to make a balance between a linearity of the courseware (to lower the 

cognitive load on the self-navigation) and a diversity in the learning path (to gain more analytic power for 

RL). If the courseware is noticeably linear and the majority of the students follow page by page in the same 

order, then a transition graph G has only a small number of unique paths hence the converse policy will be 

computed without competition. Allowing students to revisit pages and retake instructional elements in-

creases the appearance of those instructional elements in the transition graph G in various different paths. 

This in turn results in having states with a large number of outgoing edges, hence it increases the chance of 

correctly detecting ineffective instructional elements.  

Although, a key for a successful application of the RAFINE method is likely rooted in the diversity among 

students’ activities, it is not clear, how the degree of diversity affects the accuracy of the prediction. Future 

research is needed to understand the relationship between the effort of making the online courseware less 

guided (i.e., giving students more independence to freely traverse courseware content) and the effectiveness 

of the RAFINE method to identify issues on the courseware.  

Another future research question is to explore how the individual students’ differences affect the “effec-

tiveness” of the instructional elements. Instructional elements that are effective for one group of students 
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might be ineffective for other group of students. We currently assume that big data override individual 

human factors and reveals a genuine trend (if any). Further research is needed to understand how to integrate 

individual differences in the model. 
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CHAPTER 10 ‒ INTRODUCTION TO THE CONTENT AUTHORING 

SECTION 
Keith Brawner 

U.S. Army Combat Capabilities Development Command - Soldier Center – Simulation and Training  

Technology Center 

Core Ideas 

Intelligent tutoring systems (ITSs) present the idea that content can be customized to the level of the indi-

vidual student.  As a consequence of this individual personalization, the individual learns from content 

which was created or selected for them, and has increased learning gains - either decreased training time, 

improved performance, longer retention, or another result.  A natural byproduct of this process is that more 

content must be available for the learner to learn from.  While learning can be sped through the omission 

of wasteful material for high-performing students, lower-performing students presumably need something 

other than the material that they have already experienced. 

This need for additional content is a significant cost behind the creation of an adaptive learning system.  If 

it is desirable for two students to experience two different versions of content teaching the same learning 

objective, there must be two versions of this content to give.  A recent industry survey revealed that the 

cost of developing an hour of passive e-learning instruction was 42 hours (Defelice, 2017).  Doubling, and 

perhaps redoubling, this cost for individualization is somewhat intolerable. 

As such, there is a need for ITSs to use the various mechanisms of a self-improving system to improve the 

content which they deliver.  Within this section are papers which present differing manners of improving 

the system content over time.  Each of these systems described in this section show how artificial intelli-

gence and machine learning technologies can be applied to education.  They also show the need for the 

separation of component parts of an ITS - each of these components makes it so that it can be algorithmi-

cally improved through application of the technology.  The reader should reflect on this as they read the 

upcoming section - how can content creation be automated, how can these automations be spread across 

system components, and how can they be spread across systems? 

Individual Chapters 

The first of these papers by Botelho and Heffernan describes a manner to crowdsource instructor-to-stu-

dent feedback among instructors, so as to automatically present short feedback messages and save manual 

feedback creation on the part of the instructor.  They argue for the incorporation of data and feedback from 

the system users – specifically teachers.  The creation of the quick messages relies on both the people who 

create such messages and upon the content available for the extraction of the reinforcement learning pro-

cesses. 

The second of these papers by Cai, Graesser, Hu, and Cockroft discusses the various ways in which the 

AutoTutor system uses content from its users to refine; including answer clarification, question-answer 

pairing, and question generation, with plans to expand these operations to its speech act classifier.  They 

perform these actions using the wide variety of data available to the system – data from students, teachers, 

authors, and the system interactions – in order to rebuild components.  They argue for the standardization 

of components for replicability and drop-in improvement. 
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The final of these papers, Folsom-Kovarik, Rowe, Brawner, and Lester discusses how content can be 

algorithmically created and delivered to both students, for use, and instructors, for selection and tuning for 

students.  Content creation is automated through a relatively complicated procedure of evolutionary algo-

rithms, reinforcement learning, simulated students, and exploration metrics.  They argue the need for sys-

tem-level information about learning objectives, starting content, and student data in order to either enable 

instructors to select content or to allow automatic system assignment. 
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CHAPTER 11 – CROWDSOURCING FEEDBACK TO SUPPORT 

TEACHERS AND STUDENTS 
Anthony F. Botelho and Neil T. Heffernan 

Worcester Polytechnic Institute 

Introduction 

There are 3.1 million public school teachers in the United States (NCES, 2018), and although some tech-

nologies have been proposed to replace the role of the teacher, few technologies have been developed to 

augment teachers’ abilities. One of a teacher’s most time-consuming tasks is to provide meaningful feed-

back to student classwork and homework. This feedback is particularly critical for open-ended problems 

that require students to explain their work. The National Council of Teachers of Mathematics (NCTM, 

2018) and Common Core State Standards (CCSS-M, 2018) are making big pushes for students to become 

better communicators in the realm of mathematics. Cognitive science research supports the premise that 

students learn math concepts much better if they explain answers to cognitively demanding "deep" ques-

tions in their own words (Pashler et al., 2007). This report cited that simply asking students to explain their 

answers has learning benefits (King, 1992; Pressley, Tannebaum et al., 1990; McNamara, 2004) even if the 

students do not receive feedback on their answers, and it has been reported that these results are even 

stronger when feedback is provided (Shute, 2008). In a study by Craig, Sullins, Witherspoon, and Gholson 

(2006), students used computers to answer deep questions, and then received feedback from the program 

using Natural Language Processing (NLP), leading to large gains in learning. Despite the evidence that 

feedback plays an important role in the learning process, few technologies are effectively supporting teach-

ers in providing feedback to students. 
 
On an average school day, teachers do not have the time to write detailed feedback on every student re-

sponse on a homework assignment. Self-report surveys and time-use diary methods have found that teach-

ers spend about two-to-three hours a day outside of school (Department of Education, 2013; DePaepe, 

2015) creating lesson plans and grading. One study found the planning time to be 8.4 hours per week, 

leaving about four hours per week for grading and commenting on student work. For a 7th-grade math 

teacher with approximately 100 students, a teacher would have 30 seconds each day per student to provide 

feedback on submitted work. This alarming statistic suggests that teachers are in need of better support in 

order to provide students with beneficial feedback. 
  
Feedback comes in many forms and likely varies in effectiveness depending on the timing, deployment 

method, and content. In mathematics, computers have become very good at providing correctness feedback 

on a large number of problems. As most mathematics problems are “closed-form” where there is likely a 

single (or small number) of possible answers, computers can easily tell a student if an answer is correct. A 

benefit of computer grading is that data collected can be used to inform teachers of common incorrect an-

swers and student mistakes. With open-ended problems that ask students to “explain,” computers are still 

relatively poor at assessing student work and few, if any, learning systems provide any meaningful feedback 

for open responses. In fact, many of the widely used Intelligent Tutoring Systems, such as McGraw Hill's 

ALEKSTM and Carnegie Learning's Cognitive TutorTM, have no concept of open-response questions, likely 

for this reason. Other systems, such as ASSISTmentsTM, allow teachers to assign both open-ended and 

closed-form problems, but requires teachers to manually grade the open-responses.  
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This philosophy maintains the teacher’s role in reviewing and provid-

ing feedback to students, even if it is time-costly, but also allows 

teachers to provide feedback beyond simply indicating if the response 

is correct; open-ended problems can provide teachers with greater in-

sight into students’ knowledge of material. With this, teachers are able 

to highlight the strengths of student work and offer instruction to those 

who may need it. In addition to giving teachers information about stu-

dent knowledge, open-responses also provide an affect component 

(e.g., "My teacher pays attention to me and my learning") and ac-

countability component (e.g., "My teacher is watching and sees how 

much effort I put in"). Rimm-Kaufman et al. have shown how im-

portant the one-on-one student-teacher relationship is at driving emo-

tional engagement; if students think their teacher is paying attention, 

they are more likely to engage and put in effort, resulting in more 

learning (Rimm-Kaufman, Baroody, Larsen, Curby, & Abry, 

2015).  However, the difficulty of manually entering grades and de-

tailed feedback on student work is evident through data collected 

from ASSISTments teachers shown in Figure 1. Over the last few 

years, ASSISTments teachers have graded over 300,000 (or 12% of 

all problems) open-ended responses and have written more detailed 

feedback for 60,000 (less than 1% of all problems) of those. Although 

this percentage of problems for which feedback is provided increases in the middle of the school year, there 

is a decline in the amount of feedback given to student open response problems over the course of the school 

year. These low percentages reflect the fact that teachers lack the time to grade and provide detailed com-

ments to students’ responses. The question therefore becomes how to augment the teacher’s ability to pro-

vide this feedback to students and reduce the time cost to do so. 

Crowd Sourcing Holds the Key 

Crowdsourcing is a vital component in the development of adaptive learning systems. This component, 

explored in Heffernan et al. (2016), allows teachers to share their own created content (e.g. problems, in-

structional videos, feedback, explanations, and more) with other teachers to benefit student learning. In that 

article and here, crowdsourcing describes the task of obtaining and sharing contributions from multiple 

users (i.e. teachers and occasionally students), as opposed to acquiring content and curricula from only a 

single or small team of experts (Porcello & Hsi, 2013). Emulating the user-created content model of web-

sites like Wikipedia, the sharing of user-created content, especially when vetted for effectiveness, provides 

a means of scaling the available content to match the needs of a growing population of users. As Heffernan 

et al. (2016) discusses, there is a large amount of evidence that supports the use of crowdsourcing in many 

domains, including human-computer interaction (Doan et al, 2011; Howe 2006; Kittur, et al., 2013). 

Crowdsourcing has gained attention in publication venues such as HCOMP (Conference on Human Com-

putation and Crowdsourcing), CSCW (Computer Supported Cooperative Work and Social Computing), 

CHI (Computer-Human Interaction), and Collective Intelligence (see also Malone & Bernstein, 2015). It is 

only recently, however, that researchers and developers of adaptive learning systems have begun to take 

advantage of teacher- and learner-sourced materials. 
 
ASSISTments is among the few known existing learning platforms to be actively developing infrastructure 

to support the creation and sharing of both teacher-created materials and expert-sourced content. A recently 

released tool called TeacherASSIST, for example, allows teachers to write feedback in the form of hints 

and explanations for any problem that they wish to assign to their students. Problems can be sourced from 

an existing open educational resource (OER) such as EngageNY or Illustrative Mathematics, from other 

available content, or even a problem written by another teacher, and the tool allows teachers to provide 

Figure 1. Of the 300,000 times a 

teacher has graded, we see that 

the amount of grading decreases 

by the end of the year.  
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their own feedback to benefit their students. Similarly, teachers who are found to create effective feedback 

are able to share their content with all teachers in ASSISTments assigning the same content. 

Methods 

We suggest that crowdsourcing teacher feedback can address the aforementioned problem of time required 

to give students adequate feedback on their classwork and homework. Figure 1 illustrates that there are a 

small percentage of teachers providing feedback in the form of a grade and comments for open-ended prob-

lems. These teachers often repeat much of the feedback that they give to several students who answer with 

a similar type of response; two students who make the same mistake, for example, even if answered through 

different phrasing, may benefit from the same feedback. Similarly, it is likely that students in one class who 

find a piece of content difficult may exhibit the same misconception as students in a different class. The 

utility of reporting and studying common wrong answers has been recognized in previous work (Feng & 

Heffernan, 2006; Wang et al., 2015; Ostrow et al., 2015). Common wrong answers, as well as different 

correct answers, are likely found throughout student open responses and may be leveraged when developing 

teacher feedback tools. As many open-ended questions as are available to teachers, there are larger magni-

tudes of possible student responses. Considering the amount of variation and growing scale of open-ended 

mathematics problems to support (i.e. as new content is added or new open resources become available), 

crowdsourcing feedback from teachers can allow systems to grow. As teachers provide feedback to a variety 

of student responses every day, even considering the small percentage of teachers who do, such feedback 

could be shared with others and used to benefit future students. 
 
Within ASSISTments, recent NSF support (NSF #1822830) has funded a project to develop a tool called 

DRIVER-SEAT (the Dialogue Reinforcement Infrastructure for Volitional Exploratory Research – Solic-

iting Effective Actions from Teachers), to augment the teacher’s ability to provide meaningful feedback by 

sharing teacher-written feedback. While still in its early stages of development, DRIVER-SEAT aims to 

combine teacher-sourced content with machine learning to enhance teacher-student interactions. Inspired 

by Google’s Smart Reply tool (Kannan et al., 2016) which helps users respond to email by suggesting a set 

of automatically-generated responses, DRIVER-SEAT attends to student activity and performance – in-

cluding, but not limited to responses to open-ended problems – by suggesting feedback messages to send 

to students. This tool currently focuses on aiding teachers in assessing student responses to open-ended 

problems. In the future, it is planned to move beyond this task to crowdsource feedback pertaining to student 

behavior, utilizing many of the sensor-free detectors of affect and disengaged behavior that have been pre-

viously developed in ASSISTments (Walonoski & Heffernan, 2006; Paquette et al., 2015; Botelho et al., 

2017). 
 
The task of automatically assessing student open-ended work is by no means trivial and has been the focus 

of previous works for problems in non-mathematics domains (Ramachandran et al., 2015; Zhao et al., 2017; 

Riordan et al., 2017). Although far from the directed instructional feedback messages envisioned for the 

DRIVER-SEAT tool, understanding how teachers would assess student responses is a first step toward 

selecting appropriate feedback to deliver to students. When providing feedback, it would be helpful to have 

an estimate of how correct the student’s response is. To accomplish this, NLP techniques such as bag-of-

words, term frequency-inverse document frequency (tf-idf), and GloVe (Pennington et al., 2014), have been 

combined with machine learning models including decision trees and long short term memory (LSTM) 

recurrent deep learning networks to 1) understand the difficulty of predicting the teacher-assigned grade for 

student responses to open-ended problems, and 2) explore how the growing scale of teacher-sourced as-

sessment labels is likely to impact the precision of our models. This approach, detailed further in (Erickson 

et al., under review) and described in this chapter, represents the first step toward helping teachers improve 

their ability to provide feedback and effectively communicate with their students through the use of teacher-

sourced content. 
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The method itself involves an ensembling of two representations of student answers. First, the bag-of-words 

approach with tf-idf calculates a weighted-categorical representation of all words in the corpus. For all 

words (including numbers and equations) written by a student, a tf-idf weight, representing the estimated 

importance of each word as calculated by its frequency of use within and across all student responses, is 

used as input to a decision tree observing student correctness; words such as “is,” “the”, and “as” are given 

a lower weight as they likely appear frequently in many student responses, leaving other words with higher 

estimated importance for the decision tree to then associate with a given grade (i.e. if the student uses the 

fraction “3/4” but not the word “ratio” in the response, that student may be given a lower grade if the teacher 

expected to students to use such terminology).  

 

This decision tree with tf-idf approach, considered simple in comparison to more recent developments in 

NLP techniques, works well with smaller sets of data since every word is able to be represented. This is not 

the case when using pre-trained models such as GloVe to represent words, but such methods are trained to 

capture the contextual and semantic meaning of words that is lost when using bag-of-words and tf-idf. 

Similarly, the use of LSTM models over decision trees may be beneficial as these models capture sequential 

relationships (such as the ordering of words) that is not observable when using the more simple modeling 

approaches. For this second method of representing words, GloVe is applied, resulting in a 100-dimensional 

numeric embedding to represent each word; words that are not recognized by the pre-trained GloVe model 

are given a default vector of zeros. While it is certainly possible to train a GloVe model, doing so requires 

a large set of data that is not often available (the pre-trained version used in the described work was trained 

on data from Wikipedia, the scale of which is far beyond what is available from student open responses. 

These GloVe embeddings are then used as input into a LSTM model that uses the sequence of words to 

predict what the final grade of the answer. As with most deep learning methods, a large set of data is needed 

to successfully train such models and, without such data, the models are prone to overfitting. 

Results 

While the work of Erickson et al. (under review) explores only a small number of what we consider to be 

simple models in comparison to what has previously been applied to similar tasks (Zhao et al., 2017), the 

results highlight several important characteristics to consider during further development of the project. As 

the observed teacher-provided grades follow a 5 point (0-4) grade, we treat the problem as a classification 

task, using metrics of AUC (Hand & Till, 2001) and multi-class Cohen’s Kappa, but also want to know 

how close our predictions are to each grade, including a measure of root mean squared error (RMSE). 

   

While it is apparent from the results reported in Table 1 that the deep learning model does not perform well 

likely due to model overfitting (a significant concern when applying such a model to a small dataset), the 

combination of the deep learning model and simpler decision tree led to improvements in model perfor-

mance in measures of all three metrics. In this task, the better performance in these metrics suggest that the 

Table 1. The performance of our initial models reported in Erickson et al. (under review). 
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ensembled model is able to better identify the specific grade given (through the values of AUC and Kappa) 

and does so with greater confidence (through the value of RMSE) than any of the models individually. 

Discussion 

The DRIVER-SEAT project is an excellent example of how the collection of data through a platform like 

ASSISTments can improve our understanding of the benefit of data and can provide insights about how 

different teachers assess students. For example, a second analysis reported in Erickson et al. (under review), 

used a bootstrapping method of sampling responses with increasing sample sizes to illustrate the decision 

tree model performance in regard to RMSE as more data is made available to the model. Figure 2 illustrates 

an example of how collecting even a small number of teacher-assessed responses can lead to more precise 

models that can then be used to benefit other teachers. 

Perhaps one of the most beneficial aspects of utilizing crowd-sourced content to share with and develop 

tools for teachers is the amount of variation that can exist among that content. In our example of building 

assessment tools as a part of the DRIVER-SEAT project, a larger variation among teacher perspectives and 

approaches can benefit the models to support a wider range of teachers. As the project continues in the 

direction of suggesting more directed feedback for teachers to give to students, larger variations in the tone, 

focus, and length of feedback messages can only benefit such a tool. 

Recommendations and Future Research 

The development of educational platforms and tools should consider teacher-sourcing to supplement ex-

pert-authored content to scale and fit teachers’ needs. Systems that ignore data, feedback, and content cre-

ated by teachers miss a wealth of information. Of course, not all content generated by teachers is of the 

highest quality, nor does all such content benefit students equally, so it is important to consider how to 

identify what works for which sets of students. Conducting randomized controlled trials (RCTs) may help 

identify beneficial content, but other scalable alternatives such as reinforcement learning (e.g. multi-armed 

bandit algorithms as is explored in Williams et al., 2016) may also help to identify what works. 

Taking advantage of the variation of teacher-created content can also further be leveraged to benefit adap-

tation and personalization in learning systems. Such variation is needed in developing means of identifying 

not only what works, but also in identifying for whom (i.e. which groups of students) one set of feedback, 

instruction, or content may most benefit. 

Figure 2. The performance of our initial models with increasing sample sizes as reported 

in Erickson et al. (under review). 
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The use of the two methods described here (the decision tree with tf-idf and the LSTM with GloVe embed-

dings) represent two drastically different complexities of approaches. While ensembling did lead to im-

provements in performance, much of this performance is likely attributable to the simpler decision tree 

model. This highlights an important consideration for the development of future systems that aim to imple-

ment smarter data-driven tools. There is a need to better understand how the scale of data affects the per-

formance of applied models. It is likely that the more complex methods will eventually outperform the 

simpler methods, but it is not clear where that point exists. It would therefore be beneficial to develop the 

means of transitioning between simpler and more complex methods as the scale of data increases to avoid 

overfitting when data is scarce, and make sufficient use of the data when it becomes available.  

Conclusions 

While the Results in this chapter detail empirical research being conducted through the development of the 

DRIVER-SEAT project, such development is only possible through teacher crowdsourced content and 

feedback. The future designers of educational platform must consider the wealth of content and data cur-

rently being generated by teachers in real classrooms who not only often are willing to share, but also in 

many cases are eager to share and improve their own instructional practices by observing other teachers’ 

created content. In this way, the crowd-sourcing of content and the sharing of such materials either directly 

or through tools such as those under development for the DRIVER-SEAT project, is positioned to benefit 

researchers, teachers, and students alike. 
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Introduction 

Adaptive instructional systems such as the Generalized Intelligent Framework for Training (GIFT) can 

tailor training to meet the learning needs of individuals and teams. A significant cost driver in the design 

and development of adaptive instructional systems is the manual creation of training scenarios. Delivering 

personalized instruction to students requires the creation of a broad range of instructional materials. Without 

effective automation, the tailoring that adaptive instructional systems implement is limited by the small 

number of instructional variants that a human author can define, as well as a one-size-fits-all approach to 

training. Further, additional scenarios are useful for enhancing replay through drill-and-practice of specific 

skills. Generating training scenarios for adaptive instructional systems includes two key components: 

(1) creating novel scenario content, and (2) devising models that dynamically tailor scenario content to 

learners. 

This chapter discusses two parallel efforts to enhance GIFT through the design, development, and investi-

gation of automated scenario generation. First, we describe a scenario variation tool that creates many 

variants of training scenarios to offer the instructor (or GIFT) increased choices between different combi-

nations of instructional support or challenge. Second, we describe a data-driven framework for dynamic 

scenario adaptation that models how simulation-based training scenarios can be tailored at run-time to foster 

optimal learning outcomes. These are two possible approaches to addressing the authoring bottleneck in-

herent in adaptive instructional systems. 

In the first approach, the scenario variation tool makes use of a novelty search algorithm (Lehman & 

Stanley, 2008, 2011). Genetic algorithms such as novelty search rely on a population of prospective solu-

tions which are modified with ‘mutation’ or ‘crossover’ operations to create new prospective solutions in a 

repeating cycle. Prospective solutions with maximum fitness survive and reproduce in the population from 

one cycle to another. Novelty search replaces the typical genetic algorithm fitness evaluation with a novelty 

evaluation (Gomes, Urbano, & Christensen, 2012). In this replacement, genetic variants do not compete to 

become better, but to become different. Novelty search has already been used with success to evolve content 

similar to training scenarios, such as game levels (Liapis, Yannakakis, & Togelius, 2015). In the present 

research, training scenario variants attempt to become different as measured by the support or challenge 

they offer learners. As a result, novelty search is well suited to expand the space of possible training sce-

narios that GIFT can choose from when it tailors training (Folsom-Kovarik & Brawner, 2018). The scenario 

variations that result from novelty search provide varying levels of support or difficulty, such as offering a 

series of increasingly more complex scenarios, varying scenario events while ensuring that complexity is 

comparable, and offering scenarios that combine more complexity in one learning objective but less com-

plexity in another learning objective that requires support. 

The second approach being investigated, the dynamic scenario adaptation framework, DEEPGEN, utilizes 

reinforcement learning (RL) to induce models for run-time tailoring of training scenarios to achieve in-

structor-specified learning objectives (Rowe, Smith, Pokorny, Mott, & Lester, 2018). RL refers to a family 

of machine learning techniques for solving tasks involving sequential decision-making under uncertainty 

(Sutton & Barto, 2018). Over the past several years, a range of RL techniques have been investigated for 
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run-time personalization of virtual learning environments for K-12 and undergraduate education, including 

modular RL (Rowe & Lester, 2015), multi-objective RL (Sawyer, Rowe, & Lester, 2017), constraint-based 

RL (Shen, Mostafavi, Barnes, & Chi, 2018), inverse RL (Rafferty, Jansen, & Griffiths, 2016), and deep RL 

(Wang, Rowe, Min, Mott, & Lester, 2018). Building upon this foundation, DEEPGEN utilizes RL to induce 

models for enacting run-time adaptations to military training scenarios, aiming to produce training experi-

ences that optimize learning outcomes or provide effective assessments of target skills.  Rather than novelty 

being the primary selection mechanism of scenario selection, as above, the RL-based dynamic scenario 

adaption uses a population of simulated students.  

This chapter is organized as follows. In the next section, we describe work investigating novelty search and 

RL, respectively, to automatically generate training scenarios in two military training domains. We then 

describe efforts to engage subject-matter experts to obtain feedback on how to deliver automated scenario 

generation capabilities to instructors and scenario developers. Next, we discuss initial findings from the two 

projects, and conclude by offering recommendations for GIFT and directions of future work. 

Scenario Generation Methods 

Two complementary demonstrations of the two approaches in two domains of militarily-relevant instruction 

were carried out to investigate automated generation of training scenarios. First, novelty search was demon-

strated in a small unmanned air system (SUAS) training scenario. Second, reinforcement learning-based 

scenario adaptation was demonstrated in the domain of artillery call for fire (CFF) training. 

Novelty Search to Automate SUAS Training 

The first demonstration focused on generating many variants of training scenarios in advance of training. 

Infantry employment of SUASs can be trained with a scenario structured by information delivery and choice 

points. Trainees work through the process to plan, prepare, and execute an unmanned air system (UAS) 

mission by making decisions based on information such as mission briefings, UAS observations, and popup 

events. Optimal and acceptable decisions continue the scenario to the next choice point, while one or more 

unacceptable decision can cause remediation and restart. In this setting, novelty search can offer GIFT 

valuable opportunities to change scenarios after a restart or to challenge different aspects during training 

based on learner choices or GIFT’s internal learner model.  

Technical demonstrations of novelty search showed 

the technique can generate hundreds or thousands of 

scenario variants, and the variants are measurably dif-

ferent or similar enabling fine-grained matching to in-

structional needs (Figure 1). GIFT could match gener-

ated scenarios to learners’ needs via 48 measures, 

scaled continuously between support and challenge, 

representing the 48 learning objectives (LOs) covered 

in the original training system. The variations did not 

control LOs directly, but controlled the number, size, 

and location of units and areas anywhere on a scenario 

map. A single variation in one such element might al-

ter the scenario’s support for many LOs. For exam-

ple, moving an enemy armor unit might challenge a 

recon LO if the unit moved into a wooded area and 

simultaneously support a dynamic response LO if the 

tank moved further away from friendly forces. As a 

Figure 1. Novelty search creates training variants 

with many combinations of support and challenge. 
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result of these interactions, novelty search tended to find scenario variations that supported some LOs and 

challenged other LOs in combinations that had not previously existed. 

The authors explored several methods to present the wealth of variations to nontechnical end users, such as 

instructors who wish to review the available variants or select one training variant which will best support 

specific trainees. An initial evaluation by a subject matter expert (SME) resulted in defining a presentation 

of training variants that military instructors are likely to find valuable. The initial evaluation resulted in user 

interface recommendations to translate technical variation into a human-usable presentation, and will sup-

port an upcoming evaluation by operational users. 

Reinforcement Learning-Based Scenario Adaptation in Call for Fire Training 

The second demonstration focused on devising RL-based policies for adapting events in example CFF 

training scenarios. In a CFF mission, an infantry soldier requests indirect fire on a target from supporting 

artillery (e.g., mortar, field artillery, unmanned aircraft). The soldier, or forward observer, follows a concise 

communication protocol to identify himself, describe the mission type, describe the target and location, 

describe the method of engagement, adjust fire as necessary, and conclude with a battle damage assessment. 

There are a broad range of scenario adaptations that can be enacted to augment the difficulty of a CFF 

training scenario, such as introduction of obstacles, adjustments to mission type, modifications to enemy 

behaviors, modifications to weather and time of day, adjustments to type of target and location, and changes 

to artillery battery response.  

Dynamic scenario adaptation involves enacting a series of decisions about how to orchestrate training 

events at run-time. In DEEPGEN, the full range of possible adaptations is defined in a Scenario Adaptation 

Library, which determines what types of scenario events can be adapted, how they can be adapted, and 

when they can be adapted. In RL terminology, these correspond to the actions in a Markov decision process, 

which are enacted at run-time to produce a training experience that meets instructor-specified objectives. 

The state representation includes both the state of the learner and the history of scenario events to date. 

Reward is defined in terms of the unfolding sce-

nario’s alignment with target instructional objec-

tives. RL provides a systematic process for exploring 

alternate approaches to dynamic scenario adaptation, 

gradually improving over time as more trainees in-

teract with the scenario generator. 

To investigate RL-based scenario generation in the 

domain of CFF training, we utilized example scenar-

ios from Virtual Battlespace 3 (VBS3). Developed 

by Bohemia Interactive Simulations, VBS3 is a 3D 

simulation platform that is widely used by the U.S. 

Army for a range of training purposes, including IED 

training, surveillance systems, land navigation, route 

clearance, convoy training, and many other tasks. In 

this work, we utilize the VBS2Fires plug-in, a third-

party tool created by SimCentric Technologies that 

provides a graphical user interface (GUI) and ballistics simulation engine for training CFF in VBS3 (Figure 

2). Automatic scenario generation, which is performed by modifying example VBS3 scenarios provided as 

input to DEEPGEN, is realized in VBS3 by implementing an automated, or semi-automated, compilation 

process that produces executable VBS mission files. 

Figure 2. Virtual Battlespace 3 simulation platform. 
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As a preliminary investigation of RL-based scenario generation, we implemented a prototype scenario gen-

erator that utilizes a multi-armed bandit formalism for inducing policies to generate initial conditions of 

CFF training scenarios (Rowe et al., 2018). Multi-armed bandits are closely related to RL, but they do not 

account for the stochastic effects of actions on the state of the task environment, making them a natural 

starting point for technical demonstration purposes. We utilized a multi-armed bandit approach to induce 

policies for selecting the weather, time of day, and target movement characteristics in an example CFF 

training scenario. We considered three possible values of weather (clear, cloudy, rain), 3 possible values 

for time of day (day, dusk, night), and two possible values of target movement (stationary, moving). To 

train the multi-armed bandit policies, synthetic data generated from a simple probabilistic simulated learner 

model was utilized. We ran 50,000 trials of an 18-armed bandit using the UCB1 algorithm to manage ex-

ploitation/exploration of different scenario adaptations. Results showed that the scenario generator con-

verged on a stable ranking of alternative training scenarios over time, recommending “easier” scenarios for 

low competency simulated learners and “harder” scenarios for high competency simulated learners. Alt-

hough the analysis did not involve modeling sequential decisions about scenario adaptations, it did demon-

strate the potential for solving automated scenario generation tasks using RL techniques (Rowe et al., 2018).  

Initial Findings 

Presentation of Many Variants for Instructor Usability 

The first demonstration resulted in several evolutions of presentation for training content like varying sce-

narios. The underlying novelty search algorithm can vary training in up to eight dimensions per learning 

objective (not just one, support versus challenge), as described in Dunne, Sivo, and Jones (2015). The di-

mensions are hypothesized to be domain-independent, so an early idea was to present the dimensions of 

variation to end users, explaining exactly how each variant differed from the others. Methods that were 

attempted included arraying many dimensions into visual rows, and selecting two or three dimensions for 

display in (x,y) space similar to Figure . Dimensions could be selected by their range or variability or com-

bined for display via projection. These early attempts were visually complex and offered details that in-

structors probably do not need to consider. 

A second prototype was created (Figure 3). The key features of this prototype include summarizing all 

dimensions of variation into just three bins per learning objective (easy, medium, and hard), as well as 

placing a “top five” scenario list front and center, rather than showing every available variant. The list 

priority was defined by data captured during usage, and was again designed to be domain-general. Usage 

data included number of times a variant had been used, average duration, and average pass rate. The pa-

rameters were intended to work for multiple instructional domains and forms of instructional delivery, and 

overall to capture institutional knowledge of which variants were more useful. Each variant also received a 

random, two-word mnemonic to let instructors remember and search for familiar variations. 

One result from engaging with a SME is feedback that will lead to a third iteration of a usable interface. 

Military instruction in many domains is described by a three-dimensional matrix. The three dimensions are 

similarly defined in different domains (Sanders & Dargue, 2012): training complexity, mission, and mission 

conditions for a command staff trainer; weapons platform, target array, and environment for a gunnery 

trainer; or task complexity, threat level, and environmental factors for an SUAS trainer. The fine-grained 

dimensions of variation were initially defined to enhance the classic three dimensions, but an important 

lesson is that the instructors and instructional designers are typically accustomed to working within the 

three similar dimensions. Therefore, a third prototype should translate the many underlying variations back 

into just three dimensions, to provide visual shorthand and explanation of how each scenario varies. 
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Figure 3: Filtering and ranking variants based on usage parameters and challenge for learning objectives. 

Developing Instructor Tools for Dynamic Training Scenario Adaption 

Building upon our proof-of-concept demonstration of a multi-armed bandit approach to automated scenario 

generation, the second demonstration proceeded by investigating two complementary directions: (1) ex-

panding the Scenario Adaptation Library to broaden the space of generatable scenarios while preserving 

military relevance for real-world CFF training use cases, and (2) designing and developing a prototype 

DEEPGEN instructor tool for integrating dynamic scenario adaptation capabilities within adaptive instruc-

tional systems, such as GIFT. To ensure project alignment with the requirements of U.S. Army training for 

CFF, we engaged in iterative cycles of feedback with an Army SME bringing extensive experience in CFF 

training and adaptive training systems. 

First, the Scenario Adaptation Library was expanded to incorporate 13 additional adaptable event sequences 

beyond the 3 utilized in the multi-armed bandit demonstration. This yielded 16 possible dimensions for 

dynamic scenario adaptation, each with 2-5 possible levels, corresponding to more than 1,000,000 possible 

variations that could be generated from a single example training scenario. Several adaptable event se-

quences could be generalized across multiple example scenarios, such as target type (e.g., wheeled vehicle, 

tank, bunker) and target behavior (e.g., stationary, on patrol), whereas other adaptable event sequences were 

tied to particular example scenarios, such as the counter-attack behavior of a specific enemy unit. After 

developing the expanded Scenario Adaptation Library, we obtained SME feedback on how well the ex-

panded set of adaptable event sequences covered the range of useful CFF training scenarios across difficulty 

levels and instructional objectives. Further, the SME provided input on scenario elements that lacked real-

ism or required refinement for relevance to Army training purposes. For example, SME input addressed 

issues such as how terrain and target location can impact scenario difficulty, and common target types of 

call-for-fire missions. 

Next, we began to devise user interface mockups for a DEEPGEN instructor tool to configure automated 

scenario generation functionalities in adaptive training systems. The tool was designed for use by military 

instructors and training content developers, and it was envisioned to support eventual integration with 

GIFT. Three complementary modes of automated scenario generation were targeted as use cases: (1) offline 

scenario generation, (2) online scenario generation, and (3) run-time scenario generation. In offline scenario 
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generation, an instructor and/or developer utilizes a tool to produce scenarios prior to a training exercise. 

This has labor-saving benefits, and it also expands the range of possible scenarios that can be created for 

training. However, offline scenario generation does not support scenario personalization, as it lacks access 

to an explicit learner model that captures a trainee’s state (e.g., knowledge, skills, abilities) or trait infor-

mation (e.g., prior knowledge, goal orientation). In contrast, online scenario generation produces tailored 

scenarios just-in-time during training by consulting a learner model that reflects the trainee’s prior perfor-

mance and competency levels. Online scenario generation is analogous to the outer loop of an intelligent 

tutoring system, where pedagogical decisions about problem selection are based upon a student model that 

is maintained by the system (VanLehn, 2006). The third mode of automated scenario generation, run-time 

scenario generation, takes this process one step further, enacting scenario adaptation while the trainee is 

completing a training exercise. This is analogous to the inner loop of an intelligent tutoring system, where 

pedagogical support is delivered to guide the learner through the completion of a problem-solving scenario 

(VanLehn, 2006). In run-time scenario generation, scenario events are dynamically tailored based upon the 

learner’s performance within the scenario thus far. We distinguish between these three modes because they 

have distinct implications for the design of instructor-facing tools to support automated scenario-generation 

use cases, as well as the underlying algorithmic techniques used to implement them. 

The purpose of the DEEPGEN instructor tool is to provide instructors and developers with the ability to 

specify what types of training scenarios they seek to be generated, as well as preview generated scenarios 

prior to execution in VBS3. The workflow for using the tool is as follows. The first step is to select a training 

domain.3 Next, the user (optionally) uploads example VBS3 training missions, expanding the set of base 

scenarios for RL-based scenario adaptation. Several example VBS3 missions are provided by default. The 

user can also upload configuration files that specify the current Scenario Adaptation Library and Perfor-

mance Assessment Logic for the training domain, which are prerequisites for effective RL-based scenario 

generation. 

After completing these configuration steps, the user selects criteria to guide automated scenario generation 

through a menu-based interface (Figure 4). Initially, two types of scenario generation criteria are offered: 

Target Skills and Scenario Difficulty. A range of target skills for CFF training are enumerated, including 

different methods for specifying the coordinates of a target, performing effective adjustments to fire, and 

providing an accurate battle damage assessment. Difficulty levels include easy, medium, and hard, and 

these designations are determined based upon input from SMEs. The user can also toggle into advanced 

mode, which provides more granular control over scenario generation. In advanced mode, the user can 

provide input on the types of artillery utilized, method of engagement, types of terrain, visibility conditions, 

and provision of hints and feedback in the CFF training scenario.  

In offline scenario generation, the user next presses a “generate” button, having provided a set of input 

criteria, to obtain a ranked list of automatically generated CFF training scenarios. For each scenario, a card-

like view presents summary information about the mission, including usage data, target skills, key scenario 

properties, and a score metric derived from the expected reward associated with that scenario in RL. The 

scenarios are ranked according to the score metric, which captures the observed effectiveness of the sce-

nario in meeting the user-specified criteria. These scores are updated over time as learners interact with 

DEEPGEN, refining the system’s model of scenario effectiveness based upon the results of RL. When a user 

clicks on a scenario card, he/she can view a more detailed summary of the mission, which is presented in a 

                                                           

 
3 Currently, the only supported domain for automated scenario generation is CFF training. However, the overall ap-

proach to scenario generation that is embodied by DEEPGEN is anticipated to generalize to additional training do-

mains. 
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standard warning order format, provid-

ing information about the situation, 

mission, execution, task organization, 

and commander’s intent. Generated 

scenarios can be saved to a library of 

VBS3 missions for subsequent execu-

tion during training.  

The workflow described above is con-

trasted with anticipated workflows for 

online scenario generation and run-

time scenario generation, respectively. 

In these latter modes, a “generate” but-

ton is unnecessary, because scenarios 

are generated dynamically during 

training by tailoring within-scenario 

events to the individual characteristics 

of learners. Online scenario generation 

can be conceptualized as a pedagogical 

event within a broader instructional se-

quence, which could also include embedded assessments, direct instruction, and practice with manually-

crafted scenarios, for example. Based upon this observation, we have begun to create user interface (UI) 

mockups of the DEEPGEN instructor tool that envision automated scenario generation as a course object 

within the GIFT Course Creator. Devising instructor-facing tools for automated scenario generation that 

are compatible with existing lesson builders, such as the GIFT Course Creator, will be critical for bringing 

online scenario-generation use cases into reality. 

It should be added that in online and run-time scenario generation, instructors will almost certainly seek the 

ability to preview how scenario generation systems will operate for different types of learners. Factors such 

as transparency and explainability are critical to establishing the trust necessary for human instructors to 

adopt AI-based technologies, such as automated scenario generation, in their training workflows (Sinha & 

Swearingen, 2002). Devising methods and tools for visualizing how dynamic scenario adaptation features 

operate within DEEPGEN is the subject of continued work. 

To guide the iterative design and development of the DEEPGEN instructor tool, we have engaged SMEs in 

several rounds of feedback on its user interface design. SME feedback has been instrumental in refining the 

terminology and criteria featured within the instructor tool, including the CFF skills that are targeted, the 

types of artillery that are supported, and types of terrain that can be utilized. Specifically, SME feedback 

led to the addition of configuration options for the method of engagement in CFF (e.g., type of adjustment, 

trajectory, ammunition, danger close), advised adding terrain options that contain tree cover to enhance 

scenario difficulty, and suggested refining criteria for time pressure to distinguish between diegetic time 

pressure (e.g., enemy forces launching an attack) and non-diegetic time pressure (e.g., a time limit).  

Discussion 

The first demonstration highlights a need in the current state of practice to usefully present many training 

variations—filtering, finding, and describing the variants presented in a way that aligns with what instruc-

tors want to know. Good alignment will allow instructors to start using a sophisticated training system, 

understand its recommendations, and accept or change them to optimize learning. Poor alignment will in-

crease the barrier to entry for new users and reduce the job effectiveness of any instructors who do not give 

Figure 4. Mockup of DeepGen instructor tool showing default con-

figuration options for automated CFF scenario generation. 
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up on using the training entirely. Because a sufficiently sophisticated computational system may consider 

hundreds or thousands of factors in recommending an adaptive choice of scenarios or interventions, there 

is a challenge to identify how these factors, across training domains, should be presented to align with end 

user needs. 

The findings indicate that instructors share a common vocabulary and mental model which are found to 

appear in multiple sources and training domains. The constructs of task complexity, level of risk or urgency, 

and environmental conditions should form a template by which more fine-grained variation is understood. 

Once these three dimensions are accepted as a basis for describing training variants, the dimensions can be 

applied to different training domains and can be refined by additional measures. If a computational system 

requires or offers many more dimensions of variation, they may be initially hidden within a summary or 

rollup metric and available for drill-down when advanced users request more information. 

Institutional knowledge, or information about training that is accumulated over time and through repeated 

use, is likely to provide a secondary or optional entry into the training choices available. In the military use 

case, achieving the mandated training is paramount and therefore the primary data presentation should sup-

port easily identifying mandatory training within a sequence. The three-dimensional model is likely to help 

filter and find training content for this use case, with qualities such as duration and pass rate available as 

secondary filters after these. 

The findings of the second demonstration illustrate how the intrinsic combinatorics of dynamic scenario 

adaptation yield a vast range of generatable scenarios for even simple domains, such as CFF training. By 

integrating additional example scenarios, or devising broader missions that embed CFF within them, the 

yields of automated scenario generation can be increased further. This observation underscores the im-

portance of devising methods to provide instructors and developers with control over the operation of au-

tomated scenario generators. In the DEEPGEN instructor tool, we provide users with general criteria, such 

as target skills and scenario difficulty, as well as granular criteria, such as domain-specific methods of 

engagement and adversary behaviors, to guide scenario generation of CFF training missions. Similar to the 

first demonstration, we find that it is critical to work closely with SMEs to guide the formulation and 

presentation of control methods to ensure that instructor-facing tools are understandable, usable, and useful. 

Further, the second demonstration highlights the promise of devising empirically based evaluations of sce-

nario quality that can be leveraged to rank and assess candidate training missions. In RL-based scenario 

generation, this evaluation mechanism is implemented algorithmically in the form of a reward model that 

is induced from data on learner interactions with candidate scenarios as well as their performance and train-

ing outcomes.  

This work also highlights the different ways that automated scenario generation can be integrated into real-

world training workflows. Automated scenario generation can be utilized as a labor-saving tool, reducing 

the costs of developing training scenarios through offline scenario generation processes. Additionally, au-

tomated scenario generation can be utilized online, and at run-time, to enhance adaptive training capabilities 

through dynamic personalization of scenarios in line with the individual characteristics of learners. These 

complementary modes have significant implications for the design of instructor tools for controlling the 

operation of scenario generators. In offline scenario generation, an instructor is likely to peruse candidate 

scenarios, save them to a library of training materials, and deploy them to learners. In online scenario gen-

eration, as well as run-time scenario generation, an instructor is likely to seek understanding of how dy-

namic scenario adaptation will shape learner experiences during a training exercise based upon learners’ 

individual states and traits. Automated scenario generation creates the need for supporting transparency and 

explainability within instructor tools, which will be critical to establishing the trust necessary for instructors 

to adopt automated scenario generation technologies in the classroom.  
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Recommendations and Future Research 

Research on automated scenario generation is still in its nascent stages, and there are several promising 

directions for future research. For the two projects described in this chapter, continued engagement with 

SMEs, including instructors and training content developers, will be essential for refining the scenario gen-

eration tools to support real-world training use cases. In addition, it will be important to investigate how 

these tools, and their underlying novelty search and RL-based approaches to scenario generation, respec-

tively, generalize to additional training domains. Third, conducting evaluation studies to investigate the 

prospective labor-saving benefits of automated scenario generation, as well as the training effectiveness of 

created scenarios, will be critical to develop an evidence base for the benefits of automated scenario gener-

ation in adaptive training systems for military domains.  

More broadly, there are a myriad of open questions about automatic scenario generation that require further 

attention. First, it will be important to investigate the relative strengths and weaknesses of alternative com-

putational frameworks that have emerged in recent years, such as generative adversarial networks, for solv-

ing automated scenario generation tasks. This calls for methodological progress in the evaluation of auto-

mated scenario generation systems, including identification of appropriate instruments, metrics, and re-

search designs that reveal the effectiveness of alternative scenario generation approaches. Second, investi-

gating mixed-initiative systems that enable human instructors and content developers to co-create training 

scenarios in coordination with automated scenario generation systems has significant potential. Finally, 

devising examples of how to integrate automated scenario generation functionalities with existing tools for 

constructing adaptive training systems, such as the GIFT Course Creator, will be critical for taking scenario 

generation out of the laboratory and into real-world classrooms. 

Conclusions and Recommendations for GIFT 

The two studies presented in this chapter illustrate recent advances in automated training scenario genera-

tion that hold significant promise for real-world training applications. Automated scenario variation before 

training, and dynamic scenario adaptation during training, are well positioned to help reduce the human 

effort and cost associated with generating tailored, effective instruction and assessment. Addressing prac-

tical considerations in effective deployment and use of such research will help to enrich the training capa-

bilities of adaptive instructional systems such as GIFT, as well as enable the creation of adaptive training 

systems that continually improve in effectiveness and utility over time.  The inputs needed for each of these 

systems are the instructional objectives, example scenarios that target them, and some amount of student 

data about experiences with the scenarios. These items are required to generate the scenarios and need to 

be represented through metadata tags, descriptors, folder structures, or equivalent.  For output, the system 

must either have a link to (1) an instructor interface to select student scenarios, (2) a system interface to 

automatically assign the scenarios, or (3) both. Adaptive instructional systems must have a way of describ-

ing existing content to algorithmic content generators, as well as links to where this content can be placed 

after its creation. 
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Introduction 

The Generalized Intelligent Framework for Tutoring (GIFT) provides standardized ways to build high per-

formance intelligent tutoring systems (ITSs). The authoring tools in GIFT allow authors to create highly 

interactive learning content that adapts to learners’ individual characteristics (Cai, Graesser, & Hu, 2015). 

However, developing authoring tools for authors to create systems that can be self-improving is still a 

challenging problem. 

For over four decades, researchers have been trying to develop computer tutoring systems that could be as 

effective as professional human tutors (Smith & Sherwood, 1976). The effectiveness of tutoring, either 

human tutoring or computer tutoring, is usually measured by the relative effect size compared to conven-

tional instructional activities without tutoring. The effect size of professional human tutoring was once 

expected to be 2.0 (Bloom, 1984), whereas untrained human tutoring and computer tutoring is approxi-

mately 0.8 (VanLehn, 2011). The tutoring process is a sequence of interactions between a tutor and an 

individual student. An effective tutor should be able to guide the student to go through a path that is rela-

tively short, if not the shortest, in a learning process. The tutor helps a student in each step of the learning 

process by recommending learning content, giving immediate feedback and hints, providing and explaining 

ideal solutions, correcting misconceptions and answering questions (Graesser, Hu, & Sottilare, 2018). 

Moreover, natural language conversation plays an essential role in human tutoring. The rapid advances in 

natural language processing and artificial intelligence make it possible to develop incrementally better con-

versational intelligent tutoring systems. In the last two decades, the Institute for Intelligent Systems at the 

University of Memphis has developed over a dozen intelligent tutoring systems with conversational agents 

based on the AutoTutor framework (Graesser, 2016; Graesser et al., 2004; Millis et al., 2011; Nye, Graesser, 

& Hu, 2014; VanLehn et al., 2007).  

AutoTutor uses conversational agents (usually one or two agents) to help students learn. Learning materials 

in AutoTutor are presented to students as texts, images, videos or content with interactive elements such as 

buttons, pull-down menus, drag-and-drop objects, etc. AutoTutor responds to students’ natural language 

inputs, as well as events triggered by the interactive elements. An AutoTutor conversation usually starts 

with a problem. AutoTutor agents help a student to construct a solution to the problem by giving feedback, 

asking hint questions, correcting misconceptions, answering questions and providing ideal solutions 

(Graesser, 2016; Nye, Graesser, & Hu, 2014). However, developing conversational ITSs like AutoTutor is 

expensive. Moreover, the performance of the system relies on iterative improvement based on the data 

collected from interactions with real students. The improvement process makes the development of an Au-

toTutor system even more expensive and cumbersome. Therefore, a self-improving mechanism is expected 

to reduce the development costs and increase the systems’ performance.  

A self-improving system is a system that can improve its behavior by itself as it evolves while interacting 

with the world it was designed for.  Such a system should have components that are changeable and can be 

automatically changed without a designer’s intervention in the course of acting in the world (Omohundro, 

2007). A self-improving intelligent tutoring system should be able to automatically improve using data 

collected from the interactions with real users. The users include students, teachers and any domain experts. 

Students provide learning interaction data and learning experience feedback. Teachers provide teaching 
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experience feedback. Domain experts provide human judgments on system performance. In this chapter, 

we use AutoTutor core components to illustrate possible ways to make intelligent tutoring systems self-

improving. 

AutoTutor Core Components and Self-improving Possibilities 

AutoTutor conversation, often referred to as “Expectation-Misconception Tailored” tutoring, has its special 

conversation style. It starts with a main question and continues with hint/prompt questions to help students 

construct a complete answer to a main question. To support such conversations, AutoTutor uses four major 

components, including question generator (QG), speech act classifier (SAC), answer classifier (AC) and 

question answerer (QA). In each conversation turn, the QG component creates/selects a question 

(main/hint/prompt) and waits for a student’s answer. The SAC component identifies the type of the input 

(answer, question, or others). The AC component then identifies the category of the student’s answer and 

gives feedback. The QA component answers a student question if the input is a question.  

Question Generation 

There are three types of AutoTutor questions: main question, hint question and prompt question. A main 

question in AutoTutor is a question with a relatively long answer (5 – 10 sentences).  The length requirement 

is for the sake of constructing meaningful conversation that leads to deep learning. The following example 

shows the main question and the ideal answer of the “Pumpkin Problem” in Newtonian Physics AutoTutor: 

Main question: Suppose a runner is running in a straight line at constant speed, and the 

runner throws a pumpkin straight up. Where will the pumpkin land? Explain why. 

Ideal Answer: The person and the object are moving with constant horizontal velocity. 

When the person throws the object upward only vertical forces are acting on the object. 

Because only vertical forces are acting on the object, there is no horizontal acceleration. 

The initial horizontal velocity of the object, which is the same as the person, will not 

change. The object will travel up and down vertically and move at the same constant hor-

izontal velocity as the person, and as a result the object will land back in the person’s hand. 

The ideal answer of a main question is decomposed into multiple statements, called “expectations.” The 

basic rule of such decomposition is that each expectation is an important part of the ideal answer and every 

part of the ideal answer must be included in an expectation. The expectations in AutoTutor are created for 

AutoTutor to guide students to construct a complete answer part by part. A hint/prompt question is created 

to help students construct a specific expectation. The difference between a hint question and prompt ques-

tion is in the lengths of their answers. The answer of a hint question can be a sentence or a clause, whereas 

the answer of a prompt question is a single word or phrase. Thus, main question, hint and prompt are ques-

tions targeting answers of three different levels: paragraph level, sentence/clause level and word/phrase 

level. The following example shows an expectation, one of its hints and one of its prompts: 

Expectation: After release, only gravity acts on the pumpkin, and it has no effect on the 

horizontal velocity. 

Hint: What can you say about the forces acting on the pumpkin, after release? 

Hint answer: Gravity is the only force acting on the pumpkin. 

Prompt: Which component of the pumpkin's velocity does not change after it is released? 

Prompt answer: the horizontal component. 

AutoTutor questions and answers are authored partly by domain experts and partly by the AutoTutor QG 

component. Cai et al. (2006) proposed a template-based hint/prompt question generation method that was 

used in facilitating AutoTutor script authoring.  A number of question classification schema have been 

proposed with specific question generation templates for each question category (Cai et al., 2006; Graesser, 
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Rus, & Cai, 2008; Graesser, Rus, Cai, & Hu, 2012; Olney, Graesser, Person, Piwek, & Boyer, 2012; Rus 

& Graesser, 2009). Olney, Graesser, Person, Piwek, and Boyer (2012) proposed a technique for generating 

questions from a concept map.  Neural network models (Duan, Tang, Chen, & Zhou, 2017) have also come 

into the field of question generation. With the help of question generation techniques, the authoring load 

for authors is greatly reduced. Instead of manually creating questions, a domain expert could create a main 

question and an ideal answer and let the QG component automatically split the ideal answer into expecta-

tions and generate candidate hints and prompts. 

AutoTutor questions need iterative improvement. It is difficult for a domain expert and AutoTutor QG 

component to create an ideal set of questions without the support of student data. There could be missing 

hint/prompt questions or not very useful questions; there could be questions that are either too easy or too 

hard. There could be questions of which answers are uncertain or unclear (Cai, Gong, Qiu, Hu, & Graesser, 

2016). Student data can help solve such problems. For example, how frequent a question is used in conver-

sations is an indicator of the relevance of the question; the percentage of correct answers from students is 

an indicator of the difficulty level of the question; the answer uncertainty could be an indicator of question 

clarity; and the percentage of conversations that leads to successful final solutions could be an indicator of 

question coverage (whether or not there should be more questions).  

In addition to student data, authors may provide data by making judgements on the automatically computed 

quality indicators, adding new questions, revising bad questions and removing useless questions. Such data 

can be used to adjust the parameters of the automatic improvement algorithms, such as the threshold of 

uncertainty, coverage, relevance and difficulty level.   

Speech Act Classifier 

Speech acts are actions carried by language, including the exterior meaning of the utterance, the intended 

meaning of the speaker, and the actual effect in conversations. In AutoTutor, speech acts are classified as 

answers, questions and other expressions. Answers are further classified as, for example, complete answer, 

partial answer, wrong answer, irrelevant answer, out of domain answer and other customized types. Ques-

tions are further classified as definitional question, verification question, concept completion question, etc. 

Other expressions include greeting, request, meta-communication (e.g., “I didn’t hear it.”), meta-cognition 

(e.g., “I have no idea about that.”), etc. AutoTutor takes the output of the speech act classifier and deter-

mines the next move, such as answering a question, giving feedback to an answer, or responding to other 

expressions.  There has been a substantial body of research in building speech act classifiers for AutoTutor  

(Moldovan, Li, Rus, & Graesser, 2011; Samei, Li, Keshtkar, Rus, & Graesser, 2014). However, the accu-

racy is limited in part due to the lack of human annotated training data. For example, in Samei et al. (2014), 

the precision was 0.53 for answers (labeled as statements in the paper) and 0.63 for questions. The recall 

was 0.58 for answers and 0.70 for questions. Improved speech act classifiers require a larger corpus of 

training and test data.  

Making speech act classifiers self-improving as more data are collected is a reasonable solution. A self-

improving speech act classifier relies on language experts’ feedback.  The speech act classifier may present 

utterances that are hard to classify to language experts for confirmation or correction. The confirmation/cor-

rect data then feeds back into the system for model improving.  

Answer Classification 

A typical AutoTutor interaction is a question from AutoTutor and an answer from a student. Therefore, 

most of the inputs from students are answers. These answers are usually short. An answer to a main question 

could be about a paragraph long. An answer to a hint or prompt question usually ranges in length from a 
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word to a sentence long. Evaluating such answers is a research field, called “short answer grading”. Burrows 

et al. (2015) has a good review of the techniques used for short answer grading. Advanced technologies 

used in short answer grading include LSA (Latent Semantic Analysis), LDA (Latent Dirichlet Allocation) 

and deep learning neural networks (Basu, Jacobs, & Vanderwende, 2013; Burrows, Gurevych, & Stein, 

2015; Cai et al., 2011; Cai, Gong, Qiu, Hu, & Graesser, 2016; Sultan, Salazar, & Sumner, 2016).  

There are two typical ways to grade AutoTutor short answers. One way is to compute a score (from 0 to 1) 

to measure how close the input is to a correct answer. AutoTutor gives a positive feedback (e.g., “Great 

answer!”) for a high score, a neutral feedback (e.g., “Not bad!”) for a medium score, and a negative feed-

back (e.g., “That’s not right!”) for a low score. Feedback to the grading score is usually short and generic, 

that is, the feedback does not contain anything specific to the domain problem. An alternative to computing 

a 0 to 1 score is to categorize the answers. The typical generic categories include “complete answer”, “par-

tial answer”, “wrong answer”, “irrelevant answer”, and “out of domain answer”. However, any customized 

categories are possible. Authors may determine what categories to use and associate each category with a 

specific type of feedback, not necessarily domain independent. The results of both ways are used in select-

ing next moves. 

One of the major challenges in AutoTutor authoring is that it is difficult for authors to imagine what cate-

gories of answers may be generated from students without real student data. Therefore, it is difficult for 

authors to design suitable answer categories in the authoring phase. A self-improving answer evaluation 

component is therefore necessary for AutoTutor. Figure 1 shows the interface of an AutoTutor self-improv-

ing answer classifier (under development). When an existing AutoTutor problem is opened, the tool shows 

the list of questions (left panel) of the problem. When a question is selected, the answers from all students 

for the selected question are shown, together with machine identified categories (central panel). An author 

may change or create an answer’s category and associate it with specific feedback. When the classify button 

is pressed, the tool will rebuild the classifier based on the newly annotated data. Detailed reports about the 

recall and precision of each category are shown in a popup window (not shown in the Figure). 

 

Figure 1. AutoTutor self-improving answer classification interface 
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Question Answering 

There is an extensive body of research on question answering. Mishra and Jain (2016) have provided an 

excellent summary of this field from 1960’s to 2016. In AutoTutor, the QA component is used to answer 

students’ questions. Since students are supposed to answer AutoTutor questions, the proportion of questions 

in students’ inputs is very low. However, when a student question comes up, AutoTutor needs to be able to 

adequately respond. A response to a student question could be an answer to the question, or, in the case that 

no answer is available, a statement admitting that AutoTutor does not have an answer. By design, AutoTutor 

conversations converge to the primary instructional goal of providing the solution to a given problem. How-

ever, student questions could lead a conversation to a divergent path. Therefore, AutoTutor is not designed 

to answer all student questions. Instead, it only answers questions that are highly related to the learning 

content (Graesser et al., 2012). This is very different from other general QA products that aim at responding 

to users’ divergent questions and do not carry on a deep and coherent conversation (Lally et al., 2012; 

Mishra & Jain, 2016). 

The AutoTutor QA component relies on a relatively small bag of question-answer pairs for each problem. 

Such bags are initially prepared by content authors. The self-improvable QA component allows authors to 

review questions that come up from real students and expand the bags to cover most important questions 

that need to be answered. Furthermore, the QA component has an evaluation model that identifies the ques-

tion types and matches the question to an existing QA pair, if it exists. The QA component also allows 

authors to annotate new questions for self-improving the QA classifier. 

Discussion and Recommendations 

Self-improving systems are supposed to be “automatically” improving without “human’s intervention” 

when they act in the “world” (Omohundro, 2007).  In the case of ITSs, such as AutoTutor systems, the 

“world” is the users, including learners, teachers and content authors. In other words, ITSs act on the human. 

Therefore, the data that is used for self-improving is from humans. ITS self-improving processes include, 

(1) collecting data from students, teachers and authors, (2) computing system performance indicators (e.g., 

question quality, answer evaluation accuracy, etc.), and (3) rebuilding components that can be improved.  

ITSs use advanced components, such as the QG, SAC, QC and QA components used in AutoTutor systems. 

Further advances of the technologies may provide better algorithms to these components. A self-improving 

ITS may need to replace the existing components with completely new ones, instead of tuning the perfor-

mance of the existing components. To reduce the development cost, ITSs should make such components 

easily replaceable. Further, the data collected should be able to support self-improvement of new compo-

nents. This is possible only when the components are standardized.   

As a general framework for ITSs, GIFT should provide standardized ITS components that are replaceable 

and self-improving. In the current GIFT system, most authoring tools aim at authoring high performance 

systems without using data after the systems are used. Future GIFT authoring tools should be designed to 

allow self-improvement. Domain experts should have access to complete learning data and have easy ways 

to give feedback to the system, such as correcting a speech act or answer category, adding or revising 

questions and answers, etc. One possible problem is that the continuous involvement of authors may further 

increase the cost of ITS development. However, this may be compensated by the increase of users due to 

the improvement of overall system performance.  
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CHAPTER 14 – INTRODUCTION TO THE SOCIAL PERSPECTIVES 

AND HUMAN FACTORS SECTION 
Arthur C. Graesser1 and Anne M. Sinatra2 

1University of Memphis, 2U.S. Army Combat Capabilities Development Command - Soldier Center – Simulation 

and Training Technology Center 

Core Ideas 

The chapters in this section focus on the different roles that humans play in the development of self-im-

proving adaptive instructional systems (AISs). The underlying assumption is that humans need to be in the 

loop in a hybrid co-evolution of human and computational machine intelligence. The humans may be learn-

ers, instructors, experts, designers, and other stakeholders. The computational system may range from ideal 

algorithms or procedures to solutions from data-driven machine learning.  A hybrid is needed because of 

the limitations of brute force reinforcement learning and elegant computational theories.  

The value of a hybrid self-improving system is confirmed when it improves learning, engagement, system 

usage, and the learners’ impression of the AIS.  It is important to conduct studies that perform these evalu-

ations because such data are ultimately the gold standard.  Sometimes there is no alternative than to adopt 

the judgments of humans because the learning environment is extremely complex. Machine learning can 

then be applied to tune, modify, and improve the performance. Sometimes human judgments are faulty so 

it is better to adopt intelligent algorithms that have no resemblance to any human judgments.  Whenever 

humans are in the loop, a sensible question to ask is: What humans?  Is it a single knowledgeable genius, a 

panel of relevant experts, or a crowd of novices?  Are there times when a crowd of novices generate a 

solution that is equal to or better than a small number of experts who handcraft a solution? What happens 

when people disagree?  Assessments with suitable gold standards are needed to answer these questions.         

Judgments of humans are highly influenced by the visual depiction of the data or system components being 

analyzed.  Learners can improve self-regulated learning activities when they can view their own perfor-

mance and compare it to their peers.  Instructors can take concrete steps to help the students when they can 

view the students’ performance on particular lessons, knowledge, and skills.  Instructional designers can 

improve the content and curriculum when they view performance profiles of the learners.  The dashboards 

that each of these stakeholders view will hopefully be influenced by today’s science of human factors and 

computer-human interaction.      

Individual Chapters 

The chapter by Brusilovsky and Rus presents a social navigation approach to self-improving systems that 

capitalizes on previous learners’ search patterns on web facilities, solutions to problems, annotations of 

interfaces, and other behavior of the crowd of previous users.  There are visual depictions of other learners’ 

behavior that are tracked by the system and provide guidance to learners.  A particular learner can compare 

his or her own behavior to the wisdom of the crowd and the crowd’s performance on problems of varying 

difficulty.  This social navigation approach has often shown improvements in learning or performance over 

hand-crafted systems developed by experts.   

The chapter by Hampton and Baker discusses dashboards for instructors and how they can play a role in 

the evolution of self-improving adaptive instructional systems.  Instructors can use this information as feed-

back to make adjustments to future class lessons, cluster students, help individual learners, and modify 

content.  The actions the instructors take can then be used in educational data mining and machine learning 



 

 

130 

 

analyses to modify automated components of AISs.  In order to implement this approach, there needs to be 

a systematic analysis of the instructors’ activities, many of which are documented in this chapter.   

The chapter by Gitinabard, Lynch, Long, Meyer, and Woodward proposes that a social media framework 

be integrated with the Generalized Intelligent Framework for Tutoring (GIFT) so that there can be infor-

mation about communication among students, between students and instructors, and between computer 

environments and people.  Learning communities often introduce fellow learners to new ideas and maintain 

their engagement over time.  Therefore, the various platforms of social media need to somehow be inte-

grated with GIFT, with data logged, tracked, and analyzed for future system improvement.  The interface 

of the learning environment should also expose learners to other stakeholders and allow them to give feed-

back on their experiences.   

The chapter by DeFalco and Doty raises issues about the morals and ethics of decisions, algorithms, and 

procedures of systems that are automated in AISs.  Sometimes there are conflicts in what path to take, as 

the authors impactfully point out in conflicts between obeying orders of leaders in the military and follow-

ing moral or ethical models.  Conflicts may occur at the macrolevel, the macrolevel, and aptitude-treatment 

interactions.  The evolution of a self-improving system needs to expose potential conflicts for humans to 

resolve. 

The chapter by Graesser, DeFalco, and Cockroft raises questions about the quality of human judgments 

and computational algorithms in guiding self-improving adaptive systems.  The chapter documents an 

alarming lack of compatibility between teachers, data, and the learning sciences, so there needs to be a 

serious examination of the quality of the decisions that guide automated changes.  At the very least, the 

quality of the different sources of judgments and recommendations need to be continuously evaluated with 

respect to predicting learning, engagement, use, and learner impressions of an AIS. 
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CHAPTER 15 – SOCIAL NAVIGATION FOR SELF-IMPROVING 

INTELLIGENT EDUCATIONAL SYSTEMS 
Peter Brusilovsky1 and Vasile Rus2  

1University of Pittsburgh, 2University of Memphis 

Introduction  

The idea of self-improving intelligent educational systems is almost as old as the field of intelligent educa-

tional systems itself. The origin of this research stream could be traced to the paper of Tim O’Shea “A self-

improving quadratic tutor” (O'Shea, 1982), which was published 40 years ago in the famous special issue 

of International Journal on the Man-Machine Studies. This special issue later was re-published in a separate 

book (Sleeman & Brown, 1982), which arguably launched the very field of intelligent tutoring systems 

(ITSs) and defined its research agenda for years ahead. O’Shea’s paper was somewhat different from the 

rest of the papers in the special issue. Unlike the majority of researchers who believed that intelligent edu-

cational systems should be created by domain experts through knowledge elicitation and engineering, 

O’Shea argued that an intelligent system should be able to improve itself not just by constant engagement 

of experts but by using data collected in the process of its practical application. While his self-improving 

tutor started with an expert-engineered teaching strategy in the form of production rules and assertions, the 

system also included a pro-active self-improvement cycle. The idea of this cycle was to select an educa-

tional objective, make an experimental change in teaching strategy, statistically evaluate the resulting per-

formance over time, and make necessary updates if the change is successful. 

While the idea of self-improving ITSs and the original paper produced a stream of follow-up work, for 

many years this stream was really small and not easily visible in a large body of work on intelligent educa-

tional systems. The main obstacle was a rather low level of practical use of these systems. Without a large 

number or real users working with an intelligent system year by year the idea of automatic experimentation 

and constant improvement was hard to implement. The situation, however, gradually changed over the 

years. As the field of ITSs became more mature, some systems, like the famous Algebra Tutor, got exposed 

to hundreds and thousands of real users year by year (Koedinger, Anderson, Hadley, & Mark, 1997) and 

the need to constantly improve the knowledge representation and algorithms behind these systems was 

brought back to the agenda of ITSs researchers. Several research teams demonstrated that learning data 

routinely collected by ITSs could offer valuable insights on how the systems could be improved and sug-

gested specific approaches to data-driven improvement of ITSs (Martin, Mitrovic, Koedinger, & Mathan, 

2011; Pavlik, Cen, Wu, & Koedinger, 2008).   

Following this pioneering work, the use of learner data to improve the performance of ITSs and other edu-

cational systems (i.e., MOOCs) gradually emerged as one of the most popular topics of research in several 

research communities including Artificial Intelligence in Education (AI-Ed), Educational Data Mining 

(EDM), and Learning Analytics and Knowledge (LAK) with dozens of papers published every year.  Yet, 

the absolute majority of research on this topic focuses on just one way of using this data. Whether learner 

data is used to improve domain models or to adjust parameters of student modeling and personalization 

approaches, the focus is on enhancing the “machine” intelligence side of ITSs. Yet, every intelligent system 

could be improved in two different ways. One way, indeed, is to enhance the internal intelligence of the 

system. The other way, however, is to empower the intelligence of the system user through more advanced 

and intelligent interfaces. While developers of intelligent systems frequently over-focus on enhancing in-

ternal functionality of the systems, the research in the area of intelligent user interfaces demonstrate that 
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augmenting human intelligence through a more powerful, AI-driven interface could remarkably improve 

the overall efficiency of an intelligent system. In other words, best results could be achieved when human 

and artificial intelligence work together, not when all efforts are spent on improving the Artificial Intelli-

gence (AI) and the power of human intelligence is wasted due to a primitive interface. Getting back to the 

problem of improving ITSs using data of past learners, an interesting challenge is how this data could be 

used to advance the interface side of ITSs so that it could empower human learners, better engage them into 

interacting with the system, and improve the overall performance. In this chapter, we review one of the 

approaches, which could efficiently use data of past learners to offer a more efficient interface for future 

learning: social navigation. In the following sections we introduce the idea of social navigation (Farzan & 

Brusilovsky, 2018) and review several studies exploring social navigation in different contexts. 

Social Navigation 

Social navigation is a group of approaches belonging to a broader field of social information access 

(Brusilovsky & He, 2018). Social information access can be formally defined as a stream of research that 

explores methods for organizing users’ past interaction with an information repository in order to provide 

better access to information to the future users. Various information traces left by past users of interactive 

systems form highly valuable “community wisdom”, which could be harnessed to support various kinds of 

information access such as search, browsing, and recommendations. Within this stream of research, social 

navigation approaches (Farzan & Brusilovsky, 2018) focus on using “community wisdom” to assist their 

users in the process of browsing and navigation, i.e., selecting the most relevant information item or link 

among many possible options.  

The ideas of social navigation are frequently traced back to the pioneer Read Wear and Edit Wear system 

(Hill, Hollan, Wroblewski, & McCandless, 1992). This system visualized the history of authors’ and read-

ers’ interactions with a document enabling new users to quickly locate the most viewed or edited parts of 

the document. Social navigation in the information space as well as the term social navigation was intro-

duced two years later by Dourish and Chalmers as “moving towards cluster of people” or “selecting subjects 

because others have examined them” (Dourish & Chalmers, 1994). The pioneer systems Juggler    

(Dieberger, 1997) and Footprints (Wexelblat & Mayes, 1999) used the ideas of social navigation to help 

users navigate in two kinds of information spaces – a Web site and a text-based virtual environment (known 

as MUDs and MOOs). Both systems attempted to visualize “wear” traces left by system users in order to 

guide future users. In addition to this indirect social navigation, Juggler also implemented several types of 

direct social navigation (for example, allowing users to guide each other directly through chat). This al-

lowed Dieberger (1997) to start the process of generalizing the ideas of social navigation. Further general-

ization of the field of social navigation was propelled by several workshops, which gathered like-minded 

researchers, and publications, which stemmed from these workshops (Dieberger, Dourish, Höök, Resnick, 

& Wexelblat, 2000; Höök, Benyon, & Munro, 2003; Munro, Höök, & Benyon, 1999). As a result of this 

active ideas exchange, the understanding of what forms the “community wisdom” in social navigation sys-

tems was considerably expanded to include a variety of options – from past user “clicks” to rich explicit 

feedback and resource annotations. 

In the context of learning and education, the ideas of social navigation have been introduced in the context 

of research on Web-based education. Early generation of Web-based education systems (Khan, 1997) sup-

ported the learning process by providing learners with access to a variety of educational resources. In this 

context, it was natural to explore the technology of social navigation, which was known to help users in 

accessing most appropriate information. First attempts to introduce social navigation in Web-based educa-

tion has been made by Dron, Boyne, Mitchell, and Siviter (2000) and Kurhila, Miettinen, Nokelainen, and 

Tirri (2002). The EDUCO system which was built by Kurhila and his colleagues (Kurhila et al., 2002) could 

be considered as a classic example of exploring the ideas of social navigation in the education context. 
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EDUCO was a collaborative learning environment which implemented social navigation support to enrich 

learners’ experiences in Web-based learning. EDUCO supported synchronous social navigation by visual-

izing the presence of others in the learning environment.  As users of the system were accessing the educa-

tional Web documents, others can view their presence as dots next to the documents in a visualized docu-

ment space (Figure 1).  The color of the documents represented the popularity of the document among the 

users based on how many times they have been clicked. Furthermore, users can leave comments associated 

with documents that are visible to others navigating to the document. 

 

Figure 1. Representation of documents and users within the EDUCO learning environment. 

The early examples of educational social navigation and the increased popularity of research on “collective 

wisdom” and social information access helped to engage several other research teams working on similar 

topics. In just a few years, the number and the diversity of explored social navigation approaches in educa-

tional context increased remarkably (Brusilovsky, Chavan, & Farzan, 2004; Hübscher & Puntambekar, 

2004; Mitsuhara, Kanenishi, & Yano, 2004; Tattersall et al., 2004; Vassileva, 2004). Since that time, both 

the variety and the complexity of research on this topic has been gradually increasing. However, due to the 

practical focus of this chapter, we do not intend to provide a comprehensive overview of this research 

stream. Instead, we focus on three well-explored and extensively used systems, which applied different 

kinds of social navigation to educational processes. We believe that a review of these systems can provide 

both, a list of useful social navigation techniques and a demonstration how the research on social navigation 

in the educational context has gradually advanced from simple ideas explored in proof-of-concept systems 

to more complex designs validated by large-scale field studies.  

Knowledge Sea II 

Knowledge Sea II (Brusilovsky et al., 2004), originally developed in 2003-2005, provides a good example 

of how early ideas of “traffic-based” social navigation explored in the pioneer systems Juggler (Dieberger, 

1997) and Footprints (Wexelblat & Mayes, 1999) could be applied in an educational context.  Knowledge 

Sea II uses ideas of social navigation to support both browsing and visualization access to information. The 

visualization-based access is provided through an 8 by 8 cell-based map of the information space. This map 

is assembled using Kohonen’s Self-Organized Map (SOM) technology (Kohonen, 1995) from about 25,000 
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Web pages devoted to C programming language. Every cell on a resulting map provides access to a subset 

of these pages. By clicking on a cell, the user can open it and get access to the set of pages located in this 

cell (Figure 2). An interesting property of SOM technology is that it places similar pages into the same or 

adjacent cells on the map, so the result presents a reasonably good semantic map of the information space. 

The cells of the map are marked by keywords, which are most frequently found in the corresponding pages 

of each cell and by landmark resources located in the cell. The map itself was re-used from the earlier 

version of the system, Knowledge Sea (Brusilovsky & Rizzo, 2002). In the Knowledge Sea II project, we 

added a layer of social navigation on top of the map. 

 

 

Figure 2. Social navigation support in the Knowledge Sea II system. The knowledge map is shown on the top 

left and an opened cell is shown on the right. The list of links to the tutorial roots is shown on the bottom left. 

A darker blue background indicates documents and map cells that have received more attention from users 

within the same group. Human icons with darker colors indicate documents and cells that have received more 

attention from the user herself.  

The browsing-based access is provided through the hierarchical structure of the C programming tutorials 

assembled by the system. Each tutorial site is organized as a tree with table of contents, sections, and sub-

sections. The home page of Knowledge Sea II provides access to the root pages of all these tutorials. Start-

ing from that, users can navigate down to the sections or subsections of interest assisted by social navigation 

visual cues (Figure 3).  

The community wisdom in Knowledge Sea II is collected by tracking two kinds of page-centric user infor-

mation: timed page visits (traffic) and page annotations. This information is used to generate a history-
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enriched environment with two types of visual cues, which change the appearance of links on the pages and 

map cells presented to the user (Figure 3). These cues are based on the two kinds of tracked information 

and are known respectively as traffic- and annotation-based social navigation support. The system generates 

appropriate cues individually for each user by analyzing past individual activities of the user and other users 

belonging to the same group. 

 

Figure 3. Social navigation in C-programming tutorial pages, from (Farzan & Brusilovsky, 2008). 

Traffic-based navigation support attempts to express how much attention the user herself and other users 

from the same group paid to each of the 25,000 pages that the system monitors. The level of attention for a 

page is computed by considering both number of visits and time spent on the page and is displayed to the 

user through an icon that shows a human figure on a blue background. The color saturation of the figure 

expresses the level of the user’s own attention while the background color expresses the average level of 

group attention. The higher the level of attention is, the darker the color appears to the user. The contrast 

between colors allows the user to compare her navigation history with the navigation of the entire group. 

For example, a light figure on a dark background indicates a page that is popular among group members 

but remains under-explored by the user. The color of the map cell and the human figure shown in the cell 

is computed by integrating attention parameters of all pages belonging to that cell.  

Annotation-based navigation support uses a similar approach to represent the number of page annotations 

made by the users from the same group. Users can annotate each page in the system. Users can also indicate 

that a note is praise (i.e., the page is good in some aspect). While users make annotations mainly for them-

selves, Knowledge Sea II allows all users of the same group to benefit from collective annotation behavior. 
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The yellow annotation icon shown next to the blue traffic icon shows the density and the “praise tempera-

ture” of annotations for each page. The more annotations a page has, the darker the yellow background 

color appears to the user. The temperature shown on a thermometer icon indicates the percentage of praise 

annotations.  

Both types of social visual cues were provided to guide users to the most relevant and useful pages as 

implicitly indicated by the past users’ activity. Traffic-based social navigation was provided in the very 

first version of Knowledge Sea II (Brusilovsky et al., 2004) and could be considered as a direct application 

of the early ideas of social navigation in education contexts. Annotation-based social navigation was added 

in the second version (Farzan & Brusilovsky, 2005b). This feature was motivated by our experience with 

the first version. As we found during the first classroom studies, despite its overall effectiveness, traffic-

based social navigation was subject to the avalanche effect, which has not been well-studied at that time. 

User clicks and page visits were important, but not reliable signs of user attention and page importance. 

Frequently, users clicked on a less relevant page by mistake, attracted by a seemingly relevant title. After 

landing on the page and realizing that it is not helpful, the first visitor backed away. Yet, with traffic-based 

navigation, every visit left a visible trace: the page link annotation became darker, further increasing a 

chance to be visited by future users. As we discovered, a simple version of traffic-based social navigation 

lead to creating some “tar pits”, low-value pages with attractive titles, which were falsely indicated as im-

portant by social navigation. The addition of more reliable annotation-based social navigation and devel-

oping a smarter time-based approach to score user page visits (Farzan & Brusilovsky, 2005a) resolved this 

problem. 

The advanced version of Knowledge Sea II with dual sources of social navigation support has been explored 

in many classroom studies. In these studies, we were able to discover and confirm several effects of social 

navigation. We found that a community of students was remarkably good in co-discovering the most im-

portant and valuable pages in the context of the course. Note that only a part of the 25,000 pages extracted 

from multiple tutorials were relevant and useful for our specific C programming course. Even in the classes 

that started with an empty map, we were able to observe that most relevant pages and their clusters were 

discovered relatively fast, creating a class-adapted map to guide future users. Moreover, the ability to an-

notate pages and the visualization of annotations through visual cues could considerably increase a chance 

for an important page to be noticed. We also found that social visual cues highly influence user navigation 

behavior. Pages which attracted past attention of the users – as revealed by visual cues – have a significantly 

higher chance to be re-visited by users who already explored them and visited by new users. In fact, very 

popular pages visualized by the displayed density of visits and annotations, were more attractive for the 

users than top results in a ranked search list. As we found in a study of social search in Knowledge Sea II, 

adding social visual cues to the ranked list of search results shifts user’s attention from top-3 results in the 

list to the most popular pages in the list. We also found that the presence of annotation-based cues doubled 

a user’s chance to follow a specific link. It was clear that the users considered annotation-based cues as 

more indicative and reliable in finding useful pages. Following our success in using social navigation in 

Knowledge Sea II, we re-used both explored social navigation approaches in another project (Farzan, Coyle, 

Freyne, Brusilovsky, & Smyth, 2007.) An extensive report of our findings in both projects is available in 

Farzan and Brusilovsky (2008). 

Progressor 

Our experience with social navigation in the Knowledge Sea II project, revealed the importance of the 

reliability of “social wisdom”. Comparing traffic-based traces with annotation-based traces of past behav-

ior, we discovered that actions that require higher-level commitments from the past users are both more 

reliable in discovering important pages and more influential for the future users. In the Progressor project 

(Hsiao, Bakalov, Brusilovsky, & König-Ries, 2013), we explored another form of high-commitment traces 
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of behavior: the problem-solving traces of students taking the same course. The work on Progressor fol-

lowed our past attempts to combine open student modeling (Bull & Kay, 2007) and adaptive navigation 

support (Brusilovsky, 2007) to help the user in accessing the most relevant problems in a programming 

course. In our first attempts, we explored traditional knowledge-driven adaptive navigation support where 

personalized guidance decisions were made on the basis of manually engineered domain models and per-

sonalization algorithms (Hsiao, Sosnovsky, & Brusilovsky, 2010). While we found it highly efficient and 

engaging (Sosnovsky & Brusilovsky, 2015), our concern was that the knowledge-based approach required 

considerable engagement of domain experts. By replacing traditional knowledge-based navigation support 

with social navigation support, we hoped that the “community wisdom” could provide an alternative source 

of knowledge for efficient navigation. On the way to finding the most appropriate way to process and vis-

ualize past problem solving behavior in such a way that it could provide efficient help for future users, we 

explored a sequence of design options (Brusilovsky, Hsiao, & Folajimi, 2011; Hsiao, Bakalov, Brusilovsky, 

& König-Ries, 2011; Hsiao et al., 2013). The Progressor system reviewed in this section was the last and 

the most efficient design in this sequence. 

The design of Progressor was motivated by the ideas of Open Social Student Modeling (OSSM) and the 

theories of Social Comparison and Self-Regulated learning. OSSM can be considered a social extension of 

open student modeling. Open student modeling has been suggested as a way to externalize student models, 

the key component of any personalized learning system. While in a traditional personalized learning system 

this model is usually hidden from the student and only used by the personalization engine to provide adap-

tation effects, systems with an open student model expose this model to the learner and provide an interface 

for its exploration and possible editing. Open student modeling is known for a number of positive effects. 

It increases the transparency of personalization, helps raise the students’ awareness of their learning per-

formances, and supports meta-cognitive processes (Bull & Kay, 2013). In combination with adaptive nav-

igation support, it can also efficiently guide students to the appropriate content (Sosnovsky & Brusilovsky, 

2015). In this context, the idea of OSSM is simply to make the content of individual and student models 

accessible not only to the target student herself, but to a broader group of students, for example, students in 

the same class. The most natural way to do it is through social visualization that can visually present the 

content of multiple student models to the target student in a form that enables comparison of her own 

knowledge to the knowledge of her peers and the class as a whole. 

Research in self-regulated learning examines students’ metacognitive strategies for planning, monitoring, 

and modifying their management and control of their effort on classroom academic tasks (Pintrich & De 

Groot, 1990). Self-regulated learning involves self-monitoring to optimally interpret feedback from their 

academic learning process and environment (Zimmerman, 1990). Our work aimed to leverage awareness, 

motivation, and content organization through social visualizations in the hopes of promoting students’ self-

regulated learning behavior. Research in social comparison (Festinger, 1954) has demonstrated that people 

often determine appropriate behavior for themselves by examining the behavior of others, especially similar 

others (Buunk & Gibbons, 2007). Consequently, it has been shown that individuals tend to behave similarly 

to their friends and peers (Cialdini, Wosinska, Barrett, Butner, & Gornik-Durose, 1999). Researchers and 

designers of online systems have used the insights from social comparison research in the study of online 

social behavior.  In the educational domain, the positive impact of social comparison on student perfor-

mance has been reported in several papers (Light, Littleton, Bale, Joiner, & Messer, 2000). However, the 

value of social comparison in the context of personalized learning and navigation support has not been 

studied. Based on the past studies, we hoped that social navigation design that directly engages social com-

parison could increase its impact and positive value. 

Figure 4 shows the Progressor interface. The visualization consists of two panes: the left pane displays the 

student’s own progress and the right one displays the progress of any class peer or the whole class, which-

ever is selected from a dropdown menu. Each pane visualizes the respective student’s progress as a pie 

chart. The pie chart representation visually conveys the chronological order of lectures while the size of a 
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sector represents the number of problems for each lecture. A lecture may consist of one or several topics, 

which are represented as angular segments placed within the circular sector of the corresponding lecture. 

This representation allows the student to easily estimate the amount of work on each individual topic or 

lecture, while an apparent topical sequence provides a good picture of progress through the course. In ad-

dition to that, the ability to view someone else’s progress allows the student to quickly find the peers who 

can help with a difficult topic or quiz. Finally, the ability to view the average progress of the entire class 

allows the student to relate her progress to that of the whole class and estimate whether she is ahead or 

behind of the class. In addition to serving as OSSM, the Progressor interface provided direct access to 

learning content. Clicking on any topic on the student’s own model (Figure 4, left) or on a peer or class 

model (Figure 4, right) opened a list of practice problems available for this topic. Links to problems have 

also been socially annotated using the same color-coding scheme.  

 

Figure 4. Peers model comparison and social navigation support interfaces in Progressor. The color of course 

topics indicate a student’s own progress with the topic knowledge (left) and class or peer progress (right). A 

click on a specific topic on either side opens a list of practice problems for the topic. 

From a semester-long study cross-compared with previous attempts to organize access to Java problems, 

we learned that the new design of the OSSM interface was very engaging. Students used Progressor exten-

sively. On average, it achieved the highest system usage across all OSSM interface designs surpassing even 

the former champion, JavaGuide (Hsiao et al., 2010). Progressor also engaged students to explore more 

topics and to work on more distinct questions. In addition, the amount of time spent on the system (in terms 

of the sessions) was doubled. To check whether the boost of usage could be credited to the new design, we 

examined student interaction with the peer side of the Progressor interface such as re-sorting, scrolling, and 

accessing the peer list. As before, we found that students interacted with the peer side quite considerably, 

comparing their progress with the progress of peers and accessing a considerable volume of content from 

the peer side. Moreover, the more students engaged in interacting with the social features of Progressor, the 

more likely they were to achieve a higher success rate in answering the self-assessment questions. The 
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findings were consistent with the subjective evaluation outcome, which demonstrated high satisfaction with 

Progressor (Hsiao et al., 2013). 

Mastery Grids 

Following the success of Progressor and the discovered value of combining social navigation, open learner 

modeling, and social comparison ideas within the same design, we attempted to expand these ideas to a 

more realistic online learning context. One serious limitation of Progressor was its focus on one type of 

learning content, which in our past studies was one type of programming problems. In a more typical online 

learning situation, the student has access to multiple types of learning content: readings, worked examples, 

questions, problems, etc. The first attempt to expand the ideas of Progressor to multiple types of content 

was done in the Progressor+ system (Hsiao & Brusilovsky, 2017). Following the encouraging results of its 

evaluation, we developed Mastery Grids, an open-source domain-independent framework for OSSM and 

social navigation (Loboda, Guerra, Hosseini, & Brusilovsky, 2014). 

 

Figure 5. MasteryGrid interface for a Database course. 

MasteryGrids uses a grid-based social visualization approach pioneered in Progressor+, which allows easy 

comparison of the progress of the student against peer students or against the aggregated progress of all 

students of the class. MasteryGrids uses cells of different color saturation to show knowledge progress of 

the target student, her reference group, and other students over multiple kinds of educational content orga-

nized by topics. Figure 5 shows the “collapsed” version of MasteryGrids’ interface for a database manage-

ment course. Left to right, the first column of the grid ("OVERALL") shows student average progress, and 

the remaining columns show student knowledge progress topic by topic starting from the first topic of the 

database course: "Table Creation". The collapsed version of the OSSM grid includes 3 rows. The first row 

of the grid (Me) presents the topic-by-topic knowledge progress of the current student and uses green colors 

of different saturation to represent the level of progress (the darker the color, the higher the progress). The 

third row (Group) shows the aggregated topic-by-topic progress of the reference group (in this case, the 

whole class) using blue colors of different saturation. The second row (Me vs. Group) presents a topic-by-

topic difference between the student progress and the class progress. The cells in the second row are green 

if the student’s knowledge progress is higher than the class, blue if the class is ahead, and gray when both 

the student and the rest of the class have the same progress. Higher color saturation indicates a larger dif-

ference. MasteryGrids can be configured to disable the OSSM features turning it into a standard Open 
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Student model, as can be seen in Figure 5. In the Open Student Model version only the first row with the 

progress of the current student is shown.  

By clicking on any topic cell, the student can access learning content associated with the topic. For example, 

in Figure 5, the student has clicked in a cell of the topic SELECT-FROM-WHERE and the system displays 

two kinds of learning content available for this topic (quizzes and examples) in two rows of content items 

represented as colored cells. By clicking in the content cells, the content (problem or example) will be 

loaded in an overlaid window. The student can access the content by clicking on any of the three rows of 

the topic (i.e., Me, Me vs. group, or Group). The row clicked defines whether the colors of content cells 

(Quizzes/Examples) will represent individual progress, comparison between the individual and the group, 

or the group progress. For example, in Figure 5, the student clicked in the second, differential progress row. 

Thus, the colors of the content cells also show differential progress (resulting in both green and blue cells.)  

The “collapsed” version of the interface is the simplest one available for students. In addition to displaying 

the overall class progress, MasteryGrids can display and compare progress for each or all types of content. 

For example, Figure 6 shows an expanded comparison interface for a Java programming course. Here the 

upper grid (green) shows student’s own knowledge progress within each type of content, the bottom (blue) 

grid shows class progress, and the middle grid allows detailed comparison for each combination of topic 

and content. The full interface of Mastery Grids allowed the students to choose which resources are visu-

alized and which peer group is used for social comparison. For example, in Figure 6, the student selected 

“class average” as a basis for comparison, but there are many other options, like top 10 students, upper part 

of the class, lower part of the class, etc. The interface also provides an option to show the full anonymized 

ranked grid of individual students with their progress over the course topics. The position of the current 

student in the list is highlighted to make the overall class standing clearer. 

 

Figure 6. An expanded version of Mastery Grids interface for a Java programming course displaying and 

comparing progress over different types of content. 
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Mastery Grids interfaces have been developed for Java (Guerra, Hosseini, Somyurek, & Brusilovsky, 

2016), Database (Brusilovsky et al., 2016), and Python (Brusilovsky et al., 2018) courses and extensively 

studied in these contexts in many classroom studies. To date, the most extensive study has been done in a 

database course with over a hundred students (Brusilovsky et al., 2016) where the version of Mastery Grids 

shown in Figure 5 was offered as a non-mandatory practice system to be used during students’ study time. 

Our most valuable discovery from this study is a remarkable ability of the social navigation and comparison 

interface to engage and retain students, as compared with a more traditional open student model interface 

without the social component. OSSM motivated students to perform significantly more work with non-

mandatory learning content. In addition, social visualization enabled students in the OSSM group to work 

more efficiently, which could be attributed to the social navigation aspect of our OSSM implementation. 

Working with OSSM also positively impacted student learning, significantly improving the learning gain 

of weaker students. This could be attributed to the increased work with the content (as shown by the corre-

lation between the amount of work and exam grade). While it is hardly surprising that more work with 

learning content resulted in better learning, it is impressive that we were able to achieve this effect with 

non-mandatory educational content, which the students explore at their own will.  

Social Navigation in Dialogue-based Intelligent Tutoring Systems 

While the majority of work on social navigation (including the examples reviewed above) focused on social 

navigation via link augmentation in virtual environments, such as hypertext, MUDs, and WWW, the early 

promoters of social navigation pointed out that social navigation in the real world frequently happens in the 

context of a natural language dialogue (Dieberger, 1997; Dieberger et al., 2000). While the research on 

dialogue-based social navigation received very little attention since the early days (Farrell, Rajput, Das, 

Danis, & Dhanesha, 2010), it could be very relevant for the area of ITSs due to the increasing popularity of 

conversational ITSs. ITSs with conversational dialogue form a special category of educational technologies 

(Rus, D’Mello, & Graesser, 2013). These conversational ITSs are based on explanation-based constructivist 

theories of learning and the collaborative constructive activities that occur during human tutoring. Conver-

sational ITSs have several advantages over other types of ITSs. They encourage deep learning as students 

are required to explain their reasoning and reflect on their basic approach to solving a problem. Conceptual 

reasoning is more challenging and beneficial than mechanical application of mathematical formulas. Fur-

thermore, conversational ITSs have the potential of giving students the opportunity to learn the language 

of scientists, an important goal in science literacy. A student associated with a more shallow understanding 

of a science topic uses more informal language as opposed to more scientific accounts (Mohan, Chen, & 

Anderson, 2009). The impact of conversational ITSs allegedly can be augmented by the use of social ele-

ments such as the OSSM as well as dialogue-based social navigation components. For instance, we conjec-

ture that student engagement will increase in conversational ITSs if open learner models and open social 

student models are added. We are currently working on an NSF-sponsored project that will study the impact 

of adding open learner models and social navigation elements to the DeepTutor conversational ITS. 

Summary, Recommendations, and Future Research 

In this chapter, we introduced social navigation technology in the context of online education systems. 

Social navigation offers an alternative approach for using large volume of past learners’ data for developing 

self-improving intelligent learning systems. While the majority of self-improving ITS work focuses on im-

proving components or the whole system, here we argued that improvements may come from exploiting 

the “user community wisdom” which results in improved domain models, student modeling, and personal-

ization algorithms. Indeed, the social navigation approach provides an example of using the “wisdom of 

the crowds” for empowering humans’ own intelligence through a more powerful and intelligent interface. 

A specific goal of social navigation among other interface-focused intelligent interfaces is to help users in 
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finding the most appropriate learning content among multiple options usually available in an online learning 

system. As the data of our studies shows, the presence of social navigation considerably influences students’ 

navigation behavior, successfully guiding them to the most useful content. In turn, it positively affects 

student learning performance. By integrating social navigation with OSSM, the value of social interfaces 

could be further expanded. As the studies show, the most important impact of the OSSM interface with 

social comparison is an impressive increase of student engagement and retention, which makes OSSM very 

attractive for contexts where motivation and retention are critical, such as modern MOOCs. The literature 

on self-regulated learning indicates that the individual and social student models could have an even more 

significant positive impact on student learning in a self-regulated context. Exploring this direction, we al-

ready demonstrated that OSSM interfaces considerably improve student ability to assess their performance 

in both the absolute and relative sense (Somyurek & Brusilovsky, 2015). However, more extensive longer-

term studies are required to assess these effects. 

Taken together, our experience and findings provide important insights on the impact of social navigation 

and OSSM. The positive nature of the observed changes, and the magnitude of this impact demonstrated in 

several studies, encourages us to recommend social navigation in general and a MasteryGrids-style inte-

gration of social navigation and social comparison interfaces to the developers of various kinds of educa-

tional systems. In particular, this recommendation is for educational systems focused on more mature learn-

ers, self-regulated learning context, and non-mandatory practice learning content. Specifically, focusing on 

ITSs and the Generalized Intelligent Framework for Tutoring (GIFT; Sottilare, Brawner, Goldberg, & 

Holden, 2012), we recommend replacing a “hard sequencing” interface in this category of systems, which 

dictates which problems should be practiced at any moment, with an opportunity to choose the most relevant 

problem guided by both knowledge-driven intelligent guidance (adapted to students’ own knowledge level) 

and social navigation guidance (adapted to a community of comparable peer learners). This interface will 

engage both artificial intelligence of the ITS and the natural intelligence of its human users. Multiple studies 

demonstrated that this kind of navigation support is more efficient and more attractive for mature learners 

than traditional “sequencing”. Moreover, when student engagement or support for self-regulated learning 

are important, we recommend to use an interface, which integrates social navigation, open student models, 

and social comparison – as suggested in the Progressor and MasteryGrids interfaces. As our studies show, 

it could result in a considerable increase of student engagement and better support of self-regulated learning. 

In our current and future studies, we plan to further explore the value of social navigation and open student 

models in different learning contexts. One direction of our research is focused on exploring a value of 

granularity in open student models and OSSM models. While the projects reviewed in this paper use rela-

tively coarse-grain “topic-level” student models, we are now running a sequence of studies to explore the 

value of fine-grain “concept-level” models (Barria-Pineda, Guerra-Hollstein, & Brusilovsky, 2018). We 

also continue a stream of research, which explores the value of these technologies in contexts where learn-

ing content is specifically structured in a non-linear form, such as in hierarchical textbooks (Guerra, Parra, 

& Brusilovsky, 2013). We hope that our future work will bring more insights on the value of “social vis-

dom” for improving online learning and help in developing more efficient systems. 

We also plan to explore content dynamics in online learning systems with social navigation capabilities and 

investigate how content dynamics (adding new learning objects, deleting some, modifying some) impacts 

its performance. For instance, when you add a new problem, i.e., learning object, it might take a while for 

students to explore it and therefore accumulate sufficient “community wisdom”. In extreme cases, when 

you add a new item to an established pool of items in a system with social navigation, the new item will 

likely be obscured by the previous successful items. In other words, unless the platform pushes students 

somehow to work with new items, the new item will never have a chance to compete with existing items 

which will be recommended to the users. It is a typical characteristic of a social network to make “the rich 

richer”, i.e., a socially “rich” learning object will get “richer” by the very nature of the social navigation 

mechanism. The system should have ways to balance exploitation versus exploration of new, recently added 
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objects and give the chance of “newcomers” to become visible in case they are truly valuable for, in this 

case, learning. 
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CHAPTER 16 – REPORTS TO FACILITATE IMPROVEMENTS OF 

ADAPTIVE INSTRUCTIONAL SYSTEMS 
Andrew J. Hampton1 and Ryan S. Baker2  

1University of Memphis, 2University of Pennsylvania 

Introduction 

Many technologically groundbreaking methods have been proposed for creating self-improving adaptive 

instructional systems (AISs). Where these proposals primarily embrace innovative uses of advanced tech-

nical capabilities, we emphasize maintaining contact with a base from which systems should improve them-

selves: consideration of how humans perform similar tasks. In many of these systems, developers have 

processes in place to receive meaningful and interpretable data on various aspects of learner performance 

in order to understand system quality and learner outcomes. Providing accurate, relevant system infor-

mation in a comprehensible, usable fashion constitutes a necessary precondition to any reliably and demon-

strably self-improving (or in fact, manually improving) AISs. In this chapter, we consider how instructional 

systems are currently adapted, and propose some ideas for how analogous improvement approaches can be 

implemented within self-improving systems. 

 

The concept of a self-improving system presupposes that (a) quality is measurable and (b) measurements 

of quality can inform changes meant to improve those measurements. AIS practitioners continue to explore 

creative ways to produce autonomously controlled enhancements based on these two pillars, but we must 

carefully verify that each of these two preconditions is met. That is, a self-improving system may generate 

improvements by identifying and adjusting sub-optimal interactions with learners, but without an effective 

way to measure learner outcomes, the changes may be arbitrary or even counterproductive. This could hap-

pen for several reasons. Changes may be ineffective because of poor measurement. Changes may be effec-

tive but the system is unable to convince an outside practitioner that this is the case. Systems may become 

trapped in local maxima, unable to reason out of a condition in which parameters of interest (but not actual 

performance) appear optimally tuned. The system may recognize a problem but not have the operators to 

address it. In other words, a self-improving system may not always be able to improve itself. Sometimes 

the only way to solve a problem may be to present relevant, digestible information to humans and enlist 

them to fix the flaw. 

While simple in principle, selection and presentation of information provide an array of challenges. An 

AIS, by definition, has complex interaction protocols. Learner input changes the system output, using com-

plex formulations of performance to produce truly unique learner profiles. This expansive array of possible 

paths impedes a priori categorization of learners into discrete data categories. Further, systems typically 

contain metrics for performance on multiple facets of a topic rather than a holistic score. Layers of multi-

plicative complexity stem from unstandardized inclusions of psychological variables, coordination with 

external instruction, or consideration of learners collectively (e.g., how a class performs, and a single learner 

in relation to that class). Identifying the critical variables requires careful consideration and often sophisti-

cated data analysis. Representing the resulting data may vary drastically depending on their type (individual 

versus collective, qualitative versus quantitative, etc.) and rate of change. Exceptionally complicated con-

cepts and relationships need to be conveyed efficiently, with primary metrics easily perceptible and the 

option to dig deeper readily available.  
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Dashboards provide the primary method of conveying these types of information to practitioners. Under-

standing the ways in which humans use the dashboard data fundamentally impacts dashboard design. Learn-

ing analytics researchers have established methods for developing dashboards for use by instructors and 

system designers. A careful review of these research traditions with an eye toward cultivating, organizing, 

and presenting AIS variables to practitioners will yield actionable recommendations for designers.  

Designing for Users 

“Know thy user”, a common mantra among system designers, reminds us that there exists a typical set of 

use cases, and that those use cases should be made as easy and efficient as possible. In the context of an 

AIS, the most critical variables typically consist of metrics related to learner performance and quality of 

instructional content. These metrics then form the basis of changes made to the system or curricula to im-

prove learner outcomes. “Know thy user” thus suggests that designers present information in such a way as 

to match the existing mental models of instructors and practitioners. With this match established, common 

evaluations or procedures proceed as seamlessly as possible.  

However, it can in some cases be challenging to develop reporting and dashboards that support teachers in 

conducting data-driven decision-making (Marsh & Farrell, 2015). As a result, many dashboards are used 

unevenly across teachers (Hawn, 2019). This relates broadly to the challenge of providing professional 

development training to teachers that encourages individualized instruction (Al Otaiba, Connor, Folsom, 

Greulich, Meadows, & Li, 2011). Principled dashboard design is unlikely to fix this problem on its own, 

but certainly constitutes a step in the direction of broader adoption, both of dashboards and of the effective 

instructional practices that they can promote.  

The conventional human–computer interaction approach of matching the presentation of information to 

existing mental models assumes appropriate mental models for users (Flach & Voorhorst, 2016) who may 

have limited experience in pedagogical theory or educational technology. The challenge then becomes to 

present information in such a way as to encourage a mental model in line with the affordances and con-

straints of the system, with respect to the ultimate goal of improving learning outcomes. In this way, infor-

mation can directly suggest action by encouraging an intuitive understanding of the relationship between 

intervention and outcome, between intentional cause and desired effect.  

For example, data representations of individual instructional items should immediately suggest to instruc-

tors which items fail to challenge learners (ceiling effect) or serve only to frustrate and confuse (floor ef-

fect). Areas ripe for improvement should be accentuated, and methods of intervention intuitively suggested. 

Dashboard design provides a direct opportunity to influence mental models toward appropriate action.  

Applications of Dashboards in Improvement of Instruction 

Learning analytics dashboards provide potentially useful resources for many stakeholders attempting to 

improve the performance of AISs. This includes developers working on the systems, teachers working in 

the systems, and school personnel working with the systems as part of their broader instructional approach. 

Many AISs have been designed for and used by school and university personnel, including teachers, in-

structors, academic advisors, school counselors, and higher-level administrators. Though most dashboards 

are presented through traditional computer screen displays, recent research has considered if other modali-

ties may be better for providing reports to classroom teachers, including wall-based ambient displays (Al-

phen & Bakker, 2016) or augmented reality headsets (Holstein, McLaren, & Aleven, 2018). 
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Perhaps the most common application for dashboards in the learning analytics space is in communicating 

data on learner student performance to instructors. These types of dashboards have become commonplace 

within K–12 adaptive learning systems and were present from the first large-scale usage of AISs. However, 

their inclusion was initially poorly documented. For example, a “teacher’s toolkit” with reports on student 

performance has been part of the Cognitive Tutor system and used in schools since the mid-1990s but is 

not discussed in detail in publications regarding that system. Teacher reports were considerably better doc-

umented in the later ASSISTments system, with an article discussing the range of reports offered by the 

system as well as their use by teachers and school leaders (Feng & Heffernan, 2006). Both Cognitive Tutor 

and ASSISTments are relatively straightforward mathematics problem-solving environments. This type of 

dashboard has been incorporated in recent years by other types of learning systems such as exploratory 

learning environments (Mavrikis, Gutierrez-Santos, & Poulovassilis, 2016) and group learning environ-

ments (Martinez-Maldonado, Clayphan, Yacef, & Kay, 2015).  

Another popular use for learning analytics dashboards is in risk prediction—typically dropout or course 

failure. Perhaps the most widely used platform for predicting which students are at-risk in higher education 

is the Civitas platform, used by universities worldwide and providing a range of reports about students, 

leveraging data on course-taking, grades, admissions data, and questionnaires administered to students 

(Milliron, Malcolm, & Kil, 2014). The Course Signals platform, perhaps the first widely used platform in 

this space, integrates dashboard reports with recommendations and scaffolding for email-based interven-

tions by instructors (Arnold & Pistilli, 2012); when an instructor clicks on an at-risk student within the 

dashboard, the platform goes straight to a recommended action and scaffolded intervention tailored to that 

specific learner, which the instructor has the option to modify before sending to the learner. At the K–12 

level, BrightBytes, used by dozens of school districts nationwide, offers reports on the at-risk status of 

students (Singh, 2018). These are only a few examples of the increasing number of platforms and vendors 

now offering at-risk prediction dashboards to universities and school districts. There have also been efforts 

to create dashboards for risk prediction within the context of MOOCS (e.g. Chen et al., 2016), though 

adoption lags the use of dashboards in for-credit online university programs. Many other uses exist for 

dashboards in learning, from presenting course recommendations to students (Denley, 2013), to providing 

visualizations to students of their own activity and progress (Kim, Jo, & Park, 2016), to visualizing group 

work (Kay et al., 2006).  

However, there has not yet been sufficient attention in the published literature to dashboards for the en-

hancement of learning content. Existing dashboards used primarily for teachers to monitor student progress 

can effectively serve a secondary function of evaluating content (e.g. Feng & Heffernan, 2006) or the ef-

fectiveness of the learning platform. While the design and enhancement of dashboards is often seen as a 

secondary goal by the developers of adaptive learning systems, we would argue that dashboards are all but 

indispensable to the creation of high-quality computer learning environments. Though there are efforts to 

create dashboards for course designers, this work has often not been published, despite its pivotal role in 

enhancing the instructional quality of adaptive learning systems. 

How Dashboards are Used 

Dashboards are used in a variety of ways that potentially impact the practice of teachers (Miller et al., 2015; 

Xhakaj et al., 2017) and academic advisors (Arnold & Pistilli, 2012; Lonn, Aguilar, & Teasley, 2015). 

Teachers frequently access dashboards during class to drive pedagogical decisions, consulting dashboards 

as frequently as eight times per class session (Molenaar & Knoop-van Campen, 2017), and using this in-

formation to inform pedagogical strategies. For example, many teachers use proactive remediation, where 

teachers speak to a student struggling with specific material (Miller et al., 2015). Other teachers use dash-

boards to identify students who have recently succeeded and provide them with encouragement (Molenaar 
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& Knoop-van Campen, 2017). Molenaar and Knoop-van Campen (2017) note that teachers using dash-

boards shift from providing general learning support to the most struggling students to providing targeted 

support to a broader range of students. 

Not all dashboards are used in real-time. Indeed, within the ASSISTments system, one of the most common 

uses of dashboards is by teachers to identify content that students struggled with during homework and 

redesign the next class session’s lesson to target specific errors common across students (Kelly, Heffernan, 

D’Mello, Namias, & Strain, 2013). Teachers also use ASSISTments dashboards to split students into groups, 

putting students in groups together if they make similar patterns of errors, and giving advanced content to 

groups of students who made no errors (Heffernan & Heffernan, 2014).  

The use of dashboards connected to adaptive (or non-adaptive) instructional systems is part of a broader 

move towards using data in instruction, what is referred to as data-based decision making or data-driven 

decision making (Halverson, 2014). Teachers now commonly receive a broad range of types of data within 

dashboards, including data from student information systems, formative assessment systems, disciplinary 

data, attendance data, and teacher observation data (Mandinach & Jackson, 2012). While there has been 

skepticism about the effectiveness of data-based decision-making involving coarser-grained data (Man-

dinach & Jackson, 2012), teachers’ use of dashboards involving finer-grained data (such as is generated by 

AISs) is associated with better student outcomes, both in K–12 (Xhakaj et al., 2017) and in higher education 

(Arnold & Pistilli, 2012). It is not yet entirely clear which of these uses produces the benefits associated 

with dashboards—but this is exactly the sort of question that could be answered by a self-improving AIS. 

By trying the pedagogical strategies associated with the use of data in dashboards, one-by-one, an AIS 

could determine which approach to data-driven instruction works for which students in which contexts. 

Recommendations and Future Research 

These past projects suggest some steps for taking AISs forward. First, the types of decisions captured in 

instructor responses to dashboards may be directly applicable to training AISs to replicate instructor behav-

iors. Take, for example, the Course Signals system discussed above. This system presents recommended 

interventions to instructors, but instructors do not have to follow that recommendation—they can ignore it 

or modify the intervention. By tracking the situations in which instructors choose to intervene and how they 

choose to modify interventions, an AIS may be able to more closely replicate instructor behavior.  

One could envision that this could be accomplished via linking between the Generalized Intelligent Frame-

work for Tutoring (GIFT) architecture and an external system that provides recommendations to an instruc-

tor, via the Learning Management System Module. The recommendations could be generated from the 

Pedagogical Module, using information from the Learner Module. In turn, the Learning Management Sys-

tem could be designed to track whether and how instructors follow its recommendations, and this infor-

mation could be passed back to the Pedagogical Module to update its algorithm for when and how to rec-

ommend intervention.  

More directly, it may be possible to create a repertoire of AIS behaviors based on the behaviors in which 

teachers engage with dashboards, such as the proactive remediation behaviors identified by Miller and his 

colleagues (2015) and the encouragement behaviors identified by Molenaar and Knoop-van Campen 

(2017). Again, these behaviors could be embedded into the Pedagogical Module and triggered by the 

Learner Module. In this case, the behaviors would actually occur within the Tutor Module rather than the 

Learning Management System Module. An AIS could then use reinforcement learning (running within the 

Pedagogical Module) to determine which situations are the most beneficial for applying these strategies. 
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Further study of teachers’ behaviors with dashboards would likely be beneficial to research and develop-

ment along these lines. For example, it may be possible to create activities similar to those used by Kelly 

et al. (2013), where performance within ASSISTments is used to drive the selection of problems to work 

through, providing a practice experience to one student and a worked-out erroneous example (Adams et al., 

2014) to other students. Instruction modeling analysis (Khachatryan, in press) can be conducted on the 

practices of teachers such as Dr. Kelly to provide a foundation for creating an AIS that can replicate ob-

served pedagogical strategies, in the case of GIFT within the Pedagogical Module. 

The future of AISs is strong. However, in developing AISs that can improve themselves, it is worth con-

sidering the example of how humans already enhance existing instructional systems. By doing so, we may 

be able to speed the enhancement of these systems and understand which enhancements work to the ultimate 

benefit of the learners. 

References 

Adams, D. M., McLaren, B. M., Durkin, K., Mayer, R. E., Rittle-Johnson, B., Isotani, S., & Van Velsen, M. (2014). Using 

erroneous examples to improve mathematics learning with a web-based tutoring system. Computers in Human Behav-

ior, 36, 401–411. 

Al Otaiba, S., Connor, C. M., Folsom, J. S., Greulich, L., Meadows, J., & Li, Z. (2011). Assessment data-informed guidance 

to individualize kindergarten reading instruction: Findings from a cluster-randomized control field trial. The Elementary 

School Journal, 111(4), 535–560. 

Alphen, E. V., & Bakker, S. (2016, May). Lernanto: Using an ambient display during differentiated instruction. In J. Kaye, & 

A. Druin (Eds.), Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Sys-

tems (pp. 2334–2340). San Jose, CA: ACM. 

Arnold, K. E., & Pistilli, M. D. (2012). Course signals at Purdue: Using learning analytics to increase student success. In S. 

B. Shum, D. Gasevic, & R. Ferguson (Eds.), Proceedings of the 2nd International Conference on Learning Analytics 

and Knowledge (pp. 267–270). Vancouver, Canada: ACM. 

Chen, Y., Chen, Q., Zhao, M., Boyer, S., Veeramachaneni, K., & Qu, H. (2016, October). DropoutSeer: Visualizing learning 

patterns in Massive Open Online Courses for dropout reasoning and prediction. In G. Andrienko, S. Liu, & J. Stask0 

(Eds.), IEEE Conference on Visual Analytics Science and Technology (pp. 111–120). New Brunswick: IEEE. 

Denley, T. (2013). Degree compass: A course recommendation system. Educause Review Online. 

Feng, M., & Heffernan, N. T. (2006). Informing teachers live about student learning: Reporting in the ASSISTment system. 

Technology Instruction Cognition and Learning, 3(1/2), 63. 

Flach, J. M., & Voorhorst, F. (2016). What matters. Dayton, OH: Wright State University Library. 

Halverson, R. (2014). Data-driven leadership for learning in the age of accountability. In A. J. Bowers, A. R. Shoho, & B. G. 

Barnett (Eds.), Using Data in Schools to Inform Leadership and Decision Making (pp. 255–266). Charlotte, NC: Infor-

mation Age Publishing Incorporated. 

Hawn, M.A. (2019) Data-wary, value-driven: Teacher attitudes, efficacy, and online access for data-based decision making 

(Unpublished doctoral dissertation). Teachers College, Columbia University, New York.  

Heffernan, N. T., & Heffernan, C. L. (2014). The ASSISTments ecosystem: Building a platform that brings scientists and 

teachers together for minimally invasive research on human learning and teaching. International Journal of Artificial 

Intelligence in Education, 24(4), 470–497. 

Holstein, K., McLaren, B. M., & Aleven, V. (2018). Student learning benefits of a mixed-reality teacher awareness tool in 

AI-enhanced classrooms. In C. P. Rosé, R. Martínez-Maldonado, H. U. Hoppe, R. Luckin, M. Mavrikis, K, Porayska-

Pomsta, B. McLaren, & B. du Boulay (Eds.), Proceedings of the International Conference on Artificial Intelligence in 

Education (pp. 154–168). London, England, UK. 

Kay, J., Maisonneuve, N., Yacef, K., & Reimann, P. (2006). The big five and visualisations of team work activity. In M. 

Ikeda, K. D. Ashley, & T. W. Chan (Eds.), International Conference on Intelligent Tutoring Systems (pp. 197–206). 

Berlin, Heidelberg: Springer. 

Kelly, K., Heffernan, N., D’Mello, S., Namias, J., & Strain, A. (2013). Adding teacher-created motivational video to an ITS. 

In C. Boonthum-Denecke, & G. M. Youngblood (Eds.), Proceedings of the Twenty-Sixth Florida Artificial Intelligence 

Research Society Conference. pp. 503–508. St. Pete Beach, FL: AAAI Press. 

Khachatryan, G. (in press) Instruction modeling and blended learning. Cambridge, MA: Oxford University Press. 



 

 

152 

 

Kim, J., Jo, I. H., & Park, Y. (2016). Effects of learning analytics dashboard: analyzing the relations among dashboard utili-

zation, satisfaction, and learning achievement. Asia Pacific Education Review, 17(1), 13–24. 

Lonn, S., Aguilar, S. J., & Teasley, S. D. (2015). Investigating student motivation in the context of a learning analytics inter-

vention during a summer bridge program. Computers in Human Behavior, 47, 90–97. 

Mandinach, E. B., & Jackson, S. S. (2012). Transforming teaching and learning through datadriven decision making. Thou-

sand Oaks, CA: Corwin Press. 

Marsh, J. A., & Farrell, C. C. (2015). How leaders can support teachers with data-driven decision making: A framework for 

understanding capacity building. Educational Management Administration & Leadership, 43(2), 269–289. 

Martinez-Maldonado, R., Clayphan, A., Yacef, K., & Kay, J. (2015). MTFeedback: Providing notifications to enhance 

teacher awareness of small group work in the classroom. IEEE Transactions on Learning Technology, 8, 2. pp. 187–

200.  

Mavrikis, M., Gutierrez-Santos, S., & Poulovassilis, A. (2016). Design and evaluation of teacher assistance tools for explora-

tory learning environments. In D. Gašević, & G. Lynch (Eds.), Proceedings of the Sixth International Conference on 

Learning Analytics & Knowledge (pp. 168–172). Edinburgh, Scotland: ACM. 

Miller, W.L., Baker, R., Labrum, M., Petsche, K., Liu, Y-H., Wagner, A. (2015) Automated detection of proactive remedia-

tion by teachers in reasoning mind classrooms. In J. Baron, G. Lynch, & N. Maziarz (Eds.), Proceedings of the 5th In-

ternational Learning Analytics and Knowledge Conference, 290–294. Poughkeepsie, New York: ACM. 

Milliron, M. D., Malcolm, L., & Kil, D. (2014). Insight and action analytics: Three case studies to consider. Research & 

Practice in Assessment, 9, 70–89. 

Molenaar, I., & Knoop-van Campen, C. (2017). Teacher dashboards in practice: Usage and impact. In European Conference 

on Technology-Enhanced Learning (EC-TEL) (pp. 125–138). Tallinn, Estonia: Springer. 

Singh, R. P. (2018). Learning Analytics: Potential, Protection, and Privacy in the Educational System. In M. K. Singh, Z. 

Zerihun, & N. Singh (Eds.), Impact of Learning Analytics on Curriculum Design and Student Performance (pp. 1–18). 

Hershey, PA: IGI Global. 

Xhakaj, F., Aleven, V., & McLaren, B. M. (2017). Effects of a teacher dashboard for an intelligent tutoring system on teacher 

knowledge, lesson planning, lessons and student learning. In E. Lavoué, H. Drachsler, K. Verbert, J. Broisin, & M. Pé-

rez-Sanagustín (Eds.), European Conference on Technology-Enhanced Learning (pp. 315–329). Tallinn, Estonia: 

Springer.  

  



 

 

153 

 

 

CHAPTER 17 – SOCIAL MEDIA FRAMEWORKS AND IMPROVED 

LEARNING ENGAGEMENT IN GIFT 
 

Niki Gitinabard1, Collin F. Lynch1, Rodney Long2, Christopher Meyer3 & Lucy Woodman3 
1North Carolina State University, 2U.S. Army Combat Capabilities Development Command (CCDC) - Soldier Cen-

ter – Simulation and Training Technology Center (STTC), 3Synaptic Sparks, Inc. 

Introduction 

Learning is a social activity. Students move through educational programs in cohorts of like-minded or 

similarly-aged peers.  Within classes they develop formal and informal study groups, make friends, and 

wrestle with competition.  Students will also leverage these social connections for class and career advice, 

informal tutoring, collaborative learning, and cheating.  As prior research has shown, the presence or ab-

sence of a trusted peer can make the difference between passing and failing, or between pressing on and 

dropping out (Chuateco, Dennis, & Phinney, 2005).  Despite this, many online learning platforms are de-

signed primarily for individuals and make few attempts to incorporate key social relationships. As a con-

sequence, they often miss key mechanisms for providing student support and critical information that can 

be used to guide and to retain future learners.  In this chapter we will survey the use of explicit social net-

work systems in educational platforms and the analysis of social network data to support students' learn-

ing.  We will also highlight how third-party tools and social features have been integrated into online 

learning platforms and the impacts, if any, that they have had.  We will conclude with recommendations 

for the tools in the Generalized Intelligent Framework for Tutoring (GIFT) software suite. 

 

As Lave and Wenger (1991) argued in their influential work, learning is about social participation.  Or-

ganizational groups of all types from professional societies to academic organizations, to families, form 

communities of practice (Wenger, 1998). Communities of practice are groups of individual learners and 

practitioners that are united by a shared identity as students, researchers, dentists, or claims adjusters.  

These communities act as repositories of organizational knowledge from best practices, to knowing which 

class is easy.  They help to train new members by engaging them in appropriate activities through legiti-

mate peripheral participation (Lave & Wenger, 1991), by providing opportunities for peer support and 

for learning via the co-construction of new knowledge (Heo, Kim, & Lim, 2010), as well as providing ex-

emplars for new learners to emulate (Dabbish, Kraut, & Seering, 2017).    

 

The importance of peer groups has been established by a number of empirical researchers.  Chuateco et 

al. (2005), for example, showed that peer support in college can help students adjust better and lack of 

peer support is a predictor of lower GPA.  Similarly, better social connections have also been linked to 

better performance (Dawson, 2010) and to early participation in linked learning communities (Settle & 

Steinbach, 2016) where students simultaneously enroll in classes to form what we term conscious co-

horts.  Settle and Steinbach (2016) and Carlson et al. (2014) also showed that these communities reduce 

students' feelings of isolation and thus improve their course retention.  Similar conclusions have also been 

advanced by Blom et al., (2014) as well as Eckles and Stradley (2012) who found that individual isola-

tion, or limitation to an isolated subgroup can increase the likelihood of dropouts.    
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The development of good community structures is thus essential to education, and is all the more chal-

lenging in online settings.  In face-to-face classrooms, students are furnished with an immediate, and ac-

cessible peer group.  While they may not like their classmates, it is clear whom those classmates are, and 

how they may be reached.  In online settings, students have no set of obvious compatriots.  While their 

classmates may share personal backgrounds, professional goals, and educational challenges, they are of-

ten separated by distances, time zones, and even cultures and may be limited to communicating with one-

another through asynchronous forums, or limited chats.  Thus, even in a class of thousands, a student may 

be very much alone.   

Social Platforms and Social Networks 

As online learning has become more commonplace, and as traditional class sizes have grown to 30, 50 or 

even hundreds, the need for alternative methods to foster and maintain social connections among students 

has grown as well.  As Burns, Light, Light, and Nesbitt (2010, pp. 85) noted, “Many tutors now have to 

deal with large tutorial groups and are coming to use computer-based resources as both an aid and supple-

ment to face-to-face meetings. Tutors are placing course materials on the worldwide web and establishing 

e-mail and conferencing systems as a basis of communication between themselves and their students. 

Some tutors are also setting up online course discussions to run alongside face-to-face tutorials.”    

 

One avenue that many researchers and educators have taken is to incorporate platforms such as Facebook 

which support explicit and implicit social networks. Online social networks, while previously uncommon 

have become a basic means of communication for many.  As noted even back in 2010, Web 2.0 technolo-

gies have enabled students, both in secondary and university level education, to connect and socialize 

with regards to learning in undeniably impactful ways (Eklund & VanDoorn, 2013). Commercial plat-

forms like Facebook have made communication and collaboration fast and easy; this creates a shared 

sense of “social connectedness” (Eklund & VanDoorn, 2013) that can in turn reflect and sustain both 

physical communities with shared personal connections (such as family), or virtual communities of like-

minded individuals with shared interests. The value added from the incorporation of social media tools 

into instructional tutoring software suites such as GIFT is very attractive, especially in online-only 

courses. Increasing users’ ability to collaborate is not just limited to online courses. Implementing certain 

elements of social media into traditional, face-to-face courses has also proven to be quite helpful.  Ball, 

Desbrow, Irwin, and Leveritt (2012), for example, studied classroom use of Facebook and noted that “The 

[Facebook] page enhanced communication and interaction between students and the course instructors, 

interaction with the Facebook page was easy as students were commonly using Facebook for social net-

working, students were able to receive updates and information which may have been missed via other 

communication means,” and “…[the] response to questions and facilitation of discussions were faster 

than relying on email and discussion boards” (Ball et al., 2012, pp.  1227). Bohley et al. (2009) also previ-

ously put forward a conceptual framework for the use of tools such as Facebook to support the formation 

and maintenance of communities of practice. 

 

The topics of social platforms and social networks were of particular interest to the GIFT team in 2017 

due to the potential applications in improving intelligent tutoring systems.  The team performed a trade 

study of available and open-source social platform software suites, and then began to perform feasibility 

studies on potential integrations with the GIFT software suite.  At the conclusion of the studies, it was de-

termined that integrating GIFT with the social networking engine software framework called Elgg (lo-

cated on the world wide web at https://elgg.org) would best serve the community and the GIFT research 

team. 

 

When seeking specific capabilities that add the most value to online learning platforms like GIFT, the re-

search and development teams analyzed subsets of popular platforms such as Facebook and Blackboard to 

https://elgg.org/
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see which capabilities were highest in value and most-feasible to implement in the GIFT software suite 

for future experiments.  Following the advice of researchers like Lee and McLoughlin, “Social software 

tools can be effectively integrated into both face-to-face and online environments; the most promising set-

tings for a pedagogy that capitalizes on the capabilities of these tools are fully online or blended so that 

students can engage with peers, instructors, and the community in creating and sharing ideas” (Lee, 

McLoughlin, 2008, pp. 2). Initial capabilities deemed to have high value-to-feasibility ratings were tools 

such as User-to-User Online Chat, Discussion Boards, File Sharing, Course Groups, and concepts of Cur-

riculum Ownership to automatically create networked groups of students and instructors based on courses 

that users owned and shared in GIFT.  All of these capabilities also happened to be included with Elgg or 

reasonably easy to implement on a software level. 

 

Allowing instructors to quickly, efficiently, accurately, and sometimes automatically grade learners’ per-

formance metrics was a final area of postulated improvement.  A software package such as Blackboard 

aimed to “expand access to education” (Blackboard, 2019), and accomplishes this by allowing instructors 

to “type or upload their course materials into Blackboard” (Lewis, MacEntee, & Youngs-Maher, 2002, 

pp. 921) and then allowing them to manage and grade students’ work. According to one study, a signifi-

cant benefit of Blackboard is that the quizzes save both student and instructor time, thanks to their elec-

tronic nature and self-correcting feature (Fritz, 2003).  This style of automated assessment is largely pre-

sent in GIFT, however, new proposed tools may be integrated with learning management systems, in-

structor dashboards, and/or social networking software to great effect. 

 

In addition to scaffolding students' engagement and course management the use of social networking plat-

forms also provides new opportunities for data analysis.  Educational researchers have long studied stu-

dents' social networks.  For example, Elovici, Fire, Katz, Rokach, and Shapira (2012) and Barnes and col-

leagues (Barnes, Gitinabard, Heckman, Lynch, & Xue, 2017a; Gitinabard, Khoshnevisan, Lynch, & 

Wang, 2018) showed direct correlations between students' social connections and their retention in both 

traditional face-to-face and online courses respectively.  Other researchers have drawn similar conclu-

sions by analyzing social networks created from students' online forum use to evaluate their grades (e.g. 

Oleksandra & Shane, 2016; Dawson et al., 2018), feelings of social connection (e.g. Dawson et al., 2018), 

and completion rate (Choi, Jablokow, Pursel, Velegol, & Zhang, 2016; Andres et al., 2018; Chen & 

Zhang 2017; Carlson et al., 2014; Adamson, Rosé, Sinha, & Yang, 2013).  Prior researchers have also 

identified the formation of distinct subcommunities within courses (Dawson, 2010; Albert et al., 2015; 

Barnes et al., 2017a) and the impact of those communities on students' grades. 

 

This analysis has historically been based either upon the analysis of explicit social relationships which are 

gathered from students via surveys or other direct questionnaires (e.g. Elovici et al., 2012; Farmer & Rod-

kin,1996; De La Fuente, Dimitriadis, Gómez, Martınez, & Rubia, 2003).  Or the analysis of implicit social 

relationships that are estimated from students' participation activities in online forums (e.g. Carlson et al. 

2014; Barnes et al., 2017b), or in rarer cases the collection of phone calls and text messages (Lei, Sinha, 

& Wang, 2015).  In the latter case there is often little ground truth for analysis.  In one rare study, Ca-

pelleri, Peserico, and Samory (2017) analyzed a setting where both explicit and implicit networks were 

available and did find a high degree of duplication between them. Once collected, this data can be ana-

lyzed through standard tools such as Meerkat-ED (Rabbany, Takaffoli, Zaïane, 2011). 

 

Thus by incorporating a social learning platform into the GIFT system, we can vastly enhance its utility 

for students and instructors by providing avenues for the development and maintenance of communities 

of practice among the learners.  We can also provide opportunities for direct peer support and interven-

tion.  Additionally, we can collect social relationship data that can be analyzed to identify students who 

need support, identify potential peers or problems, and to enhance and even tailor instruction to meet stu-

dents' needs through data-driven recommender systems.  That said, the resulting social networks will also 

contain a great deal of personal information that, if abused, could allow for excess monitoring of students' 



 

 

156 

 

social relationships either within or across classes or allow information about individual skills or training 

to be unintentionally revealed.  Therefore, rigid controls and security measures would need to be put in 

place to secure this student data, and strong procedural guarantees would need to be made to prevent 

abuse.   

Evaluation & Results 

In light of this strong research, the GIFT team believed that there is a high value to be provided to GIFT 

users from combining social media with pre-existing educational GIFT courses and experiments based off 

of modern instructional management tools. A private GIFT server was setup for the testing of new social 

media capabilities added to the GIFT software suite with the Elgg framework.  Primary capabilities were 

specifically implemented for social media framework experimentation purposes that are not currently pre-

sent in the deployed public version of GIFT.  These include: 

Automated Login to GIFT Social Media Framework Database 

After a user had created an account at GIFTtutoring.org and logged in to the social media framework ver-

sion of GIFT, the user was also added to an isolated social media framework database.  This allowed for 

full experimentation with the user’s data to occur without impacting any other online version of GIFT 

they may use in the future. 

Course Association Groups and Ownership Rights 

Every user in the GIFT Social Media Framework is able to create their own (and multiple) curriculums, 

courses, and groups.  As such, when a course was created and owned in GIFT, a corresponding social me-

dia group was created with the GIFT author as exclusive owner.  The author was then able to share, in-

vite, and group other GIFT Social Media Framework users as they saw fit into “class groups” for discus-

sions, file sharing, and chatting. 

Friend Invites, Private Messages, and Feeds 

Additionally, every GIFT social media user was able to ask other GIFT users for their ID, invite them to 

be friends, and upon confirmation share in each other’s public account information.  This information in-

cluded profile info, current status, what users liked/disliked, commented on, and group memberships.  

Once a handshake of friend confirmation occurred, each user was also able to message the other and see 

an increased activity feed based on customizable filters.  For instance, a friend may elect to see other 

courses that are newly-created by other authors, but no other information on activities.  

 

A third-party entity performed two phases of testing, using internal GIFT team members to sign in and 

fully exercise the social media capabilities listed above.  Results of initial tests demonstrated that the sys-

tem is robust (crash-free, but not bug-free), and the value expected from the system was tending to follow 

assumptions as, for the first time, GIFT users were able to collaborate together using traditional social 

media methods.   

 

The duration of the tests described above was short, roughly one formal week per each of the two test pe-

riods.  The system was exercised against the entire online GIFT database with roughly 400 users created 

and 1000+ total courses.  A one-to-many mapping of users to their courses was verified, and as the inter-
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nal GIFT team members logged in, they were able to perform all of the functions described above satis-

factorily.  The Elgg framework, once integrated with the GIFT system, provided capabilities beyond those 

which were expected.  As a result, some bugs were discovered, such as not having an automated email 

system available to reset passwords setup on the test server. 

 

In general, team feedback was positive using “Dislike, Neutral, or Like” scales for each capability.  Some 

test users (< 20% of the 20 participants) were overwhelmed by the available new functionality as the So-

cial Media Framework added an entire new layer of GIFT interactions.  The other subset of team mem-

bers focused solely on the existence of bugs, leading to “Dislike” perceptions that would need to be ad-

dressed in a follow-on version.  Additionally, the third-party team setup a logging system to allow for any 

experimental data to be captured, and in 2018 reached a point where further research and direction is re-

quired to determine the highest value next courses of action.   

Discussion 

Students are learning and collaborating at ever-increasing numbers on modern web software tools, thanks 

to platforms such as Blackboard, Facebook, and GIFT. For this reason, the analysis of gaps between 

GIFT+Elgg, having been joined through the integration effort with shared user accounts, and other online 

software suites that serve similar purposes, is a current area of study.  The results of that ongoing gap 

analysis, led the GIFT team to discuss the following items of note.  As social media continues to evolve, 

it can only be assumed that the fusion of social networking and education will evolve as well. In fact, 

some argue that traditional education methods will be left behind entirely as technology continues to in-

fluence learning. “Eventually, teachers and administrators will have difficulty defending traditional peda-

gogies from the challenge of new perspectives toward learning” (Lee and McLoughlin, 2008, pp. 5). 

Viewpoints such as those Lee and McLoughlin (2008) presented above, are what we consider to be main-

stream hypotheses at the time of this writing.  Nearly no contrary evidence is available in public forums 

that disagrees with the statement, “Social media frameworks provide undeniable value to the learning pro-

cess.” The main discussion in public forums and papers center around which capabilities add the most 

value, and the main discussion in software/engineering groups is which capabilities add the most value for 

the least cost of implementation. 

 

Therefore, from the perspective of GIFT research and development, the team focused on the cross-section 

of perceived value-to-cost of implementation and experimentation concerning social media framework 

capabilities. Debates and measures of value will continue to be held, and it is estimated that the following 

items provide the most value to GIFT experimentation:  

 

1) Fixing all bugs with existing capabilities 

2) Removing “stubbed” functionality links, or removing all “dead links,”  

3) Allowing for additional user customization 

4) Investigating additional options for adaptive support and scaffolding with the data 

Conclusions and Recommendations for Future Research 

The integration of social media in education is here to stay.  Learning management systems and online 

learning platforms are now ubiquitous at all grade levels.  Activities in “traditional” classrooms increas-

ingly take place online or even “outside of class.”  This paradigm shift has made student’s online social 
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interactions a core part of the learning process and it provides educators and researchers the opportunity 

to leverage these tools to enhance students’ learning processes.  Our goal in this work is to build on the 

recommendations of Jain and colleagues who proposed creating Learning Management Systems that in-

cluded social networking and visualizations to better understand their students (Jain, Jethwa, Patil, Pod-

dar, & Somani, 2018).  Such social technologies and social analytics have been beneficial for students in 

many other domains. The next frontier is applying this immersive learning technology to military training 

where the support can help students to connect with one another, to continue in their coursework, and 

even to form the community of trainees that is essential to military training. Once existing features are 

stabilized in the GIFT-Elgg implementation, adding features that allow instructors to better manage their 

classes and visualize information may therefore be of the highest value.  Similarly, as Ali and Qazi (2018, 

pp.  295)  state, “...the usage of SNS-FB for formal learning helped in transforming the students’ percep-

tion of the assignment. The students perceive that such activities help them not only to complete their 

class assignment, but it also enhances their learning, improves interaction with the instructor, helps to en-

gage more with peers and most importantly promotes critical thinking”. 

 

There is still much more research that needs to be done. Many recent studies suggest that more quantita-

tive assessments should be performed in future experiments. Visualization tools such as instructor dash-

boards and analytics that display current system usage for further experimentation are likely next in line 

to experiment with.  Additionally, more work should be done to evaluate how the students' online social 

relationships would relate to their direct study habits, support needs, and goals.  While prior research has 

shown that these social networks can be analyzed to predict performance and relationships, more is neces-

sary to make those predictions into productive guidance. 

   

With the integration of GIFT and the social media framework, we will have increased opportunities for 

experimentation, intervention, and analysis. According to Ozonur and Tomak (2018), "Researchers 

should investigate whether motivational and social presence levels increase based on instructional design. 

These additional studies would contribute further to the literature and the efforts of distance education 

practitioners to provide better opportunities for learners” (pp. 12). By adding tools to better manage and 

visualize instructor activities and student performance, we will be able to provide the highest value to the 

GIFT community.  As a result of these improvements, engagement between students and instructors could 

then be better quantitatively measured. As Abidi, Hussain, Zhang, and Zhu (2018) suggest, student en-

gagement is complex and dependent on several factors such as teaching experience, course design, teach-

ing style, and course concepts. Experimenting with, extending, and integrating tools mentioned in this 

work will help us meet the experimental goals suggested in prior work.  Further, it will help us enhance 

the learning opportunities for students and instructors and it will move the needle on military training by 

bringing it into the ever more online and social future.  
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Introduction 

Informing self-improving systems to tune their models at runtime and take possible effects into account 

includes designing systems that can re-arrange their overall structure and thereby self-improve performance 

(Bellman, Tomforde, & Würtz, 2014). In the field of military education and training, to successfully design 

a self-improving system still requires basic research into what are the most salient traits and competencies 

that are relevant in human-computer interaction interactions from which a system can self-improve.  One 

area that is ripe to examine this interaction of traits and contexts is in the area of moral and ethical decision 

making, or perhaps more appropriately, the Ancient Greek notion of phronesis, an area directly implicated 

in the goal of developing military leaders that can disobey orders “smartly”—one of three main considera-

tions Army Chief of Staff General Milley has identified as necessary in preparing future US Army leaders 

(Barno & Bensahel, 2017).    

Self-Improving Systems 

Bellman, Tomforde, and Würtz (2014) have provided an insightful analysis of how self-improving systems 

incorporate several aspects of mutual influence between components, including how heterogeneous ele-

ments interact, the indirect influence of observable behaviors, and the context of the system. These elements 

depend on valid and timely knowledge of how these components interweave to address dynamically chang-

ing goals and priorities, the availability of resources, and details of operational contexts. Mastery of these 

systems requires self-organization elements such as adaptivity and flexibility to achieve a more organic, 

life-like functionality. It could be argued that the complex challenges in designing effective modelling, 

analysis, and infrastructure for a self-improving system that supports successfully interwoven systems 

could be aided in setting boundary conditions on objective functions that guide behavior.  

Bellman et al. (2014) propose that one such possible solution includes developing a model in a domain that 

is inherently uncertain and dynamic that still allows for a constrained set of goals and priorities that would 

allow related systems to reflect, evaluate, and respond about the possible effects of interactions.  With this 

thoughtful analysis in mind, the authors of this chapter suggest the domain of moral and ethical decision 

making for military decision-makers. However, we want to contextualize our notions of moral and ethical 

decision making in a religious neutral framework. When we discuss moral and ethical decision making, our 

orientation is more along the lines of the notion of phronesis. Phronesis is Greek for “practical wisdom,” 

derived from learning and evidence of practical things. Thinking, creativity, and discriminate intelligence 

are the products of phronesis, enabling individuals to apply discernment in human activity, make good 

judgements, and determine the right thing to do in practical everyday situations. It is within this context 

that we define the conversational landscape of moral and ethical decision-making. 
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Ethical Decision Making in Military Actions  

The complexity of decision-making for military leadership includes encompassing the ethical implications 

of military actions (Reed et al., 2016). In 2006, a mental health advisory team (MHAT), working for the 

Office of the Surgeon General, published a report that addressed the mental health of combat soldiers de-

ployed in Operation Iraqi Freedom, but also addressed the topic of battlefield ethics (MHAT, 2006). In this 

report, the following findings were reported: 

 Whereas 85% of Soldiers and Marines reported receiving training in treating non-combatants, 33% 

of Marines and 29% of Soldiers did not agree that their commanding officers were explicit in terms 

of prohibiting mistreatment of non-combatants.  

 The data revealed that 47% of Soldiers and 38% of Marines agreed that non-combatants should be 

treated with dignity and respect, whereas 17% agreed that all non-combatants should be treated as 

insurgents.  

 Over a third of Soldiers and Marines reported that torture should be allowed in circumstances where 

it was deemed necessary to save the life of a fellow Soldier or Marine or to obtain important infor-

mation about insurgents.  

 The data revealed that 28% of Soldiers and 31% of Marines reported facing ethical situations in 

which they did not know how to respond.  

Of particular relevance to military education and training is the last reported statistic: the uncertainty of 

28% of Soldiers and 31% of Marines who reported facing ethical situations in which they did not know 

how to respond. It is in this gap, the gap to provide education and training to support ethical considerations 

in decision-making, where self-improving, machine ethics systems are needed to address not only top-level 

military leadership, but all military personnel.   

Litz et al. (2009) suggest that combat experiences that violate deeply held moral beliefs and expectations 

may lead to moral injury and spiritual distress.  Wortmann et al. (2017) maintain that helping morally 

injured war veterans falls within the scope of mental health clinicians, whereas the MHAT report recom-

mended that soldiers be given battlefield ethics training (MHAT, 2006).  

There have been some investigations into the plausibility of replacing or supplementing human soldiers 

with autonomous robotic warriors to improve ethical outcomes in combat situations, as well as providing 

human soldiers with support tools for ethical-decision making (Reed & Jones, 2013). However, developing 

a system that combines human behavioral and goal inputs with the capabilities of a self-improving system 

is arguably a better model than those that rely solely on mathematical models (Reed & Jones, 2013) or case-

based reasoning technology (Althuizen & Wierenga, 2014).  

There is an emerging body of research in machine ethics that involves developing machines, either as hard-

ware or as mathematical/logical models, with codified ethics principles, parameters, and procedures that 

allow decision-makers to consider the ethical implication of potential actions (Reed et al., 2016). This field 

involves the design and development of models that use rules, attributes, consequences, or principles asso-

ciated with actions to suggest an ethically sound action or guide the user through an ethical decision-making 

process (Reed et al., 2016). Given the complexity and constraints in this nascent field of machine ethics, 

this work confirms our belief that the moral and ethical decision-making domain is a viable place to examine 

and test optimization of designs for self-improving systems. 
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Importance of Ethical Decision-Making in Military Contexts 

Ethical decision-making can best be described as a process of rational analysis oriented towards resolving 

an ethical dilemma (Betan, 1997). To date, there have been a number of different ethical decision-making 

models that offer linear instructions for navigating through dilemmas (Cottone, & Claus, 2000), yet there 

is no standard model to address this issue as ethical decision making has, since the time of the Ancient 

Greeks, been acknowledged as an inherently complex task (Neukrug, et al., 1996). Yet this complexity is 

not a viable excuse for negligence in this area.    

Contrary to popular opinion, military culture is not one that insists on unquestioning and blind obedience 

to leadership (Mastroianni, Kimmelman, Doty, & Thomas, 2011).  Rather, there is a standing legal obliga-

tion for service members to disobey orders under circumstances (Mastroianni, Kimmelman, Doty, & 

Thomas, 2011) and more recently, for military leadership to learn how to disobey orders “smartly,” as noted 

by Chief of Staff of the Army General Mark Milley in his address to attendees at the 4 May 2017 Com-

manders Series Event (Barno & Bensahel, 2017).  

The notion that soldiers are required to challenge and disobey unlawful orders harkens back to 1799 when 

the US Supreme Court held Navy commanders “act at their own peril” when obeying illegal presidential 

orders (Powers, 2018). Famously, the My Lai Massacre of 16 March 1968 rejected First Lieutenant William 

Calleys’ defense of “I was only following orders” when he was sentenced to life in prison after his convic-

tion of premeditated murder.   

In 2004, the mistreatment of prisoners in Iraq again underscored the criminality of this offense under both 

international law and the Uniform Code of Military Justice (Powers, 2018). However, military personnel 

can still be held accountable for crimes committed even when obeying orders. And while there is no re-

quirement for obeying orders that are unlawful, disobeying orders is done at great peril by service members.  

This is because the determination of an illegal or unlawful order rests on the determination of military 

superiors and the military court system (Powers, 2018).   

This appeal to higher authority to resolve disagreements means that military service men and women are at 

great risk if they choose to disobey an order, even though at the same time they are legally bound to a 

standard that requires them to act ethically. This is clearly a contradiction of ethical directives. Compound-

ing this murkey space is the fact that irrespective of legal consequences, the psychological consequences 

that arise from the guilt or doubt of executing or failing to execute an order can have long term negative 

consequences (Mastroianni, Kimmelman, Doty, & Thomas, 2011), including contributing to PTSD (Litz et 

al., 2009; Bryan, Ray-Sannerud, Morrow, & Etienne, 2013). Given the gravity of both these potential out-

comes, the necessity to develop systems that can address the development of moral and ethical decision-

making, or phronesis, is not only self-evident but has been recognized by Army leadership as an imperative 

for the future success of the US Army (Barno & Bensahel, 2017). These efforts should begin with devel-

oping a self-improving system that can adaptively guide and support learners in moral and ethical thinking 

and reasoning training.  

Informing Designs of Self-Improving Systems Derived from AIS Practices 

To date, there have been a number of different moral/ethical decision-making models that offer linear in-

structions for navigating through dilemmas (Cottone, & Claus, 2000), yet there is no standard adaptive 

instructional model to address this issue. Given the complexity of the domain in combination with the 

inherent unique traits and abilities of learners, adaptive instructional systems (AISs) may be the best model 

to devise and deploy replicable, effective moral/ethical decision-making training.  
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AISs are computer-based systems that guide learning experiences by adapting instruction and recommen-

dations based on the goals, needs, or preferences of the learner as well as intelligent computational proce-

dures (Sottilare, Barr, Robson, & Graesser, 2018). While there is a lack of consensus on the exact nature of 

an AIS, one viable description identifies AISs as systems that include one or more of the following three 

broad approaches to support learning objectives for the learner: macrolevel adaptions, aptitude-treatment 

interactions, microlevel adaptions (Park & Lee, 2003).  

Macrolevel adaption includes instructional alternatives selected on the basis of student’s instructional goals, 

ability, and achievements in a curriculum structure (Park & Lee, 2008). Aptitude-treatment interactions 

include adaptions relevant to specific instructional procedures and strategies specific to learner character-

istics (Park & Lee, 2008). Lastly, microlevel adaptions include adaptations of instruction by way of assess-

ment of a learner’s specific learning needs during instruction and subsequent responsive instructional pre-

scription in response to those needs (Park & Lee, 2008).  

Macrolevel Adaption  

Devising a self-improving system informed by best practices in AISs includes determining the parameters 

of the macrolevel adaption for supporting moral and ethical thinking and reasoning skills. For the purposes 

of this chapter, our initial parameters include addressing the needs of the US Army and their service mem-

bers. Building within that parameter space, instructional goals need to be aligned by the US Army’s lead-

ership on key principles on ethical and moral decision-making in combat contexts. This would include an 

instructional design that would support the development of expert problem solving within the domain of 

ethical and moral decision making in a military context. Possible iterations of an instructional design could 

include game-based learning, but a preferable model would feature dialogic, interactive activities (Chi, 

2009) facilitated by a human-virtual agent to support the development of a learner’s critical thinking and 

perspective of role-taking abilities.  

It is important to note here that there is a robust body of literature that has provided compelling evidence 

that instructional and joint interactive discourse activities are central to effective learning (Chi, 2009; Chi 

& Wylie, 2014; Reznitskaya & Gregory, 2013). Chi (2009) notes that these kinds of interactive activities 

include self-construction, guided-construction, sequential-construction, and co-construction of knowledge. 

These activities represent spaces where the learner has the benefit of contributions from a dialogue partner, 

including receiving additional information, new perspectives, corrective feedback, or -- what is particularly 

important for moral and ethical thinking and reasoning development -- opportunities to pursue new paths 

or lines of reasoning.  

But perhaps even more relevant to this discussion is the empirical evidence that indicates the potential of 

interactive discourse activities as effective methods to develop higher order thinking and deeper under-

standing of subject-matter knowledge for learners (Chi & Wylie, 2014). The importance of this provides 

parameters that can be used to evaluate the affordances of employing game-based learning or a human-

virtual agent in developing moral/ethical thinking and reasoning abilities in the learner.  Namely, the effec-

tiveness of both platforms lay less in their novelty or ability to motivate or engage learners. Rather, game-

based environments and human-virtual agents can potentially provide superior replicable and trackable 

learning environments when oriented towards supporting interactive discourse activities that facilitate co-

construction of knowledge – a central element in developing moral and ethical thinking and reasoning.  
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Aptitude Treatment Interactions  

Initial exploratory work should also include identifying aptitude-treatment interactions that are adaptive to 

the learner as derived from specific learner characteristics.  In this instance, examining the learner charac-

teristic of moral sensitivity would be instrumental in this effort. Moral sensitivity is the ability of a person 

to recognize when an ethical issue even exists (MacIntyre, Doty, & Xu, 2016). While thinking morally or 

ethically may not be an inherent characteristic skill or trait, the literature suggests that this capacity may be 

developed (Jordan, 2007; MacIntyre, Doty, & Xu, 2016; Rest, 1986; Reynolds, 2008; Sadler, 2004; Sparks 

& Hunt, 1998).  

Moral Sensitivity 

A central tenant to thinking morally or ethically is the notion that moral sensitivity includes the awareness 

of how one’s actions effect other people, and the ability to critically reflect on possible scenarios of cause-

and-effect consequences of events in the real world (MacIntyre, Doty, & Xu, 2016). To successfully ac-

complish this requires the ability to be perceptive and sensitive in a given situation, an ability to achieve 

mindfulness in order to recognize moral issues, or in other words, the ability to be empathetic and engage 

in perspective or role-taking (MacIntyre, Doty, & Xu, 2016).  

As a comprehensive approach to understanding ethical sensitivity, MacIntyre, Doty, and Xu (2016) have 

developed a global ethical sensitivity instrument, the Life Events Survey, that is domain-general and can be 

used to measure the “Degree of Mindfulness,”—mindfulness having been identified by these same authors 

as a capacity centrally implicated in moral sensitivity. Ideally, this instrument could be used as a central, 

self-organizing element upon which adaptivity and flexibility would drive instruction, interventions, and 

feedback.  

Microlevel Adaptions 

Arguably, addressing microlevel adaption is the area that would be the most challenging in developing a 

self-improving system to support ethical and moral thinking and reasoning.  The microlevel represents the 

meeting place where the macrolevel and aptitude treatment interactions interweave to address dynamically 

changing goals and priorities, assess the availability of resources, monitor details of operational contexts 

by way of assessment of a learner’s specific learning needs during instruction and their responses to in-

structional prescriptions, or ideally interactive discourse activities.  This would require the integration of 

sensors that can provide data on facial and gestural cues, as well as the integration of natural language 

processing capabilities that could detect, decipher, and respond to discourse activities. These activities 

would dynamically adapt as the learner progresses through activities that would support self-awareness, 

self-regulation, and opportunities to think, reflect, and practice skills that can be called upon in future cha-

otic and morally ambiguous combat circumstances.  

In essence, employing instructional mediums such as game-based or human-virtual agents in a self-improv-

ing system would allow for a framework of standardization of instruction that is still adaptable, flexible, 

and responsive to the learner. Further, this approach would allow for an assessment function that could be 

monitored by instructors, enabling a comprehensive collection of data to track learner’s progress and use 

as a forward feed for future self-improving iterations of the learning experience.  For example, employing 

the Generalized Intelligent Framework for Tutoring (GIFT) (Sottilare, Brawner, Sinatra, & Johnston, 2017) 

as the framework within which to build this moral and ethical training system would be an optimal platform 

to both design and deliver an adaptive course in ethical and moral decision making.   
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GIFT’s functionality allows for instructional designers to integrate game-based and/or human-virtual agent 

mediums into a singular course. Additionally, trait assessment surveys and pre- and post-tests can be built 

into the same course that could be used to adapt the sequencing and complexity of content for each indi-

vidual learner.  GIFT also provides a comprehensive data output on not only survey and assessment re-

sponses, but also actions taken while an individual is engaged with the game-based and/or human virtual 

mediums, allowing for a comprehensive fine-grained analysis on the learner’s engagement and learning 

outcomes. In this way, designing a self-improving system to support the moral and ethical decision making 

capabilities of emerging military leaders can be standardized at a macro-level, yet responsive to individual 

traits and competencies at the microlevel. Using GIFT as the framework for this self-improving system 

would also allow for cost-efficient replication and ease of delivery when capitalizing on GIFT’s cloud-

based functionality (Sottilare, Brawner, Sinatra, & Johnston, 2017). 

Final Thoughts 

Design considerations for a self-improving system includes an examination of the elements necessary to 

realize an interwoven, adaptive, and life-like system. This includes creating a system that is driven by do-

main-specific goals that contain intelligent parameters, and implements components that capitalize on rel-

evant theories of human behavior and cognition. A self-improving system oriented towards supporting the 

ethical and moral decision-making capabilities (as aligned with the notions of phronesis) of combat military 

personnel not only is an appropriately dynamic and complex domain but addresses a critical need for the 

present and future US Army. Building such a system in the GIFT platform would not only provide a repli-

cable course that can adapt instruction and sequencing of courses for individual learners, but it would pro-

vide an ease of delivery for emerging military leadership around the world.  
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CHAPTER 19 – SIMPLE HUMANS, EVOLVING COMPUTATION, 
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Introduction 

A fundamental approach to developing self-improving intelligent tutoring systems (ITSs) is to have differ-

ent sources of assessment on the quality of the decisions, solutions and algorithms. The sources of assess-

ment can be categorized in various ways, but we identify the major categories as being theoretical models, 

computational algorithms, human judgments, and empirical performance. Quality is high on the theoretical 

model front when an implementation (i.e., decision, solution, algorithm, or entire system) is compatible 

with the features of a theory, model, or hypotheses that is widely accepted in scientific research and practice. 

The quality of a computational algorithm increases to the extent that implementation is fast, efficient, com-

plete, general, interoperable, and so on. There are different stakeholders who can provide human judgments 

of an implementation: learners, instructors, learning engineers, researchers, and supervisors. Empirical per-

formance includes learning gains, engagement, and other psychological measures that can be objectively 

measured and that validate the success of an implementation.  

The main point of this chapter is to make the case that all sources of assessment have limitations that de-

signers of self-improving intelligent tutoring systems (SI-ITSs) need to consider. There is no perfect gold 

standard. Designers bicker endlessly on which theoretical model to adopt and on the adequacy of a compu-

tational algorithm. Humans disagree in their judgments and typically rely on simple cognitive heuristics 

when making judgments and decisions. Many would agree that empirical performance should be high in 

the priority of considerations, but performance data are often difficult to obtain, and alternative measures 

of performance sometimes reflect trade-offs rather than consistency. Given there is no perfect gold standard 

for the quality of an implementation, judgments will need to be made in setting priorities and weights on 

the alternative sources of assessment in SI-ITS design.  

It is widely acknowledged that the existing ITSs are far from perfect and that the various blemishes run the 

risk of frustrating learners or having a minimal impact on learning gains. That is a major part of the inspi-

ration for building SI-ITSs: The ITS will hopefully improve over time as data are collected and computa-

tional algorithms are modified through machine learning. In contrast, it is too often not acknowledged that 

human judgments are typically based on simple heuristics and that humans often disagree. The simplicity, 

errors, and other limitations of human judgments need to be better understood in order to make wiser deci-

sions on when they should be trusted. This chapter addresses the limitations and implications of human 

judgments in SI-ITS design.  

Related Research 

The design of many ITSs rely on judgments of humans. Curriculum experts generate the lessons, subject 

matter experts identify important content, language experts decide whether natural language expressions 

are similar in meaning, “markers” grade the quality of essays, students judge the quality of the learning 

experience, and instructors judge the pedagogical quality of the ITS. These judgements are necessary for 

the generation, modification, and tuning of ITS content and mechanisms.  
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ASSISTments (Heffernan & Heffernan, 2014, https://www.assistments.org/) and BrainTrust (Olney, 2018) 

are two exemplary ITSs that illustrate how human judgments are part of the ongoing process of improving 

an ITS. ASSISTments is a system that allows teachers to create materials for mathematics (as well as other 

topics) to see how well students perform, and to interact with researchers on possible improvements based 

on the science of learning. Authoring tools are available to guide the instructors in creating the materials. 

The Builder guides the curriculum designer or teacher in creating lessons, whereas the Teacher view shows 

performance of particular students on particular lessons, and the Student view guides the students in com-

pleting tasks and viewing feedback on their performance. These three perspectives are extremely important 

for scaling up a system because it accommodates the points of view of curriculum designers, instructors, 

and students. In 2015, ASSISTments was used by over 600 teachers in 43 states and 12 countries, with 

students completing over 10 million mathematics problems. Learning gains are well-documented and ex-

plain the success in the system being scaled up for widespread use. Rochelle, Feng, Murphy, and Mason 

(2016) reported that ASSISTments improved mathematics scores reliably and larger than normal expecta-

tions of growth.  

In BrainTrust (Olney & Cade, 2015) students read and work with a virtual student on a variety of educa-

tional tasks related to the reading. These educational tasks are designed to both improve reading compre-

hension and contribute to the creation of an ITS based on the material they read. After a human student 

reads a passage, they work with the virtual student to summarize, generate concept maps, reflect on the 

reading, and answer questions. The virtual student’s performance on these tasks is a mixture of previous 

student answers and answers dynamically generated using Artificial Intelligence (AI) and natural language 

processing techniques. As the human teaches and corrects the virtual student, they in effect improve the 

answers from previous sessions, author tutorial dialogues, and improve domain models underlying the ITS. 

BrainTrust creates content by letting novices and AI do the authoring but then letting other novices check 

the work to ensure quality. As the human teaches and corrects the virtual student, they in effect improve 

the answers from previous sessions and author a domain model for the underlying ITS. 

ASSISTments and BrainTrust are examples of SI-ITSs that are hybrids between human judgments and 

computational algorithms as sources of quality. There are a number of other systems that follow a similar 

hybrid foundation, such as SimStudent (Matsuda et al., 2013). In addition to the original content and tutoring 

strategies being guided by theory, they can evolve in a data driven fashion through crowd sourcing and 

machine learning on the growing corpus. Learning gains have also been assessed in these systems as 

measures of performance. Consequently, all four sources of quality assessment are to some extent involved 

in the development of these SI-ITSs.  

It is important to acknowledge, however, that many if not most of the judgments of humans are imperfect. 

When humans make judgments and decisions, they routinely use simple mental shortcuts, called heuristics, 

to handle complexity and uncertainty. This results in their considering one or a few aspects of a complex 

problem but ignoring others. The simple heuristics work under many circumstances, but they also some-

times systematically deviate from rational theory and accuracy. Tversky and Kahneman (1974) documented 

many of these heuristics in their landmark Science paper. For example, according to the availability heu-

ristic, humans often select options that are easier to access from memory. According to the base rate fallacy, 

people overestimate a very rare property of a category and underestimate a very common property. Human 

judgments are constrained by available information, time constraints, and cognitive limitations during the 

reasoning process.  

Sometimes human judgments can be quite reliable in the sense that the individuals agree. For example, 

trained judges have a reasonable level of agreement when judging whether two language expressions are 

similar in meaning (Cai et al., 2011; Rus, Olney, Foltz, & Hu, 2017; Rus, Lintean, Banjade, Niraula, & 

Stefanescu, 2013) and the quality of an essay (Foltz, Streeter, Lochbaum, & Landauer, 2013). The agree-
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ment is assessed with a variety of indices, such as correlations, kappa scores that control for baserate dis-

tributions, F-measures in computational linguistics, and so on.  In contrast, trained judges show low to 

moderate agreement on judgments of syntactic complexity (Graesser, Wiemer-Hastings, Kreuz, Wiemer-

Hastings & Marques, 2000) and emotions of learners during learning (D’Mello, Craig, & Graesser, 2009). 

Novices show high agreement on the extent to which word concepts evoke a vivid mental image but disa-

gree substantially on how interesting they consider the word concepts. The value of human judgments ob-

viously decreases with the reliability of their judgments. Designers of SI-ITSs need to systematically keep 

track of which human judgments to trust and which to discard.  

Added to this complexity is the difficulty inherent in devising assessments that do not merely align with 

content but measure the intent of the learning objectives. Black (2004) maintained that any assessment of 

learning should be aimed to promote students’ learning. Importantly, Black (2004) distinguished between 

assessment activities that serve the purposes of accountability or ranking, and that of certifying competence. 

Further, when assessments provide feedback that influences modification of teaching and learning activi-

ties, assessments are formative in the learning experience. The formative assessments provide evidence for 

teachers to adapt their teaching activities to better meet the learning needs of their students (Black, 2004). 

Accordingly, without thoughtful consideration as to the why or to what end content is taught, assessment 

measures will not capture whether learning actually occurred and whether it will support further learning.  

Perhaps accomplished teachers and pedagogical theories can come to the rescue and help sort out which 

human judgments to trust. Unfortunately, the theoretical foundations of pedagogy in colleges of education 

and classroom practice are not closely aligned with the science of learning. For example, Nathan and Pe-

trosino (2003) documented that “expert blind spots” of teachers are often incompatible with algebra perfor-

mance. The teachers’ professional development leads them to conclude that a symbolic algebra problem 

should precede a contextualized word problem, whereas the performance data suggest the opposite. Nathan 

and Petrosino (2003) identify a number of expert blind spots that are alarmingly frequent across mathemat-

ics, science, and the language arts.  

A study commissioned by the National Council on Teacher Quality (Pomerance, Greenberg, & Walsh, 

2016) investigated whether some well-documented scientific principles of learning were included in the 

professional development programs in colleges of education. These principles included (1) space learning 

over time, (2) interleave worked example solutions with problem solving exercises, (3) combine graphics 

with verbal descriptions, (4) connect and integrate abstract and concrete representations of concepts, (5) 

use quizzing to promote learning, and (6) ask deep explanatory questions (Pashler et al., 2007). Pomerance 

et al. (2016) conducted an analysis of 48 textbooks and 48 teacher education programs in the United States 

by tracking the occurrence of the above 6 principles of learning. According to the report, there was not a 

single textbook that covered the 6 principles and no book covered more than 2 principles. Regarding the 

coursework, most programs prepared candidates for only a single principle and one-third none at all.  

The science of learning, which has often been integrated with modern ITSs, has not had much of an impact 

on teacher education and practice. There are many potential reasons why the scientific principles of learning 

and instruction are not integrated with the mainstream educational settings. The teachers may not be aware 

of the principles or the principles may be too difficult to integrate in a classroom setting. The training may 

be primarily focused on some of the major summative assessments demanded by the state or by Federal 

government, such as No Child Left Behind, Race to the Top, or the Common Core. Perhaps the teachers use 

more sophisticated pedagogical methods that are superior to the principles of learning. If so, the superior 

principles need to be articulated, tested, validated, and compared with the existing scientific principles.  

The process of one-on-one human tutoring also falls prey to inaccurate human judgments (Chi, Siler, 

Yamauchi, Jeong, & Hausmann, 2001; Graesser & Person, 1994). Graesser, D’Mello, and Person (2009) 

analyzed the metacognitive judgments of tutors and students in human-to-human tutoring sessions. They 
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identified five major tutoring illusions that stem from the large gap in knowledge between the tutor and 

students:  

(1) Illusion of grounding. The unwarranted assumption that the tutor and student have shared knowledge 

about a word, referent, or idea being discussed in the tutoring session. Given the low common 

ground between tutor and tutee, this assumption is false.  

(2)  Illusion of feedback accuracy. The unwarranted assumption that the feedback that the student or tu-

tor gives to each other is accurate. For example, tutors incorrectly believe the students’ answers to 

their comprehension gauging questions (e.g., “Do you understand?”). The more knowledgeable stu-

dents have a higher likelihood of saying they do not understand; there is a significant negative rela-

tionship between their understanding and saying yes, they understand (Chi et al., 2001; Graesser & 

Person, 1994). On the flip side, tutors have a higher likelihood of giving positive than negative short 

feedback to erroneous or vague student contributions (Graesser & Person, 1994).  

(3) Illusion of discourse alignment. The unwarranted assumption that the student understands the dis-

course function, intention, and meaning of the tutor’s dialogue contributions. For example, tutors 

sometimes give hints, but the students do not realize they are hints.  

(4) Illusion of student mastery. The unwarranted assumption that the student has mastered much more 

than the student has really mastered. The student believes they have mastered a complex concept 

when the student expresses a word or phrase rather than a more complete and precisely articulated 

answer to a tutor question. Tutors often make the same conclusion about a student’s mastery.  

(5) Illusion of knowledge transfer. The tutor’s unwarranted assumption that the student understands 

whatever the tutor says and thereby knowledge is accurately transferred. In actuality, the students 

typically understand very little, as revealed by their responses to follow up questions and requests for 

actions or summarization.  

One important consequence of these illusions is that tutoring process data can sometimes have misleading 

results in simple data mining and machine learning procedures. For example, consider a tutoring pattern in 

which a tutor asks a comprehension gauging question (“Do you understand?”), followed by a positive re-

sponse by the student (e.g., “Yes”, head nod). That might be viewed as a positive signal of success with 

respect to the previous tutoring exchange in a simple reinforcement learning algorithm. As discussed, how-

ever, we know from human tutoring research that it is the less knowledgeable students who tend to answer 

yes. As another example in the arena of human emotions, the more knowledgeable students tend to experi-

ence confusion as they attempt to solve difficult problems that elicit cognitive disequilibrium (D’Mello, 

Lehman, Pekrun, & Graesser, 2014). Therefore, confusion may be a signal of success rather than failure. 

The mechanisms of learning and motivation are quite complex, sometimes with counterintuitive tradeoffs, 

so simple machine learning analyses will run the risk of being misleading.  

Discussion and Recommendations 

This chapter has identified some of the limitations of the major sources of assessing the quality of an SI-

ITS and its components: theoretical models, computational algorithms, human judgments, and empirical 

performance. So how do designers minimize these problems? We offer three recommendations. 

The first recommendation is to engage in an ongoing validation of each source. Theoretical models are 

consistently being tested in the normal evolution of the scientific method. The chief challenge lies in iden-

tifying the precise scope of each theoretical model with respect to the knowledge domain, depth of acqui-

sition, population of learners, and sociocultural context of application (National Academy of Sciences, En-

gineering, and Medicine, 2018). An ITS for memorizing facts is very different than an ITS for team collab-

orative problem solving, for example. Computational algorithms are routinely validated with respect to 

specific data sets, corpora, and applications, but run the risk of having minimal generality to the design of 

new SI-ITSs. Individual human judges need to be validated with respect to (a) their consistency over time, 
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(b) agreement with other judges, and (c) alignment with objective performance data; judges need to be 

removed from consideration if they do not meet these three criteria. And finally, empirical performance 

measures need to be validated by (a) verifying their similarity to other measures that target the same theo-

retical construct and (b) considering complex interactions between learning, motivation, and emotions.  

The second recommendation is for the field, including the Generalized Intelligent Framework for Tutoring 

(GIFT), to identify problematic sources of quality assessment. A good example is learning styles (e.g., “I 

learn best visually rather than in language”) that are measured by self-report ratings and judgments (as 

opposed to process and performance data). Self-reported learning styles are known to be bogus, even though 

they are popular in the public. Another example is machine learning solutions that optimize a single meas-

ure, such as learning efficiency (amount of learning per unit time) that does not consider the difficulty of 

the material. The wisdom of high quality versus low quality measures needs to be accumulated, preserved, 

and applied in the GIFT community.  

The third recommendation is integrating the quality assessments from all four sources in the self-improve-

ment process. Some features and feature configurations should be necessary or highly weighted, others 

should be optional with some weight value, and yet others should be zero or weighted negatively. These 

assessment weights need to be incorporated into the guts of the machine learning algorithms in the evolving 

SI-ITS. Without this step, the designers are unlikely to develop a smart ITS that improves learning and 

motivation.  
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