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GIFT is a free, modular, open-source tutoring architecture that is being developed to capture best tutoring 
practices and support rapid authoring, reuse and interoperability of Intelligent Tutoring Systems (ITSs).  
The authoring tools have been designed to lower costs and entry skills needed to author ITSs and our 
research continues to seek and discover ways to enhance the adaptiveness of ITSs to support self-regulated 
learning (SRL).   

This year marks the seventh year of GIFT Symposia and we accepted 20 papers for publication.  None of 
this could happen without the efforts of a fantastic team.  Our program committee this year did an 
outstanding job organizing and reviewing, and we want to recognize them for their efforts. 

 

 

We are proud of what we have been able to accomplish with the help of our user community. This is the 
fifth year we have been able to capture the research and development efforts related to the Generalized 
Intelligent Framework for Tutoring (GIFT) community which at the writing of these proceedings has well 
over 1000 users in over 65 countries. 

These proceedings are intended to document the evolutions of GIFT as a tool for the authoring of intelligent 
tutoring systems (ITSs) and the evaluation of adaptive instructional tools and methods.  Papers in this 
volume were selected with the following goals in mind: 
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• The candidate papers describe tools and methods that raise the level of knowledge and/or capability 
in the ITS research and development community 
 

• The candidate papers describe research, features, or practical applications of GIFT 
 

• The candidate papers expand ITSs into previously untapped domains 
 

• The candidate papers build/expand models of automated instruction for individuals and/or teams 

The editors wish to thank each of the authors for their efforts in the development of the ideas detailed in 
their papers.  As a community we continue to move forward in solving some significant challenges in the 
ITS world.   

GIFT and the GIFT Symposium will take on a broader perspective as the new Center for Adaptive 
Instructional Sciences (CAIS) begins formal operations under ARL’s Open Campus Initiative.  The purpose 
of CAIS is to encourage the community development of adaptive instructional capabilities & standards.  
You can learn more about CAIS at https://www.arl.army.mil/opencampus/centers/cais. 

Also new this year is GIFT Summer Camp which will pilot in June 2017.  GIFT Summer Camp will teach 
an initial group of GIFT stakeholders how to author adaptive tutors using GIFT.  Summer Camp follows 
on the heels of a successful assessment of the GIFT authoring tools earlier this year.  Our intent is to open 
Summer Camp up to public users in 2018. 

Finally, GIFT instructional videos will be available on YouTube this summer. 

We would also like to encourage readers to follow GIFT news and publications at www.GIFTtutoring.org.  
In addition to our annual GIFTSym proceedings, GIFTtutoring.org also includes volumes of the Design 
Recommendations of Intelligent Tutoring Systems, technical reports, journal articles, and conference 
papers. GIFTtutoring.org also includes a users’ forum to allow our community to provide feedback on GIFT 
and influence its future development. 

Many thanks to all GIFT users… 

Ben 

Benjamin Goldberg, Ph.D. 
GIFTSym7 Chair and Proceedings Editor 

 

 

 

 

 

 

https://www.arl.army.mil/opencampus/centers/cais
http://www.gifttutoring.org/
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THEME I: GIFT OVERVIEW 
AND UTILITY 
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Architecture and Ontology in the Generalized Intelligent 
Framework for Tutoring: 2019 Update 

Keith Brawner1, Michael Hoffman2, Benjamin Nye3, Chris Meyer4 

U.S. Army Research Laboratory1, Dignitas Technologies2, Institute for Creative Technologies University of Southern 
California3, Synaptic Sparks Incorporated4 

INTRODUCTION 

The first version of the Generalized Intelligent Framework for Tutoring (GIFT) was released to the public in 
May of 2012. One year later, the first symposium of the GIFT user community was held at the Artificial 
Intelligence and Education conference in Memphis, Tennessee. Since then, the GIFT development team has 
continued to gather feedback from the community regarding recommendations on how the GIFT project can 
continue to meet the needs of the user community and beyond. This current paper continues the conversation 
with the GIFT user community in regards to the architectural “behind the scenes” work and how the GIFT 
project is addressing the user requirements suggested in the previous GIFTSym6 proceedings. The 
development team takes comments within the symposium seriously, and this paper serves to address 
requirements from prior years. 

As a follow up to the “GIFT 2015 Report Card and State of the Project” (Brawner & Ososky, 2015), the GIFT 
2016 Community Report (Ososky & Brawner, 2016), the GIFT 2017 Architecture Report (Brawner, Heylmun, 
& Hoffman, 2017), and the 2018 paper (Brawner & Hoffman, 2018) the feature requests and responses have 
been broken out among a number of papers, and into logical sections of this work. This paper discusses the 
ongoing architectural workings and changes in support of the various sets of projects. The number of projects 
which the GIFT overall projects is now around 30, which continues to represent a) the inability for significant 
direct support of any individual project and b) the relatively little support that individual projects need to be 
successful. GIFT generally works well enough to support research studies without direct developer guidance 
or specifically developed features. 

The remainder of this paper discusses the requirements requested from the last GIFTSym, the developed 
functionality new to this year and the continuation of community dialogue in paper form. 

WELCOME 

First, to the new members of the GIFT community and new GIFT users – Welcome! There are a number of 
recommended resources that will help to orient you to this project and ecosystem. GIFT has come a long way 
since its original goals were defined in its description paper (Sottilare, Brawner, Goldberg, & Holden, 2012). 
First, we would encourage you to simply get started, as the tools and example courses have been designed to 
try to be as easy as possible for the creation of intelligent tutoring systems. 

If you struggle with any individual aspect of the system, however, the team has produced short “how to” videos 
to try to help around the sticking points. There are now many such videos available on the GIFT YouTube 
channel, which is the first result if you search “Generalized Intelligent Framework for Tutoring Youtube” on 
Google. The YouTube videos have not been updated for the new release, however, the vast majority of the 
GIFT challenges and authoring has remained unchanged. 

In addition to a Quick Start Guide, usable tools, and videos, there is support for developers in the help forums 
and documentation. The GIFT user community is also invited to ask questions and share your experiences and 
feedback on our forums (https://gifttutoring.org/projects/gift/boards). The forums are actively monitored by a 

mailto:mhoffman@dignitastechnologies.com
https://gifttutoring.org/projects/gift/boards
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small team of developers, in addition to a series of Government project managers. The forums are a reliable 
way to interact with the development team and other members of the GIFT com- munity. The forums, at the 
time of this writing, have over 1200 postings and responses. Documentation has been made freely available 
online at https://gifttutoring.org/projects/gift/wiki/Documentation, with interface control documentation 
https://gifttutoring.org/projects/gift/wiki/Interface_Control_Document_2018-1, and a developer guide 
https://gifttutoring.org/projects/gift/wiki/Developer_Guide_2018-1. These documents are updated each 
software release. 

GIFT CLOUD GENERAL REPORTING 

GIFT Cloud is now legacy, and has been running more-or-less continuously for the last three years, in support 
of numerous experiments. At the time of writing, it appears that only developers download the downloadable 
versions of GIFT. Cloud GIFT is kept online and updated in advance of the downloadable version, meaning 
that content must be backwards-ported to be compatible with the perpetually out of date offline version. We 
do our best to keep the downloadable version to regularly scheduled improvements, but, for ordinary users, we 
would encourage you to use the Cloud version – it is better supported and more stable than the downloadable 
version. It supports hundreds of simultaneous users for experiments. Further, there are approximately 8 cloned 
cloud versions with different software configurations live at any given time. We are generally confident in the 
systems’ ability to stay up and cope with demand. 

Behind the scenes, however, the re-tooling to move to a deployment version of dev-desk to dev-cloud to 
production has been working well. The team has greater ability to bug requests, with faster turnaround time. 
In this paper we reiterate that a clone of cloud.gifttutoring.org is always available upon request, and we have 
granted several requests over the year – necessitating an updating of the instructions to deploy a new cloud 
build and the hardening of those instructions. The previous version of this paper (Brawner & Hoffman, 2018) 
identified a number of organizations which had requested special access, but this number is now too great to 
count individually. 

Virtual Machines Available Upon Request 

As part of the move to Cloud GIFT, we have a number of specialized processes which run in the back- ground. 
Figure 1 shows the current structure of the Virtual Machine (VM) instances which operate Cloud GIFT. At its 
basic level, GIFT runs on two VMs; a Windows VM for all of the core GIFT features, and a Linux VM hooked 
up to an Amazon Relational Database Service (RDS) for the content. These items are what are contained in 
the downloadable GIFT instance. In addition to the basic instances, however, are services for monitoring GIFT; 
PiWik monitors user behaviors within the system, while the GIFT monitoring service monitors usage for future 
performance improvements. GIFT now includes an instance to a Social Media Framework (SMF) and Learner 
Record Store (LRS), which are based around Elgg and Learning Locker, respectively. GIFT’s copies of these 
configurable items are available upon request, and posted to github, but the authors would urge users to select 
their own instances of commercial sharing and data warehousing items dependent upon their own individual 
needs; there is nothing tying GIFT to a specific SMF, LRS, PiWik, or monitoring framework. We do not think 
of these items as core to GIFT, only that they are reported outwards. 

 

https://gifttutoring.org/projects/gift/wiki/Documentation
https://gifttutoring.org/projects/gift/wiki/Interface_Control_Document_2018-1
https://gifttutoring.org/projects/gift/wiki/Interface_Control_Document_2018-1
https://gifttutoring.org/projects/gift/wiki/Developer_Guide_2018-1
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Figure 1: Simplistic Diagram of Cloud Gift Items 

NEW INSTRUCTIONAL MODELS 

A new Adaptive courseflow course object version was introduced in the interim release of GIFT, GIFT 2017-
12-22. In this full release all legacy Adaptive courseflow course objects are now automatically converted to 
this new instance. Authors will now see a new icon for these course objects as well as an expanded Adaptive 
courseflow course object editor in the course creator. Learners taking a course with a legacy adaptive 
courseflow will mainly see a difference when it comes to remediation. In the past if you were deemed a novice 
on a course concept after a check on learning phase of an adaptive courseflow course object you would see 
both rule and example content as part of remediation. Now you will see a single piece of content for remediation 
of that concept. This is a part of upgrading to the reinforcement learning frame- work based upon the idea of 
Interactive-Constructive-Active-Passive methods of instruction (Rowe et al., 2018). 

VIRTUAL HUMAN TOOLKIT (VHTK) 

GIFT now supports 2 character servers, Media Semantics and Virtual Human. Both are available on the 
Downloads tab of gifttutoring.org. GIFT is now configured to use Virtual Human as the default character 
server, however you can still use custom Media Semantics characters in courses with no GIFT configuration 
changes by including the custom character in your course folder and then referencing that custom character 
appropriately (see Excavator and Explicit Feedback courses as examples). Note that if you need to run a 
character in IE 11 (or earlier) than you will need to use Media Semantics because Virtual Human uses the 
Unity WebGL player, which is not supported in older IE browsers. The development in this category was 
previously reported in a prior paper (Nye, Auerbach, Mehta, & Hartholt, 2017), but it is currently tested, 
released, and live. An additional two characters have been added to a development branch and are expected in 
future releases, assuming successful testing and validation. 
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LEARNING TOOLS INTEROPERABILITY (LTI) 

Previous developments to the LTI interface was reported last year (CITE). This year involved minor tweaks 
of the interface, bilateral course sharing, and two course sharing publishing items. The LTI v2.0 interface was 
not particularly embraced by the community of developers at EdX, and thus the GIFT developers are following 
the lead of the larger Massive Online Open Courseware providers (Aleven et al., 2017) in moving to the 
updated v1.1.1. 

LEARNER RECORD STORES AND COMPETENCIES 

The authors wish to make the community aware that we are in the midst of integrating the Competency And 
Skills System (CASS) developed by the Advanced Distributed Learning (ADL) Initiative. The military and 
Army community have need of the technology represented by this community. Further, the xAPI community 
is embracing the technology through the implementation of xAPI Profiles (Bowe & Silvers, 2018) within the 
IEEE Learning Technology Standards Committee (LTSC) (Robson & Barr, 2018)  In brief, the xAPI from 
GIFT courses informs competency assessments informs readiness assessments informs course 
recommendation which generates xAPI data in a virtuous cycle. We welcome participation, and more 
information on the exact developments can be found at: 

• CASS - https://www.cassproject.org/ 

• xAPI Profiles - http://sites.ieee.org/sagroups-9274-1-1/ 

• LTSC - http://sites.ieee.org/sagroups-ltsc/home/ 

AUTHORING 

Massive improvements in authoring have been made since the last release, through the integration of pre- vious 
versions of “GIFT Wrap” as well as the larger number of deployed courses recently. The process for authoring 
assessments of this kind needed to be streamlined, and has. This is especially true in regards to the authoring 
of a “Domain Knowledge File” (DKF) or “Real Time Assessment”, which is what it is called on Cloud GIFT. 
The improvements here can be captured in the below screenshot, showing the old and new interfaces side to 
side. The improvements are substantial and noticeable. 

Figure 2: Authoring Tools changes for GIFT Wrap 

http://www.cassproject.org/
http://www.cassproject.org/
http://sites.ieee.org/sagroups-9274-1-1/
http://sites.ieee.org/sagroups-ltsc/home/
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RESEARCH DIRECTIONS: TEAM AND PSYCHOMOTOR TRAINING 

Part of the goal of the GIFT project is to expand tutoring systems from relatively well-defined domains to ill-
defined domains, from desktop training to “in the wild” training, and from individual training to team training. 
This is part of the military interest in intelligent tutoring technologies – Warfighters train as a group, and within 
the training environment. This section provides an update to last years’ status on team training and 
psychomotor training. 

Team Training 

While specific research implementations can be read elsewhere within prior proceedings (Sinatra, 2018), the 
team has done specific work in order to show relevance to team training items. This technology was further 
developed into a demonstration at ITSEC and is now available for multiple projects upon request. This 
technology is scheduled for early implementation in the coming release, considering the priority that the 
Synthetic Training Environment (STE) is placing on team training, a “train as you fight” model, and on “25 
bloodless battles” (Defense News, 2018). 

Psychomotor Training 

Psychomotor, or “in the wild” training is a significant part of the reason for military investments in the 
intelligent tutoring technologies. The prototype land navigation mobile application reported upon last year 
(CITE) has now been released as software functionality, with the gains made in the authoring tools placed into 
the current release. The developments in land navigation have significantly shaped the outcomes of the 
authoring tools for new functionality. 

OTHER COMMUNITY-REQUESTED FEATURES 

Wheelspinning Prediction 

A request for a prediction of wheelspinning behavior was included in last years’ proceedings (Park & Matsuda, 
2018). The authors would hope that this implementation would be as simple as a sensor module plugin, taking 
the student answers as the input, doing processing in an interface of the author’s choice (RapidMiner, Python, 
XML-RPC, etc.), and exporting a new student state on the concept level; e.g. “Con- cept 1”:”Wheelspinning”. 
At that point, the student state could be given an instructional remediation using the standard body of GIFT 
authoring tools from a Domain Knowledge File (RealTime Assessment). This type of implementation should 
be relatively straightforward, and is covered in the “how to add a sensor” portion of the online documentation, 
at: https://gifttutoring.org/projects/gift/wiki/Developer_Guide_2019- 1#Integrate-a-Sensor. 

Validated Motivational Assessments 

Motivational assessment, as requested by the UCF group in last year’s GIFTSym is anticipated to transition into 
public use inside of the next 3 months (Biddle, Lameier, Reinerman-Jones, Matthews, & Boyce, 2018). 

Natural Language Processing for Team Interactions 

Efforts to begin researching natural language processing for the determination of team dynamics have be- gun, 
but have not yet made it into production. The authors welcome solutions and ideas which target language as a 

https://gifttutoring.org/projects/gift/wiki/Developer_Guide_2019-1#Integrate-a-Sensor
https://gifttutoring.org/projects/gift/wiki/Developer_Guide_2019-1#Integrate-a-Sensor
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manner of team assessment, as they have been specifically requested by the community of GIFT users 
(Johnston, 2018). 

Human In-The-Loop Functionality 

Recent projects, especially in the realm of larger teams, have demonstrated the need for a human-in-the- loop 
capability (McCormack, Kilcullen, Sinatra, Brown, & Beaubien, 2018). The idea behind this capability is that 
there will be an “auto mode” and a “manual mode” which function similar to a traditional intelligent tutoring 
system, and a ITS-as-you-approve-it feature set. Further, the human will be able to introduce manual 
assessments of any type that GIFT was initially programmed for. This functionality, as shown below, is 
currently available upon request, and is in testing internally on larger-scaled operations. 

Figure 3: Enhanced Human-in-the-loop interface 

Better User Guide 

A better user guide was requested at last years’ GIFTSym (Julian, 2018). The authors hope that the updated 
manuals, new material, and YouTube video series would be helpful. 

Predictive Analysis of Performance and Training ROI computations 

This request has gone unaddressed and we welcome others in the community to take it up. 

GIFT AND IEEE STANDARDS 

As part of last year’s GIFT Symposium, there is an associated standards meeting. This standards meeting will 
be among those which occurred over the course of the year, including telephone calls, in-person meetings, 
proceedings presentations, and other activities. The IEEE Learning Technologies Standards Commit- tee, with 
support from the GIFT community and the Government, is now seeking involvement in standardization 
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activities. The GIFT community invites the reader to join the conversation on what data exchange standards 
for learning technologies might look like in the future – there is now active IEEE community on the subject, 
to which the GIFT project is contributing meaningfully. Interested readers are encouraged to go to the IEEE 
LTSC meetings to become involved. 
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The 2019 Instructor’s Guide to GIFT 
Anne M. Sinatra 

U.S. Army Combat Capabilities Development Command (CCDC) – Soldier Center – Simulation and Training 
Technology Center (STTC) 

Introduction 

The Generalized Intelligent Framework for Tutoring (GIFT) is a research project which is continually 
developing (Sottilare, Brawner, Sinatra, & Johnston, 2017). As a result of this, many of the functionalities 
within GIFT continue to expand, and some of the interfaces that users interact with are being updated as well. 
I began writing a series of “Research Psychologist’s Guides” for GIFT in 2014 (Sinatra, 2014; Sinatra, 2016; 
Sinatra, 2018), and have updated them on a bi-annual basis. The updates to the guide have captured many of 
the continuing changes that have occurred in GIFT, with the authoring tool and survey authoring systems being 
dramatically different between the publication times. As a companion piece to these guides, in 2015 the first 
Instructors’ Guide to GIFT was published (Sinatra, 2015). This guide was written specifically from the 
perspective of an Instructor who might incorporate GIFT into the class that they were teaching in a number of 
ways: as an interactive medium for students to learn materials through, as a way to perform assessments, and 
even as a way to have students create projects for their classes. Since the publication in 2015 there have been 
many updates to GIFT including GIFT Cloud. The introduction of GIFT Cloud and access through the internet 
greatly increases the opportunities that an instructor has in using GIFT in their courses. One of the largest 
barriers to implementing GIFT in the classroom at the time of writing of the original guide was that both the 
instructor and students would need to install the GIFT soft- ware. Due to the implementation of GIFT Cloud, 
there is no longer a need to install the software, and the majority of GIFT’s functions can be accessed from a 
web-enabled computer. This is a very large change and update to GIFT which influences the way that an 
instructor may use GIFT in a course. Following the format of the “Research Psychologist’s Guide” to GIFT, 
the current work is an update to the original which also discusses the improvements that have been made to 
GIFT and new strategies to use with it since the last publication. 

This current Instructors’ Guide to GIFT expands upon the original instructor’s guide, and also discusses ways 
that GIFT Cloud can be implemented in a class. In the current paper, there is an explanation of GIFT’s tools 
from the perspective of an instructor, and an explanation of how to add previously existing content (e.g., exam 
questions; test banks; PowerPoint slides) to GIFT. While there are other documents which de- scribe using 
GIFT’s tools, the current guide specifically discusses how to leverage the tools within GIFT to specifically 
from the perspective of an instructor who is concerned with grades and content in a formal class. An 
explanation is provided about how to extract data after a student has interacted with the course. There is 
additional discussion of the current state of GIFT and improvements that could be made in order to make 
improve its functionality for instructors. 

USING GIFT IN A CLASS 

GIFT can be used to create materials that students interact with either in person (in a computer lab) or on their 
own time. These materials can be used as a primary means of providing information (e.g., in an online course), 
or as an opportunity to review material on the student’s own time. It is up to the instructor to decide how he or 
she would like to implement GIFT as part of a class. In the current guide there is discussion of the current 
functionality that exists, which an instructor can use to decide how to implement GIFT in his or her class. The 
most straightforward way for an instructor to use GIFT in a class is by creating a linear GIFT course and 
assigning it to students through a link. The current document discusses the tools that are relevant for creating 
a linear GIFT course and publishing it for distribution to students. The remediation and adaptive tutoring 
functionalities of GIFT may be of interest to advanced users, but are beyond the scope of the current guide. 
Additional information on how to use these functions can be found on the GIFT YouTube channel. 
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With GIFT, an instructor can create a number of different “GIFT Courses” which students can interact with. 
Depending on the author of the courses, each course can be on an individual topic (similar to a module), or 
they can include multiple learning objectives. If an instructor wishes to create a non-adaptive, linear course 
which utilizes pre-determined surveys then advanced features such as defining concepts do not need to be 
utilized within GIFT. However, if the course instructor wishes to implement remediation/adaptive course flow 
and/or utilize the Question Bank feature of GIFT for randomized questions, he or she will need to identify 
course concepts within the GIFT authoring tool. These course concepts can then be linked to the specific items 
for remediation and the individual questions that are authored in the course specific Question Bank. 

Regardless of the specific way that an instructor plans to implement GIFT within his or her class, they could 
create materials that support each of the lessons that they are teaching in class and can implement them in the 
form of GIFT courses. These courses could then either be assigned as optional or required assignments that 
students can complete on their own time. Additionally, based on the preference of the instructor these materials 
could either be used for self-regulated review, or as actual graded assignments. In the case of using GIFT for 
graded assignments, there would be the additional question that the instructor would need to answer – would 
they be grading for completion of the assignment or actually grading based on the answers and activities that 
the student performs during the GIFT interaction. While both of these options are possible they would require 
different actions to be taken by the instructor to ensure that the relevant information is provided in order for 
them to get the information that they need. 

USING GIFT FOR STUDENT ASSIGNMENTS 

As mentioned above, GIFT can be used to provide materials and assignments to students in the form of 
interactions and quizzes that can be used for grades. Additionally, it can be used as a means for presenting 
materials to students either in class in a computer lab format, or on their own time. One application of GIFT that 
has been used previously, is to have students interact with GIFT and create their own intelligent tutoring systems 
(ITSs). Students can be assigned a specific topic that they need to create materials about, and then tasked to 
create their own ITS with GIFT. Versions of this assignment have been used with students of varying 
backgrounds and varying education levels including both undergraduate and graduate level. Additionally, if 
students wish to create their own research projects they can leverage GIFT as a means to do so. This type of 
assignment may be of particular interest in the field of human computer interaction, or ITS classes. 
Additionally, since GIFT is an on-going research project, students who complete usability assessments of GIFT 
could submit their outcomes and suggestions for consideration for possible future updates to the overall system. 

GIFT FEATURES THAT ARE USEFUL FOR INSTRUCTORS 

There are many tools and features of GIFT that are of interest to instructors who wish to implement GIFT 
within their classes. The most important items are the GIFT Authoring Tool, the new Survey Authoring 
System, and the “Publish Course” functionality. 

GIFT Authoring Tool 

The GIFT Authoring tool has gone through many updates and iterations through the years, and currently 
features an easy to use drag and drop interface. The left side of tool offers the possible course objects that can 
be utilized, and the right side of the tool is a course map that displays the order of the objects within the 
courseflow. Once an object is dragged from the left side of the screen to the main courseflow, it can be authored. 
The first action is to name the object. This name will be helpful for the instructor so that he or she knows what 
it is called when they are looking at their overall courseflow. After naming it on the right side of the screen a 
properties panel will appear that allows for customization of the object. Once an object is authored it can be 
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reordered in the courseflow by clicking on the object with the left mouse button and dragging it to a different 
place. See Figure 1 for screenshot example of the interface which shows a high- lighted object. 

Figure 1. Screenshot of the GIFT Authoring Tool interface with a Survey/Test item highlighted. Course objects 
are on the left side of the screen, the courseflow is in the center, and the right side of the screen has specific 

course object properties. 

The course objects that are available for use include Information as Text, Image, Web Address, Local 
Webpage, PDF, YouTube video, Slide Show, PowerPoint, Survey/Test, Conversation, Question Bank, 
Adaptive Courseflow (this is an advanced feature, and is beyond the scope of the current paper), Structured 
Review, and external connections with programs such as Virtual Battlespace. In many cases when a media item 
is selected (e.g., image) the instructor can find it locally on his or her computer and it will be uploaded to their 
specific GIFT Cloud account. 

Course Objects 

If the instructor wants to provide information to the students he or she can use “Information as Text” or create 
an .html file that can be uploaded as a local webpage. If the instructor wants to send students to an external 
website, the Web Address can be used. It will bring up the webpage with a “Continue” button centered at the 
bottom of the GIFT interface. This can sometimes lead to potential student error if they click the “Continue” 
button before reading the webpage, so it can be helpful to include an “Information as Text” object prior to this 
which explains what they need to do in order to engage with the webpage. 

Slide Show Object and PowerPoint Object 

Two objects that are of particular note to instructors, and have very different implications for the way that 
students will interact with the course are “Slide Show” and “PowerPoint”. Both of these course objects are 
created from a PowerPoint show file (.pps) that the instructor uploads to the course. However, if the PowerPoint 
that already exists consists of only text and static images then the preferred method to use is the “Slide Show” 
course object. When using the “Slide Show” course object, GIFT will convert the existing PowerPoint show 
file into images, which students will be prompted to read and advance through. There are a number of different 
options in order to adjust the interface as the instructor wishes to reduce the chance that a student will 
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accidentally skip through the slides. By using the “Slide Show” course object it allows for students to view the 
material without needing to download anything to their computers. This creates a fluid online experience. 

The only instances where one would want to use a “PowerPoint” object file type is if there are macros or videos 
embedded in the existing original PowerPoint file which are vital to the content. In order to use the 
“PowerPoint” course object, GIFT will need to connect with an instance of PowerPoint that is on the student’s 
computer. This means that in order to run the course the student will need to have a compatible version of 
PowerPoint installed on their computer. Additionally, it will require the student to download the gateway 
module that connects GIFT Cloud to their version of PowerPoint on the computer. This can lead to user error, 
or difficulty with running the specific course. Therefore, it is preferable to use the “Slide Show” object 
whenever possible. Existing PowerPoints can be saved as .pps files and they will be automatically converted to 
images for the instructor when using the “Slide Show” object. See Figure 2 for how to save your PowerPoint 
document as PowerPoint Show (.pps), which can then be used by GIFT. 

Figure 2. The correct format to save your PowerPoint as for use with GIFT as a Slide Show or PowerPoint object 
is “PowerPoint 97-2003 Show (*.pps) as highlighted above. 

Adding Course Concepts 

If an instructor wants to teach more than one concept in a GIFT course, or wants to use Adaptive Courseflow or 
the Question Bank object, then it is necessary to define Course Concepts in GIFT. To do so on the GIFT 
Authoring Tool, click on “Course Properties”. Then click on “Concepts”. Figure 3 shows the correct item to 
click on, and Figure 4 shows what the concept interface looks like. Multiple concepts can be created, and these 
will later be used to both tag and identify questions in the system that are associated with the proper concepts. 
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Figure 3. To define Concepts for a GIFT Course click on Course Properties, then the pencil next to Concepts. 

Figure 4. Once “Concepts” has been clicked on the interface in this figure will be displayed. For each of your 
concepts add it by clicking on the green plus button, and then give it a name. By adding these concepts they can 

later be used in the course. 

Question Bank and Survey Course Objects 

There is a distinction between using the Question Bank and Survey course objects in GIFT. If an instructor 
always wants to create a formal quiz or exam in which the same questions display in every instance, then the 
Survey course object should be used. If questions associated with specific concepts should be selected at 
random from a bank of questions of varying degrees of difficulty, with different concepts identified, then the 
Question Bank should be used. 
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Survey Course Object 

Once a Survey object is selected, an additional selection needs to be made about the type of survey. A different 
option will be selected if the survey is actionable, non-actionable (the information will not be calculated in 
real-time for use), or an assessment of learner knowledge. In most cases within a class it would be expected 
that non-actionable information would be used when collecting straightforward information from the student 
such as their name, and the assess learner information selection would be used if the items have correct answers 
and will be automatically graded by the system. See Figure 5 for a screen- shot of the “Assess Learner 
Knowledge” option. Note that there is both a writing mode, and a scoring mode that can be selected from the 
top middle of the interface. It is also important to add a “Tag” to the Question Properties for each question. 
This will be the name that is available at the top of the column when the data is extracted. 

Figure 5. Screenshot of the Survey Interface 

Question Bank Object 

Each course has its own question bank which is directly linked to concepts that have been defined within the 
course. Once the Question Bank course object is added, there are two actions that need to be taken. First, 
questions need to be added to the overall course question bank. Second, the specific questions and concepts 
that will be assessed in the Question Bank object need to be selected. The number and types of questions will 
also be identified, as well as the number of correct questions to fall into each type knowledge level. An example 
of the initial configuration interface for the Question Bank object is in Figure 6. Note that the first step is to 
click on the “Course Question Bank” item on the top of the screen, which will then take the instructor to the 
question bank interface. 
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Figure 6. Question Bank object interface. First click on “Course Question Bank” to start adding questions to the 
overall bank for the course. Next, select the course concepts that will be identified with this specific in- stance of the 

Question Bank object within your courseflow. 

Additionally, the questions that are entered in the main question bank are separate from those that are avail- able in 
the Survey object discussed previously. The interfaces are very similar, but in order to accurately associate the 
question bank item with a concept the “Scoring Mode” button needs to be clicked, and the “Question Difficulty” and 
“Associated Concepts” selected. See Figure 7 for an example. 

 

Figure 7. An example of Scoring Mode in a Question Bank. It is important to set the Question Difficulty, and select 
associated concepts. 
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Publish Course and Data Extraction 

There are two methods that can be used to provide a course to an individual student. These include either exporting 
the course for import to the student’s GIFT Cloud account, or publishing the course. The recommended method to 
use at the current time is the “Publish Course” functionality. At current time, while importing the course would 
result in linking the scores to an individual student’s account, there is no way for the instructor to 
automatically retrieve the information that students enter in the system. This information is stored on the 
main instance of GIFT running on the Cloud and would require the GIFT team to provide it. The current 
solution is to use the “Publish Course” option. Publish Course takes the existing version of a course and 
provides a URL for it so that students can access it from the link. Since this method is not directly linked 
to a student’s GIFT account, in order to use the output for grade purposes, a demographic question will 
need to be added to the course that asks that student to enter his or her name or a relevant student ID 
number. 

Once “Publish Course” is selected it brings up an interface that has red or green bars for already existing 
published courses. To publish a new course, click the “Publish Course” button on the top left side of the 
screen. While the overall terminology has been updated, this functionality was originally used for 
experiments, and the correct selection to make on the pop up screen is “Publish Course as Experiment”. 
You then type in a name for the course, and then select a course from the displayed list. See Figure 8 for a 
screenshot of this interface. 

Figure 8. The Publish Course interface. 

A URL will be provided that links students to that specific instance of the course so that they can interact with it. It 
is important to note that this publish functionality is copying the selected GIFT course at that moment in time. If any 
updates or edits are made to the original course file, a new published version of the course and URL must be produced 
in order for students to be able to interact with the new version. 

After students have interacted with a course, an instructor can use the red and green course name interface 
in “Publish Courses” in order to extract data. Again, this design is primarily based on functionality that is 
of use in running experiments. See Figures 9 and 10 for an example of these interfaces. However, in order 



Proceedings of the 7th Annual GIFT Users Symposium (GIFTSym7) 

27 
 

for the data to be extracted, for the space instance, “Pause and Build Report” must be clicked and the data 
downloaded. To extract survey data, be sure to check the box that says “Survey Responses”, and in order 
to have each participant on one line in the exported document click “Merge each participant’s events into 
a single row”. This will then build a file that then needs to be saved to the computer. It will be a .CSV file 
which can then be opened in Excel. If the cells are merged, each student’s inputs will be listed on a single 
row. The tags that were added in the survey authoring process will be available at the top of each column. 
This is why it is very important to add tags to each of the questions, as otherwise numbers that do not 
provide information about the question’s content will be visible. Any needed post processing can then be 
completed on the file in Excel or the desired program.  

 

Figure 9. Published course interface 
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Figure 10. Build a report interface for extracting student data. 

SUGGESTIONS FOR IMPROVEMENTS TO GIFT 

As identified earlier in the paper, while there are many features of GIFT that are highly relevant for use by instructors, 
there are still some challenges to implementing it in an actual class. 

Gradebook 

Currently there is no easy way to have student learning outcomes populated into a course gradebook. It would be 
helpful to implement features into GIFT which provide this functionality for instructors. The most effective way to 
currently use GIFT for an assignment at current time would be as a pass/fail participation grade in which the 
instructor can do a quick export of the data and see that the student participated. If quiz scores need to be examined 
or calculated then it is more work for the instructor, and the format that is exported may not easily import into 
existing gradebooks that the instructor may be utilizing in other systems. 

Student and Teacher Roles 

In the current GIFT Cloud setup there is no way for the course creator (or even the student) to export data from the 
course that they have created while they are logged into their own account. It would be beneficial to have a function 
that is similar to that of the “Publish Courses” option which would allow for the specific data that has been generated 
from the course to be viewed from the main GIFT interface while logged in. One way to help implement this would 
be by creating teacher and student roles in the course. Then the course creator can indicate the GIFT account of the 
teacher, which could have access to the shared course’s logs. GIFT has begun moving in this direction through the 
ability to share courses. The next step would be distinguishing between students and teachers and updating interfaces 
to reflect the role that the individual has in the system. This of course is not a straightforward task and will need to take 
into consideration special cases such as graduate students who are both instructors and students. Additionally, the 
implementation of a learning management system and potential gradebook features in GIFT could assist in 
addressing some of the current challenges to implementing GIFT in a class. 
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Test Bank Import 

Many educational textbook publishers provide text banks which include questions that are associated with each 
chapter of content. These test banks often come in formats that are compatible with Learning Management Systems 
such as Blackboard and Webcourses. If these testbanks could be imported into GIFT it would save instructors time 
in inputting quiz questions. Additionally, there needs to be further clarity on the ability to reuse questions between 
surveys and question banks in GIFT in order to reduce mistakes when adding questions to the system. There is 
currently a Qualtrics import functionality for questions in GIFT. It may be helpful to identify textbook test bank 
formats and create import functions for them as well. 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

While GIFT is a very powerful tool and can be of great use to instructors, there are still some challenges and function 
gaps that exist in GIFT. The implementation of a learner management system and persistent learner record store with 
the ability to provide information to instructors would be very helpful. Additionally, streamlining and clarifying the 
difference between Question Banks and Surveys would be helpful for instructors. The current guide provides 
recommendations, and instructions on how to implement GIFT in a class. The current optimal configuration to use 
would be to create a GIFT course which utilizes the Slide Show course object and distributing it to students using 
the “Publish Course” option. In order to facilitate using GIFT in a course, a few small feature updates could be made 
(e.g., gradebook/grade export, student/teacher roles) which would greatly improve the ease of use. GIFT is very 
useful in the current state, but with additional improvements it will become an even more powerful tool for instructors 
to utilize. 
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Soar Technology, Inc. 

INTRODUCTION 

A major consideration in the design of tools that support authoring, instruction, deployment, and evaluation of 
adaptive instructional systems (AISs) is interaction design. According to Sottilare & Brawner (2018), AISs are 
artificially-intelligent, computer-based systems that guide learning experiences by tailoring instruction and 
recommendations based on the goals, needs, and preferences of each individual learner or team in the context of 
domain learning objectives. AISs include learning technologies that include intelligent tutoring systems (ITSs), 
intelligent mentors (recommender engines), and intelligent instructional me- dia. According to Preece, Rogers & 
Sharp (2007, p. 8), interaction design is defined as: “designing interactive products to support the way people 
communicate and interact in their everyday and working lives”. 

This paper specifically examines human interaction with processes enabled by the Generalized Intelligent 
Framework for Tutoring (GIFT; Sottilare, Brawner, Goldberg & Holden, 2012; Sottilare, Brawner, Sinatra & 
Johnston, 2017), an open-source architecture for authoring, deploying, autonomously managing, and evaluating 
adaptive instruction (e.g., ITSs that provide tailored instruction in a domain of knowledge – fundamental systems of 
the human body, rifle marksmanship or land navigation). 

When we consider various aspects of AIS design, interaction design drives us to develop practices that will optimize 
user interactions during AIS authoring, deployment, instruction, and evaluation processes. We expect to develop 
recommended practices built upon a model of AIS users that considers: 

• AIS user roles (e.g., learners, authors, instructional designers, system maintainers, and researchers) 

• Capabilities and limitations of users in various roles 

• Contributing factors to quality user experiences 

• User feedback about their AIS experiences 

• Measures of usability to compare/contrast alternative approaches 

As it is for other systems, interaction design for AISs is a multidisciplinary process involving a variety of career 
fields (e.g., psychologists, computer programmers, and engineers), academic disciplines (e.g., human factors, 
cognitive psychology, social sciences, and informatics), and design practices (e.g., graphic design, conceptual 
modeling, engineering design, and product design). Next, we consider the influence of various disciplines (including 
computer science, psychology, instructional design, and cognitive science) in the AIS processes noted above with 
the goal of enhancing AIS user experiences through improved usability. 

AIS USABILITY GOALS 

Per Preece, Rogers, & Sharp (2007, p. 20), system usability is defined as “ensuring that interactive products are easy 
to learn, effective to use, and enjoyable from the user’s perspective”. Preece et al (2007) also associate the following 
goals/measures with usability that we have applied to GIFT and AISs: 
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• Goal: highly effective – a measure of how well an AIS is at doing what it was designed to do (e.g., improves 
knowledge and skills in a particular domain) 

• Goal: highly efficient – a measure of how well an AIS is at supporting users in completing tasks or reaching 
goals 

• Goal: high utility – a measure of the extent to which an AIS provides appropriate capabilities to meet user 
needs or desires 

• Goal: easy to learn – a measure of how quickly a user can reach proficiency and use AIS capabilities 

• Goal: easy to recall – a measure of how easy it is to remember AIS capabilities once learned 

Now that we have identified usability goals associated with the interaction design of AISs, our next step is to apply 
these goals to the specific processes within GIFT and many AISs to identify interaction design gaps. 

APPLYING AIS USABILITY GOALS TO GIFT PROCESSES 
 

In this section, we begin to examine the interaction design of GIFT in terms of GIFT processes and their usability. 
While we understand that GIFT is a baseline concept or prototype, it does have a level of maturity (Technology 
Readiness Level 5 or 6 – Mankins, 1995) and a sufficient user base that warrants this examination. We also 
understand that while GIFT functions may not be present in all AISs, they are representative of AISs in that they 
have processes and common AIS functional components (i.e., learner model, instructional model, domain model and 
interface model). A goal of this section is to examine the usability of GIFT authoring tools, adaptive instruction, and 
evaluation tools through the lens of Nielsen & Molich’s (March 1990) methodology for the heuristic evaluation of 
user interfaces. 

Heuristic evaluation is usually an informal method of evaluating usability where a number of evaluators are presented 
with an interface design and asked to comment on its ease-of-use as it relates to a set of rules or criteria. In our case, 
we chose the following heuristics and provide feedback on usability with respect interaction design: 

Simple and natural dialogue – GIFT does not provide any mechanism to insure simple and natural dialogue is 
authored. Feedback though a virtual human (VH) interface and text chat window is primarily at the discretion of the 
author. However, the VH interface could be greatly improved to engage the learner. Increasing the size of the VH in 
the dialogue window and the ability to swap out VH personas might be critical for interaction with learners during 
courses and experiments. 

Speak the user’s language/Be consistent – Given GIFT is a multi-disciplinary tool, its taxonomy is expected to be 
familiar to computer programmers, research psychologists, and instructional designers. This might be a bridge too 
far. We recommend GIFT adopt the ontology being developed under IEEE Project 2247. The AIS concept modeling 
subgroup is working with an interdisciplinary group of professionals to develop this ontology to support a common 
language for AIS authoring, deployment, automated instruction, and evaluation. For more information about the IEEE 
Project 2247, please visit: http://sites.ieee.org/sa- groups-2247-1/ 

Minimize user memory load – The authoring process in GIFT has been simplified over the last few years to provide 
a simple drag and drop interface, and the course objects have labels to identify their functions. This reduced working 
memory load during the authoring process. However, the optimal order for authoring is not specified and the state of 
authoring is not displayed for the user. We recommend an authoring dashboard to inform the user about any gaps in 
the development of a GIFT course or experiment. 

http://sites.ieee.org/sagroups-2247-1/
http://sites.ieee.org/sagroups-2247-1/
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Provide feedback – GIFT provides a tool to validate each course and provide textual feedback. We recommend a 
dashboard with a graphical indicator of authoring tasks and the percentage of the authoring tasks completed. A 
simplified graphical flow chart would also be useful to the author in tracking progress for the development of courses. 
GIFT also provides tools to validate and preview courses. 

Provide clearly marked exits – In the GIFT course creator (authoring tools), there is a clearly labeled over-head menu 
with options to navigate from the course creator. Additionally, the upper right corner features a user profile dropdown 
with a logout command. 

Provide shortcuts – No shortcuts are presently available for menu items. However, there are right-click options for 
edit, delete, and copy for all course objects in the course creator and for whole course in the “take a course” page. 
We recommend relabeling the “copy” option to read “copy and paste” for consistency. 

Good error messages/Prevent errors – The GIFT authoring tools provide a tool to allow the author to preview their 
course from a specified starting point (e.g., beginning or adaptive courseflow object). Errors result when GIFT 
attempts to preview the course from a position where input is expected from the learner and was not provided. The 
preview simply aborts and does not provide an indication of the type of error experienced. An authoring dashboard 
that indicates common errors would also be useful. 

In the next three subsections we examine specific GIFT functions with respect to usability and accessibility: authoring 
tools, courses, and evaluation tools. 

Usability of GIFT Authoring Tools 

Based on the large number of publicly available adaptive courses in the GIFT Cloud, the diversity of do- mains that 
those courses represent, the large number of experiments conducted using GIFT courses, and the drag-and-drop 
nature of the GIFT Authoring Tools (GAT), we characterize the GAT as having a high degree of usability. It is safe 
to say that the authoring tools enable users to construct relatively simple knowledge-based products without the need 
for programming skills, but that their usability with respect to more complex skill-based tasks leveraging external 
environments (e.g., serious games) are more difficult. Certainly the GIFT authoring tools have been used to construct 
some very complex tutors for land navigation and rifle marksmanship, but the construction of similar ITS is likely 
beyond the capabilities of most users. 

The tools provide an easy-to-use method to sequence, configure, and modify course objects that represent a variety 
of content (e.g., media, assessments, surveys, and courseflow objects). A big asset is the survey authoring system 
which enhances user efficiency by allowing the import of surveys developed in Qualtrix. Another asset is the 
presence of a validation tool that highlights missing elements in the configuration of course objects. What is not 
readily apparent is the sequence of identifying learning objectives and linking them to content objects and learner 
states. Learning objectives, or in GIFT parlance – concepts, must be defined first and then media objects, assessment 
or survey questions, and courseflow objects can then be configured so they are associated with these concepts. 

Three difficult authoring tasks in GIFT involve: 1) association of data sources with learner states, 2) association of 
content meta-data attributes with learner attributes and instructional phases, and 3) assessment of conditions in 
external environments. 

Association of data sources with learner states – There is a need to define processes to acquire data (e.g., via sensors, 
surveys, self-reported data) to support classification of current learner states (e.g., engagement, arousal, motivation 
or domain knowledge) and/or predict future learner states. 

Association of content meta-data attributes with learner attributes and instructional phases – There is a need to 
efficiently tag media and other content to aid content searches in the context of learner conditions and instructional 
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phases (e.g., Merrill’s (1983) Rule Quadrant or Chi & Wylie’s (2014) Interactive-Constructive-Active-Passive 
(ICAP) model). 

Assessment of conditions in external environments – External environments (e.g., simulations such as Virtual Battle 
Space) are one method to provide interactive learning experiences. There is a need to develop methods to extract 
external environment conditions so AISs can support learner assessments without the need for computer 
programming; we recommend a utility to author condition classes automatically based on author specification. 

Accessibility of GIFT Authoring Tools 

Overall, GIFT and its affiliated authoring tools are extremely accessible in the cloud at https://cloud.gifttu- toring.org. 
As a cloud-based tool-suite, GIFT provides a scalable architecture that can grow easily with the number of users and 
the number of courses being developed. Developers can store their courses or experiments in the cloud and provide 
links to students or participants (Figure 1). Experimental data is stored in the cloud, can be configured for easy 
analysis using the Event Report Tool (ERT) and exported on demand for further analysis. 

Figure 1. Cloud-based Courses and Experiments 

Usability of Adaptive Instructional Courses in GIFT 

After logging into the GIFT Cloud-based platform, each learner is introduced to their personalized GIFT Dashboard 
and a complete tiled list of course materials. They are presented with both title and thumbnail images which are 
accessible by the individual learner/author. Upon selection of a course, the installation of any necessary plug-ins (e.g., 
Java applet to run Microsoft PowerPoint) prompt the learner to run and install required software. This may be 
distracting, but for the most part can be avoided by using Microsoft PowerPoint slideshows that are converted to 
images. 

GIFT is designed to provide a self-contained platform for AIS material authoring, curating and sharing. To satisfy 
this requirement, the cloud-based GIFT provides support for Java, UnityGL and embedding of API- based external 
media. There is great advantage to this capability in that GIFT can be used to point to existing media which satisfies 
legal access under Fair Use, “a doctrine in the law of the United States that permits limited use of copyrighted 
material without having to first acquire permission from the copyright holder” (Leval, 1989). Another advantage is 
that the author of the media retains control and provides updates. The GIFT ITS author is not required to manage the 
configuration of external media when the tutor simply points to the location of the media. 

https://cloud.gifttutoring.org/
https://cloud.gifttutoring.org/
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GIFT facilitates the presentation of instructional material to learners through embedded graphical features, such as 
slides and videos. Static material is presented in a fashion akin to PowerPoint materials. Individual learning objectives 
can comprise an entire course, a series of slides or a single slide. Video-based materials can be managed via API-
embedding of videos hosted on YouTube. Video controls are native to GIFT, and allow the learner to control their 
receipt of the video presentation. 

Exploiting the GIFT’s use of UnityGL, course materials can be generated in and, thereby, delivered via an interactive 
synthetic instructor. These instructors present course particulars to the learner by an instructor- avatar reciting 
scripted materials. Synthetic instructors are also capable of presenting prescript dialogue- based options to the learner 
via multiple-option input, permitting the learner to direct their own exposure to course materials. Also empowered 
by UnityGL, a course can contain simulations (e.g. a training simulation for operating an excavator) capable of being 
entirely contained within GIFT. 

 

Figure 2. Virtual Human interface in GIFT courses 
Left = current interface; Right = recommended more engaging interface 

Usability of Evaluation Tools in GIFT 

After a course has been developed using the GIFT authoring tools, the course can be published as a experiment or 
self-contained tutoring platform. Experiments can be hosted on the GIFT Cloud, which facilitates both the collection 
format and the storage of data. These experiments will appear in the “Publish Courses” tab for management and data 
retrieval. Selection of an active experiment will provide a link to the course materials to be given to learners, subject 
metrics (e.g., latest attempt, number of attempts), and a course description. This experiment management 
environment assists in course sharing, validation, error checking, and metadata tagging. 

Within this management screen, collected experimental data can be exported for analysis and publication. 
Exportation of raw data will generate a copy of a JSON database for all metrics collected while learners were 
interacting with the course. This database provides extensive information that can be employed in defining and 
deriving bespoke metrics not yet available in GIFT. A researcher can also have GIFT automatically generate reports 
containing predefined metrics. 

IMPROVING THE INTERACTION DESIGN OF GIFT 

In this section, we provide five major recommendations for improving the interaction design of GIFT authoring 
processes for instruction and experimentation. 
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Recommendation #1 – Author Dashboard 

The usability of the GIFT authoring tools could be greatly improved by the addition of a checklist or author dashboard 
that highlights prerequisite events in the form of a nodal network (Figure 2). 

 

 
Figure 3. Notional GIFT Author Dashboard Widget: Nodal network depicting authoring tasks and progress 

Recommendation #2 – Collaborative Authoring 

The usability of the GIFT authoring tools could be greatly improved by expanding the authoring interface for use by 
multiple authors/instructional designers/content developers. 

Recommendation #3 – Researcher Dashboard 

The usability of the GIFT ERT used to configure experimental data could be greatly improved through a researcher 
dashboard that allows researchers to use a WYSIWYG interface to configure data for analysis and reporting. 
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Recommendation #4 – Condition Class Dashboard 

A condition class dashboard (Figure 4) would automate the creation of condition classes to support the acquisition 
of measures and the assessment of learners with respect to learning objectives. 

 

Figure 4. Notional GIFT Condition Class Dashboard:  Provides ability to identify data sources and automate building 
of condition classes 

The communication of data moving between AISs (such as GIFT-based ITSs) and external environments (e.g., 
serious games, virtual simulations, cases or problem databases) are difficult to facilitate manually, but may lend 
themselves to a repeatable, automated process. Currently, GIFT provides a mechanism called condition classes, 
which are specific statements that allow a program to check a condition and execute certain parts of code depending 
on whether the condition is true or false. Condition classes contain the instructions for how GIFT should respond to 
data from external environments, including strategies or tactics that occur in the environment (e.g., increasing the 
number of pedestrians in a city block when the learner’s performance in a surveillance task moves from moderate to 
high). Today, a computer programmer must manually generate these condition classes. We are suggesting that 
researchers’ abilities to create training materials and experiments might be enhanced by allowing the author to 
structure conditions in an intuitive dashboard and then automatically generate the condition classes needed, all without 
knowledge of programming. 

This dashboard should implement easily-understood non-programming features (e.g., questions written in prose, if-
then statements, drop-down menus of current GIFT-compatible equipment, auto-complete, GUI elements, wizard-
style interactions) that a researcher can use to fully input information related to their de- sired condition class. Then, 
when the researcher has provided all of the relevant information for the condition class, the dashboard should connect 
to a condition class generator that outputs the JavaScript code for the conditions defined and saves it for other 
researchers to use in the future. This example solution would expedite training-related research and widen the 
potential user base of GIFT. 
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Recommendation #5 – Population Model Dashboard 

A population model dashboard would allow authors to import historical data or build population profiles relevant to 
the knowledge, skills, abilities, attitudes and other characteristics (KSAAOs) of a group or population. Population 
models are useful in enabling standards, identifying trends, evaluating learner with respect to their peers, and making 
instructional decisions based on norms. Population models may also be useful in bootstrapping instructional 
decisions when specific individual learner data is unavailable. We advocate that mechanisms to support/generate 
instructional decisions be examined within the larger field and context of distributed learning. As such, authoring 
tools should be data-driven and utilize information from a wider set of domain-independent learning resources. 
Managing such a wide set of information re- quires constant analysis of instructional and media factors, methods of 
assessment across a range of environments, and comparisons of required and actual KSAAOs across a variety of 
domains in order to build population models for structuring pedagogical policies. 

Population models are statistical distributions of various learner and team experiences and achievements observed 
within a population. Populations can be simple or complex, singular or nested within each other. Relating these 
models within and between domains can facilitate the generation and definition of concepts, assessments, and 
instructional decisions within the GIFT authoring tools. Population models may include hierarchical cluster 
distributions of KSAAOs to identify learning gaps and develop recommendations for future experiences, 
identification of concept dependencies and pre-requisite relationships to support the formation of concept maps for 
sequencing learning experiences, gap analysis summaries between individual learners and their peer groups at 
various echelons, and analysis of existing population models with respect to individual and group outcomes to 
increase the accuracy and precision of the statistical distributions. 

CLOSING THOUGHTS 

To a great extent, the ease of use for the GIFT authoring tools could be greatly improved and expanded to support 
the development of more complex tutors. Through the use of visualization (e.g., dashboards) and the development 
of methods to automate steps in the authoring process, we might realize additional efficiencies. Dashboards, scripts, 
and, machine learning techniques like genetic algorithms could enhance the authors’ efficiency through guided 
authoring, automated processes, and improved situational awareness. We highly recommend research to develop 
tools and methods in support of the authoring process to expand the usability and applicability of GIFT to a larger set 
of educational and training domains. 
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Extending GIFT Wrap to Live Training 
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INTRODUCTION 

The Generalized Intelligent Framework for Tutoring (GIFT) is a modular suite of capabilities aimed at overcoming 
the challenges associated with authoring and delivering computer-based instruction via an intelligent tutoring system 
(Sottilare, Brawner, Goldberg, & Holden, 2012). One of the primary objectives for GIFT development is to create 
an integrated, user-friendly authoring experience that is training platform agnostic. Humanproof, with teammate 
Design Interactive, recently completed the fourth generation GIFT Wrap prototype, a software application that 
allows training developers to configure the real-time, automated delivery of instructional content triggered by 
assessing state changes within the training application’s learning environment and/or learner. The following sections 
summarize previous GIFT Wrap development efforts including the first three generations that focused on developing 
authoring tools across virtual- and game-based training environments, provide an overview of the fourth generation 
of GIFT Wrap for extending the functionality to live training environments, and discuss future applications of GIFT 
Wrap.  

BACKGROUND 

Evolution of GIFT Wrap Development 

The GIFT Wrap project was a multi-year, research and development effort aimed at developing a fully-integrated, 
user-friendly tool for authoring individual, adaptive training following a Crawl-Walk-Run (CWR) approach to 
training (Goldberg, Davis, Riley, & Boyce, 2017) that would employ multiple training applications. For the purposes 
of scoping this project, Army Map Reading and Land Navigation training (Department of the Army [DA], 2007) 
was selected as the primary use case.  

The first and second generation of GIFT Wrap laid the foundation for the iterative development of the tool. These 
first two generations were aimed at overcoming the challenges associated with authoring a Domain Knowledge File 
(DKF) (Shute, Ventura, Small & Goldberg, 2013) and the disconnect between GIFT authoring tools and training 
application content creation tools (Davis, Riley, & Goldberg, 2017). The resulting proof-of-concept provided a 
“blended authoring environment” that allowed users to author real-time assessments directly within the context of a 
training application’s virtual environment (i.e., the Augmented Reality Sandtable (ARES) terrain map) (Hoffman, 
Markuck, & Goldberg, 2016) and a completely redesigned user interface (UI) for authoring a Domain Knowledge 
Files (DKF) (Davis et al., 2017) (see Figure 1). At this stage, GIFT Wrap supported the Crawl phase of skill 
acquisition focused on the fundamentals of Map Reading and Land Navigation. 
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Figure 1. Authoring in ARES – 2nd Generation GIFT Wrap 

The third generation of GIFT Wrap incorporated additional features for authoring DKFs and extended the blended 
authoring experience to include the LandNavHD Unity game, a computer-based land navigation trainer used as a 
practice environment for dead reckoning procedures (Davis, Riley, & Goldberg, 2018) (see Figure 2). The third 
generation of GIFT Wrap supported the Walk phase of skill acquisition focused on applying Map Reading and Land 
Navigation knowledge within an interactive exercise. 
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Figure 2. Authoring in LandNavHD – 3rd Generation GIFT Wrap 

GIFT Wrap within the Course Development Process 

GIFT course development is primarily supported through the GIFT Course Creator. With this interface, the author 
sets the course properties, defines the course objects, and applies relevant media to the instructional elements and 
approaches. The Course Creator provides interface components to set variable parameters for the provided course 
objects. GIFT Wrap provides additional interfaces to set parameters that are specific to the implementation of real-
time assessments that occur during the completion of the overall course.  

A few elements should be accounted for in the application of real-time assessments that relate directly to utilization 
of GIFT Wrap in the scenario development process. The author should have defined the course “concepts” to be 
addressed and the course objects that will have real-time assessments associated with them. Based on the defined 
concepts and corresponding assessments, the relevant training application(s) should be selected. Two approaches are 
presented here as examples on GIFT Wrap applications. 

First, the author can include a course object referencing the direct application of a training applications (e.g., Virtual 
Battlespace (VBS), ARES, PowerPoint) for presenting a real-time assessment to the learner. In the same manner, 
the author adds the relevant course object for a training application within the course flow. The course object presents 
selections, for example, to identify specific scenarios to be used within the training application and the real-time 
assessment to be applied. GIFT Wrap would be invoked for setting up the relevant parameters of the real-time 
assessment – the concept to be assessed, the manner of assessment, the criterion for triggering the assessment, the 
criterion for assessing performance, and the strategy to be applied given the performance outcomes. The user can set 
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up the parameters prior to using GIFT, or with the direct integration of GIFT Wrap with the GIFT software, the 
author can access GIFT Wrap when setting up the real-time assessment with the training application course objects. 

A second application for using GIFT Wrap is the application of an “adaptive course flow” object. This is a course 
object that facilitates adaptive behaviors within the course, including providing remedial instructional content for 
concepts for which the learners fail to reach a pre-set performance criterion. As with the real-time assessment, the 
course concepts must be defined. With this course object, the author can elect to push the learner through a “practice 
phase”. This practice phase is essentially a strategy that is presented if performance on the “check on learning” 
element of the adaptive course flow does not reach desired levels. The “practice phase” initiates practice within a 
training application. As with the real-time assessment setup, when the training application is applied, the author 
would utilized GIFT Wrap to define the practice, which is essentially the tasks to be completed to rehearse and assess 
the skill associated with the concept, as well as to define the criterion for whether or not the desired performance is 
achieved with the practice. If the performance is acceptable, per the parameters set by the author, the learner is 
allowed to move ahead in the course. If the performance is not acceptable, the learner remains within the flow or 
loop of the adaptive course flow object.  

In either case of the course setup, GIFT Wrap is used when the author is setting up parameters associated with 
activities in a selected training application. If the author has pre-defined the concepts, the tasks of interest, and the 
other elements of interest to a practice phase or real-time assessment (e.g., areas of interest, points or locations of 
interest, entities of interest), GIFT Wrap can be used to define those before the development of the GIFT course. If 
the author has not pre-defined each element of the course, they can use GIFT Wrap as the course is being set up, 
moving between the GIFT Wrap and the Course Creator as needed to set up parameters for real-time assessments 
and adaptive course flow practice opportunities. 

FOURTH GENERATION GIFT WRAP 

Extending the Blended Authoring Experience to Support Live Training Exercises 

The GIFT Wrap blended authoring experience was extended beyond the ARES and LandNavHD training 
applications to live training exercises authored within Google Maps. Using the Google Web Toolkit (GWT), the 
GIFT Wrap Overlay UI was integrated with Google Maps allowing users to author real-time assessments on any 
area of the map (see Figure 3).  

 

Figure 3. Example of Overlay UI Design Translated to Functional Implementation 

In addition to GIFT Wrap integration with Google Maps, new real‐time assessments were created to mimic the 
instructional approaches used during “Terrain Walk” exercises at the United States Military Academy at West Point. 
These new real-time assessments include: 
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• Grid Coordinate – Assesses the accuracy of the grid coordinate entered by a Learner for a given location. 
• Identify Terrain Features – Assesses the Learner's ability to identify the location of terrain features on a 

map. 
• Orient Map – Assesses the Learner's ability to orient a map correctly using the direction the Learner's 

mobile device is pointing as a proxy for the direction they are facing with the map. 
• Pace Check – Assesses the Learner's ability to measure a straight-line distance using the pace count method. 
• Predict Distance – Assesses the Learner's ability to determine the distance between two given points. 
• Set Azimuth – Assesses the Learner's ability to set a given azimuth on their compass. This assessment uses 

the direction the Learner's mobile device is pointing to determine the Learner's bearing or azimuth. 
 
The GIFT Wrap main page UI and Overlay UI were modified to include authoring for each these new assessments. 
Figure 4 show an example of authoring the “Identify Terrain Features” assessment using the GIFT Wrap UI 
integrated with Google Maps.  
 

 

Figure 4. Example Overlay UI for Identify Terrain Features Real-time Assessment 

These assessments were intended to be representative of typical training activities on a navigation course in a real-
world environment (i.e., the Run phase of skill acquisition). However, instead of the training being delivered by an 
instructor, the trainee would experience the adaptive training provided by the GIFT Tutor User Interface (TUI) 
delivering the course via mobile device, such as smartphone (see Figure 5).  
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Figure 5. Notional Mock-up of the Mobile TUI 

Other GIFT Wrap Enhancements 

In an effort to continuously improve the usability of GIFT Wrap, the following features were added to the fourth-
generation design:  

• Show/hide Instructions – This feature allows GIFT users to view instructions when needed or to reduce 
the occlusion of the map by the Overlay UI by closing instructions when not needed. This is a particularly 
useful feature for use with the Google Maps application as it does not support a “movable” overlay, but 
requires the overlay be docked in place.  

• Layers – Considering that users might want to see multiple elements on the same map to visualize the 
“Terrain Walk” activity, the design was expanded to include controls to show/hide “Layers” which coincide 
with three common land navigation assessment elements that may be references for multiple condition 
classes – points, path, and areas. 

• Points of Interest – This feature allows users to add common map features or elements that may be reused 
and/or referenced by multiple real-time assessments. Multiple points, paths, and/or areas can be set and later 
selected for use for the set-up of real-time assessments. 

Integration with Google Maps  

The GIFT Wrap integration with Google Maps required some workarounds due to incompatibilities. Because Google 
Maps utilizes a JavaScript application programming interface (API) for web development and GIFT utilizes GWT, 
software engineers were required to use a third-party tool that allow us to integrate Google Maps with GWT. This 
API (GWT-MapsV3-Api, 2019) essentially creates a bridge between Google Map's JavaScript API and the GWT 
framework, thus allowing the GWT developer to implement Google Maps. Once the bridge was in place, the features 
that could be leveraged for GIFT Wrap were identified by evaluating the relevant land navigation tasks. Based on 
the real-time assessment to be supported, several tools were selected for implementation. The work then turned to 
determining how to display the relevant Google Map controls in the GIFT Wrap overlay control panel. The overlay 
control panel houses the instructions and controls that facilitate the authoring of “learner tasks”. For real-time 
assessments, the overlay captures the parameters authored for the task and links the parameters of the task with the 
Google Maps API in order to pass the desired performance data captured during training to GIFT.  
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The GWT solution provided a proof-of-concept for the approach, though some limitations are evident. For example, 
Google Maps offers JavaScript API for web, not GWT. The GWT library provided fewer options and an older library 
which did not allow for use of the most recent Google Maps API features.  

Integration with GIFT Baseline 

The merge included integrating the technical capabilities previously developed for utilizing LandNavHD and Google 
Maps for real-time performance assessment. Details on the structure and format of new conditions classes were 
provided. The GIFT development team provided feedback on expanding Unity applications to support future overlay 
authoring, so the software was modified to make future expansion easier.  

A few challenges were identified. First, a goal for GIFT is to limit the number of conditions classes through re-use 
across training applications. The applicability and implementation of the condition classes however are influenced 
by the context and specifics of the domain. Also, for conditions classes referencing points of interest and other map- 
and position-based elements, the coordinate system(s) in place can impact capacity to re-use without some 
modification or specification for the selected coordinate system. The newly defined conditions classes are under 
review to determine if they can be directly re-used.  

Versioning and dating issues cause some confusion in merging with the baseline code. Changes in features and 
functions of variable GIFT versions required repeated modifications to GIFT Wrap code to maintain compatibility. 
Though the modifications are published by the GIFT development team, it is difficult to know which aspects of the 
GIFT Wrap are affected until tests were completed or inconsistencies in functioning were observed. This is likely to 
be an issue for others developing on a separate GIFT code branch and then executing a merge.  

Lastly, there were challenges to overcome with implementation and testing GIFT wrap with the mobile version of 
GIFT and the newly defined condition classes. To deploy GIFT to mobile device, the team used the "Publish Course" 
feature that generate the Uniform Resource Locator (URL) for the course. From the URL, the course can be accessed. 
GIFT Cloud allows this feature to be accessed anywhere as long as the user has access to the link. Initially, the 
version the team developed produced a local URL, which meant that only the local owner’s computer could access 
the course. The resolution was to launch to Amazon cloud in order to get access the published course URL, just as 
with the cloud version of GIFT, so that we could test implementation on the mobile phone.  

LIMITATIONS AND CHALLENGES 

As the GIFT Wrap design has evolved, each iteration of the tool has added features and functionality that 
incrementally reduced the burden associated with authoring real-time assessments and configuring the delivery of 
instructional strategies across several training applications. However, there are still many technical challenges to 
overcome. The following sections describe the current limitations of the tool and some of the future development 
challenges. 

GIFT Wrap Interoperability Limitations and Integration Challenges 

As previously described in this paper, GIFT Wrap integration with third-party systems (e.g., Google Maps) remains 
challenging. While the creation of the Gateway Module and various plugins has allowed for interoperability and 
reduced development time, there is still a considerable amount of customization required to establish the 
communication between GIFT Wrap and a training application that is necessary for implementing real-time 
performance assessments. For example, the third generation of GIFT Wrap was integrated with the LandNavHD 
training application. The real-time assessments users could author for this training application (e.g., Avoid Area, 
Locate Navigation Points) required positional data from LandNavHD that were not included in the existing GIFT 



Proceedings of the 7th Annual GIFT Users Symposium (GIFTSym7) 

47 
 

Unity plugin. Several new event handlers had to be added to the plugin that sent messages to GIFT providing 
information used for real‐time assessment. 

There is also the challenge of integrating GIFT Wrap authoring capabilities with those of the training application. 
One of the goals for the GIFT Wrap project was to create a “blended authoring environment” that would allow users 
to author real-time assessments within the context of a training application’s content creation tools via an Overlay 
UI (Davis et al., 2017). The intent was to merge the GIFT Wrap UI with the content creation tool’s UI in such a way 
that users would perceive the tool as one, seamless authoring experience. However, there are two significant 
challenges to implementing this design. First, some training applications simply lack scenario authoring capabilities. 
In these cases, workarounds are required to implement the authoring UI as intended. For example, in the case of the 
LandNavHD Unity game, a top‐down image of the terrain was extracted, and a new layer was created in the GIFT 
Wrap UI to simulate the functionality of authoring within the training application’s virtual environment. Second, for 
training applications that do including content creations tools, it’s likely that access to the source code is needed in 
order to integrate GIFT Wrap functionality. For example, VBS is used by the Army for land navigation training and 
includes content creation tools (e.g., the Offline Mission Editor (OME)) for creating and editing the scenarios. The 
GIFT Wrap Overlay UI could potentially be integrated with the VBS OME such that the user could reference 
elements of the VBS scenario (e.g., waypoints, navigation flags) for real-time assessments (e.g., Locate Navigation 
Points). However, without access to the proprietary VBS source code, it is impossible to implement this functionality 
and create a seamless authoring experience for the user.   

Authoring Limitations and Challenges 

Maximizing usability has been a major focus throughout the development of the GIFT Wrap design. As such, several 
usability evaluations were conducted (Davis et al., 2018) as GIFT Wrap gradually incorporated DKF Authoring Tool 
(DAT) functionality and added new authoring capabilities. However, as computer-based tutoring system (CBTS) 
capabilities continue to advance and the intended use of GIFT Wrap broadens, some of the existing UI features may 
not be able to accommodate these new use cases. Real-time assessments are becoming more robust, training 
scenarios are growing in complexity, and the potential applications of CBTS are expanding beyond individuals and 
small teams to multi-echelon, collective training in new domains. Authoring tools such as GIFT Wrap will need to 
be modified and, in some cases, completely redesigned to accommodate these changes without compromising the 
usability of the tool.  

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

Building on the first three generations of GIFT Wrap, the fourth generation was aimed at extending GIFT’s authoring 
capabilities for live, land navigation training via integration with Google Maps and GIFT mobile capabilities. With 
the completion of this integration and new authoring functionality, GIFT Wrap is now capable of supporting a CWR 
approach to training for the Map Reading and Land Navigation use case.  
 
The most recent GIFT Wrap development efforts have focused primarily on authoring individual, adaptive training 
for Map Reading and Land Navigation. Many of the existing GIFT Wrap authoring capabilities and corresponding 
Condition Classes are applicable and/or easily modifiable to accommodate new training applications. Future research 
should concentrate on extending GIFT Wrap beyond the current use case to other Army elements (e.g., squad, 
platoon) for collective training and to other training applications across Army domains (e.g., armored, mission 
command). For example, GIFT Wrap location-based assessments could be slightly modified and used to author real-
time assessments for a company team practicing a wedge formation and/or adjusting to the appropriate formation 
under different circumstances. 

Future research should also be done to continuously examine and iteratively improve the GIFT Wrap user experience 
as use cases continue to be added. For example, the GIFT Wrap UI could be modified to facilitate authoring and 
visualizing dependencies amongst numerous events including triggering events, team behaviors and/or performance, 
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the impact of instructional strategies, etc. Alternative UI designs should be considered to ensure that the GIFT Wrap 
tool is flexible and robust enough to accommodate future applications including operational requirements for the 
Army’s Synthetic Training Environment (STE) capability.  
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INTRODUCTION 

There are four components in a minimalist model of Self-Improvable Adaptive Systems (SIAIS) (Hu, Tong, Cai, 
Cockroft, & Kim, 2019). These four components are 1) human learners that are assumed constantly self-improving 
(i.e., learning); 2) self-improvable learning resources that are either human resources (trainers/teachers, for example) 
or digital resources such as digital tutors which are capable of changing (improving) constantly; 3) learning 
environments that are diverse physical or virtual locations, contexts, and cultures in which students learn; 4) learning 
processes that are instructional sequence for any given domain for particular learner groups (such as grades). One 
publicly available important framework for self-improvable digital resource in SIAIS is Generalized Intelligent 
Framework for Tutoring (GIFT), which is an empirically-based, service-oriented framework of tools, methods and 
standards to make it easier to author computer-based tutoring systems (CBTS), manage instruction and assess the 
effect of CBTS, components and methodologies (“Overview - GIFT - GIFT Portal,” n.d.). In this paper, we take 
AutoTutor as an example of self-improvable tutoring systems and discuss the rule GIFT may play as a framework 
of self-improvable learning resources. 

SELF-IMPROVABLE LEARNING RESOURCES 

Based on Hu et al (in press), self-improvable learning resources are defined as those learning resources that can 
update, retrieve, and utilize their associated memory of the learning activities. The human learner is obviously self-
improvable and is constantly working to self-improve. Human teachers/trainers, and human study mates are also 
self-improvable and constantly improving as the result of constant interacting with human learners. Unfortunately, 
not all digital learning resources are self-improving. Relevant to the focus of the current paper, we are interested in 
specially designed digital resources that are self-improvable. As an example, AutoTutor is one such specially 
designed digital resources.  

AutoTutor 

AutoTutor (Graesser, Wiemer-Hastings, Wiemer-Hastings, & Kreuz, 1999; Nye, Graesser, & Hu, 2014) is an 
intelligent tutoring system that holds conversations with the human learner in natural language. AutoTutor has 
produced learning gains across multiple domains (e.g., computer literacy, physics, critical thinking). Three main 
research areas are central to AutoTutor: human-inspired tutoring strategies, pedagogical agents, and technology that 
supports natural language tutoring (“AutoTutor,” n.d.).  For the purpose of the current paper, we list a few less known 
properties of AutoTutor that make it a self-improvable digital resource in SIAIS. These properties make AutoTutor 
a variable controlled system. To illustrate, we list a few variable controllable components of AutoTutor that can 
influence the behavior of AutoTutor: 

Answer Grading Model. AutoTutor conversation is often referred to as Expectation-Misconception Tailored (EMT) 
conversation, in which a human learner learns by constructing an acceptable answer to a main question through 
answering a sequence of hint/prompt questions asked by AutoTutor. An AutoTutor main question usually requires 
an answer of 3 to 10 sentences. A hint/prompt question targets one aspect of the answer. The answer to a hint question 
is usually a sentence or a clause, while an answer to a prompt is usually a word or phrase. AutoTutor intelligently 
selects hint/prompt questions based on the learner’s input, which could be a good answer, a partial answer, a 
misconception, an irrelevant answer or even not an answer (e.g., a question). The AutoTutor answer grading model 

https://paperpile.com/c/54huDR/K3h0
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is responsible for classifying the learner’s inputs. The model is trained through deep learning neural network (Cheng, 
Cai & Graesser, 2018) with semantic features. For each newly developed AutoTutor application, AutoTutor uses a 
pre-trained model for early answer grading. When enough learning data is collected, the domain specific model is 
trained. The model could be further improved when more data is collected. Thus, the answer grading model is 
considered as an important variable that can be changed over time to improve AutoTutor’s performance.  

Avatars: AutoTutor employs several conversational avatars when interact with students. The avatars can play 
different roles such as computer tutors or computer students. Each of the avatars can have an assigned “personality” 
serving different functions during tutoring. For example, a tutor avator could have warm, neutral or cold personality; 
a peer student avatar may have the personality as a student leader, a hard working learner, an aggressive competitor, 
etc. The “personality” of an avatar is reflected by its facial emotions and its commonly used speeches, called “canned 
expressions”. The avatar face can be selected from available avatar library. The canned expressions can be revised 
over time. Thus, avatars are a variable in AutoTutor. 

Scripts: AutoTutor uses author prepared scripts for avatars. However, when learning data is collected, the scripts 
could be changed over time. For example, useless speeches could be removed; inadequate questions and speeches 
could be revised; and missing questions and speeches could be added. Moreover, typical utterances from human 
learners could be added as speeches for avatars that play the role of peer students. 

Rules: AutoTutor uses a set of “if-then” rules to determine what to do next in any given state. A state is determined 
by the learning history (what has happened so far) and the current input, including natural language input and “world 
events”, such as an interaction between the learner and an interactive element on the application interface, a time 
controlled change in the learning environment, etc. A rule set is often embedded with pedagogical strategies. For 
example, a vicarious learning rule set supports conversation between a tutor avatar and a peer student avatar, with 
minimal involvement of the human learner. A tutoring rule set specifies the way how to interact with learners who 
have medium level knowledge about the topic under discussion. A teachable agent rule set provides learners the 
opportunity to learn through teaching a peer student avatar. Each rule in a rule set can be changed over time. The 
criteria used to select a rule set is also changeable. Thus AutoTutor conversation rules are also a variable.   

GIFT as a framework for Self-Improvable digital resources in SIAIS 

There are many learning resources like AutoTutor that can be integrated into GIFT. GIFT framework requires any 
ITS based on GIFT (GIFTITS) is an integration of four core modules (“Overview - GIFT - GIFT Portal,” n.d.): 
Sensor Module, Learner Module, Pedagogical Module, and the Domain Module. The current prototype of GIFT 
(https://cloud.gifttutoring.org/) is a GIFTITS. The Sensor Module has interfaces to support commercial sensors (e.g., 
Affectiva Q-Sensor) and its function is to format, process and store sensor data. The Domain Module provides 
domain content to support training, assesses trainee performance against standards, and provides domain-specific 
feedback to the trainee when the Pedagogical Module identifies the need for feedback based on trainee performance. 
The Trainee Module uses trainee performance, historical data (e.g., past performance) and sensor data to determine 
the trainee’s cognitive and affective state. Current implementation of GIFT is primarily for content authoring and 
resource integration. Each of these Modules is interchangeable through the virtue of interfacing standards. This 
allows each Module designer to select the type of approach that they believe is suited towards instruction. For 
instance, a sample configuration may have a webcam sensor that interprets Facial Action Units (FACs), a rule-based 
performance assessment, a Feedback Generation Engine that generates varying levels of hints upon request, a finite 
state machine of trainee assessment, and pedagogy that gives hints on failed problems.  

Relevant to the focus of the current paper, one very important implementational properties of the current GIFT 
prototype is its modularity. All modules of GIFTITS are variable controlled. A each module is controlled by an XML 
file. For example, a domain knowledge file (DKF) contains the information needed to execute on a single lesson. 
Learner Configuration File is an XML that configures the learner module to support building learner states from 
inputs such as sensor data and performance assessments. There are configuration files for sensor module 
(SensorConfigurationFile), pedagogy module (PedagogicalConfigurationFile) that are controls behavior of GIFTITS 
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when interact with learner. In addition, other variables are also separately specified (in common.properties file). This 
implementation properties of the GIFT prototype shows that GIFTITS can be variable controlled hence self-
improvable.  

SELF-IMPROVABILITY OF LEARNING RESOURCES 

It was pointed out earlier that self-improvable learning resources are defined as those learning resources that can 
update, retrieve, and utilize their associated memory of the learning activities (Hu et al., 2019). Having variable 
controlled components will only make a digital resources self-improvable but not necessarily self-improving. Other 
key properties are needed. In the case of AutoTutor, its self-improvability is due to three key factors: a) AutoTutor 
is a cloud-based implementation with constant connection with a Learner Record Store (LRS) (Nye et al., 2014). b) 
Behaviors of AutoTutor are variable controlled. c) The variables that control AutoTutor’s behaviors could be 
changed based on the behavioral data collected in LRS. The same is for GIFT. Current implementation of AutoTutor 
only has a). The self-improvability of AutoTutor depending on b) and c). Only proper implementation of b) and c) 
can make AutoTutor self-improving. 

Self-improvability of GIFTITS 

We have argued that ITS implementation based on GIFT (as shown in the current GIFT prototype implementation) may have 
all modules and components variable controlled hence self-improvable. To make GIFTITS truly self-improving, 
additional key properties need to be added:  

1. System behavior of GIFTITS and human learner interaction behavior should be captured and stored within 
the same data scheme (such as xAPI). Current used of the behavioral data are collected mostly for post-hoc 
analysis. When the data is used to make GIFTITS self-improvable, there are special requirements, For 
example, the speed of retrieving and processing data should be fast enough for real-time feed back to the 
GIFTITS. Because the data will be used to improve GIFTITS, additional requirement for the data schema 
need to be considered (Hu et al impress). 

2. A collection of APIs need to be created that connect all variables of GIFTITS to the data store. These APIs 
will need to be constantly computing values based system behavior data and capable of real-time updating 
GIFTITS. The output of these APIs can either be an updated XML file (such as the DKF, 
PedagogicalConfigurationFile, or parameter values in the common.properties file). 

With 1) and 2) can only make GIFTITS self-changable. There is no mechanism to guarantee the GIFTITS is actually 
improving the learning experience and effectiveness. So it is very important to ensure self-improvability is achieved. 
In order to make this happen, a set of theory-driven empirically verified ideal tutoring behaviors need to be specified 
parametrically. For example, based on Graesser et al.  (2008)  GIFTITS needs to ask deep questions to during tutoring 
session, so for effective ITS, there might be a minimum requirement for number of deep questions asked during a 
given period of time. In addition an effective ITS in a given domain may have an optimal combinations of questions 
at different levels (Graesser & Person, 1994). So in addition to 1) and 2) listed above, self-improvability of GIFTITS 
needs to have  

3. A pre-set of ideal (effective and efficient) tutoring strategies specified computationally so it can be used to 
guide APIs of 2).     

RECOMMENDATION AND FUTURE RESEARCH 

Any GIFTITS can be self-improvable learning resource due to its design with variable controlled modules and 
components.  Self-improving GIFTITS is possible if the self-improbability requirements (1-3) are met. Consider 
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building self-improving GIFTITS as ultimate goal, it is necessary to enhance GIFT framework with the three self-
improbability requirements. Specifically, 

1. A extended behavior xAPI-like data profile (Hu et al. in press) need to be created that is capable of capture 
all interactions between GIFTITS and human learner such that all system behavior of GIFTITS are captured 
similar to that of human learner’s behavior.  

2. A collection of optimum domain-specific task-dependent tutoring strategies need to be created. These 
optimum tutoring strategies are computationally specifiable. For example, if a conversation-based GIFTITS 
is created based on Expectation-misconception tailored (EMT) dialog (Olney, Graesser, & Person, 2010), 
there exists an optimum combination of hints, prompts, pumps, and elaborations (Graesser et al., 1999; 
Olney et al., 2010).  

3. A set of APIs needed to be created. These APIs that are constantly monitoring GIFTITS behaviors and make 
real-time changes of variable values in GIFTITS modules and components of based on 2).     
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Application Of Reinforcement Learning For Automated Contents 
Validation Towards Self-Improving Online Courseware 

Noboru Matsuda and Machi Shimmei  
Center for Educational Informatics Department of Computer Science 

North Carolina State University  

INTRODUCTION  

Online education has been growing rapidly for the last decade with exponential growth of diverse students population 
(Shapiro et al., 2017) and adaptive technology enhancements (Lerís, Sein-Echaluce, Hernández, & Bueno, 2017). 
However, building practical online courseware is extremely costly—it requires extensive knowledge and expertise 
in theories of learning and teaching (Clark & Mayer, 2003; Slavich & Zimbardo, 2012). Most of the time, 
instructional designers and instructors design an initial courseware from their honest intuition, and then the 
courseware will be iteratively modified to meet better learning outcome. Though, iterative software engineering is a 
norm for almost any sort of practical software applications (Fishman, Marx, Blumenfeld, Krajcik, & Soloway, 2004), 
it requires significant knowledge to identify issues to be fixed for improvement. 

It is therefore critical to develop a transformative theory of practical learning-engineering methods for iterative 
online courseware creation. Without such methods, it is not likely to have sustainable system of online education. 
What if the courseware improves itself over time? 

The larger goal of our current project is to develop a self-improving online courseware that automatically detects 
and fixes ineffective parts of the existing courseware relative to students’ learning achievement. As a step towards 
achieving this pivotal goal, we propose to develop an integrated development environment (IDE) where human and 
AI collaboratively build online courseware through iterative design engineering—a machine detects issues and a 
human fixes them. As a step towards the proposed human- AI collaboration, this paper describes an innovative 
application of a reinforcement learning technique called RAFINE (Reinforcement learning Application For 
INcremental courseware Engineering). The RAFINE aims to identify ineffective instructional elements on existing 
online courseware given a record of individual students’ learning activity logs. 

In the rest of the paper, we first discuss related works followed by a detailed description of RAFINE. We then describe 
details about a simulation study and results as a proof of concept. 

RELATED WORKS 

Reinforcement learning (RL) has been used for educational applications in particular to compute effective 
pedagogical strategies for adaptive tutoring. Previous works applied RL to find optimal pedagogical decisions such 
as teaching actions (Rafferty, Brunskill, Griffiths, & Shafto, 2015), hint messages (Martin & Arroyo, 2004), dialogue 
moves (Min Chi, VanLehn, Litman, & Jordan, 2011; Tetreault, Bohus, & Litman, 2007), learning activities (Shen 
& Chi, 2016), and navigation (Iglesias, Martinez, Aler, & Fernandez, 2009). Other studies have applied RL to 
compute effective domain models such as model solutions (Barnes & Stamper, 2008). The effects of educational RL 
policy have been tested both with real and simulated data where some studies showed a positive effect of the policy 
(Beck, Woolf, & Beal, 2000; M. Chi, Koedinger, Gordon, Jordan, & VanLehn, 2011) while others did not (Iglesias 
et al., 2009). 

It is fairly common that the computed policies in the previous educational applications were optimized for learning 
outcome and learning time (Beck et al., 2000). To the best of our knowledge, the previous works are all mostly about 
computing the optimal pedagogical decisions. No research has been conducted to apply RL to identify ineffective 
instructional elements. Furthermore, under the framework of the ordinal RL, the rejected instructional contents do 
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not necessarily have a flaw—the second best might be as effective as the best. The current paper demonstrates how 
RL can be applied to identify ineffective instructional contents on existing online courseware. 

SOLUTION: RAFINE 

Overview of the RAFINE Method 

We consider the RAFINE method as Human-AI collaboration to improve the quality of existing online courseware. 
An initial version of the online courseware will be used by students and their activities will be logged. These activity 
data consist of standard clickstream data and students’ responses (and their correctness) for formative assessments. 
Since students’ activity data show a chronological record of their behavior on the online courseware, we call them 
the learning trajectory data hereafter. 

The RAFINE method first consolidates learning trajectories collected from all students into a single state transition 
graph, called a learning trajectory graph (LTG), and annotates the states with predefined rewards. A value iteration 
technique is then applied to compute a converse policy that shows the worst activities to be taken to achieve the 
expected learning outcomes. As a consequence, the converse policy corresponds to a set of instructional elements 
that have the least likelihood to contribute to students’ learning. 

Our central hypothesis is that those instructional elements that frequently appear as a converse policy across different 
states in a given LTG are likely to be ineffective and hence the subject for refinement. Those instructional elements 
identified as ineffective will then be presented to courseware developers as a recommendation for a courseware 
modification. The RAFINE method will be iteratively applied to the revised courseware by collecting a new batch of 
learning trajectory data to further improve the courseware. 

Model Representation 

The unit of analysis of the RAFINE method is an instructional element that constitutes online courseware. In the 
current study, we deal with three types of instructional elements: (1) videos, (2) formative assessments (aka quizzes), 
and (3) hint messages associated with formative assessments. We assume that all assessment quizzes are equipped 
with hint messages. 

Let Φ be a set of instructional elements appearing in the given learning trajectories. We assume that the target 
courseware was used by a large number of students hence Φ contains all instructional elements on the target online 
courseware. Let ai

T, a learning activity, be an instructional element taken (e.g., watching a video or answering a quiz) 
by student i at time T. Let LTi be a learning trajectory for student i who has ni learning activities. LTi is a 
chronological record of learning activities: 

𝐿𝐿𝑇𝑇#  =  {𝑎𝑎#
(, … , 𝑎𝑎#

+,  | 𝑎𝑎#
.    ∈ Φ,   = 1, … , 𝑛𝑛#}. 

We assume a presence of a skill model that contains a set of skills each representing a unit of knowledge that students 
have to learn, aka knowledge components (Koedinger, Corbett, & Perfetti, 2012). This assumption implies that each 
instructional element is tagged with a single skill in the given skill model. The RAFINE method is applied to each 
individual skill separately. Let Φ𝜇𝜇 be a set of instructional elements for skill 𝜇𝜇. Learning trajectories are also broken 
down into individual skills. Let LTi 𝜇𝜇 be the learning trajectory that contains only learning activities about skill 𝜇𝜇. 
The RAFINE method must be applied to each bundle of Φ𝜇𝜇 and LTi 𝜇𝜇 for all 𝜇𝜇 separately. A single application of the 
RAFINE method identifies ineffective instructional elements relative to a particular skill. 
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For a sake of simplicity without a loss of generality, let’s assume that there is only one skill in our target online 
courseware. We therefore eliminate the skill index from Φ and LT in the following descriptions unless otherwise 
desired for a clarification. 

In the learning trajectory graph, states represent learning status and edges represent learning activities taken that 
caused a change in status. We define a learning status for student i at time T for a particular skill 𝜇𝜇 as an intermediate 
state of learning represented as a pair of Action History and Mastery Level; 

<ahi,T, pi,T(𝜇𝜇)>. Action History ahi,T is a binary vector <ahi
1, …, ahi

K> where ahi
m shows whether student i has taken 

the m-th instructional element in Φ𝜇𝜇 by time T (assuming the instructional elements are ordered and |Φ𝜇𝜇 | = K). 

Mastery Level pi,T(𝜇𝜇) is a scalar value showing a predicted probability of student i applying skill 𝜇𝜇 correctly, should 
he/she answer an assessment quiz for the skill 𝜇𝜇 at time T. The value of Mastery Level is rounded down to the nearest 
multiple of 0.05 (e.g., 0.18 becomes 0.15). Mastery Level, pi,T(𝜇𝜇), will be computed based on the history of learning 
activities with an underlying assumption that commitment to a learning activity for a particular skill would increase 
Mastery Level by a specific amount. There are several known techniques available to achieve this goal including 
Bayesian models (e.g., Corbett & Anderson, 1995) and regression models (e.g., M. Chi et al., 2011). As long as 
Mastery Level is monotonically updated, any student-modeling technique would work for the RAFINE method. 

To consolidate individual students’ learning trajectories into a single learning trajectory graph (LTG), each 
individual student’s learning trajectories are first converted into a learning trajectory path. This is done by 
chronologically traversing a learning trajectory while creating states each representing an intermediate learning 
status <ahi,T, pi,T(𝜇𝜇)>. While traversing the learning trajectory, ahi,T and pi,T(𝜇𝜇) are updated accordingly. For example, 
assume there are six instructional elements: Video1, Video2, Quiz1, Quiz2, Hint1, and Hint2. A state s <101000, 
0.40> indicates that a student had watched Video1 and took Quiz1 before reaching the state s. It also indicates that 
a predicted Mastery Level at the time of arriving at the state s was 0.4. Assume that the student answered Quiz1 
incorrectly to reach the state s. Now, the student needed to review Hint1, which caused a transition from s to s’ where 
s’ is <101010, 0.45> with an assumption that reviewing a hint increased the Master Level by 0.05. 

All individual students’ learning transition paths are then aggregated into an LTG by merging the same states. As a 
consequence, the states in the LTG generally have multiple incoming and outgoing edges. Note that in the LTG, 
student and time (i.e., the parameters i and T in an individual student’s learning trajectory path) are abstracted. 
Therefore, in the following explanations, a tuple representing a state is denoted as <ah, p(𝜇𝜇)>. In an LTG, the states 
where the value of the Mastery Level, p(𝜇𝜇), is greater than a pre-defined threshold (which is usually 0.85) are called 
terminal states—meaning that students became proficient in applying skill 𝜇𝜇. All outgoing edges at terminal states 
are discarded. 

Rewards 

A reward value of a particular state depends on the Mastery Level, p(𝜇𝜇), both at the current and successor states. As 
an example, consider two students who landed on the same state s, but then took different learning activities. One 
student reached a successor state by answering an assessment quiz incorrectly (i.e., p(𝜇𝜇) was not increased) whereas 
the other student watched a video (i.e., p(𝜇𝜇) was increased). 

In our model, a reward for state s where the student took a learning activity a to reach a successor state s’ is defined 
as: 

−0.14 (𝑚𝑚(𝑠𝑠) = 𝑚𝑚𝑙𝑙(𝑠𝑠A)  < 0.85) 
(𝑠𝑠, 𝑎𝑎, 𝑠𝑠′) = : −0.05 (𝑚𝑚𝑙𝑙(𝑠𝑠) < 𝑚𝑚𝑙𝑙(𝑠𝑠′) < 0.85) 

0.95 F0.85 ≤ 𝑚𝑚(𝑠𝑠A)H 
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In the equations above, ml(s) returns the Mastery Level at the state s. A reward at the state s becomes the greatest 
when the successor state is a terminal state. Otherwise, the rewards are set to be small negative values so that the RL 
would find the shortest path to a terminal state while computing a policy as shown in the next section. We assume 
that the Mastery Level grows monotonic, i.e., students never unlearn. Therefore, a reward where ml(s) > ml(s’) is 
undefined. 

Converse Policy 

Given the reward function R as mentioned above, a value function for state s under a policy 𝜋𝜋 is defined as follows, 
where S is a set of all states in a given LTG: 

𝑉𝑉K(𝑠𝑠) = L 𝑇𝑇(𝑠𝑠, 𝜋𝜋(𝑠𝑠), 𝑠𝑠′)(R(s, 𝜋𝜋(𝑠𝑠), sA) + γ𝑉𝑉K(𝑠𝑠′)) 
PA∈Q 

In the current implementation, the discount factor γ is arbitrarily set to be 0.9. A transition model T(s, a, s’) is derived 
from the learning trajectory data collected from actual students as the probability of students reaching state 𝑠𝑠′ when 
they took a learning activity 𝑎𝑎 at state 𝑠𝑠. 

In general, a policy suggests an action to be taken in a certain state to maximize the value function (Wiering & van 
Otterlo, 2012). However, for the purpose of Rafine, we need to know which instructional elements should not be 
taken—i.e., we need to know which action has the least expected reward. There- fore, through the value iteration, 
the value function is updated as follows where A(s) shows a set of actions appearing in outgoing edges at state s: 

(𝑠𝑠) ← min  L 𝑇𝑇(𝑠𝑠, 𝑎𝑎, 𝑠𝑠′)(𝑅𝑅(𝑠𝑠, 𝑎𝑎, 𝑠𝑠A) + 𝛾𝛾𝑉𝑉(𝑠𝑠′)) 
V∈W(P)  

PA∈Q 

After the value function is converged, the action that minimizes the value function for state s is identified. We shall 
call this policy the converse policy: 

(𝑠𝑠) = argmin L 𝑇𝑇(𝑠𝑠, 𝑎𝑎, 𝑠𝑠′)(𝑅𝑅(𝑠𝑠, 𝑎𝑎, 𝑠𝑠A) + 𝛾𝛾𝑉𝑉K(𝑠𝑠A)) 
V∈W(P)  

P\∈Q 

EVALUATION STUDY 

Our central hypothesis is that those instructional elements that frequently appear as a converse policy across different 
states in a given LTG are likely to be ineffective and hence should be revised. To test this hypothesis, we conducted 
an evaluation study with hypothetical learning trajectories generated by simulated students. 

Although any instructional element can be selected as a converse policy, the current version of RAFINE only includes 
videos and hints in its recommendation. This is because there are known quantitative methods, e.g. item response 
theory (Baker, 2001), that can be used to evaluate the quality of assessment items. 

Three instances of online courseware were created to control the quality of courseware with varying ratios of a 
number of effective instructional elements to all instructional elements on the courseware. We assumed that there 
was only one skill involved in the mock online courseware. All three instances of courseware had the same structure: 
they consisted of three pages (Page0, 1, 2), and each page included three lecture videos and three formative 
assessments (i.e., quizzes). All quizzes had hints associated. All instructional elements on the mock courseware (9 
videos and 9 hints total) except assessment quizzes (for the reason mentioned above) were coded as either effective 
or ineffective. The high-quality courseware had a 8:1 split (8 effective video / hint and 1 ineffective video / hint); 
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the moderate-quality courseware had a 4:5 split; and the low-quality courseware had a 1:8 split. Let’s call them H 
(High), M (Moderate), and L (Low) courseware hereafter. 

Simulated students started from Page0 and randomly took a total of 10 to 14 instructional elements. At least two 
instructional elements must be taken to proceed a page. When simulated students answered a quiz incorrectly, they 
were forced to review the associated hint and take the same quiz again. The simu- lated student’s performance on 
the assessment quizzes was determined by their latent proficiency that indicates a probability of answering a quiz 
correctly. In the real world, the latent proficiency increases according to the actual learning activities taken and 
student’s latent trait of learning that determines the learning rate. To simulate the growth in the latent proficiency 
pi,T(𝜇𝜇), we used a logistic regression model representing a probability of student i answering a quiz about the skill 𝜇𝜇 
correctly at time T as shown below: 

𝑝𝑝#,^(𝜇𝜇) = _
  1 

d 
                 1 + 𝑒𝑒ab,,c 

𝑍𝑍#,^  =  𝑍𝑍#,^a(  + 𝛿𝛿F𝑎𝑎#,^a(H 

The ⌈𝑥𝑥⌉ operator is to round down the value x to the nearest multiple of 0.05. Logit (Zi,T) was directly increased with 
an ad-hoc function δ(ai,T-1) that models the growth of the latent proficiency when the learning activity ai,T-1 was taken 
by simulated student i at time T-1. The function δ was defined by the learning rate, the effectiveness of the 
instructional element taken, and (when the learning activity was an assessment quiz) the correctness of a quiz answer. 

We assumed that simulated students’ learning was facilitated more (i.e., a greater increase in logit) when they took 
effective instructional elements than ineffective elements. We also assumed that students learned more by answering 
a quiz correctly than incorrectly. For example, when a simulated student with a high learning rate watched an 
effective video, the logit was increased by 0.35, but only by 0.15 when an ineffective video was watched. For a 
simulated student with a low learning rate, the logit was increased by 0.31 and 0.11 respectively for effective and 
ineffective videos. 

To control learning rate, five types of simulated students were created with different learning rates. They were labeled 
from R1 (the highest learning rate) to R5 (the lowest). In the simulation, 20% of simulated students were R1, 30% 
R2, 20% R3, 20% R4, and 10% R5—roughly reflecting a slightly skewed student population. 

Under these assumptions, simulated students’ learning trajectories were randomly generated. For each quality of 
courseware (H, M, and L), 100 instances of mock courseware were created with 1,000 simulated students. Each of 
the learning trajectory datasets was then converted into a learning trajectory graph (LTG). As a result, 300 LTG’s 
were created, 100 each for H, M, and L courseware. In an LTG, Action History was encoded as a 27-bit binary vector 
(3 types of instructional elements, 9 each); and the Mastery Level is a decimal number (a multiple of 0.05). The 
latent proficiency described above was used as an estimate for Mastery Level (instead of actually applying a student 
model technique). 

For each of the 300 LTG’s, the value iteration technique was applied to compute a converse policy. As a result, 300 
sets of converse policy were created, each suggesting which instructional elements were ineffective on the 
corresponding online courseware. Note that this simulation study models a large scale field trial with real students 
as if 300 instances of online courseware were tested each with 1,000 students participating. After these trials, the 
Rafine makes a recommendation for refinement for each instance of the courseware. 
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RESULTS 

For the following analysis, we first evaluate the accuracy of a converse policy. We then discuss the accuracy of 
recommendation, which by definition is a subset of all instructional elements on the given online courseware that 
Rafine identifies as ineffective. 

Overall Accuracy of the Converse Policy 

We first evaluate the overall accuracy of a converse policy as a predictor of ineffective instructional elements. Notice 
that if there are N states in a learning trajectory graph (LTG), there are N converse policies generated. The accuracy 
of the converse policy is a ratio n/N where n is the number of states on which an ineffective instructional element is 
suggested as a converse policy. 

To understand the value added by the converse policy, the chance ratio of courseware is defined as a ratio of 
ineffective to a total number of instructional elements on each courseware—e.g., for L (low) courseware, it is 16/18 
= 0.89. The chance ratio of state is also defined among instructional elements appearing on outgoing edges of a given 
state as a/b where a is the unique number of ineffective instructional elements and b is the total number of unique 
instructional elements. In the following analysis, states where the chance ratio is equal to 1.0 or 0.0 were excluded 
(i.e., instructional elements on the outgoing edges were all ineffective or all effective). 

Table 1: Overall accuracy of the converse policy averaged across 100 datasets for each type of courseware. 

Table 1 shows the mean accuracy of a converse policy aggregated across 100 datasets for each quality of courseware. 
The overall accuracy of a converse policy was 0.72 even for the courseware H where only 11% (2 out of 18) of 
instructional elements were ineffective. These results imply that the converse policy has a high potential to accurately 
detect ineffective instructional element.  

 

Figure 1: The accuracy of converse policy relative to states with the same chance ratio. 

We hypothesize that the accuracy of a converse policy is correlated with a chance ratio of state—i.e., if a state has 
many outgoing edges that correspond to ineffective instructional elements, the value iteration would likely pick one 
of them as a converse policy. To test this hypothesis, we plotted an accuracy of a converse policy relative to a group 
of states with the same chance ratio as shown in Figure 1. In the figure, each data point represents a set of states that 

Courseware L Courseware M Courseware H 
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have the same chance ratio as indicated on the x-axis. The y-axis shows the mean accuracy of a converse policy for 
a corresponding group of states—i.e., the ratio of states where an ineffective instructional element was selected as 
the converse policy to the total number of states in the group. The 45-degree line shows the chance rate. In the figure, 
states where the chance ratio is equal to 1.0 or 0.0 were excluded. Figure 1 indicates that the converse policy can 
discriminate ineffective instructional elements from effective instructional elements far better than chance for any 
state in a given LTG. 

Although the converse policy can detect an ineffective instructional element at each state with a high accuracy, there 
are normally a notably large number of states in an LTG, so all instructional elements are included in the converse 
policy. Therefore, filtering the converse policy is essential for Rafine to make an actual recommendation. As our 
central hypothesis states, we conjecture that the frequency of being selected as a converse policy is a key for the 
filtering. The next section shows the accuracy of the judgement of recommendations for which instructional elements 
must be replaced based on the frequency heuristic. 

Accuracy of Recommendations for Iterative System Improvement 

We first tested if the frequency of being selected as a converse policy can be used as a filtering criterion to detect 
ineffective instructional elements among the converse policy. The average frequency of each instructional element 
being selected as a converse policy was computed by aggregating frequency values across 100 datasets. On average, 
each ineffective instructional element was selected as a converse policy 28.2 times in L, 30.6 in M, and 33.0 in H 
per dataset whereas each effective instructional element was selected 8.6 times in L, 10.0 in M, and 11.5 in H. The 
difference between ineffective and effective instructional elements was statistically significant for all three qualities 
of courseware: for L, t(99) = 84.67, p < 0.05; for M, t(99) = 98.18, p < 0.05; for H, t(99) = 37.71, p < 0.05. These 
results suggest that frequency can be used as a filter to indicate ineffective instructional elements among a converse 
policy. 

The above observation implies that we should be able to find a frequency cut-off to determine which instructional 
elements must be classified as ineffective. We shall call this heuristic as the frequency heuristic. The question is how 
the cut-off should be determined, but it is rather an empirical call. We therefore compared two different cut-off 
thresholds—mean ± standard deviation (M±SD). The mean and the standard deviation of the frequency that 
individual instructional elements were selected as a converse policy were computed. Those instructional elements 
that appeared as a converse policy more than the cut- off are considered as ineffective. Further analysis revealed that 
that when the quality of courseware is low (L) to moderate (M), the M–SD cut-off yields better recall and precision 
than the M+SD cut-off; F1=2*precision*recall / (precision + recall) = 0.96 and 0.75 for L and M respectively with 
M–SD, whereas F1 = 0.38 and 0.58 with M+SD. However, when the quality of courseware is high (H), the M+SD 
cut-off outperforms M–SD; F1 = 0.65 for M+SD vs. 0.20 for M–SD. This implies that at the beginning of the iterative 
courseware engineering, the M–SD cut-off is better, but as the courseware gets improved, the M+SD cut-off should 
be used. We would want to detect as many inefficient instructional elements as possible even at a cost of false 
positives (i.e., the machine suggests refining even effective instructional elements). 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

We found that when students’ learning trajectories were converted into a learning trajectory graph, computing the 
worst policy (i.e., the converse policy) using the value iteration, a well-known reinforcement learning technique, 
provides us with a strong clue for the effectiveness of instructional elements used in the online courseware. The 
converse policy is a collection of a state-action pair showing the worst action (i.e., the least effective instructional 
element) to be taken at a certain state. Since the number of states in a given learning trajectory is very large, all 
instructional elements appear in the converse policy. The frequency heuristic then differentiates those that are highly 
likely ineffective instructional elements from others. The proposed method, RAFINE, provides online courseware 
developers with an evidence- based recommendation to iteratively improve the courseware content. 
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The current work is a step toward realizing a fully-autonomous, self-improving online courseware— machine 
identifies issues and human fixes them. As for the current state of the art, we recommend GIFT to provide us API 
for RAFINE to give feedback to courseware developers on the quality of the individual instructional element. One 
idea is to flag instructional elements that are identified to be ineffective on the authoring tool GUI while the developer 
is editing the content. Another idea is to provide a courseware developer’s dashboard that shows a birdview of 
courseware elements with an annotation for their predicted effective. 

To yield a better prediction, RAFINE must be fed a learning trajectory graph that contains diverse learning activities. 
The GIFT online courseware therefore should provide students with a decent flexibility on selecting learning 
activities on their own. 
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Multimodal Machine Learning in Adaptive Instructional 
Systems: A Survey 

Nathan Henderson, Jonathan Rowe, and James Lester 
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INTRODUCTION 

The development and evaluation of multimodal machine learning approaches is an ongoing research area that has 
been the subject of growing interest in recent years. By emulating human sensory perception using multiple 
concurrent data channels, or “modalities,” multimodal machine learning has shown promise for a range of domains 
related to education and training, particularly in adaptive instructional systems (AISs). Multimodal machine learning 
has been shown to yield improved models compared to unimodal methods, particularly in the area of affect detection 
and classification (Baltrušaitis, Ahuja, & Morency, 2018; Grafsgaard et al., 2014). 

Recent advances in sensor technologies have enabled a growing list of applications of multimodal machine learning 
to different sensor-based modalities, including eye gaze data, facial expression, speech, posture, gesture, 
electrodermal activity (EDA), and electroencephalography (EEG). These data streams are complementary to sensor-
free modalities, such as keystroke date, mouse movements, and interaction trace log data. Multimodal machine 
learning has been used for tasks such as automated classification and identification of affective states, including 
frustration, boredom, and engagement. Multimodal systems have also been devised to induce computational models 
for assessment (Grafsgaard et al., 2014) and metacognition (Azevedo & Aleven, 2013). Data for training multimodal 
machine learning models in AISs has been collected in a number of different environments, including laboratory 
(Taub et al., 2017), classroom (Bosch et al., 2016), and military training settings (DeFalco et al., 2018). 

Multimodal machine learning shows significant promise for enabling personalized support functionalities to enhance 
learning outcomes and engagement in AISs. However, multimodal AISs raise challenges as well. Sensors with high 
sample rates generate large volumes of data to be filtered and processed, raising issues of data storage, computational 
resources, scalability, and modality interdependence. Sensors that rely on external hardware can also break or fail, 
raising issues of noise, data loss, calibration, mistracking, and interference. The inclusion of multiple parallel data 
streams requires each modality to be aligned and represented in a way that is compatible with a chosen multimodal 
machine learning algorithm (Baltrušaitis, Ahuja, & Morency, 2018). Additionally, multimodal machine learning is 
ideally configured to take advantage of multi-dimensional information available across the various modalities; 
otherwise, a multimodal approach is unlikely to be any better than an ensemble of unimodal models. 

In recent years, the Generalized Intelligent Framework for Tutoring (GIFT) has emerged as an important testbed for 
the development and deployment of AISs. GIFT is a service-oriented framework of software tools and methods 
designed to streamline the process of designing, developing, and deploying AISs. Notably, GIFT provides built-in 
support for collecting multimodal data during student interactions with an AIS. This is enabled by the GIFT Sensor 
Module, which provides a configurable interface to several hardware sensors, including webcams, motion-tracking 
cameras, and EDA bracelets. However, much of this support is focused on collection of multimodal data. Significant 
gaps exist in available tools and support for the development and implementation of multimodal machine learning 
systems for AISs, including tools for multimodal data preprocessing, modeling, and analysis. GIFT does include 
some integration with existing data mining toolkits, such as RapidMiner (Mierswa, Wurst, Klinkenberg, & 
Scholz, 2006). 

However, significant programming effort is required to utilize these features, and there is limited support for many 
prominent machine learning toolkits. 
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In this paper, we provide an overview of recent research on applications of multimodal machine learning in AISs. 
We describe machine learning techniques that have been used in different multimodal AISs, as well as non-
instructional systems that raise parallel challenges. We discuss issues such as data fusion, data imputation, and data 
alignment, along with relevant algorithms. Practical considerations for multimodal data collection and analysis are 
noted as well. Finally, we offer several suggested directions for future enhancements to GIFT to facilitate 
development and utilization of multimodal machine learning in AISs, especially those developed with GIFT 
authoring tools. 

OVERVIEW OF MULTIMODAL MACHINE LEARNING 

Multimodal machine learning has its roots in audio-visual speech recognition (Baltrušaitis, Ahuja, & Morency, 
2018), but with recent advances in sensor technologies and computational resources, multimodal machine learning 
has expanded to a wide variety of roles. In AISs, a common application of multimodal machine learning is affect 
detection. Affect serves a key role in shaping learning outcomes (Grafsgaard, Wiggins, Boyer, Wiebe, & Lester, 
2014). By devising computational models that dynamically measure learner affect at run-time, it is possible to detect 
and intervene in negative affective states, such as frustration and boredom, to enhance student learning outcomes 
(DeFalco et al., 2018; Harley, Bouchet, Hussain, Azevedo, & Calvo, 2015). Multimodal machine learning has also 
been utilized to predict positive affective states that correlate positively with student learning, such as engagement 
(Grafsgaard et al., 2014). 

Sensor-Based Multimodal Affect Detection 

Sensor-based multimodal systems have seen a significant increase in usage in recent years, primarily due to their 
inherent generalizability across a multitude of domains. This is attributable to rapid decreases in the cost and size of 
many sensors. Many types of sensors no longer require purchase of specialized hardware, and instead are widely 
available through universal platforms such as built-in webcams, microphones, eye trackers, and motion-tracking 
cameras like the Microsoft Kinect. Because these sensors are free of specialized hardware restrictions, they can offer 
a more cost-effective alternative to more expensive input channels. In a survey of multimodal affect detection 
systems, D’Mello & Kory (2014) observed a large number of affect detection models and detailed contemporary 
trends. They observed that facial expression and voice were the most commonly used modalities, occurring in over 
75% of observed studies. They also noted that other sensor-based inputs such as posture, body movement, and other 
physiological modalities were individually present in at least 10% of studies (D’Mello & Kory, 2014). 

We review a number of recent works involving sensor-based multimodal affect detection systems and observe their 
respective methodologies for classification, as well as their utilized modalities. Harley et al. (2015) captured 
multimodal data from 67 undergraduate students engaged in MetaTutor, an adaptive science-based learning 
environment. They captured facial expressions using a webcam in conjunction with automatic facial expression 
recognition software (FaceReader 5.0). They also measured physiological arousal using electrodermal activity 
(EDA) data using an Affectiva Q-Sensor bracelet and analyzed trends in the two modalities in conjunction with 
learners’ self-reported affective states. Their findings indicated high level of agreement between facial expression 
and affective states, but low correlation between the EDA modality and affective state (Harley et al., 2015). In a 
similar fashion, Cooper, Arroyo, and Woolf (2011) used EDA data alongside posture and facial tracking to investigate 
learner engagement with Wayang Outpost, a mathematics intelligent tutoring system. They also utilized a mouse 
sensor that captured grip pressure. They utilized stepwise linear regression to detect a series of affective states 
(confident, excited, interested, or frustrated). Grafsgaard et al. (2012) utilized data from a Microsoft Kinect sensor 
to identify frustration, focused attention, decreased involvement, and disengagement in students interacting with a 
computer-mediated tutoring system for introductory Java programming. Multiple postural features were correlated 
with different affective states and student learning outcomes. In general, it appeared that the more a user shifted their 
overall posture, the less engaged and more frustrated they were. 
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Facial expression and posture have been investigated alongside EDA data and mouse pressure in work by Arroyo et 
al. (2009) aimed at classifying learner confidence, frustration, excitement, and interest among students engaged with 
an AIS designed for teaching geometry (Arroyo et al., 2009). Using stepwise linear regression, their work indicated 
that increased mouse pressure was correlated with rising frustration levels, and facial expression was indicative of 
approximately 60% of students’ instances of affect. In addition to facial expression and posture data, Grafsgaard et 
al. (2014) analyzed textual dialogues between a tutoring system and student to analyze engagement, frustration, and 
normalized learning gains in students. Bosch et al. (2016) used clustering and Bayes Nets to construct binary 
classifiers for boredom, confusion, delight, engagement, and frustration. Their experiment took place in a classroom 
environment, where students were engaged with Physics Playground, an educational game about qualitative physics, 
using facial expression, head and torso positioning, and gross body movement as input modalities. Eye gaze tracking 
has also effectively been utilized as an indicator of learning outcomes, such as work by Rajendran, Carter, and Levin 
(2018) that used this modality to train a gradient tree boosting algorithm to model students’ reading performance. 

Additional modalities have also been investigated for classifying learners’ affective states. However, the sensors 
required to capture these types of data are often more intrusive than facial expression or posture analysis sensors, 
such as webcams and motion-tracking cameras. Many multimodal systems that leverage biometric-based modalities 
have been devised for environments outsides of educational settings. EEG data has been used alongside Kinect data 
for biometric identification tasks using K-nearest neighbor clustering with histogram-oriented gradient features 
(Rahman & Gavrilova, 2017). EEG, EDA, and EMG modalities were modeled using Naïve Bayes classifiers, support 
vector machines (SVMs), and J48 decision trees for the purpose of identifying individuals’ levels of arousal and 
valence while watching online videos (Girardi, Lanubile, & Novielli, 2017). Results show that EEG and EDA yielded 
the highest classification rates for arousal when used with an SVM, while all three modalities produced the highest 
classification rate for valence. Similarly, EDA and EEG have been simultaneously utilized to detect stress levels and 
cognitive load among visually-impaired people navigating an unfamiliar environment (Kalimeri & Saitis, 2016). The 
classifier investigated in this experiment was a random forest model. Soleymani et al. explored the use of EEG data 
with facial expression data for the approximation of valence and arousal levels of students watching a series of 
emotion-invoking video clips. They used long short-term memory recurrent neural networks (LSTM-RNN) and 
continuous conditional random fields for their classification models. Their results indicated that facial expression 
data was inherently more informative than EEG data for their task, and a majority of the EEG features were a result 
of facial expression contamination. However, the EEG modality was beneficial when used in a complimentary role 
alongside the facial expression modality (Soleymani, Asghari-Esfeden, Fu, & Pantic, 2016). 

Multimodal Deep Learning 

Deep learning techniques, such as LSTM-RNNs, have seen a huge increase in interest in recent years, particularly 
due to significant improvements in computational hardware such as graphical processing units. In a survey paper 
focused on deep multimodal learning, Ramachandram and Taylor (2017) attribute increased interest in deep learning 
to its ability to form a hierarchical representation of each modality simultaneously, offering a distinct advantage over 
unimodal classifiers. Neural network architectures such as convolutional neural networks, autoencoders, LSTM-
RNNs, and feedforward neural networks have also been shown to serve as effective multimodal machine learning 
models for tasks such as affect detection, sentiment analysis, image annotation, and speech classification 
(Ramachandram & Taylor, 2017). Common modalities for these solutions include audio-visual information, text, 
speech/dialogue data, and optical flow. Deep feedforward neural networks have been shown to yield improved 
performance in tasks such as frustration detection over non-neural models, such as SVMs (Henderson et al., 2019), 
which may be attributable to their innate ability to learn complex relationships across high-dimensional data as well 
as their capacity to process data while keeping spatial and temporal context intact (Pei, Yang, Jiang, & Sahli, 2015). 

CHALLENGES IN MULTIMODAL MACHINE LEARNING 

Although multimodal machine learning shows significant promise within AISs, there are still a multitude of risks 
and issues to be addressed, particularly when dealing with sensor-based models. Some concerns are raised when 
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dealing with the dimensionality of the data itself. For example, multimodal systems often require high-
dimensionality data, which can improve performance but also increase computational workloads and hardware 
constraints. Another issue is the spatial nature of many modalities. Although temporal information in different 
modalities has been demonstrated to be beneficial to multimodal classifiers (Henderson et al., 2019), many sensors 
only capture positional or spatial data at discrete time points; temporal context is not explicitly recorded. Other 
hardware-related issues can also arise, yielding significant noise or the loss of an entire data channel altogether. 
Because multimodal machine learning often involves the creation of a singular model for a multitude of data streams, 
it becomes imperative that each modality is equally accessible and interpretable. This raises issues of data alignment 
and representation, as well as calibration of the sensors themselves. In this section, we discuss several common issues 
and obstacles that are raised by multimodal machine learning-based systems, as well as different efforts to remedy 
several of these issues. 

Temporal Context 

As stated in the previous paragraph, sensors often capture limited temporal context about subjects. While this does 
not directly inhibit the creation or deployment of multimodal systems, such information can provide insight into the 
state of the subject captured by the sensor. For example, this was recently shown to be beneficial to the creation of a 
multimodal machine learning-based model for run-time affect detection in a game-based learning environment for 
emergency medical training (Henderson et al., 2019). A single modality containing spatial posture data (i.e., torso 
position) was captured using a Microsoft Kinect sensor. A second, synthetic modality that captured temporal data 
(i.e., torso velocity) was generated by taking the derivative of each captured instance of participants’ postural 
positions. This temporal information improved the performance of the affect detector over a previously published 
baseline that utilized only the spatial Kinect features. Another example of this approach took (1) body lean angle, 
(2) slouch factor, (3) quantity of motion, and (4) contraction index from a single postural modality (Sanghvi et al., 
2011). These input vectors were utilized for the classification of elementary school students’ engagement with an 
automated companion in a game-based learning environment (iCat). These features served as artificial temporal 
modalities, an attempt to solve the issue of missing temporal context from sensor-based data. An alternative approach 
is to employ machine learning to derive temporal context from a multimodal dataset using techniques such as 
recurrent neural networks (Chen & Jin, 2015). Continuous generation models have also been used as a generative 
approach to preserve temporal information across modalities (Baltrušaitis, Ahuja, & Morency, 2018). 

Data Preprocessing 

There are several issues that arise during data preparation prior to the application of multimodal machine learning 
techniques. For example, a common issue in affect detection is the problem of imbalanced class labels. In many 
educational settings, a student is more likely to exhibit displays of concentration than frustration or surprise, which 
may adversely impact a classifier’s ability to accurately detect certain affective states. This calls for application of 
oversampling techniques to training data. One method to address this problem is minority cloning. This oversamples 
positive instances of a sparse affective state, bringing the data to a balance that is closer to an even ratio of positive 
and negative instances. A more sophisticated approach that is commonly used in affect detection is Synthetic 
Minority Over-sampling Technique (SMOTE) (Chawla, Bowyer, Hall, & Kegelmeyer, 2002). SMOTE generates 
synthetic samples from the minority class based on existing samples. 

An important step in many practical applications of multimodal machine learning is feature selection and feature 
reduction. Because each modality can have high dimensionality, it is important to eliminate redundant or irrelevant 
features to save computational time and resources. There are range of feature selection algorithms that have been 
utilized to distill feature representations in AISs. One example is forward selection: this is a greedy selection 
algorithm that trains a model on each feature and selects the feature whose model returns the highest performance. 
This process continues until a preset number of features is reached. Other feature selection methods include 
univariate selection, tree-based feature selection, and removing features with low variance. A common approach to 
feature reduction is principal component analysis (PCA). PCA involves reducing a multivariate dataset to lower-
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dimensionality linearly correlated values called “principal components” (Chandrashekar & Sahin, 2014). 
Autoencoders have also seen use as a feature reduction method, and they are particularly useful due to their ability 
to decode the reduced data to its original representation (Jaques, Taylor, Sano, & Picard, 2017). 

Data Imputation 

Multimodal AISs, particularly sensor-based systems, face inherent risks associated with hardware failure. Physical 
hardware can be unreliable or inconsistent, leading to issues such as data noise, data loss, and outliers. A common 
consequence is missing data for one or more modalities. Another common issue is data noise within a modality. This 
can occur due to background activity captured by a sensor (i.e., someone walking in the background), or inconsistent 
behavior from the sensor itself. While a common solution is to discard data samples that contain missing or invalid 
data, an alternative approach is to impute missing values using the available samples. One simple approach to data 
imputation is mean imputation, which involves replacing each missing value with the mean of existing values for 
that particular feature. A more sophisticated method is the use of autoencoders to impute data (Jaques, Taylor, Sano, 
& Picard, 2017). This involves training an autoencoder with a subset of data that does not contain any missing values. 
This trained model is then used to approximate the missing values. This method can be effectively applied to sparse 
missing data, as well as entire missing modalities. Autoencoders have also been commonly used as a denoising 
technique for noisy or inconsistent data. 

Data Fusion 

Data fusion deals with the integration of data from multiple modalities for the purpose of classification or regression. 
Thus, it is a critical step in the creation of multimodal machine learning models (Baltrušaitis, Ahuja, & Morency, 
2018). The majority of data fusion techniques are model-agnostic; that is, the data fusion is not reliant on a particular 
machine learning algorithm, and it occurs prior to, or after, classification or regression has taken place (Baltrušaitis, 
Ahuja, & Morency, 2018). These approaches are commonly divided into three categories: early fusion (feature-
level), late fusion (decision-level fusion), and hybrid fusion. 

Early fusion involves the concatenation of feature vectors from multiple modalities, and it occurs immediately after 
feature extraction. This is arguably the simplest data fusion method, since concatenation is a relatively 
straightforward operation and the method requires only a single machine learning model. Late fusion involves 
training a unimodal classifier for each modality and then fusing the resulting predictions from each classifier. Fusion 
can be accomplished in several possible ways, including averaging, voting, weighting, or applying another machine 
learning-based model (Baltrušaitis, Ahuja, & Morency, 2018). This approach does allow for different machine 
learning models to be used on each modality, which may increase overall model performance. This method is also 
more robust, allowing for models to be trained even in the presence of missing modalities. Hybrid fusion combines 
predictions from early fusion with additional unimodal predictors. Recent efforts to evaluate data fusion methods 
include work by Rahman and Gavrilova (2017), which used a form of late fusion on EEG and Kinect posture data 
for biometric identification. Similarly, Kalimeri and Saitis (2016) used early fusion on EEG and EDA modalities for 
the detection of stress levels, and Patwardhan and Knapp (2016) used a variety of body tracking modalities in 
combination with late fusion for the purpose of affect detection. Finally, Henderson et al. evaluated both early and 
late fusion techniques with a combination of spatial and temporal posture modalities for frustration detection in a 
game-based learning environment (Henderson et al., 2019). 

There are also data fusion techniques that implicitly handle multimodal data; we refer to these as model- based 
approaches (Baltrušaitis, Ahuja, & Morency, 2018). One example of a model-based approach is multiple kernel 
learning models. These are an extension of SVMs, but apply the kernel-based learning approach to multiple 
modalities. Another alternative is probabilistic graphical models. Originally devised using hidden Markov models 
and Bayesian networks, probabilistic graphical models have expanded to include conditional random fields. 
Graphical models are useful due to their ability to process spatial and temporal features from multimodal data, and 
they often lead to interpretable models (Baltrušaitis, Ahuja, & Morency, 2018). As stated before, deep learning has 
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become a prominent method for multimodal machine learning. This is partly due to its innate ability to fuse encoded 
features from multiple modalities. Deep neural networks offer the ability to learn complex relationships across high-
dimensionality datasets, as well as the ability to process spatial and temporal information through the use of CNNs 
and RNNs, respectively. 

Data Alignment 

Multimodal data alignment is a process that accounts for the relationships between sub-components of two or more 
modalities (Baltrušaitis, Ahuja, & Morency, 2018). Data alignment is particularly relevant when multiple modalities 
operate or sample at differing frequencies. This task can be undertaken using either explicit or implicit alignment. 
Explicit alignment is an alignment process that is the primary objective of a modeling analysis. Implicit alignment 
is an intermediate step within a larger, overarching task. Implicit alignment often involves a latent representation of 
the separate modalities, and it often occurs during model training. As a result of this approach, the models do not 
explicitly align the data, but latently align the data during the training phase. 

Explicit alignment aims to increase the correlation between two modalities’ components. This allocates increased 
emphasis on a similarity metric that evaluates the quality of the alignment between two or more modalities. One 
common approach is called dynamic time warping (DTW). DTW is a dynamic programming approach that can be 
applied to time-series datatemporal alignment is often a primary issue in multimodal datasetsparticularly when 
multiple sensors or input channels are involved. DTW computes the similarity between two modalities and inserts 
additional frames within the modalities to find an optimal match (Baltrušaitis, Ahuja, & Morency, 2018). This 
requires timesteps between the two modalities to be comparable and compatible with the given similarity metric. 
More recently, canonical correlation analysis has been used as a linear transformation serving as the similarity metric 
for DTW. This method allows DTW to discover linear relationships across multiple modalities in the temporal 
dimension, but it does not work well with non-linear relationships. Deep learning techniques have also been used 
for data alignment, particularly to measure similarity between modalities. However, because deep neural networks are 
typically utilized in supervised fashion, there is an implicit requirement for pre-aligned data to be used to train deep 
learning models. Often, datasets lack a subset of explicitly annotated data, restricting the utility of supervised data 
alignment techniques (Baltrušaitis, Ahuja, & Morency, 2018). 

Implicit alignment is used for tasks where explicit alignment is either not useful or feasible, such as speech recognition 
or machine translation. Early work in implicit alignment involved the use of graphical models. However, the usage 
of this method has waned over time due to the need for manual construction of the graphical mapping between 
modalities and the need for previously-aligned training data. More recently, deep neural networks have become a 
primary method of implicit alignment. Often, this takes place through the use of autoencoder models as well as cross-
modality retrieval models. 

MULTIMODAL MACHINE LEARNING IN GIFT 

GIFT has been used to develop and deploy AISs in a range of research studies (Aleven et al., 2018; DeFalco et al., 
2018; Goldberg & Cannon-Bowers, 2015). Several studies have utilized GIFT’s Sensor Module to collect 
multimodal data. However, GIFT provides limited support for downstream analysis and modeling of multi-channel 
data using multimodal machine learning techniques. We offer several recommendations for potential enhancements 
to GIFT which would facilitate the development and deployment of AISs that leverage multimodal data streams. 
Currently, GIFT supports sensors for posture, gesture, facial expression analysis, EDA, and EEG. Additional data 
channels can be added to GIFT-based AISs by integrating additional hardware sensor types, such as 
electromyography and eye tracking. Further, sensor integration need not be restricted to a single sensor for each 
modality; it is conceivable that there would be benefits to supporting multiple sensors concurrently that focus on a 
single modality (i.e. multiple Microsoft Kinect sensors positioned at different locations around a learner). 
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Additional data preprocessing techniques could also be integrated into the GIFT Sensor Module to improve the 
preparation of data prior to it being sent to the Learner Module. One example is feature scaling, typically performed 
through data normalization or standardization, which is a step that is often necessary in machine learning analysis, 
particularly in deep learning. Providing solutions to address class label imbalances in recorded data could also prove 
useful, including support for algorithmic oversampling techniques such as SMOTE. Notably, this would only be 
applicable to recorded data that is labeled prior to oversampling. Another prospective enhancement is integrating 
feature selection and feature reduction techniques. This would enable GIFT to present the Learner Module with data 
that omits redundant or uninformative information that can be captured in raw sensor data. Examples include forward 
feature selection or elimination of features that fall below a pre-set variance threshold. Alternately, dimensionality 
reduction techniques, such as PCA, can be integrated as well. These techniques will decrease the amount of data 
processed by the Learner Module, thus reducing run-time computational requirements. 

Another prospective improvement to GIFT would be the integration of data imputation methods. This would reduce 
the negative impact of missing data in GIFT’s analysis pipeline, and it also ensures the preservation of each data 
point in the raw sensor data. Simple imputation methods, such as mean imputation, ensure that missing or invalid data 
do not adversely impact the processing pipeline, and they do not require previously-labeled data or model training. 
More complex methods, such as the autoencoder-based methods, impute missing data more accurately, but they 
require pre-existing trained models. This renders the approach ineffective in instances where a modality is missing 
a majority of its data. However, the trained autoencoder can also be utilized to denoise the data, which can boost 
classifier performance. 

Data fusion techniques could also be implemented in GIFT to aid the Learner Module in dealing with multiple data 
channels. Feature-based data fusion (Early Fusion) is programmatically simple to integrate as it requires modalities 
to be concatenated prior to being passed to other modules. Alternative feature-level fusion methods have been shown 
to offer improvement over simple feature concatenation. For example, performing feature selection on individual 
modalities prior to feature concatenation has been demonstrated to improve affect classification results (Henderson 
et al., 2019). Decision-level fusion is more complex to implement due to the need for a decision selection schematic, 
as well as the need for a machine learning model for each modality. 

Expanded support of machine learning models and tools would also introduce to GIFT the capability to implement 
an entire multimodal data processing pipeline, including initial data capture, preprocessing, imputation, and 
modeling. Recent years have seen growing interest in deep learning-based models in AISs for a variety of learner 
modeling tasks, including run-time assessment and affect detection. Enhanced support for deep neural networks, 
including LSTM-RNNs, as well as other ML algorithms within GIFT would provide an expanded range of modeling 
options. It should be noted that the addition of these ML techniques stipulates a requirement for labeled training 
data, as well as computational resources for data- intensive deep learning algorithms, such as RNNs. 

The most significant challenge to the integration of multimodal machine learning in AISs is handling disparate data 
streams. This is a common problem for multimodal systems deploying sensors operating at different sampling rates 
and within different time intervals. For modeling techniques such as data fusion to be possible, this issue must be 
addressed. We recommend two types of data alignment techniques to address this problem: explicit and implicit 
alignment. Temporal misalignment can be explicitly handled through DTW, although this method requires that the 
time axis between modalities be compatible with the similarity metric in the DTW algorithm. Additionally, non-linear 
relationships between modalities increases the difficulty of modality alignment. Although deep learning techniques 
have emerged as an effective approach to implicit alignment, it requires pre-labeled training data, which is usually 
not readily available in multimodal AISs involving disparate data streams. Data alignment continues to be widely 
researched and is an area of significant interest in the development of multimodal machine learning systems. 
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CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

Multimodal machine learning will have a critical role in the design, development, and evaluation of AISs. 
Multimodal data streams enable the creation of data-rich models of student learning and engagement, which can be 
utilized to inform adaptive interventions to improve student outcomes. We have provided a survey of recent work 
on multimodal machine learning in AISs. We detail common machine learning techniques used to implement 
multimodal AISs, including key components of the multimodal data processing pipeline. Further, we detail specific 
challenges faced by developers of multimodal AISs, including common issues in data collection, alignment, and 
modeling. 

GIFT has significant promise for facilitating future development of multimodal AISs. We recommend that future 
research and development efforts focus on integrating an expanded range of machine learning algorithms, addressing 
common issues raised by sensor-based AISs, and implementing solutions to data misalignment issues, particularly 
along the temporal dimension. By extending GIFT to include enriched multimodal machine learning capabilities, 
significant strides can be made to increase access to computational solutions for enhancing learner models and 
enabling adaptive pedagogical functionalities that improve learning outcomes and instructional effectiveness. 
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Understanding Novelty in Reinforcement Learning-Based 
Automated Scenario Generation 

Jonathan Rowe, Andy Smith, Randall Spain, and James Lester 
North Carolina State University 

INTRODUCTION  

Simulations will serve a critical role in the next generation of training. A key feature of simulation-based training is 
the capacity to deliver scenarios that support the acquisition, practice, and assessment of domain-critical knowledge, 
skills, and abilities. The recently formed Close Combat Task Force, ordered by the U.S. Secretary of Defense, has 
called for Soldiers to take part in 25 simulated battles before facing their first real contact (Judson, 2018). To attain 
this level of training, devising effective methods for the creation and delivery of simulation-based training scenarios 
is essential. However, creating training scenarios for simulation-based environments poses significant challenges: 
authoring simulation-based training scenarios is often resource-intensive; it requires specialized knowledge about 
specific simulators and authoring tools; scenarios often support only limited reuse; and most scenarios adhere to a 
one-size-fits-all approach that does not support adaptivity, either with respect to the changing needs of instructors or 
changing needs of trainees. These issues point toward the need for automated scenario generation to increase the 
availability and diversity of training scenarios across a range of tasks, domains, and simulation environments. 

A key criterion in evaluating the effectiveness of automated scenario generation systems is their capacity to create 
training scenarios that are novel. Novel training scenarios are (a) meaningfully different from previously experienced 
scenarios, and (b) aligned with relevant instructional objectives for training. For example, it is possible to generate 
a vast range of variations on a training scenario by subtly adjusting the location of a single entity in a simulated 
environment. However, these variations could hardly be considered novel. Similarly, generating training scenarios 
that are misaligned with relevant instructional objectives, or unrealistic with respect to real-world scenarios, is of 
little value as well. Instead, novel scenarios should differ from existing scenarios in ways that are pedagogically 
meaningful—for example, they modify a scenario’s difficulty or alter the format of a correct solution—in order to 
provide learners with new, beneficial training opportunities. 

In this paper, we explore the role of novelty in data-driven automated scenario generation for simulation-based 
training environments. This is informed by our ongoing work to develop DEEPGEN, a reinforcement learning (RL) 
framework for automated scenario generation in the domain of Call for Fire (CFF) training with Virtual Battlespace 
3. DEEPGEN utilizes RL techniques to induce computational models for run-time tailoring of scenarios to achieve 
instructor-specified training objectives (Rowe, Smith, Pokorny, Mott, & Lester, 2018). Specifically, we formalize 
scenario generation as an RL task that involves sequential decision making about enacting adaptations (i.e., actions) 
to an exemplar scenario, observing learner interactions with the generated scenario (i.e., trajectories), and using the 
resultant learner performance data (i.e., reward) to refine an internal decision-making model for future scenario 
adaptation decisions. 

To guide our discussion of novelty, we draw upon the psychology literature on creativity. Kaufman and Beghetto 
(2009) devised the Four C Model of Creativity, which distinguishes between Big-C, Pro-c, Little-c and mini-c 
conceptualizations of creativity. The Big-C category refers to eminent creativity, which is understood as creative 
work that is historically significant, lasting, and signifying creative genius. Pro-c creativity refers to effortful 
progression toward, and often antecedent to, Big-C status; it is associated with professional-level expertise that 
exceeds novice-level creativity, but does not yet reach a level of Big-C contribution. Little-c creativity is everyday 
focused, referring to expressions of creativity that are performed by non-experts, such as inventive problem solving 
or creative endeavors undertaken as a hobby. Mini-c creativity is a signature of the learning process; it is defined as 
the “novel and personally meaningful interpretation of experiences, actions, and events” (Kaufman & Beghetto, 
2009). 
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Drawing upon the Four C Model, we conceptualize novelty in automated scenario generation in terms of four 
categories. First, we distinguish training scenarios that are wholly new and unique, and valuable; this is akin to 
anticipating future scenarios that have never been encountered before. Second, we distinguish scenarios that are new 
to an instructor (or simulation environment), but are not necessarily novel in a universal sense. Generating scenarios 
in this category is a significant enhancement to the training capacity of a simulation-based training environment. 
Third, we distinguish training scenarios that are new to a particular learner, or group of learners, even if they were 
already pre-existing. Fourth, we distinguish novel experiences that a learner might have with a scenario that they 
have previously experienced; successfully completing a scenario for the first time would fall into this category. 

Utilizing this conceptual model, we analyze a prototype version of the DEEPGEN scenario generation system in terms 
of the Scenario Adaptation Library that was developed for CFF training, as well as the scenarios that can be 
automatically generated by the prototype system. We discuss novelty in terms of several dimensions of CFF scenario 
adaptation, including adjustments to low-level features such as unit types, terrain, weather, and entity locations, as 
well as higher-level features, such as adversary behaviors, mission objectives, and training contexts. We explore 
how novelty can be operationalized within an RL framework for automated scenario generation. Finally, we discuss 
the implications for the Generalized Intelligent Framework for Tutoring (GIFT) as they relate to the integration of 
automated scenario generation capabilities within adaptive training systems. Developing theoretically grounded 
approaches to conceptualizing novelty in automated training scenario generation will be critical to meeting the 
mandate of next-generation simulation-based training. 

RELATED WORK  

We approach automated generation of training scenarios from the perspective of a related research area: interactive 
narrative generation (Riedl & Bulitko, 2012). Interactive narrative generation focuses on the design of computational 
models for dynamically generating and tailoring digital interactive experiences in which users drive an unfolding 
storyline through their own actions and decisions. A range of computational techniques have been investigated for 
interactive narrative generation, including classical AI planning (Young et al., 2013), adversarial search (Nelson & 
Mateas, 2005), case-based reasoning (Fairclough, 2004), and machine learning (Wang et al., 2018). Grounded in this 
work, we conceptualize scenarios in terms that are analogous to interactive narrative systems: scenarios consist of 
sequences of events that unfold within a virtual environment. A scenario specification includes the initial state of the 
virtual world, including its terrain, agents, buildings, weather, and overall task instructions presented to the user. In 
addition, the set of agent behaviors and associated triggers that define how events play out within the virtual 
environment are integral to the scenario. In a training context, scenarios specify a set of learning objectives to be 
addressed as well as assessment criteria. Finally, scenarios are completable, and they should be both coherent and 
internally consistent. 

Recent years have seen growing interest in the use of machine learning techniques for data-driven automated scenario 
generation in education and training. This includes applications of dynamic decision networks (Mott & Lester, 2006), 
dynamic Bayesian networks (Lee, Rowe, Mott, & Lester, 2014), and reinforcement learning techniques (Rowe & 
Lester, 2015; Wang et al., 2018). However, much of this work has focused on devising computational models for 
tailoring narrative-centered learning experiences to ensure they are effective and engaging; there has been 
comparatively little work investigating novelty in machine learning-based frameworks for automated scenario 
generation. Although novelty has been investigated for scenario generation with evolutionary algorithms (Folsom-
Kovarik & Brawner, 2018), to date, novelty has not been a central factor in machine learning-based approaches. 

DEEPGEN RL-BASED SCENARIO GENERATION FRAMEWORK  

To contextualize our discussion of novelty in automated scenario generation, we cite examples from an ongoing 
project in our lab that investigates the design and development of a data-driven scenario generation system, 
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DEEPGEN. DEEPGEN formulates automated scenario generation as an instance of data-driven interactive narrative 
generation utilizing deep reinforcement learning techniques. 

To serve as an initial testbed, DEEPGEN focuses on automated scenario generation in the task domain of artillery 
call-for-fire (CFF) training. Broadly speaking, a CFF mission consists of an infantry soldier requesting indirect fire 
on a target from supporting artillery (e.g. field artillery, unmanned aircraft). The requesting soldier, or forward 
observer (FO), follows a defined communication protocol to identify himself, describe the mission type, describe 
the target and location, and describe the method of engagement. The mission continues as the FO may choose to 
adjust fire as necessary based on the results of initial shots, and conclude the mission by relaying a battle damage 
assessment once the target has been hit. Given this general structure, there are a broad range of scenario adaptations 
that can be enacted to augment the difficulty of a CFF training scenario, such as changing the type of mission, 
modifying enemy behaviors, modifying weather and time-of-day, changing the types and locations of targets, and 
varying the types of equipment in the FO’s loadout. 

Table 1. Partial Scenario Adaption Library for CFF domain 

As dynamic scenario adaptation involves enacting a series of decisions about how to orchestrate training events at 
run-time, DEEPGEN enumerates the full range of possible adaptations in a Scenario Adaptation Library. The Scenario 
Adaptation Library defines the space of possible transformations that can be applied to example (i.e., parent) 
scenarios in order to produce new (i.e., child) scenarios. Thus, DEEPGEN approaches novelty through the systematic 
combination and application of individual scenario adaptations. In the CFF training testbed, we have defined 16 
possible dimensions for scenario adaptation corresponding to more than 1,000,000 possible scenario variations that 
could be generated from a single example scenario. A sample of adaptations from DEEPGEN’s Scenario Adaptation 
Library can be found in Table 1. 
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Figure 1. Screenshots of prototype DEEPGEN instructor tool. 

To generate scenarios using DEEPGEN, an instructor first selects a set of learning objectives and selection criteria to 
guide the scenario generation process, as shown in Figure 1(a). Using these inputs, DEEPGEN systematically 
generates a set of scenario adaptations that can be enacted with a given parent scenario, ranking these combined 
variations according to their match to the selected criteria, as shown Figure 1(b). Finally, the instructor can view a 
more detailed view of each scenario in the form of a Warning Order, as shown in Figure 1(c), before selecting one 
or more scenarios to be downloaded and realized within a 3D simulation-based training environment. To serve as a 
testbed simulation environment for CFF training, DEEPGEN interoperates with Virtual Battlespace 3 (VBS3). 
Developed by Bohemia Interactive Simulations, VBS3 is a 3D simulation platform that is widely used by the U.S. 
Army for a range of training purposes, including IED training, land navigation, route clearance, and convoy training. 
Furthermore, we utilize the VBS3Fires plug-in, a third-party tool created by SimCentric Technologies that provides 
a GUI interface and ballistics simulation engine for training CFF in VBS3. Scenario specifications generated by 
DEEPGEN are realised in VBS3 by modifying example VBS missions through a semi-automated compilation process 
that produces a full set of executable and configuration files required by VBS. 

In the current prototype version of DEEPGEN, the Scenario Adaptation Library for CFF training has been hand-
authored through close collaboration with U.S. Army subject-matter experts, thus guaranteeing that generated 
scenarios are completable and coherent. However, there are significant overlaps between many of the generated 
scenarios. This raises important questions related to scenario novelty: How should we understand the degree of 
novelty that is supported by DEEPGEN’s automated scenario generation framework? To what extent can we enhance 
the degree of novelty exhibited in scenarios created by DEEPGEN? And how can novelty be conceptualized to 
advance training objectives in task domains like CFF training? 

NOVELTY IN DEEPGEN  

To frame our discussion of novelty in scenario generation, we use the Four C Model of Creativity devised by 
Kaufman and Beghetto (2009). The Four C model extends traditional creativity research, which has historically 
focused mainly on “genius”-level creativity (Big-C) and “everyday” creativity (Little-c) to include two new levels, 
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Pro-c and Mini-c. In this section we expand on each of the Four C’s, discussing how they relate to novelty in scenario 
generation and providing specific examples of how they are, and are not, addressed by DEEPGEN. 

Big-C creativity refers to “clear-cut, eminent creative contributions” (Kaufman & Beghetto, 2009). Depending on 
the domain, this can refer to creative works ranging from award-winning musical compositions to scientific 
discoveries to Pulitzer Prize-winning novels. This category exists to distinguish exceptional creative people and 
works from highly competent, even professional level creators. From a scenario generation perspective, we identify 
Big-C level novelty as referring to scenarios that introduce fundamental, long-lasting changes to the rules or 
performance expectations associated with a target domain. For example, consider the case of AlphaGo, an artificial 
intelligence-based game-playing agent designed by Google DeepMind to automatically learn how to play the board 
game Go (Silver et al., 2017). AlphaGo famously performed at a level capable of beating top-rated human players, 
and on the 37th move of Game Two in its historic match against 18-time world champion Lee Sedol, AlphaGo 
performed a move that was not only effective, but that commentators later regarded as “creative,” “beautiful,” and 
likely to be incorporated into future matches by human players (Metz, 2016). It is important to note that the system 
did not just beat expert-level human players, but it did so by exhibiting a novel strategy that had not been previously 
encountered. Another example of Big-C novelty in scenario generation comes from the Millennium Challenge 2002 
wargaming exercise (Borger, 2002). During the exercise, the commander of the “Red” force adopted a variety of 
novel strategies that effectively defeated the “Blue” forces despite their superior technological advantages. The 
strategies were so effective that the simulation was reset, and the rules of engagement were rewritten because the 
“Blue” force had been defeated so quickly. Although created by a human author, the Millennium Challenge example 
demonstrates a Big-C level contribution from a scenario due to its impact on the strategies employed in future war-
gaming exercises. 

For a system to produce Big-C level novelty in scenario generation, a variety of factors are required. By definition, 
these scenarios make a contribution that did not previously exist, and thus the scenario generator must have access 
to a broad range of flexibility and freedom to explore the space of possible scenarios. This calls for direct access to 
robust, high-fidelity simulation environments, or game-like environments where agents can be trained through “self-
play” or other strategies likely to produce emergent behavior, which contrasts with approaches designed to mimic 
expert human performance. Notably, it can be difficult to recognize innovative scenarios if they are not highly 
effective in comparison to competing options (i.e., innovative scenarios might not be selected by an imperfect 
optimization process). Thus, even given ideal conditions, it is not guaranteed that any system will generate scenarios 
at the Big-C level of novelty. 

The next level of novelty we consider is Pro-c, or professional-level creative expertise. This level refers to creativity 
exhibited by individuals who have earned professional-level status in a discipline, but may not yet have transformed 
their field or made an eminent contribution. For scenario generation, Pro-c novelty is associated with scenario 
generation that produces scenarios at a level of quality, complexity, distinctiveness and unexpectedness as to offer 
significant value to a domain expert (i.e., instructor) possessing deep experience in the subject domain. 

Pro-c level novelty is a target level for DEEPGEN, because of its promise to offer value to both instructors and 
advanced trainees alike. It calls for scenario generation functionalities that can operate upon virtually all aspects of 
a scenario within a given domain. In CFF training, this corresponds to modifying a CFF scenario’s pre-mission 
briefing; augmenting the types, locations and behavior of friendly and adversary forces; inserting dynamic events at 
run-time (e.g., weather changes, communication failures); and altering the embedded scaffolding and assessment 
rules at play in scenarios. Notably, Pro-c level novelty need not exclusively pertain to complex orchestration of world 
states and triggered events. It is possible for two scenarios with identical units, terrain, locations, and scripted events 
to be distinguished from one another by augmenting the mission, or related context, faced by a trainee. When a 
prospective target enters an area, should the forward observer call for indirect fire, or let the target pass? How does 
the target’s value compare to other possible targets? How much ammunition is available? What is the assigned 
objective for the forward observer? Questions such as these introduce meaningful forms of experiential novelty 
without requiring complex orchestration of events within a virtual simulation environment. 
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Given that Pro-c level systems are not necessarily targeted at the discovery of new military tactics or strategies, 
scenario generators like DEEPGEN can be designed to restrict the space of possible scenarios through deliberate 
authoring of the Scenario Adaptation Library, ensuring that all generated scenarios are both feasible and qualitatively 
different from one another. For example, several adaptable scenario elements listed in Table 1, such as changing 
how enemies react to being fired upon, are higher-level scenario adaptations that might typically be associated with 
the Pro-c level. This is in contrast to lower-level modifications, such as changes in weather or target type, that may 
be more likely to yield trivial variations between scenarios. 

The next category, Little-c, refers to non-expert expressions of creativity, such as every-day problem solving or 
creative works. For scenario generation, we characterize this level of scenario generation in terms of creating “base-
level” scenarios that enable trainees to reach basic proficiency in a domain. Little-c systems might only adjust a 
small number of features of a scenario, producing scenarios that are different by a small degree and do not require 
the level of domain knowledge or instructional expertise associated with professional-level scenario generation. In 
DEEPGEN, enacting scenario adaptations such as changing the weather, time of day, or type of target are all consistent 
with Little-c novelty. In some cases, this level of scenario generation may be preferable, because it is relatively 
inexpensive and efficient to setup and generate a large number of different, similarly structured scenarios that can be 
used for repeat practice of specific competencies. 

The final level in the Four C model is mini-c. Mini-c describes creativity that is inherent to the learning process; it 
is expressed at an individual level while engaged in productive problem solving. This can be understood as a form 
of novelty that is experienced by novice learners as they begin to learn a new domain. For scenario generation, we 
define this level of novelty as consistent with generating “introductory” scenarios for a domain. These scenarios 
should be relatively simple from a complexity standpoint with novelty measured in relation to the concepts and 
competencies already achieved by a trainee. 

Overall, the Four C model provides a useful framework for discussing and evaluating novelty in automated scenario 
generation systems. It provides a framework for formulating design requirements of these systems, and it points 
toward directions for evaluating the degree of novelty supported by scenario generators. Furthermore, it offers a 
useful ontology for describing how different characteristics of scenarios impact novelty within a given training 
domain. 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

Automated scenario generation will serve a key role in the future of simulation-based training because of its 
significant potential for reducing the cost of creating novel scenarios and expanding access to high-quality 
simulation-based training. Data-driven approaches to automated scenario generation hold promise for enhancing 
trainee learning experiences by leveraging recent advances in reinforcement learning and interactive narrative 
technologies. We have presented an overview of DEEPGEN, a data-driven automated scenario generation framework, 
which formalizes the task in terms of enacting sequential adaptations to a canonical “parent” scenario in order to 
generate “child” scenarios that can be evaluated to assess learning outcomes. We have described an initial Scenario 
Adaptation Library that was developed for the domain of Call for Fire training. To better define and evaluate the 
degree of novelty embedded in scenarios generated by DEEPGEN, we have adopted the Four C Model, discussing 
how the model fits within the context of automated scenario generation and CFF training specifically. 

In future work, we plan to expand DEEPGEN’s Scenario Adaptation Library to capture a broader range of possible 
transformations to “parent” training scenarios, including sequential adaptations that can be performed dynamically 
over the course of a scenario. Further, it will be important to systematically investigate how instructors and learners 
interact with DEEPGEN, including the DEEPGEN Instructor Tool for configuring scenario generation, as well as 
generated scenarios for training a range of CFF skills. Finally, it will be critical to demonstrate how the DEEPGEN 
framework can be generalized to support additional domains. Integration with GIFT will be useful for enabling this 
line of investigation—automated scenario generation is particularly well-aligned with the Practice Quadrant in 
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GIFT’s Engine for Management of Adaptive Pedagogy (EMAP)—setting the stage for expanding our understanding 
of how the Four C Model can be operationalized to measure and contextualize novelty in scenario generation across 
different domains. 
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INTRODUCTION 

Operations such as “Enter and Clear a Room” and “React to Direct Fire Contact” are essential dismounted battle 
drills (DBD) for urban warfare conducted by the armed forces. These operations require the soldiers to develop 
effective psychomotor and cognitive skills, and cognitive strategies along with the ability to work in teams. This 
paper discusses our initial research in developing intelligent tutors that support team training for DBDs in virtual 
and augmented reality environments. 

As a first step toward developing tutors, we conduct an initial study of the “Enter and Clear Room (ECR)” DBD that 
relies heavily on team member psychomotor skills and cognitive skills, such as identifying and differentiate enemy 
combatants from noncombatants in the room, and providing cover for the other team members (Department of the 
Army, 2011). In addition to tactical skills, a squad also needs to develop strategic reasoning and decision making 
skills that are derived from situation awareness and planning to assure superior firepower inside and outside the 
building, determining the method of access into the building and rooms of interest, and for controlling the tempo of 
the operations (Holmquist & Goldberg, 2007). Since the operations are performed as a team, it is crucial that the 
trainees also acquire team skills in addition to the task skills (Sinatra et al., 2018). The need to combine individual 
psychomotor skills, cognitive and strategic processes, along with teamwork introduces a number of complexities in 
designing training scenarios and evaluating individual and team performance and effectiveness in these scenarios. 
The need to evaluate psychomotor, cognitive, strategic, and affective processes implies the need for multiple 
monitoring modalities, such as computer logs of individual and team performance, video analysis for analyzing 
psychomotor and cognitive skills, eye tracking for monitoring situation awareness, and physiological sensors to 
capture affect. Multi-modal data capture becomes even more critical when monitoring and analyzing complex 
teamwork. 
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Figure 1 summarizes our overall approach to evaluating individual and team performance in synthetic training 
environments (STEs). In particular, we propose a number of performance and effectiveness metrics, propose, and 
corresponding measures for the Squad Advanced Marksmanship Trainer (SAM-T) implementation of ECR training 
operations for squads. We propose to compute these metrics within the Generalized Intelligent Framework for 
Tutoring (GIFT) framework (Sottilare et al., 2012), and develop integrated performance and effectiveness measures 
to support After Action Review by human instructors. 

ENTER AND CLEAR ROOM (ECR) DOMAIN 

"Enter and Clear Room" training scenarios are typically designed for a squad, i.e., a team of four soldiers. They 
represent a form of urban warfare, where enemy personnel have been located in a building that may also house 
noncombatants. The overall operations are initiated by securing the area around the building, and security forces are 
positioned in and around the building. A squad of four (sometimes two or three) are assigned to clear and secure a 
specific set of rooms, and the operation to clear each room begins on the order of the clearing team leader. It involves 
seizing control of the room by rapidly and tactically entering the room and neutralizing the enemy, while minimizing 
harm to the squad and the noncombatants. To accomplish this, the army divides up ECR missions into five major 
task segments Sinatra (2018): (1) Pre- pare to Enter, (2) Enter the Room, (3) Clear the Room, (4) Secure the Room, 
and (5) Completion and move on to next assigned operation. In this paper we focus on the segment of "Clear the 
room". Accompanying these tasks are well-defined rules of engagement (ROE). In this paper, we focus on task 
segments (2) and (3), i.e., ECR, which involves entering a room quickly and stealthily, moving immediately to points 
of domination (POD) while eliminating enemy combatants with superior fire power, and once clear seize control of 
the room. Figure 2 illustrates the tasks steps related to ECR. They are summarized below: 

STEP 1. The squad in tight formation readies to enter the room, checks for booby traps on the door, and on 
a signal, usually a pat or an arm squeeze from the team lead (usually at the second position), is passed on to 
the first, starts the entry process (this may involve kicking down the door). 

STEP 2. The first two Soldiers enter the room almost simultaneously. (Figure 2a). The first Soldier enters 
the room and moves left or right along the path of least resistance (typically the wall) to one of two corners. 
The soldier enters firing aimed bursts into his sectors engaging all threats or hostile targets to cover his entry. 
He assumes a POD facing into the room. 

STEP 3. The second Soldier enters the room immediately after the first Soldier. He moves in the opposite 
direction of the first Soldier to his point of domination, also firing aimed bursts to engage and eliminate all 
threats in his sector. 

STEP 4. The third Soldier moves in the opposite direction of the second Soldier while scanning and clearing 
his segment of the room. In some situations, the third soldier is assigned to cover threats from the top, i.e., 
the ceiling or gaps that may exist in the ceiling. (Figure 2b) 

STEP 5. The fourth Soldier moves opposite of the third Soldier to a position that dominates his sector, also 
scanning and clearing his assigned region. (Figure 2c) 

STEP 6. All Soldiers are positioned at their PODs as they continue to scan their sectors and engage enemy 
combatants with precision aimed fire, while avoiding injury to the noncombatants. 

STEP 7. The team assesses if the room is neutralized. The team leader announces (or sends message) to the 
squad leader when the room is "CLEAR." 
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Figure 2. Clear a room: a) First two Soldiers enter almost simultaneously; b) Third soldiers enters; c) Fourth soldier 
enters 

Expert interviews made us aware that a lot of rapid assessments and decisions need to be made by the soldiers from 
the start to the end of the clearing operation. In other words, proficiency in the clear operation requires superior muscle 
memory (Scales, 2013). For example, at the start of entering the room, the position of the door hinges may influence 
the direction of the movement of the first and the second soldier. If the door hinge is on the left (right) then the first 
soldier turns to the right (left) side. The second soldier goes in the direction opposite to the first. A second rapid 
decision a soldier needs to make is whether a person in the room is a combatant or not. A number of factors, e.g., 
possession of weapon and whether the person kneels when commanded, influence such decisions. We discuss 
psychomotor and cognitive skills and strategies for ECR operations in greater detail below. 

ECR TRAINING ENVIRONMENT: SAM-T 

The Squad Advanced Marksmanship Trainer (SAM-T) is a Training as a Service (TaaS) solution designed to enable 
army readiness and bridge the dismounted virtual collective training capability gap pending fielding of the 
Soldier/Squad Virtual Trainer in 2021. SAM-T (Figure 3) is an augmentation (not a replacement) of Engagement 
Skills Trainer (EST) II, which was designed to simulate live weapon training events that directly support individual 
and crew-served weapons qualification, including individual marksmanship, small unit collective and judgmental 
escalation-of-force exercises in a controlled environment [https://asc.army.mil/web/portfolio-item/engagement-
skills-trainer-est/]. SAM-T is intended to improve and accelerate Soldier and Squad close combat skills, and task 
acquisition by providing the realistic repetitions in diverse complex operational environments necessary to increase 
readiness. 
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Figure 3. U-Shape System Configuration for SAM-T (Pargett, 2019) 

The expected capability listing for SAM-T include: (i) Weapon Skill Development: An immersive individual, crew, 
and collective weapon skill development training capability; (ii) Use of Force (UoF): Use of Soldier cognitive 
functions to include rapid decision making and target acquisition in stressful scenarios; (iii) Battle Drill Training: 
This dismounted maneuver requires the capability to conduct collective battle drills and tasks. Basic collective task 
training that SAM-T provides include: (i) Enter and clear a room; (ii) React to direct fire contact while dismounted; 
(iii) Employ hand grenades; and (iv) Use visual signaling techniques. The scope of our project is limited to ECR 
operations. Training in the SAM-T is customizable as per individual/team readiness and requirements. Variation and 
combination of stressors address multiple customizations and scenarios. Three variations are included: (1) change in 
physical layout (e.g., obstacle, training area, etc.); (2) change in physical parameters (e.g., target distances, target 
movement, and target appearance, etc.); and (3) Human factors (Callisthenic tasks, Cognitive tasks, Personal 
Equipment variations, etc.) 

Proposed Design and Analysis 

We propose to integrate SAM-T with GIFT and action review modules (Figure 4). The user behavior logger attached 
to the SAM-T environment includes multiple sensors with different modalities. We anticipate to have data collected 
from Integrated visual augmentation system (IVAS), audio communication data, data from head-mounted eye 
trackers, data related to gun, for example: x-y-z coordinate locations of the gun from the screens, weapon trigger 
events, weapon states, bio harness sensors, and video observations. Trainees, in teams of 3−5 would enter the virtual 
room (the SAM-T environment) to perform and practice ECR operations. The user behavior logger module will log 
the soldier movement data in video and motion tracking form. The GIFT module will be designed to analyze the 
multimodal data and generate feedback for the After Action Review (AAR) module. Overall, GIFT module will 
primarily perform four functionalities: (i) Detection of task and team skills attributes from the data; (ii) Evaluation 
of individual and team performance and identification of deficient skills and strategies at individual and team levels; 
(iii) Learner modelling to aggregate and keep track of learner and team performances for various skills and strategies 
over multiple practice scenarios; (iv) Feedback generation for individual and for team based on reports generated from 
the learner model. The AAR module, with or without the presence of the human moderator (coach) will provide 
formative feedback and replays of the trainee’s behavior to help them to perform retrospective reflections and regulate 
their performance in subsequent practice iterations. The action review module can have two parts: (i) mid action 
reviews, where the feedback and reviews are given in between the practice session without any moderation of the 
external human agent (i.e., coach). Whereas, in the case of after action reviews, the action review module can be 
moderated by the human coach to help the trainees reflect on their performance. 
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Figure 4. Proposed integration of SAM-T with GIFT and Action Review modules 

Tracking Learner and Team Proficiencies: Method 

Analyzing team tasks and defining individual task and team skills along with quantitative measures of performance 
and effectiveness (MOP and MOE) represent the initial steps towards developing team tutors. In addition to referring 
to army training manuals (especially the Army Training Registry and Central Army Registry (CAR)), we also 
conducted informal interviews with Subject Matter Experts (SMEs) to gain an overall understanding of the ECR 
processes and steps at the psychomotor, cognitive, and strategic levels. Our expert interviews started with a broad 
question: “What are the key characteristics and key steps in the ECR process? Once we had an overall understanding 
of the ECR process and steps (the important pre-, during-, and post-activities), we dove deeper into the psychomotor, 
tactical, strategic, cognitive and team skills that the soldiers needed to exhibit for successful ECR operations?” In 
addition, as the interviews progressed, we asked a lot of “what if” questions, mainly to gain an understanding of how 
standard operating procedures (SOPs) might deviate, when unusual situations were encountered. Inductive thematic 
analysis of the interview transcripts was performed to extract categories of psychomotor and cognitive skills and 
strategies (Guest, MacQueen, & Namey, 2011). This form of task analysis produced the list of psycho- motor skills 
and methods for measuring these skills as has been described in Tables 1 and 2. 

Measures 

The learning environment will compute a number of individual and team performance measures as trainees practice 
ECR scenarios. These performance measures, along with knowledge of trainees' actions in the environment have to 
be logged, such that they can further be used for analyzing learners' proficiencies related to the ECR domain. Table 
1 shows a list of performance measures for proficiencies relevant to the "clearing room" segment of the ECR 
operation. The second and third column of the table provide preliminary definitions of how these measures are 
computed and the sensing modality that provides the information for computing the measures, respectively. The list 
of measures shown in the table includes proficiencies that are required: (1) ‘just’ before entering the room through 
the door; (2) executing the clear operations in the room; and (3) securing and executing the room after the clear 
operations are completed. We have listed measures of performance and effectiveness that are primarily relevant to 
the “clearing” segment. We plan to refine and expand these measures through further consultations with our subject 
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matter experts, collecting and analyzing video data of soldier movements during the move, and learning more about 
the variations to the standard clear scenarios and how the standard operating procedures are modified to adapt to 
these scenarios. 

Table 1. Performance measures in ECR operation 

Performance Measures Measure Values Data Source 

M1 Soldiers (Team of 4) 
line up at the door 

M1 = 0, if trainee is not on the door location 
= 1, if trainee is on the door location 

Video 
Observation 

M2 Keeping eyes in as- 
signed regions 

M2 = [0,1], normalized angular deviation Eye Tracker 

M3 Speed of Entry M3 = 0, if time difference is > threshold 1, 
if time difference is < threshold 

Video 
Observation 

M4 Concealed presence M4 = 0, if needless talking or exposing the tip of a rifle across an open 
doorway 

= 1, otherwise 

Video 
Observation 

M5 Signal to commence 
operation (Leader) 

M5 = 0, failed to deliver signal 
= 1, successful, used SOP for communication during entering (either 

Triceps squeeze, Shoulder squeeze, or Muzzle dip) 

Video 
Observation 

M6 Enter the room in the 
correct direction 

M6 = 0, if direction is opposite to the direction of previous trainees 
= 1, otherwise 

Video 
Observation 

M7 Moving along the wall M10 = [0, 1], normalized count of number of conditions satisfied from 
below: 

1. Trainee continues moving while clearing 
2. Stops if reached corner or to a POD 
3. Continues moving along one wall after reaching corner 
4. Speed of movement is in the range where they can 

move while accurately engaging any targets 
5. Did not over-penetrate into the room 

Video 
Observation 

M8 Identifying 
adversaries 

M7 = (M7gaze+ M7gun)/2 
M7gaze = [0,1], normalized angular deviation between gaze azimuth 

and the position of the adversary, 
M7gun = [0,1], normalized angular deviation between gun azimuth and 

the position of the adversary 

Eye Tracker, Gun 
Azimuth 

M9 Eliminating nearest 
threat 

M8 = [0, 1], normalized count of number of conditions satisfied from 
below: 

1. Threat is dealt before clearing the near corner 
2. Either a minimum of one round shot if adversary is armed 

or a well-placed arm check if unarmed 
3. Not stuck into firefight 
4. Not stuck into addressing a potential threat deep in the 

room 

Video 
Observation, 
Gun Azimuth, 
Gun Trigger 

M10 Watching the near 
corner 

M9 = [0, 1], how quick the trainee has scanned/ cleared the near corner, 
0: Fixated for too long, 1: Fixated for minimum required time 

Eye Tracker 

M11 Collapsing a sector M11 
= 1, if scan overlaps teammates sector of fire by a threshold 

= 0, if scan overlaps teammates sector of fire by more than a threshold 
= 0, if scan doesn’t overlaps teammates sector of fire 

Gun Azimuth, 
Eye Tracker 
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M12 In-operation 
Communication 

M12 = [0, 1], normalized count of number of conditions satisfied from 
below: 

1. Communicated if any movement outside of the tactic 
2. Communicated danger areas if found 
3. Communicated any intent to move deeper into the room 

for a search 

Audio Comm. 
Data, Video 
Observation 

M13 Non-combatant 
casualty 

M13 = -1, if gun triggered and gun azimuth aligns with the position of 
a civilian or non-combatant 

= 0, otherwise 

Gun Azimuth, 
Gun Trigger 

M14 Marksmanship M14 = normalized marksmanship score with respect to the current tar- 
get 

Marksmanship 
performance 

M15 Reporting exit M15 = 1, if used SOP for communication during exiting (i.e. Sent 
“Clear” message) 

= 0, otherwise 

Audio Comm. 
Data 

... ... …. …. 

 

Table 2 shows how different performance measures can inform overall individual and team performances at each 
step of the “clearing room” segment of ECR operation. (These steps correspond to the seven steps during the room 
clearing task discussed at the beginning of this section.) To compute the overall performance of an individual trainee, 
performance values corresponding to that trainee across all the steps have to be aggregated. Whereas, to compute 
the team performance for any specific step, performance values corresponding to that step across all the trainees 
have to be aggregated. The overall team performance can be the aggregation of the team performances at individual 
steps. 

Table 2. Aggregating individual and team performances 

Trainee Step1 (S1) Step2 (S2) Step3 (S3) Step4 (S4) Step5 (S5) Step6 (S6) Step7 (S7) Overall 

 
T1 

𝑓𝑓(M1, M2, 
M3, M4) 

𝑓𝑓(M6, M7, 
M8, M9, M10, 

M13, M14) 

𝑓𝑓(M7, M8, M9, 
M10 M12, M13, 
M14) 

𝑓𝑓(M7, M8, M9, 
M10, M12, M13, 
M14) 

𝑓𝑓(M7, M8, M9, 
M10, M12, M13, 
M14) 

𝑓𝑓(M7, M8, M9, 
M10, M11, M12, 
M13, M14) 

 
𝑓𝑓(M15) 

 

ℎ(S1:S7) 

 
T2 

𝑓𝑓(M1, M3, 
M4, M5) 

 
𝑓𝑓(M4) 

𝑓𝑓(M7, M8, M9, 
M10, M13, M14) 

𝑓𝑓(M7, M8, M9, 
M10, M12, M13, 
M14) 

𝑓𝑓(M7, M8, M9, 
M10, M12, M13, 
M14) 

𝑓𝑓(M7, M9, 
M10, M11, M12, 

M13, M14) 

 
𝑓𝑓(M15) 

 

ℎ(S1:S7) 

 
T3 

 
𝑓𝑓(M1, M4) 

 
𝑓𝑓(M4) 

 
𝑓𝑓(M4) 

𝑓𝑓(M6, M7, M8, 
M13, M14) 

𝑓𝑓(M7, M8,, M9, 
M10, M12, M13, 
M14) 

𝑓𝑓(M7, M9, 
M10, M11, M12, 

M13, M14) 

 
𝑓𝑓(M15) 

 

ℎ(S1:S7) 

 
T4 

 
𝑓𝑓(M1, M4) 

 
𝑓𝑓(M4) 

 
𝑓𝑓(M4) 

 
𝑓𝑓(M4) 

𝑓𝑓(M6, M7, M8, 
M12, M13, M14) 

𝑓𝑓(M7, M9, 
M10, M11, M12, 

M13, M14) 

 
𝑓𝑓(M15) 

 

ℎ(S1:S7) 

Team 𝑔𝑔(T1:T4) 𝑔𝑔(T1:T4) 𝑔𝑔(T1:T4) 𝑔𝑔(T1:T4) 𝑔𝑔(T1:T4) 𝑔𝑔(T1:T4) 𝑔𝑔(T1:T4) ℎ(S1:S7) 

LEARNER MODELING 

In past work, we have developed hierarchical learner modeling schemes that involve open-ended learning in K-12 
environments (Rajendran et al., 2017, Kinnebrew et al., 2017) and problem solving involving complex decision 
making tasks (Biswas et al., 2019, in review). The learner modeling scheme is meant to analyze and represent 
trainee's proficiencies in complex decision-making scenarios. In the current project, our overall goals are to extend 
this multi-level learner modeling approach to Battle Drill domains. One significant addition to this framework will 
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be the addition of a psychomotor task modeling layer to the existing three-layer model that we have developed in 
previous work. 

At each step, the learner model will use trainee's performance on specified goals (and sub-goals) and tasks (the 
measures were discussed in the last section) to update the different levels of the hierarchy (Figure 5a). The cognitive 
(and psychomotor) skills layer of our learner model will derive information of a trainee's interactions from behavior 
logs generated by the Behavior Logger module (Figure 4). These behavior logs will serve as an assessment of leaner's 
ability to execute domain-specific knowledge and skills. For example, during the clearing operation, the trainee has 
to tactically maneuver inside the room that requires him to move along the wall. The learning environment will keep 
track of whether the trainee moves well along the wall (M7 in Table 1) while he is inside the room or not. If the 
trainee does not conform to the standards of moving along the wall (M7) the learner-modeling framework attributes 
this to trainee's lack of 'tactical maneuvering' skill. The next layer, the cognitive strategies level, will involve 
conditional knowledge about how to combine situation-specific information and cognitive/ psychomotor skills to 
accomplish higher level tasks and goals (Kinnebrew et al., 2017). The conditional aspect of cognitive strategies 
involves under- standing when a strategy is most effective, especially when there are multiple potential courses of 
action available to the trainee. The top layer will use tracked changes in trainee's performance on specified goals and 
strategies, and observable interactions with the After Action Review module to capture the trainee's proficiency in 
metacognitive processes. 

Figure 5. a) Three Tier Hierarchical Learner Model; b) A part of task model for psychomotor skills 

Each practice sessions of ECR are very short (5 secs to 60 secs for inside-room operation). For such a complex and 
rapid decision-making task, trainees continually apply skills and strategies to make decisions and conduct operations 
within and across practice iterations. Hence, we accumulate trainees' proficiencies in skills and strategies as a 
function of time (practice iterations in SAM-T). We will use the performance metrics 'competence' and 'trend' 
(Biswas et al., 2019, in review) to measure the evolution of learners’ proficiencies in skills and strategies in SAM-
T. Competence (Ct) captures the learner’s accumulated proficiency on a skill or strategy, while the trend value (T) 
for a specific skill or strategy represents a local measure of how the learners’ competence evolves with practice 
iterations. As defined by Biswas et al. (2019, in review) competence (Ct) at any time iteration t is defined as the sum 
of the learner’s competence in that skill (strategy) at iteration, t - 1, and the value representing an aggregation of 
performances on all observable actions relevant to any skills or strategy at the iteration t, i.e., 

Ct = Ct‐1 + f(performance on observable actions) 

The trend value (T) can be computed as a function of the change in competence over the last two iterations, defined 
as: 

T = g((Ct – Ct‐1); (Ct‐1 – Ct‐2)), where g can be defined by the system designer. 
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To compute proficiency in a strategy, we combine trainees' performance in a related sub-goal and related skill(s). 
When learner's competence in executing a skill and performance in achieving a related sub-goal, both are positive, 
that implies a positive application of the related strategy, and, therefore, we increment the proficiency in the strategy 
positively. Whereas, a non-positive performance in sub-goal indicates inefficiency in the application of related 
strategy, irrespective of whether the competence in executing the related skills is positive or not. However, in a weird 
case, when sub-goal performance is positive but skill competence is negative, the effectiveness of applying the 
strategy is hard to detect. 

An essential precursor to authoring any team tutor is the analysis of team tasks and defining task skills and team skills 
and thereby creating a task model that contains a hierarchy of learning environment (LE) – general skills, LE-specific 
tasks and observable behaviors in LE. The tasks model informs the lowest layer (skills layer) of the learner model 
with the observable behaviors linked with the skills. Figure 5b presents an example of part of the task model and 
presents a subset of psychomotor skills, extracted during our initial task analysis. Figure 5b elaborates two skills (i) 
tactical maneuvering; and (ii) rapid decision making. Ac- cording to Figure 5b, tactical maneuvering requires 
collapsing a sector (M11) and moving along the walls (M7) in the room. Performance measures M11 and M7 in 
Table 1 can be used to measure trainee’s proficiency in tactical maneuvering. Similarly, Rapid decision making 
involves instantaneous decision making and responding by pointing the gun towards or shooting at inhabitants, once 
they are identified as enemy combatants. Similar to the part of the task model corresponding to the psychomotor 
skills, the task analysis also provided sets of relevant tasks that require cognitive skills and team skills for the phases 
before, during and after clearing room. 

CONCLUSIONS 

In this paper, we presented our initial work towards the creation of an intelligent learning environment that supports 
the training of army personnel on the skills and strategies necessary for successfully conducting the ECR operations. 
Preliminary takeaways from referred documents and subject matter experts have revealed that speed (time), 
accuracy, and marksmanship are key factors for a successful ECR operation. Trainees have to develop muscle 
memory, which can only be acquired through iterations of practice. Skills involving rapid decision making, for 
example, identification of combatants and non-combatants requires iterations of practice with variations in the room 
inhabitants across multiple practice iterations. In addition to the individual task skills, team skills are also needed to 
ensure that the trainees efficiently follow standards of procedures, adhere to the rules of engagements, communicate, 
and avoid disastrous fratricide. 

It should be noted that the exact protocols of entering and clearing the room may not be replicated all the times. For 
example, the first soldier may not move along the wall if there is furniture in his path, and, therefore, he may have 
to improvise the path. Similarly, based on the room configurations (objects and inhabitants in the room) the soldier 
may have to choose different domination points, other than room corners. Therefore, default trajectories and the 
rules of engagement discussed in this paper do not apply universally, but have to be modified to accommodate 
characteristics of the actual scenario. This makes analyzing user performance and effectiveness in the ECR domain 
more challenging. The need to evaluate both individual and team skills and performance adds to the challenge. As 
we proceed, more expert interviews, literature synthesis and observations of trainees performing the ECR operations 
are needed to enrich the task model and the computation of measures of performance and effectiveness (MOP and 
MOE) to update the task model. Capturing multimodal learner data as described in this paper, would provide the 
framework for accurately measuring learners' performances in such complex scenarios that require keeping track of 
psychomotor, cognitive and team skills, and infer their cognitive strategies. We also look forward to further enhance 
the team assessment by incorporating the Squad Performance Model to measure the team Lethality. 
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ABSTRACT  

There are strong potential benefits to be had by integrating intelligent tutoring systems (ITSs) with each other, but 
few instances of successful integration are known in the literature. Given the central role that student models play in 
ITS architectures, and given that different ITS platforms tend to have their own student models, a key challenge is 
exchanging and mapping student models. Our project focuses on integrating GIFT and CTAT, both widely used ITS 
authoring and delivery environments. The specific goal of our project is to create, as a proof-of-concept, adaptive 
capabilities for an edX MOOC, using GIFT and CTAT within edX. We have created an initial version of this 
integration, in which GIFT supports the outer loop and simple interactive activities, while CTAT (under GIFT outer 
loop control) supports more complex problem-solving activities. As a student works with a CTAT tutor, whenever 
CTAT updates its own student model, the updates are sent also to GIFT, so that GIFT’s outer loop can take advantage 
of a complete and up-to-date view of the student’s knowledge as it selects appropriate remedial activities. The main 
student model elements are mapped in a 1:1 manner between CTAT’s and GIFT’s student model, even if the general 
problem of creating such mappings is hard. This one-way student model sharing is achieved with an extended use 
of the LTI standard. The main contribution is a proof-of-concept demonstration of ITS integration, limited in a 
number of ways (e.g., for the time being, the student model is communicated in one direction only), but exciting in 
its possibilities for joining the ITS functionality of different ITS platforms. 

INTRODUCTION  

Intelligent tutoring systems can be authored, increasingly, with efficient and easy-to-learn authoring tools, such as 
the Generalized Intelligent Framework for Tutoring (GIFT), (Brawner, 2015; Goldberg & Hoffman, 2015; Goldberg, 
Hoffman, & Tarr, 2015; Sottilare, 2012), the Cognitive Tutor Authoring Tools (CTAT) (e.g., Aleven et al., 2016), 
and others (Cai, Graesser, & Hu, 2015; Mitrovic et al., 2009; Razzaq et al., 2009). Although different ITSs tend to 
share a core of tutoring behaviors (VanLehn, 2006; 2016), they often have complementary strengths and focuses. As 
noted in Baker (2016), the challenge of developing a single form of adaptivity is often sufficiently high that some 
ITSs focus on just one form of adaptivity apiece; other ITS include multiple forms of adaptivity, but not always the 
same forms (Aleven, McLaughlin, Glenn, & Koedinger, 2017). GIFT, for example, offers an adaptive outer loop 
that covers a wider range of pedagogy than CTAT; it also offers tools for easy authoring of questions to test recall 
of concepts and APIs for integrating sensors and training applications. CTAT, on the other hand, offers possibilities 
for crafting highly adaptive step loops, responsive to students' strategies and errors, and offers an adaptive outer loop 
that supports cognitive mastery. 

A promising approach to building effective, innovative, adaptive learning technologies would therefore be to bring 
together ITS systems to leverage the strengths found in each (integrating GIFT and CTAT, for instance). Potential 
advantages could be, speculatively, that more adaptive tutoring systems could be authored more easily, that systems 
with more sophisticated pedagogical approaches could be authored, and that the choice of pedagogy could be better 
matched to the instructional goals. 

ITS interoperability has long been viewed as desirable (Brusilovsky, 1995), but has proven elusive, now forming the 
basis of one of the BLAP prizes in Learning Analytics (Baker, under review). A small number of interesting instances 
exist (Aleven & Rosé, 2004; Koedinger, Suthers, & Forbus, 1998), but the main ITS platforms are still separate. 
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Given the central role that student models play in ITS architectures (Bull & Kay, 2016), sharing or mapping student 
models should be a focal point in the integration of ITSs: if tools could share their student models, then tutors created 
with these tools should be able to make better adaptive decisions from the richer, more complete information 
available (Aleven et al., 2017; Woolf, 2009), and make better decisions sooner when a student starts in a new 
platform (Sosnovsky et al., 2007). However, the student models used in different ITS platforms tend to differ in the 
types of student characteristics they assess, the ontologies that they use to represent these characteristics, their 
methods for updating the model, and the data they require. The many differences make integration of student models, 
at least as a general problem, quite a daunting prospect. In the current project, we explore a small but interesting 
instance of this challenge. 

Specifically, our project focuses on creating a MOOC, within the edX platform, that is adaptive to students’ 
knowledge growth in ways that edX courses are not. We do so by integrating GIFT and CTAT with each other, and 
embedding them together within edX, so that GIFT’s and CTAT’s combined adaptive tutoring functionality is 
available in the MOOC. We carry out this integration and demonstrate its feasibility in the context of the edX MOOC 
“Big Data and Education” (BDEMOOC), created and taught by the last author. In the current paper, we focus on the 
GIFT/CTAT integration, as we reported on the integration into edX in prior publications (Aleven, Baker, et al., 
2017). Also in prior work, we made it possible for GIFT to invoke CTAT tutors in a manner adaptive to a student’s 
knowledge growth as assessed by GIFT (Aleven et al., 2018). 

We now extend this work so the CTAT tutor can send its up-to-date student model to GIFT. This model captures a 
student’s mastery of knowledge components targeted in the instruction (Aleven et al., 2016; Aleven & Koedinger, 
2013). We enabled GIFT to map CTAT’s student model onto its own student model, which (among other things) 
captures similar knowledge components. This way, GIFT’s outer loop has up-to-date information about a student’s 
skill level on which to base the adaptive selection of learning activities. Although one could envision other ways of 
combining GIFT and CTAT, this particular way plays to the strengths of both tools, as discussed in more detail 
below. 

In the current paper, we address the following questions: What leverage is there in enabling CTAT to communicate 
its student model to GIFT? What adaptive tutoring behaviors might now be easier to author than before? How can 
the two student models be mapped to each other? How can their integration be accomplished technically? What are 
the limitations of this means of integrating student models, and how might they be addressed in future work? 

ADVANTAGES OF INTEGRATION: TARGETED TUTORING BEHAVIORS  

In this section, we describe the student experience that we implemented within the BDEMOOC as a proof-of-concept 
demonstration of the new GIFT/CTAT integration. One could envision more complex forms of adaptive instruction 
based on this integration, but we wanted to start simple. Specifically, we added a new pattern of adaptive instruction 
that includes examples and learn-by-doing activities for week 1 of the 8-week BDEMOOC, implemented as a short 
GIFT course embedded within the overall edX course. The course used as its outer loop GIFT’S Engine For 
Management of Adaptive Pedagogy (EMAP), which implements Merrill’s component display theory (CDT) 
quadrants (Goldberg et al., 2015). Generally speaking, in EMAP a student first enters the optional Rules quadrant to 
receive direct explanation of the concepts (e.g., in a video lecture), then proceeds to the Examples quadrant to see 
instances of application of the concepts. Next, in the Recall quadrant, the student answers questions associated with 
individual concepts. The optional Practice quadrant specifies activities by which the student can learn or demonstrate 
skill with applying the concepts. The Remediation “quadrant” (not explicit in the original CDT) provides concept-
specific materials for review if the student’s Recall or Practice performance does not meet expectations. An author 
defines the quadrants by configuring GIFT’s Adaptive Courseflow object with the concepts and materials to be 
presented. 

In our edX MOOC, week 1 includes 6 short GIFT courses, each with an Adaptive Courseflow object having a video 
lecture (Rules content) explaining concepts and techniques in educational data mining  (the subject of the course) 
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and providing slides with examples and recall questions on these concepts. We split the material into individual 
GIFT courses in order to provide questions after each lecture, instead of after all 6 lectures, and to let students use 
edX to navigate to individual lectures at will. 

New in the 2019 edition of our MOOC is a 7th GIFT course at the end of week 1, with an Adaptive Courseflow 
object configured as shown in Figure 1. This course covers concepts and skills related to Decision Trees and kNN 
(for k-Nearest Neighbor). The course’s principal purpose is to permit GIFT to provide adaptive practice with a CTAT 
tutor, and then depending on the success of the student’s learning in the CTAT tutor, to present opportunities for 
remedial studying of examples, and remedial additional practice with a second tutor. To this end, CTAT 
communicates its student model to GIFT, to summarize the state of student learning resulting from the tutor activity. 

Although an Adaptive Courseflow typically starts in the Rules quadrant, the new course’s Adaptive Courseflow 
object omits explicit Rule content, to avoid repeating material from the video lectures earlier in the week. Its 
Examples quadrant (top left in Figure 1) provides detailed Powerpoint slides illustrating the application of the two 
algorithms (Decision Trees and kNN). The Recall quadrant (top right in Figure 

1) has click-through screens instead of questions, again to avoid redundancy with the questions asked earlier. The 
Practice quadrant (bottom right in Figure 1) offers two CTAT tutors as practice applications: the primary tutor, 
presented first, covers both algorithms. If the student’s skill level after exiting the primary tutor is still Novice on 
either algorithm, then the remediation quadrant (bottom left, Figure 1) lets the student review the example slides for 
just that algorithm. After remediation, the student will do a secondary tutor that covers both algorithms. We would 
have preferred to have two separate tutors for remedial practice, one for each algorithm, but GIFT disqualifies from 
remedial use any Practice application that fails to cover all Practice quadrant concepts, even those already mastered. 
Even so, the student still receives adaptive content due to the integration of CTAT tutors in the Remediation 
Quadrant. 
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Figure 1: Week 1 Adaptive Courseflow object with CTAT tutors as Practice applications. The GIFT concepts and 
corresponding CTAT skills refer to the data mining algorithms Decision Trees and kNN (for k-Nearest Neighbor). 

Even if this pattern of adaptive instruction - complex tutored problem-solving adaptively combined with remedial 
examples and remedial tutored problem solving - is simple, it extends what GIFT and CTAT easily do separately, 
and capitalizes on strengths of each tool. The complex tutored problem-solving activities authored with CTAT could 
not easily have been authored in GIFT, as GIFT does not support a non-programmer approach to creating user 
interfaces or adaptive inner loops, as CTAT does (Aleven et al., 2016). On the other hand, the adaptive interleaving 
of problem solving and declarative instruction, based on Merrill’s quadrants, could not have been authored as easily 
in CTAT, because its standard adaptive outer loop option, namely, cognitive mastery based on Bayesian Knowledge 
Tracing (Corbett & Anderson, 1995), is geared towards problem solving only, without declarative instruction 
interleaved. CTAT does not represent the quadrant structure (an author would have to write a custom outer loop), 
and is not geared towards embedding external learning objects such as Powerpoint slides. We note that our proof-
of-concept pattern of instruction realizes (in a new, more adaptive way) one of the Cognitive Tutor principles 
(Anderson, Corbett, Koedinger, & Pelletier, 1995; Koedinger & Corbett, 2006), namely, to “Provide instruction in 
the problem-solving context.” In previous Cognitive Tutors, the declarative instruction was provided in the 
classroom (Koedinger, Anderson, Hadley, & Mark, 1997), or was embedded in the tutor as static text pages, though 
without adaptive sequencing. 

STUDENT MODEL MAPPING  

We saw two principal questions with respect to the semantics of GIFT’s and CTAT’s student models: How do key 
elements of CTAT’s student model (mastery probabilities for KCs) correspond to the richer set of categories for 
representing knowledge in GIFT’s student model? Second, how can CTAT’s KC mastery probabilities be mapped 
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onto the three mastery levels used in GIFT’s student model (Novice, Journeyman, Expert) for use with adaptive 
decisions, in a manner that respects the semantics of these categories, as intended by the GIFT designers? 

First, a brief look at what these student models contain. GIFT (cf. the EMAP explanation at 
https://gifttutoring.org/projects/gift/wiki/Engine_For_Management_of_Adaptive_Pedagogy_(eMAP)_201 8-1) 
decomposes expertise into concepts but also recognizes affective state and has a notion of behavior state. Concepts 
may be hierarchical, where a single overarching concept decomposes into a tree of finer-grained concepts, but this 
multi-level modeling is not required: concepts may instead be enumerated in a simple single-level list. Assessment 
of a student’s mastery of each concept is maintained with respect to 1 or 2 measures, Cognitive Knowledge and 
Cognitive Skill. The latter is defined as the “ability to execute.” For each concept GIFT maintains separate 
assessments of Cognitive Knowledge and Cognitive Skill as one of Novice, Journeyman or Expert. The assessment 
drives adaptive decisions within GIFT's Adaptive Courseflow object. 

CTAT's student model is a set of independent knowledge components (KCs), also called skills. For each, CTAT 
records a probability that the student has mastered it, based on their prior performance; a single threshold (0.95 by 
default) indicates mastery. This technique for modeling students’ knowledge, originally developed in Cognitive 
Tutors for personalized problem selection, tries to model especially procedural knowledge. Knowledge components 
are fine-grained: their scope can be refined empirically by observing error rates on questions thought to require the 
same knowledge (Aleven & Koedinger, 2013; Anderson et al., 1995). 

For our proof-of-concept system, as an initial position we simply make a 1:1 correspondence between CTAT’s 
knowledge components and the Cognitive Skill assessment of the lowest-level GIFT concepts (that is, the leaf 
concepts if the GIFT course uses hierarchical concept modeling). Both seem meant to capture procedural knowledge. 
To map CTAT probabilities onto GIFT’s Novice-Journeyman-Expert levels, we let a GIFT author set probability 
ranges for the 3 levels in the GIFT Authoring Tool. We are still experimenting with the actual ranges to use for 
Novice, Journeyman and Expert, as it is hard to find a principled basis for this choice. We have considered equating 
the expertise level needed for promotion in the GIFT course with CTAT’s mastery threshold, and we have set GIFT’s 
Expert level provisionally to the 0.95 probability of mastery threshold in CTAT. But, so far, we have set the 
Journeyman level, again provisionally, at 0.75 probability. This initial approach may be simplistic, but it permits 
GIFT to use its full adaptive decision-making capabilities in Adaptive Courseflow objects that include CTAT LTI 
tools as practice applications. Our discussion below explores the limitations of our initial integration. Our 
recommendations suggest straightforward changes to GIFT that would permit finer-grained adaptive decisions. 

TECHNICAL INTEGRATION  

In this section, we describe how we implemented the one-way student model communication (from CTAT to GIFT), 
using the LTI interoperability standard. GIFT accommodates external learning activities via two different 
mechanisms. Heretofore, most integrations have required custom Java-language gateway programs that conform to 
an interface specified in the Domain Knowledge File (Domain Knowledge File). The use of Java on the client makes 
these programs inconvenient to deploy over the World Wide Web, however. Therefore, we decided to use GIFT's 
second mechanism for integrating external activities, namely, its implementation of the Learning Tools 
Interoperability (LTI) Tool Consumer interface. In prior work on our project (Aleven et al., 2018), ARL enabled 
GIFT to accommodate learning activities that adhere to the LTI v1.1.1 standard (IMS 2012). Figure 2 illustrates our 
use of this integration, where GIFT itself is an LTI Tool Provider to edX, due to yet earlier work on our project 
(Aleven et al. 2017). 

https://gifttutoring.org/projects/gift/wiki/Engine_For_Management_of_Adaptive_Pedagogy_(eMAP)_2018-1
https://gifttutoring.org/projects/gift/wiki/Engine_For_Management_of_Adaptive_Pedagogy_(eMAP)_2018-1
https://gifttutoring.org/projects/gift/wiki/Domain_Knowledge_File_2019-1
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Figure 2: Architecture and control flow in the BDE MOOC week 1 course, with new features shown in yellow. GIFT is 
invoked by edX as an LTI Tool Provider and in turn launches CTAT tutors as Practice applications whose individual 

skill recalculations update concept-specific assessment levels in GIFT. 

In our current work, CTAT tutors (introduced into the Practice quadrant) update GIFT’s assessment of cognitive 
skill per concept. We make this update dependent on CTAT’s calculation of probability of mastery of a 
corresponding knowledge component. To communicate the value, we use the LTI v1.1.1 specification’s 
replaceResult request, by which a tool (here, CTAT), can return a single numeric score, with a label, to the tool 
consumer (GIFT). This single-score limitation presented a problem, since the GIFT course and the CTAT tutor 
generally track several concepts and knowledge components, respectively, each with different values. But we noted 
that the LTI specification permits the tool to issue the replaceResult request more than once, and we found that our 
off-the-shelf library implementations of the LTI interface permitted us to vary the labels on these requests. So, to 
permit CTAT to return multiple values to GIFT, we make special use of the current standard by allowing the tool to 
send many replaceResult requests, each with a concept-specific label and value. 

In our integration, CTAT reports changes in skill mastery estimates while the student is working on a tutor, as soon 
as they happen, not just upon exiting the tutor. Part of the rationale is that the session could end abruptly at any time: 
the tutor might not have a chance to send final scores. A second reason is that the same student might be logged into 
GIFT in multiple sessions concurrently--even perhaps inadvertently. A common usage pattern on the World Wide 
Web is for a user to open a new browser tab to attend to some matter while in the midst of a task on another tab; 
after some time passes and more open tabs accumulate, it could be easy for a user to forget what tasks were in 
progress and so begin anew in a new tab on a site already active on another tab. Step-by-step reporting of student 
model updates helps student model values remain up-to-date for access from concurrent sessions. 

After the time of our implementation (and the initial submission deadline for this paper), the LTI Assignment and 
Grade Services Specification v2.0 (https://www.imsglobal.org/spec/lti-ags/v2p0/) was published. This standard 
offers richer reporting capabilities. During our work it was neither finalized nor freely available; now we look 
forward to the development of support libraries to promote its adoption. Our v1.1.1 workaround was easy to 
implement with existing freely-available libraries, and it let us prototype a useful extension to GIFT’s capabilities. 

DISCUSSION  

In this paper, we present a new GIFT/CTAT integration with one-way student model sharing between GIFT and 
CTAT, a novel feature, relative to our own prior work and to prior work in the field. Our approach is to exchange a 

https://www.imsglobal.org/spec/lti-ags/v2p0/
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student model in one direction and to map student model values with 1:1 correspondence between the main student 
model elements. We present a proof-of-concept demonstration of this integration within one of the units of the 
summer 2019 edition of the edX course “Big Data and Education.” In this unit, our integration supports new adaptive 
interleaving of complex problem solving and declarative instruction. 

Our proof-of-concept represents a relatively simple special case of a more complex problem. First, it is limited in its 
curricular scope: it covers only a portion of one week’s worth of instruction within the BDEMOOC, captured in one 
instance of GIFT’s Adaptive Courseflow object. Nonetheless, similar extensions could be repeated in other course 
chapters. 

Another limitation may be that in our project, we have pretty much a best case situation (albeit one that may not be 
uncommon) in which a single content development team works with all the different tools being integrated. This 
situation no doubt makes it easier to create student models whose elements map 1:1 than it would be otherwise. 
Things may be very different when integrating, post-hoc, two ITSs from different authors. Under those 
circumstances, the student models might not be as easy to align, and some form of ontological translation may be 
necessary. Perhaps even greater benefits from integration accrue when integrating existing systems; more content 
may be involved, for example. Then again, we do not know how likely that kind of integration scenario is. 

The integration of the two student models may incur a certain level of what we might call semantic friction. Do 
thresholds on CTAT KC probabilities capture what the GIFT designers meant by the categories of Novice, 
Journeyman, and Expert? Some degree of semantic mismatch might be inevitable and perhaps unresolvable. We 
would like to think, however, that the current thresholds (set at .75 for Journeyman and .95 for Expert) align 
reasonably well with the intent of the GIFT designers, although some further scrutiny of this issue might be in order, 
informed perhaps by prior work in the Knowledge/Skills/Abilities (KSA) doctrine, on which the GIFT student model 
draws. 

A further limitation is that we present no data to support the point that the current integration - although supported 
by instructional design principles - is actually benefiting students. The current work should be viewed as exploratory, 
focused mainly on technical issues. We are collecting data in this summer’s run of the BDEMOOC, and plan to 
discover the different pathways that students take through the course materials. We do not expect however that the 
new adaptive pattern just in week 1 of the BDEMOOC will lead to measurably different outcomes (e.g., learning 
gains, retention rates). It may be better to wait with a more rigorous evaluation of student learning until more content 
has been moved into this (and similar) adaptive patterns. 

A final limitation of the current integration is that it supports one-way communication of the student model only, 
namely, from CTAT to GIFT. Full integration would require two-way communication, so CTAT can be cognizant 
of information about the student inferred from performance in other GIFT activities, an interesting avenue for future 
work, as discussed below. 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH  

In this paper, we solved technical issues regarding the one-way sharing and 1:1 mapping of student models, as one 
way in which one might integrate GIFT and CTAT. As a proof-of-concept, we demonstrated this integration by 
adaptive interleaving of problem-solving practice with remedial example studying and problem solving. These 
adaptive tutoring behaviors would be harder to author in either GIFT or CTAT alone. The main contribution of the 
work is that it demonstrates benefits of simple one-way student model sharing between ITS platforms, one of very 
few demonstrations in the literature of ITS integration. It demonstrates, as well, that integration of ITSs, generally 
viewed as both highly desirable and highly challenging, does not always need to be exceedingly difficult. 

Our plans for future work are as follows: After running the edX course (planned for late spring and early summer 
2019), we will analyze the course data to get a sense for the functioning of the new adaptive mechanisms in the 
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course that are made possible by the newly-implemented student model sharing. We will check how students’ paths 
through the course changed and whether they became more effective, and to learn how well participation held up 
across adaptive transitions. 

If the new v2.0 LTI standard with richer reporting capabilities gains broad adoption, we recommend its 
implementation in GIFT and in CTAT. Independent of that, we recommend two near-term enhancements and suggest 
some longer-term ideas. First, for the near term, it would be good to extend the GIFT Authoring Tool to permit 
concept-specific ranges for translating LTI numeric scores into GIFT’s Novice-Journeyman-Expert expertise levels. 
That is, instead of a single slider to set a single tuple of Novice-Journeyman-Expert ranges for all concepts, it would 
be useful to be able to set these ranges per concept. Then authors would have flexibility to establish concept-specific 
performance expectations. Perhaps a way could be found that such flexibility would help reduce some of the semantic 
friction discussed above. 

A second near-term recommendation for GIFT would be to enhance the Practice quadrant’s content selection 
algorithm to account for cognitive skills already mastered. As mentioned above, when a student re-enters the Practice 
quadrant after remediation, GIFT currently considers only those applications associated with all concepts covered 
by the Practice phase. The student might avoid repetitive work if GIFT were able to choose a Practice application 
that covered only those concepts for which the student has not yet met expectations. 

Further out, we note that GIFT’s student model also includes Affective State. Recent work in CTAT has made it 
easy to integrate detectors that infer, from the student-tutor transaction stream, variables regarding student affect, 
unproductive persistence, disengaged behaviors such as gaming the system, and so forth (Holstein et al., 2018). It 
would be valuable, in the future, to investigate how these additional variables could be shared between CTAT and 
GIFT in a generalizable manner. 

Another key direction would be to communicate the student model from GIFT back to CTAT, so the student model 
would be shared in bi-directional fashion, and the tutoring behavior in a CTAT tutor could adapt to what the student 
learned (or did not learn) in GIFT activities. Straightforward extensions of the LTI implementations of GIFT and 
CTAT (see readResult, below) would permit CTAT to receive the GIFT student model. If we assume, as in our 
current one-way integration, that GIFT skills would be mapped 1:1 to CTAT KCs, a key issue would be: How should 
we translate GIFT skill levels (novice, journeyman, expert) into CTAT KC probabilities? It seems inevitable that in 
the mapping we would lose “resolution.” CTAT has greater precision in its student model values (which represent 
probabilities) than GIFT, a downside of GIFT’s choice to distinguish only three mastery levels in its student model. 
A possible way around this loss of resolution might be for the two systems to each maintain their own student model, 
and to share student model updates, rather than the student model itself - so each system could update its student 
model based on events that happened in the other system. While that solution might maintain resolution, and perhaps 
avoid semantic friction of the kind described above, it would be more difficult to implement; we did not explore it. 

In implementing two-way student model sharing, we may need to account for the possibility that a student may at 
times be working on two different activities simultaneously, as described above. If simultaneous activities share 
targeted knowledge components, then the updated student models sent from the Tool (e.g., CTAT) to the Consumer 
(GIFT) may clobber each other. This issue can be avoided by having the Tool first query the Consumer’s student 
model for its current value(s) before computing an updated value and sending it back to the Consumer. Similarly, 
the Tool should query the Consumer’s student model before and, based on the result of the query, update its own 
student model before using it for its own adaptive pedagogical decisions. CTAT would need some straightforward 
modifications to make these queries. In short, we see a clear path to two-way student model sharing between GIFT 
and CTAT, assuming that the 1:1 mapping of student model elements will remain appropriate. 

Finally, the most exciting future work is exploring what new student experiences can be authored with the the new 
GIFT/CTAT integration. Some attractive scenarios might involve CTAT’s cognitive mastery outer loop, which has 
been very well-studied in the EDM literature, and proven to be effective (Corbett, McLaughlin, & Scarpinatto, 2000), 
or more flexible interleaving of problem solving and declarative instruction. These scenarios might require additional 
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flexibility in, and authoring capabilities for, how GIFT adaptively traverses the quadrants in the Adaptive Courseflow 
object, and may benefit from ways of modeling links between procedural and conceptual knowledge, already 
represented in GIFT’s student model, but not in CTAT’s. 
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Towards Data-Driven Tutorial Planning for Counterinsurgency 
Training in GIFT: Preliminary Findings and Lessons Learned 
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North Carolina State University1, Intelligent Automation, Inc.2, U.S. Army Combat Capabilities Development Command 
Soldier Center - STTC3 

INTRODUCTION 

Adaptive instructional systems (AISs) guide student learning experiences by tailoring instruction based  on the 
individual goals, needs, and preferences of learners in the context of domain learning objectives (Sottilare, Barr, 
Robson, Hu & Graesser, 2018). A critical feature of AISs is the capability to dynamically guide and scaffold student 
learning. Leveraging recent advances in artificial intelligence and machine learning, it is possible to tailor training 
and educational experiences to individuals and teams of learners. Tutorial planning is a critical component of AISs, 
controlling how scaffolding is structured and delivered to learners. Tutorial planners operate at multiple levels, 
selecting problems for learners to solve and delivering tailored hints and feedback about specific problems. While 
research shows AISs can help to improve learning gains in many domains, devising computational models that 
determine when to scaffold, what type of scaffolding to deliver, and how scaffolding should be realized, is a critical 
challenge for the field. 

Over the past several years the Generalized Intelligent Framework for Tutoring (GIFT) has emerged as a key 
exemplar of how these challenges in developing ITSs can be addressed at scale (Sottilare, Brawner, Goldberg, & 
Holden, 2012; Sottilare, Brawner, Sinatra, & Johnston, 2017). GIFT is an open-source domain-independent software 
framework for designing, deploying, and evaluating adaptive training systems. GIFT provides instructors with a 
suite of web-based tools for rapidly creating intelligent tutors, and it is linked to several ongoing research efforts to 
devise methods for automating key elements of the adaptive training authoring process. Many of these tools are 
available through GIFT’s Course Creator, which provides a drag-and-drop interface for devising adaptive training 
experiences across a range of domains. 

In this paper, we describe results from a research program that aims to devise data-driven tutorial planning policies 
that can be used in GIFT to present learners with adaptive remediation. In particular, we present preliminary results 
from a study involving over 500 learners who completed an approximately two-hour hypermedia training course 
that taught doctrinal concepts associated with counterinsurgency (COIN) and stability operations. The course 
leverages several unique enhancements to GIFT’s Engine for Management of Adaptive Pedagogy (EMAP) including 
a newly developed remediation module that presents learners with passive, active, or constructive forms of remedial 
feedback. The remediation activities are based on the ICAP framework for active learning (Chi, 2009) which predicts 
that interactive remediation (e.g., peer dialogue) is more effective for learning than constructive remediation (e.g., 
writing an explanation), constructive remediation is more effective than active remediation (e.g., reading and 
highlighting a passage), and active remediation is more effective than passive remediation (e.g., reading a passage 
without doing anything else). Our analyses address several fundamental questions that are essential for developing 
effective reinforcement learning policies. We also describe lessons learned from deploying the training course on 
Amazon’s Mechanical Turk (MTurk) and utilizing GIFT’s Event Reporting Tool to extract data in support of 
reinforcement learning analysis. The paper concludes with a discussion of upcoming plans to devise tutorial policies 
using reinforcement learning techniques, as well as future directions for incorporating these policies in GIFT to 
enhance its ability to provide learners with effective and efficient adaptive remediation in future courses. 
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RESEARCH CONTEXT 

A significant challenge that authors face when designing AISs is determining when to scaffold learners, what type 
of scaffolding to deliver, and how scaffolding should be realized. One reason for this challenge is the wide range of 
pedagogical strategies and tactics that can be implemented in AISs, as well as a lack of empirically grounded 
guidance about the relative contribution of different adaptive interventions on learning outcomes (Durlach & Ray, 
2011). Another challenge facing adaptive course designers is that rules that drive adaptive pedagogical decisions 
often must be manually engineered, which can significant- ly increase the time required to author adaptive 
instructional materials (Aleven, McLaren, Sewall, & Koedinger, 2009; Sottilare, 2015). 

Recent developments in artificial intelligence and machine learning have introduced opportunities to reduce the 
authoring burden of AISs by devising data-driven tutorial planning policies that can automatically control how 
pedagogical support is structured and delivered to learners to create personalized learning experiences (Rowe & 
Lester, 2015; Williams et al., 2016; Zhou, Wang, Lynch, & Chi, 2017). Tutorial planning is an important component 
of ITSs that controls how instructional interventions are structured and delivered at the macro-level (e.g., selecting 
problems for learners to solve) and micro-level (e.g., delivering tailored hints and feedback about specific problems). 
Tutorial planning techniques are complementary to advances in intelligent tutoring system authoring, including 
authoring tools implemented in GIFT, to address the challenges inherent in constructing adaptive training materials. 

Reinforcement learning techniques have shown promise for automatically inducing tutorial planning rules that 
optimize student learning outcomes and do not require pedagogical rules to be manually programmed or 
demonstrated by expert tutors. Reinforcement learning is a category of machine learning that centers on devising 
software agents that perform actions in a stochastic environment to optimize some concept of numerical reward 
(Sutton & Barto, 1998). In reinforcement learning, the agent induces a control policy by iteratively performing 
actions and observing their effects on the environment and accumulated rewards. Tutorial planning can be formalized 
as a reinforcement learning task in which the tutor (i.e., agent) aims to make pedagogical decisions (i.e., actions) that 
will affect its environment (i.e., the trainee and his/her learning environment) to optimize student learning outcomes 
(i.e., rewards). In our case, the pedagogical decisions are choosing between ICAP-inspired remediation activities, 
and the tutorial planner’s objective is to optimize student learning in an adaptive hypermedia-based training course 
for COIN. 

Because reinforcement learning techniques are data-intensive, a critical goal of our study was to obtain a large dataset 
consisting of trainee responses to different types of instructional remediation activities. To meet this objective, we 
developed an adaptive hypermedia-based training course in GIFT that builds upon materials from the UrbanSim 
Primer. Originally developed by the USC Institute for Creative Technolo-gies, the UrbanSim Primer is a 
hypermedia-based learning environment that provides direct instruction on key concepts and principles of COIN 
doctrine. Our GIFT-based version of the UrbanSim Primer course was designed to: (1) contain numerous 
opportunities for learners to receive instructional remediation; (2) be deployable through online crowdsourcing 
platforms, which enabled efficient distribution to many learners for data collection purposes; (3) enact an exploratory 
(i.e., random) remediation policy in order to broadly sample the space of possible pedagogical decisions; (4) assess 
learning gains using pre-and post- knowledge tests, and (5) collect trace data from participants as they interacted 
with the training course (i.e., how many times learners received remediation, how long they spent interacting with 
the different forms of remediation, correctness of responses, helpfulness ratings of remedial content, etc.) which 
would enable exploration of different state representations and reward functions for inducing reinforcement learning-
based tutorial policies. 

In the following sections, we describe the results of a large human subject’s study that we recently completed as well 
as the preliminary analyses that serve as prerequisites for developing tutorial policies using reinforcement learning 
techniques. The research questions guiding our initial set of analyses included: How effective was the course in 
promoting learning gains? How frequently did learners receive remediation? How long did learners spend interacting 
with each form of remediation? Which form of remediation was most effective for helping learners overcome an 
impasse? 
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METHODOLOGY 

Participants 

To meet our goal of facilitating broad distribution to many learners, we recruited participants through Amazon’s 
MTurk platform. Participants were required to be at least 18 years of age, reside in the United States, have completed 
at least 50 MTurk tasks, and have obtained a task completion success rate of at least 95% to be eligible for the study. 
A total of 533 participants (42% female, ages ranged from 18 - 65) completed the training course, which lasted 
approximately 2 hours. Participants received $8 for completing the full training course. Thirty-five percent of 
participants had a bachelor's degree, 25% had some college education, 11% had a master’s degree, and 11% had a 
high school diploma. Two percent of the sample reported being extremely familiar with COIN principles and 
doctrine; 12% reported being extremely interested in learning about COIN topics. 

Hypermedia Training Course 

The hypermedia-based training course was based upon materials from the UrbanSim Primer. The course was 
authored in GIFT and organized into 4 chapters. Each chapter contained a series of short videos, recall questions, 
and remedial training content designed to teach common themes, terminology and principles of COIN operations 
(Rowe, Spain, Pokorny, Mott, Goldberg, & Lester, 2018). The videos were approximately 90 seconds and covered 
topics such as “Identifying the center of gravity in COIN operations”, “Defining intelligence preparation for the 
battlefield”, and “Understanding lines of effort in COIN operations.” The recall questions, which were presented in 
multiple choice format, assessed the content covered in the videos. The remediation interventions were structured 
according to Chi’s ICAP framework (Chi, 2009) and required students to either passively, actively, and 
constructively engage with remedial feedback upon missing a quiz question. The hypermedia course also included 
a set of web-based surveys designed to collect information about participants’ age, education, interest in 
counterinsurgency operations and military science topics, and goal orientation, as well as parallel forms of a 12-item 
pre-and posttest that measured knowledge of COIN topics, terminology, and principles. The hypermedia course 
contained a total of 12 multimedia videos, 39 multiple-choice recall questions, and 168 ICAP inspired remediation 
files. Participants advanced through the training course at their own pace and were not allowed to review previously 
completed lessons or videos. 

Procedure 

A brief description of the study was posted on the MTurk website. Participants who were interested in the study 
reviewed and electronically signed an informed consent form that described the study’s purpose, risks, benefits, and 
compensation requirements. Afterward participants proceeded to the training course which was hosted on the cloud-
based instance of GIFT. 

The course began with a general message that welcomed participants to the training course. Following this 
introduction, participants completed a demographic questionnaire that gathered information about their age, years 
of education, and familiarity with COIN topics and concepts. Then, they completed a goal orientation questionnaire 
that measured task-based and intrinsic motivation to learn (Elliot & Murayama, 2008) followed by a 12-item pretest 
that measured prior knowledge of COIN principles and terminology. After completing the pre-training surveys, 
participants began the adaptive hypermedia COIN training course. Participants watched a series of narrated videos 
that covered lesson topics such as the importance of population support, processes for intelligence gathering, and 
issues in successful COIN operations. After each video, participants completed a series of recall questions that 
consisted of single or multi- concept review items that aligned with the course’s learning objectives. Single concept 
review questions required learners to recall and apply concepts presented within the video lesson. Multi-concept 
review questions required learners to demonstrate a deeper understanding of course material by integrating concepts 
from multiple lessons. Following a missed question, participants received ICAP-inspired remediation that required 
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them to either: (1) passively re-read the narrated content that was just presented in the lesson video; (2) re-read the 
video content and actively highlight the portion of text that answered the recall question that was just missed; or (3) 
re-read the text and constructively summarize the answer to the recall question in their own words. The active and 
constructive remediation prompts also included expert highlighting/summaries that asked students to self-evaluate 
the accuracy of their responses (see Figure 1). 

 

Figure 1. Example active remediation activity. 

The course also included a “no remediation” prompt that only provided students with minimal feedback before being 
asked to re-answer the quiz question. The course used a random assignment policy that determined whether students 
received passive, active, constructive, or no remediation after each incorrect item response. Students continued to 
receive remediation until they demonstrated concept mastery (i.e., correctly answering the recall question). In 
addition to the ICAP-inspired remediation prompts, the training course also monitored how long students engaged 
with the video-based lessons and provided prompts to those participants who advanced through the videos too 
quickly or too slowly. 

Upon finishing the final lesson and quiz, participants completed a series of post-training surveys that included a 
multiple-choice posttest to measure retention of the concepts and principles presented in the training and a short 
questionnaire to collect opinions about the training experience. After completing these activities, participants 
received a debriefing message, they were thanked for their participation, and they received a unique completion code 
that could be used to verify course completion through the MTurk website. 

PRELIMINARY RESULTS 

A goal of the overall research program is to investigate the benefits of different tutorial interventions for improving 
student learning in adaptive training environments. Towards this goal, and prior to developing any reinforcement 
learning-based policies, we first conducted a set of preliminary analyses to identify how well participants performed 
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in the course, how often learners received remediation, and how long, on average, learners spent interacting with the 
different intervention forms. 

Learning Gains 

Participants’ pre-and posttest scores as well as normalized learning gains were analyzed in order to determine if the 
course was effective in promoting participants’ knowledge of COIN concepts, terminology, and principles. Scores 
from the 12-item pretest revealed that participants had low prior knowledge of the concepts covered in the course 
(M= 4.29, SD = 2.20). A post hoc analysis using a two-sample test t- test indicated that post test scores were 
significantly higher (M= 8.22, SD = 3.11) than pre-test scores, t(509) = 30.79, p <. 001. An analysis of participants’ 
normalized learning gains showed the course was effective in meeting its instructional objectives (M = .52; SD = 
.11) and that participants benefited from completing the course. 

Remediation 

Next, we examined how often participants received remediation in the course. Reinforcement learning techniques 
are data intensive, and therefore it is critical that the dataset contain a large number of remedi- ation instances to 
broadly sample the space of possible tutorial interventions and support inducing data- driven tutorial policies. Results 
showed that the training corpus included a total of 5,189 instances of remediation. Individual participants typically 
received multiple instances of remediation in the range of 1 to 113 (M = 10.08, SD = 12.58). Although the course 
was designed to implement a randomized control policy, frequency statistics showed that 40% of all remediation 
interventions were active-interventions, 40% were constructive, 10% were passive, and 10% were no-remediation. 
A closer inspection of the remediation data showed that 5% of the sample received only one instance of remediation 
(i.e., partici- pants missed only one recall question and therefore received only one remediation intervention) and 
that 75% of the sample received up to 10 instances of remediation. 

Following these analyses, we analyzed participants’ completion times for each form of remediation to determine 
whether participants spent more time completing the constructive and active remediation activities, which were 
designed to evoke more cognitive engagement, compared to the passive remediation activities, which were designed 
to be less engaging. Our analysis showed that participants spent the most time completing the constructive 
remediation activities (M = 75.96; SD = 32.30), a moderate amount of time completing the active remediation 
activities (M = 44.26; SD = 15.25), and the least amount of time viewing the passive remediation content (M = 27.64; 
SD = 21.60). 

Further analyses showed participants spent less time on the constructive (r(39) = -.63, p <. 001) and  active 
remediation (r(38) = -.58, p < .001) activities as they progressed through the training course, but there were no 
significant decreases in viewing time across passive remediation interventions (r(39) = -.20, p = .23). These results 
suggest that participants spent increasingly less time completing the constructive and active remediation activities 
as they progressed through the training course (Figure 2). Notably, participants spent almost 2 minutes, on average, 
completing constructive remediation activities when the training course began. By the end of the third chapter 
participants spent roughly a minute completing the constructive remediation activities, and by the conclusion of the 
course they were spending approximately 40 seconds completing these activities. A similar, albeit less pronounced 
trend is evident for the active remediation activities as well. These data suggest participants may have grown fatigued 
with the more cognitively engaging forms of remediation as the course progressed. 
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Figure 2: Remediation completion time across course lessons. 

Finally, we conducted a set of exploratory analyses to identify which form of remediation was most effective at 
helping participants overcome an impasse for a missed recall item. We operationally defined remediation 
effectiveness as the proportion of cases in which participants correctly answered a recall question after receiving a 
given type of remediation (constructive, active, passive, none). We calculated remediation effectiveness in terms of 
the first, second, and third remediation instances delivered following missed attempts on a given recall question. As 
previously noted, participants continued to receive remediation until they demonstrated concept mastery. So, if a 
student missed a recall question, they continued to receive remediation until they answered the question correctly. 
By examining remediation effectiveness over successive attempts we aimed to identify trade-offs in remediation 
effectiveness that may have occurred as participants transitioned from one unsuccessful remediation attempt to 
another. The ICAP model predicts that constructive remediation should be more effective than active remediation at 
helping students overcome an impasse, and active remediation should be more effective than passive remediation. 
However, there could be tradeoffs between these different forms, as evident in the previous set of analyses that 
showed participants spent less time completing constructive and active remediation activities as they progressed 
through the course. 

Our results generally supported the predictions of the ICAP model. Constructive remediation appeared to be more 
effective compared to active remediation at helping students overcome an impasse after one round of remediation, 
active remediation appeared to be more effective than passive, and passive remediation appeared to be more effective 
than no remediation (Figure 3). For cases in which participants received two rounds of remediation before correctly 
answered a recall question, constructive and active remediation appear to be the most effective form of remediation. 
Interestingly, presenting no remediation appeared to be more effective than presenting passive remediation. For cases 
in which participants correctly answered a recall question after the third remediation attempt, active remediation 
appeared to be more effective, followed by constructive remediation. There did not appear to be a major difference 
between passive and active remediation in terms of effectiveness. 

Effectiveness of Remediation Intervention by Attempt 
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Figure 3: Remediation effectiveness across remediation attempts. 

DISCUSSION AND LESSONS LEARNED 

Our initial results are promising, and they suggest that the training corpus we collected using GIFT and Mechanical 
Turk contains a sufficient number of remediation interventions to explore data-driven tutorial planning models with 
reinforcement learning techniques. In addition, participants’ interaction behaviors with the remediation appeared to 
align with expected outcomes of the ICAP framework. Notably, participants interacted with the constructive and 
active remediation content longer than the passive remediation content. The constructive and active remediation 
content also appeared to be more effective in helping learners overcome impasses during the course. Importantly, 
participants’ knowledge of COIN concepts improved from pretest to post-test. 

To our knowledge this is the first time GIFT has been used with an online crowdsourcing platform to collect a large 
corpus of training data for machine learning analysis. By using MTurk, we were able to collect data from over 500 
users over the course of a 4-week timespan. As we conducted the study, we adopted several best practices to ensure 
data were collected in an efficient and effective manner. First, we used multiple batches to collect data 
(approximately 15) and limited batch sizes to approximately 50 slots. This served two primary purposes: (1) it made 
monitoring the course and completion rates more manage- able for the research team, and (2) it allowed us to make 
changes to the course based on user feedback. Second, we closely monitored the email account associated with the 
MTurk profile and responded to all inquiries regarding the course. The MTurk user community is extremely 
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responsive and forthcoming with feedback. Many participants shared recommendations for course improvements 
during our pilot testing phases as well as during testing. Participants frequently used the account’s email address to 
notify us if they experienced trouble completing the course or if they ran into difficulties submitting the completion 
code. By providing timely responses to participants, we were able to quickly address any unforeseen issues that 
participants experienced and maintain a high rating on many of the MTurk community forums where users review 
and rate MTurk tasks. 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

Recent advances in ITS authoring tools, as well as data-driven tutorial planning, are showing significant progress 
toward reducing the effort required to create personalized learning experiences. A key next step is the development 
of computational methods and tools for automatically inducing pedagogical models that dynamically tailor learning 
experiences across different domains and learning environments. In this paper, we have reported preliminary results 
from a study conducted using GIFT and the Mechanical Turk crowdsourcing platform that was designed to collect 
a training corpus for inducing tutorial planning models in a hypermedia-based course using reinforcement learning 
techniques. Results suggest that ICAP-inspired feedback and remediation in the GIFT-based course broadly follows 
trends predicted by the ICAP model concerning instructional design and student cognitive engagement. However, 
results also suggest that the effectiveness of ICAP-inspired remediation may change over time and under different 
conditions, pointing toward the need for data-driven tutorial policies to control how and when different forms of 
remediation are delivered to learners. These findings set the stage for investigating the application of reinforcement 
learning techniques to automatically induce tutorial policies for controlling how and when ICAP-inspired 
remediation is delivered to learners. 

There are several promising directions for future research and development of GIFT. One recommendation is to 
expand the capability of Event Reporting Tool (ERT), which provides researchers with a means for extracting key 
data from users’ interaction logs. The ERT produces a record of all events that occurred during the GIFT session. 
Some of these events specify what the learner did; other events result from GIFT processing. While the log file from 
a GIFT session captures the interactions of GIFT, the log file must be transformed into another file in order to make 
it useful for analysis of learning effectiveness. Our team is currently working on an open source tool that will allow 
researchers to transform data from the ERT into a format that is amenable to reinforcement learning analysis. As 
GIFT’s user base continues to expand, it will become critically important to ensure researchers can easily access and 
analyze log data to investigate the effectiveness of different instructional inventions and tutorial policies. 
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INTRODUCTION 

Tactical Combat Casualty Care (TC3) is taught to members of the United States military at all levels to ensure Soldier 
safety. It is the process of responding to a casualty in the middle of a combat engagement. The United States Army 
utilizes medical training programs to educate and evaluate TC3 for all Soldiers. According to the Department of 
Defense, there are currently over one million US Army Soldiers which means that each of those Soldiers have 
experienced some basic level of TC3 during their Army service (DOD, 2018). Improvement in the education of TC3 
is essential to help ensure Soldier safety and begin to lower the 90% of combat related deaths that occur before the 
injured Soldier reaches higher level medical care (Kotwal, 2011). The Army is also making the shift to more digital 
and online training to expedite learning and save on costs of hands on training for each Soldier (Army.Mil, 2013). 
The balance that must be struck in the future of army training is mitigating the expense while ensuring that adequate 
training is being distributed to all personnel. 

Adaptive online educational tools are the way forward for the Army to expedite learning and is an explicit effort of 
the Army Research Lab’s Essential Research Area: “Accelerated Learning for a ready and Responsive Force” 
(DeFalco, 2018). In the effort of supporting expertise development, Jung (2016) and Hoffman et al., (2013) 
recommend fostering high-level reasoning skills. According to the Center for Advancement of Learning and 
Assessment (King, Goodson, & Rohani, N.D.), higher order thinking skills include critical, logical, reflective, 
metacognitive, and creative thinking, and are activated when individuals encounter unfamiliar problems, 
uncertainties, questions, or dilemmas. 

Within this framework, then, supporting an accelerated learning pathway to develop the cognitive skills of an expert 
includes supporting the development of creative thinking--specifically creative reasoning-- a core element of 
cognitive readiness. Further, we conceptualize an accelerated learning pathway as a pedagogical design template 
that would be used to accelerate learning in an adaptive instruction system (AIS) that would sequence adaption of 
instruction according to salient learner traits, in this case personality traits. Pedagogical design templates contain 
specific, ready-to-be-used content and/or information to inform pedagogical decision-making and instruction that 
may or may not align to specific learning theories but can simply and streamline pedagogical planning and designs 
(Dobozy & Dalziel, 2016)—a useful tool for supporting transdisciplinary learning in adaptive instructional systems 
(AISs) such as the Generalized Intelligent Framework for Tutoring system (GIFT). 

The first step in developing a pedagogical design template that would support accelerated medical expertise in an 
AIS includes understanding what learner traits are correlated with analogical and creative reasoning. Accordingly, 
our first experiment sought to determine whether there were significant positive correlations between personality 
traits as measured by the HEXACO with mental rotation tasks and analogical reasoning tasks—two approaches to 
measure an individual’s creative and analogical reasoning skills. This paper reports on our initial findings derived 
from our first correlational study conducted at the United States Military Academy in the fall of 2018. 
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ANALOGICAL REASONING AND DECISION-MAKING 

Cognitive tasks 

The importance of analogical reasoning on decision-making is well evidenced in prior related research. For example, 
Breuning (2003) looked at the impact that analogical reasoning had on foreign policy decision-making. Analogical 
reasoning in foreign policy is related to historical case-based explanations to determine how to interact with the 
current political climate (Breuning, 2003). His study analyzed a 1950s Senate Hearing transcript by breaking each 
paragraph into either case-based, explanation-based, or model-based reasoning. Breuning (2003) found that 
approximately 75% of the speakers at the hearing used more explanation-based reasoning than analogical (case-
based). The results can be generalized to cognitive models in determining some of the ways that people think and 
make decisions. The cognitive processes involved in analogical reasoning may seem confusing for foreign policy, 
but it serves as a spring board for how people remember and react to evolving information. 

Additionally, Visser’s (1996) identified the two different types of “spontaneous” use of analogy in design. The study 
analyzes the question of ill-defined problem solving from a cognitive psychology viewpoint by looking at action-
execution and action-management analogies. Visser (1996) also explains that there is a gap in the literature on 
analogous sources and their carry over to tasks in the real world. Action execution is more related to developing and 
expelling the solution to a complex problem whereas action management looks to accomplish the next action that 
needs to be executed (Visser, 1996). The participants were recorded performing mechanical tasks, and the results 
showed that the greater the distance between the target task and the source task, the greater difficulty in creating the 
analogy. The integration of various types of analogical reasoning can be applied to intelligent tutoring software by 
helping the developer of the training tap into the ways that people think about learning and solving problems. 

In addition to analogical reasoning, one’s skill in mental rotation tasks is another competency related to decision-
making. Ganis and Kievit (2015) claimed that mental rotation tasks are one of the most influential paradigms in the 
history of cognitive psychology. Three-dimensional software was employed by Ganis and Kievit to generate 384 
objects for rotation with both a baseline object and a target object. Importantly. Mental rotation can predict 
performance variables such as surgical and spatial skills. 54 participants (31 females) were tested individually at 
about 60cm from a computer screen and carried out two blocks of 48 trials. The results displayed a linear increase 
in response time and error rates with angular disparity (Ganis & Kievit, 2015). This means that the greater disparity, 
the larger the response time from the participants. 

Further, Lufler, Zumwalt, Romney and Hoagland (2011) studied the correlational relationship between anatomy 
student’s performance in the course and their visual-spatial ability. 352 first year medical students completed the 
Mental Rotations Test before the gross anatomy course and 255 at the completion of the course in 2008 and 2009 
(Lufler, Zumwalt, Romney & Hoagland, 2011). They determined that students who scored in the highest quartile of 
the MRT were 2.2 times more likely to sore over 90% on the practical examinations and on both practical and written 
exams (Lufler, et al., 2011). This is a significant connection to GIFT’s application for TC3 because if Soldiers can 
consistently do well with the mental rotation tasks then they arguably will have a greater likelihood of increased 
performance in real-world application. While mental rotation is important for creativity, it must be coupled with the 
ability to learn quickly and under pressure to have a positive impact on Soldier training. 

Accelerated learning 

Accelerated learning is a strong driving force behind the ideas of GIFT and other digital learning platforms in that 
they hope to educate the learner effectively and efficiently. Accelerated learning is defined by Hoffman, Feltovich, 
Fiore, Klein and Ziebell (2009) as not only the hastening of basic proficiency in a task but also encompasses the 
achievement of expertise. Cognitive flexibility and transformations can help to explain how people can react to 
accelerated learning. Flexibility is a person’s ability to understand their own mental barriers to learning and 
determine the way around that block (Hoffman, Feltovich, Fiore, Klein, & Ziebell, 2009). Transformation refers to 
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the necessity of unlearning a task in order to eventually become an expert in that area. Hoffman explains that these 
factors, combined with a supportive mentor and corrective feedback, help to facilitate successful accelerated 
learning. 

Hoffman (2010) provides a summarized framework for the elements within accelerated learning. He uses the military 
as an example of where this problem is constantly arising. There are two different forms for transferring knowledge 
with an accelerated learning framework: transfer across mission types and transfer across responsibility (Hoffman, 
2010). In the military, this transfer happens constantly through the changing responsibilities from deployments to 
changing jobs throughout the military service time. Transfer across missions refers most directly to a Soldier’s 
doctrinal knowledge of the different types of missions they will conduct. Each individual Soldier knows the 
difference in mission between an ambush and movement to contact. Transfer across responsibilities is similar to the 
role of a squad leader who is promoted to platoon sergeant. That Soldier needs to know what a good squad leader does 
and how to coordinate an entire platoon as the highest ranking Non-Commissioned Officer. 

Personality and Academic Performance 

In a review of the literature, Batey and Furnham (2006) note that while creativity in terms of the production of ideas 
is related to intelligence, creativity as originality rests largely on personality factors. O’Connor and Paunonen (2007) 
studied the relationship between the Big Five personality traits and post-secondary academic achievement. This 
review of other studies uncovered that Openness to Experience was found to be positively correlated with scholastic 
achievement while Extraversion was negatively correlated (O’Connor & Paunonen, 2007). The current research on 
the Big Five lends itself to the importance of identifying the types of learners to potentially develop curriculums to 
improve levels of academic performance in the future (O’Connor & Paunonen, 2007). 

Chamorro-Premuzic and Furnham (2008) conducted a study that analyzed the relationship between the personality 
traits of Openness, Conscientiousness, and cognitive ability and learning. Ability was measured by the Baddeley 
Reasoning test of fluid intelligence (gf) and the Wonderlic Personnel Test IQ (Chamorro-Premuzic & Furnham, 
2008). The experimenters defined the learning levels as either surface, deep, or achieving and then had the students 
conduct four tests by then end of their first month at the university and again during their second year (Chamorro-
Premuzic & Furnham, 2008). The results showed that exam marks were significantly correlated with the three 
personality traits tested. Specifically, Openness had a high positive correlation with IQ, and IQ was strongly 
correlated with academic performance (Chamorro-Premuzic & Furnham, 2008). 

In an additional study, Chamorrow-Premuzic and Furnham (2009) hypothesized that Openness to Experience would 
have a positive relationship with deep learning. They tested 852 students on the Neuroticism- Extraversion- 
Openness- Five Factor Inventory (NEO-FFI), as well as a 42-item questionnaire that focused on the reasoning behind 
how students learn (Chamorro-Premuzic & Furnham, 2009). The results were binned into surface, deep, and 
achieving categories, showing that Openness to Experience and deep learning were positively correlated. 

However, while there is a more robust body of evidence that employs the Big Five (or five factor model) as it relates 
to intelligence, we have made the choice to employ the HEXACO personality instrument (Ashton & Lee, 2007) as 
it includes a six trait—Honesty-Humility—that we hypothesize is implicated in positive learning outcomes. 
Importantly, the Honesty-Humility factor out predicted all factors of the Big Five for correlations with respect to an 
overt integrity test and business ethical dilemmas task (Ashton & Lee 2007). This is incredibly important to both 
college and military training tools in that a high Honesty-Humility score can be predictive of a decreased likelihood 
to cheat others. Also, Openness to Experience reflected in participants an increased opportunity for gains from the 
energy and time spend in the areas that the participant was interested in (Ashton & Lee, 2007). 
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CORRELATIONAL STUDY 

Research questions and hypotheses 

The overarching research question for this work seeks to determine the whether there are statistically significant 
correlations between analogical/creative reasoning tasks and spatial reasoning tasks with the personality traits 
measured by the HEXACO and the Short-Item Grit Scale (Duckworth & Quinn, 2009). 

The first hypothesis maintained that there would be a statistically significant correlation between the HEXACO 
personality factor of Openness to Experience and a subject’s performance on the analogical reasoning and mental 
rotation tasks. The second hypothesis stated there would be a statistically significant relationship between the 
HEXACO personality factor of Honesty-Humility and a subject’s performance on the analogical reasoning tasks. The 
third hypothesis stated there would be a statistically significant positive correlation between the mental rotation and 
analogical reasoning tasks. 

Participants 

128 participants (m= 19.66 SD = 1.464) and then received 5 points of extra credit for their introductory psychology 
class for their participation in the study. In the study, 23 participants self-identified as a novice, 73 self-identified as 
a journeyman, and 1 self-identified as an expert in the field of combat casualty care treatment. The cadets make up 
a diverse population of 18-22 years old from across the United States and some allied nations. 

Apparatus 

The original plan for running this correlational study was to use GIFT to deliver the assessment instruments. 
However, at the time this study was ready to be launched, it was discovered that GIFT did not have the capability to 
design a timed question that would launch subsequent questions at the time expiration. For the mental rotation tasks, 
to obtain a more accurate measurement of a person’s spatial ability, the instrument is designed so that participants 
only have 7.2 seconds to respond whether the images are the same or different before loading the next image.  At 
the time of writing this paper, timed questions have now been added as a functionality into GIFT, but this 
functionality was not integrated at the time of running this first correlational study. With that limitation in mind, this 
experiment utilized Qualtrics to distribute the survey and the SONA system at USMA to obtain participants and 
provide those participants with extra credit points. Qualtrics is an online survey software that allows the experimenter 
to digitally upload their survey for participants to complete. The survey consisted of the demographic questionnaire, 
the short item grit survey (Duckworth & Quinn, 2009), the HEXACO personality test (Ashton & Lee, 2007), the 
Analogical Finding Task Matrix (AFTM) (Weinberger, Iyer, & Green, 2016), and mental rotation tasks (Ganis & 
Kievit, 2015). 

The Short-Item Grit survey determines how the attribute of Grit supports or impedes creative reasoning (DeFalco, 
2018). The eight grit questions are scored on a five-point Likert scale ranging from “not like me at all” to “very 
much like me” in response to questions like “I am a hard worker” and “setbacks don’t discourage me” (Duckworth 
& Quinn, 2009). Participants were not limited in their time to answer these questions, but the average response time 
was five minutes to complete the survey. 

The HEXACO personality survey took approximately twelve minutes to complete 60 questions, where participants 
respond on a five-point Likert scale. 

The analogical task finding matrixes (there were two) asked participants to match 10 analogical pairs with one other 
pair with only one response per each analogical pair. This portion of the survey took approximately eight minutes. 
For example, participants could be given “Watermelon/Rind” and they could match it with “Orange/Peel.” 
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The mental rotation tasks took 7.2 seconds each and there was a total of 40 pairs delivered. In this task, the participant 
must identify if the three-dimensional shapes are the same or different before another pair of images are displayed 
for a response. 

Research design 

The research design was a correlational study to determine if there was a statistically significant positive relationship 
between the analogical reasoning and mental rotation tasks and any of the traits measured by the HEXACO, as well 
as to determine the relationship between the HEXACO traits and Grit, as well as the mental rotation tasks and 
analogical reasoning tasks. 

Procedure 

For the correlational study, participants were informed of potential extra credit survey opportunities through the 
SONA system and could access the survey either on a mobile device or on their laptops. The participants could 
choose from a list of approved surveys and 128 of them selected “Developing Accelerated Learning Models in 
GIFT.” The consent form was the first screen to appear to the participants. After consenting to the experiment, 
participants answered the twelve demographic questions for approximately five minutes. 

Next, participants responded to the ATFM and matched two sets of 10 analogical pairs for roughly eight minutes. The 
participants then answered either “same” or “different” for the 40 mental rotation tasks, with a forced response time 
to occur within 7.2 seconds for each pair of shapes. Then the participants took the Short-Item Grit survey and then 
the 60 HEXACO questions for ten minutes. Participants had to complete all questions from the previous section 
before moving on to the next set of questions. At the completion of the Grit and HEXACO portion, participants had 
completed the entire survey and experimenters were able to assign extra credit points for their participation. The total 
time for this study was roughly 35 minutes. 

Results 

Descriptive data is displayed in Table 1 below. The discrepancy in sample sizes for the different portions of experiment 
one was likely caused by internet connection issues and the various time schedules that cadets at USMA operate 
under. 

Table 1. Descriptive Statistics of Test Subjects 
Variable Statistic 1 Statistic 2 Statistic 3 

Age (N=92) Mean = 19.66 SD = 1.464 Range: 18-24 
Gender (N=92) Female = 33 Male = 64  

Military Service (N=92) Yes = 15 No = 82  

Critical Care Knowledge 
(N=92) 

Novice = 23 Journeyman = 73 Expert = 1 

Mental Rotation Score 
(N=92) 

Mean = 32.34 SD = 6.288 Total Score = 40 

Analogical Reasoning 
Semantic Distances: 

Matrix 1 (N=97) 

Mean = 774.38 SD = 274.251 Total Score = 1069 

Analogical Reasoning 
Semantic Distances: 

Matrix 2 (N=97) 

Mean = 603.91 SD = 298.52 Total Score = 1052 

Openness to Experience 
(N=92) 

Mean = 32.63 SD = 6.326  
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After data collection from Qualtrics, data was cleaned and analyzed, correlational analyses were run in SPSS. 

For the analogical reasoning tasks there were two matrices used to measure both creativity and analogical reasoning. 
The semantic distance score for the analogical reasoning tasks gives the measure of strength of an individual’s 
reasoning level (DeFalco, 2018). There was a statistically significant correlation between the Openness to Experience 
score on the HEXACO traits and the semantic distance score of the analogical reasoning task (r= 0.279, N= 92, p= 
0.007). There was also a positive relationship between the analogical reasoning task and the mental rotation tasks 
(r=0.444, N=95, p=0.000). 

Also, by splitting the groups into high (>33) and low (<32) of the Honesty-Humility factor, there was a statistically 
significant difference in the means sematic distance of analogical reasoning tasks in the first matrix, F(2,94) = 7.046, 
p = 0.001. There was also a positive correlation between GRIT and HONESTY-HUMILITY, r = .343, N = 92, p= 
0.001. There was a positive correlation between the score of the semantic distance of analogical reasoning tasks in 
the second matrix and the HONEST- HUMILITY score, r= 0.332, N = 92, p = 0.001. 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

The results of this correlational study confirmed that there was a statistically significant positive correlation between 
Honesty-Humility and an individual’s creativity levels. Also, there was a statistically significant positive correlation 
between Openness to Experience and a subject’s performance on the analogical reasoning tasks. This information is 
relevant for informing the design of a future experiment that will determine whether the sequencing of content with 
analogical/creative reasoning tasks contributes to an acceleration of medical decision-making expertise within the 
domain of critical care. With this data, we expect to make significant strides towards validating a transdisciplinary 
pedagogical design template that can become part of the suite of tools integrated into the dashboard of GIFT’s 
authoring tools. 
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INTRODUCTION 

The success or failure of teams facing complex tasks often hinges on their ability to communicate and collaborate 
throughout the mission. Indeed, numerous studies have shown that developing and maintaining strong teamwork 
skills through training interventions have a positive impact on performance outcomes (Sottilare, et. al. 2017; Wilson, 
et. al. 2007; Salas, et. al. 2008). The U.S. Army has specifically recognized the impact of teamwork on mission 
command and the need for commanders to build teams rather than relying on pre-established relationships. 
Furthermore, effective teams are those that can establish a high degree of coordination both within their unit and 
across higher, lower, and adjacent echelons (ARDP 6-0, 2012). Training teams to improve their teamwork skills, 
such as coordination, however, is often treated as an implicit by-product of task-focused training rather than a goal 
in and of itself. As such, the ability for trainers to explicitly measure and intervene in teamwork skill development 
is often lacking. Intelligent Tutoring System (ITS) frameworks, such as the Generalized Intelligent Framework for 
Tutoring (GIFT; Sottilare et. al., 2012; Sottilare et. al., 2017), offer a great deal of potential for team training, but 
have generally been developed with individual training in mind. In a previous GIFTSym paper (McCormack, et. al., 
2018), the authors presented a set of proposed scenarios and an approach to developing teamwork measures within 
a virtual training environment. This paper builds upon that work and describes an effort to extend GIFT to include 
the necessary components of teamwork training. We discuss a GIFT architecture that provides team-level skill 
feedback, while minimizing the infrastructure cost of developing and maintaining Domain Knowledge Files (DKFs). 
In addition, we present a number of realistic, doctrinally-relevant scenario vignettes developed to provide multiple 
opportunities for teamwork skill development and feedback. Finally, we provide examples of measures of 
coordination tailored to the scenario that enable analysis and feedback on skill development. 

While the ultimate goal is to enable GIFT to support teamwork training across multiple virtual and live environments, 
the initial focus of this effort was on training Army teams within Virtual Battlespace (VBS) 3.0. This virtual training 
environment (VTE) offers multiple advantages: it provides a realistic backdrop for doctrinally-relevant tasks; it 
enables scalable team sizes and multiplayer experiences; and, much of the infrastructure for enabling integration of 
VBS and GIFT has already been developed. 

Team Training Architecture 

In order to instantiate teamwork measures in GIFT, we developed an architecture that would enable measurement 
across multiple VBS players, without inducing a heavy burden associated with creating and man- aging multiple 
DKFs. Previous efforts at teamwork measurement required a DKF for each player and additional DKFs for each 
combination of players and the team as whole (Bonner, et.al. 2017). Any measurements for combinations of dyads, 
triads, etc. of individuals required a separate DKF. While this allows player and sub-team specific measurement, as 
the team size grows, the exponential growth of DKFs required by this approach quickly becomes unmanageable. 
Because our focus is on team-level measures, we chose an architecture that was best suited for that, but still allows 
future inclusion of individual measures. 
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Figure 1. Team Training Architecture and DKF use 

Figure 1 provides an overview of the team training architecture. Each team member runs a local GIFT instance as 
well as VBS. One team member serves as the VBS mission host (this can be any team member, although in practice 
the team lead would normally take this role) and each other VBS client joins the mission remotely. Our work to date 
requires manual selection of team roles by each member, but this could be automated in future iterations to 
automatically assign preset member roles. The VBS DIS (Distributed Interactive Simulation) data bus enables 
communication between all the client machines and allows the VBS clients to exchange information. In our 
architecture, this is the only communication occurring between client machines. That is, the GIFT instances 
themselves do not directly communicate to each other and do not exchange any data or measurements. Instead, they 
each independently compute measures and feedback based on the information captured from the DIS bus. This 
teamwork architecture requires development of only a single master DKF that computes all measures at the team 
level. Each team member’s GIFT client runs an instance of GIFT independently with this master DKF. This vastly 
simplifies the calculation and feedback of teamwork measures. 

This approach of a single cloned DKF for all team members has several advantages. The main advantage comes in 
ease of training content development and deployment. The effort in developing DKFs can be considerable. Use of a 
single file can reduce the time required for a training content developer to create training packages and allow them 
to focus on measurement rather than file management. Cloning the GIFT scenarios across all team member machines 
is fast since there are no individual differences between them. In addition, the single DKF framework ensures all 
team members receive the same feedback at the same time (ignoring network lag) since all calculations are performed 
on the information flowing through the DIS bus. 

However, there are limitations to this approach. Individualized measurements and feedback are not possible with this 
current architecture as they would require customization of individual DKFs. We believe, how- ever, that ongoing 
efforts in improving DKF development and management tools will enable easier customization of DKFs to 
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individuals in the future. A hybrid approach may be possible where a single team DKF is used in conjunction with 
individual DKFs to provide both team-level and individual measurement and feedback. Since the effort described 
here is focused on teamwork measures, the current architecture provides sufficient flexibility at that level. 

Team Training Scenario 

The scenario developed for this effort consists of a number of distinct, but narratively related, events or vignettes 
that the team plays through. Although the map follows a mostly linear path, the vignettes are broken apart as 
independent training elements. This provides the ability to dynamically reconfigure the training to adapt to high or 
low-performing teams, helps facilitate repeated training so the team is not able to predict how the scenario unfolds, 
and enables the delivery of training feedback in GIFT at the end of each vignette. In addition, the vignettes each 
provide a number of opportunities to train a variety of team- work skills. In this section, we describe each of the 
vignettes, as well as the expected actions and protocols for the team. In the subsequent section, the teamwork 
measures for these vignettes are discussed. 

The scenario is adapted from an Army Basic Leader Course (BLC) Combat Search and Rescue (CSAR) training 
scenario. The team consists of a nine-member squad: two four-person fire-teams and a squad leader. The scenario 
takes place along a linear path through a wooded area. In the scenario, an F-16 pilot has ejected and landed in the 
area and their medical condition is unknown. The primary objective is to perform a search and rescue for the downed 
pilot, with a secondary objective of reaching a small village after the pilot is rescued. The team receives intelligence 
that enemy militia are known to be in the area and are hostile to our presence. Figure 2 depicts the scenario map and 
layout of each of the vignettes. 

Vignette 1: Encountering an Improvised Explosive Device (IED) 

Within the scenario, there are two vignettes (vignettes one and four) in which the team encounters a potential IED 
threat. One is a hoax IED and one is real, although the team is not aware of the status of either. It is expected that 
they treat both as potentially deadly. The IEDs are represented as deceased dogs in the road, a known method of IED 
camouflage. Wires protruding from the animal provide further indication of the threat. Upon identification of the 
IEDs, the team member who first notices it is expected to halt and inform the rest of team of the threat. The team 
then coordinates their sectors of fire to ensure they have full 360-degree situational awareness of the environment. 
This requires coordination and communication within the team to secure and clear the area. Next, the team is 
expected to address the 5 “C”s of IEDs. These are Confirm, Clear, Call, Cordon, and Control. These choices are 
given through a menu system within VBS and the team is expected to choose the right “C”s in the right order. 

Vignette 2: Finding and Rescuing the Pilot 

As the team enters the area known to contain the downed pilot (the general area is provided in the pre- briefing 
material), they are expected to maintain formation and begin visually scanning the area. The pilot is located near the 
path, but hidden amongst the foliage. This requires the team to search the area. If not found in a set amount of time, 
the pilot will release a flare to draw the team to her location. Once the pilot is located, the team is expected to 
coordinate a number of activities including securing the pilot, setting up a cordon with interlocking sectors of fire to 
scan for threats, applying first aid, moving the pilot to an open landing zone, issuing a 9-line MEDEVAC request, 
and waiting for the helicopter to extract the pilot. 
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Figure 2. Scenario Map and Vignette Layout 

Vignette 3: Reacting to Harassing Fire from Hostile Militia 

At a point along the path, the team encounters harassing small-arms fire from two hostile militia members. This 
occurs suddenly and without warning, requiring the team to react quickly. In VBS the damage and accuracy of the 
hostile actors is reduced so as not to injure any of the team members (although this fact is not known to the team). 
The goal of this vignette is for the team to coordinate an immediate response to the threat without jeopardizing the 
other mission objectives. We require the team to contain the threat by returning fire to either kill or scare-off the 
hostile actors, but we do not expect them to chase after the militia. Specifically, the team is expected to take cover, 
return fire, call clear once the threat is neutralized, and continue on the path. 

Vignette 4: Encountering an Improvised Explosive Device (IED) 

The fourth vignette involves encountering a real IED (although the team does not know whether this one is real or 
another hoax as in vignette 1). The goals, actions, and measures for this vignette are the same as vignette 1, with the 
exception that if the team gets too close to the IED, it will detonate, ending the vignette. 

Vignette 5: Reacting to Unknown Individual 

In the final vignette, the team encounters an individual pulling a cart along the road. The individual’s identity and 
intentions are unknown. The individual is heading directly towards the team, and while not overtly threatening, he 
still poses a potential risk. The team is expected to quickly notice the individual, halt movement, communicate his 
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presence and approach to the rest of the team, and “Show, Shout, Shoot,” that is, escalate fire at the individual until 
he retreats or is otherwise neutralized. The objective is for the team to react quickly, communicate the evolving 
situation to each other, and secure the individual (either through lethal force or until he leaves). 

Team Training Measures 

Measurement and assessment of teamwork skills within the training environment is crucial to ensure that the system 
is providing the correct opportunities for skill development, but also to provide the team feed- back on their teamwork 
training progress. The development of measures for this effort occurred largely in parallel with scenario 
development. Specific elements of the vignettes were chosen because they provide opportunities to assess teamwork 
skills. To develop teamwork measures, we use a process based on the Rational Approach to Developing Systems-
based Measures (RADSM; Orvis et al., 2013), which has been successfully used to develop indicators and measures 
of team states (McCormack, Brown, Orvis, Perry, Myers, 2017). The RADSM process consists of several steps that 
ensure that developed measures are conceptually sound and contextually relevant. The end result of this process is a 
set of teamwork measures that can be assessed automatically and unobtrusively (that is, not requiring human coding 
or input) given the data available in the system. We describe this process in our previous GIFTSym paper 
(McCormack, et. al., 2018), so we focus here only on the resultant measures. 

Selection of the specific teamwork construct to train was motivated a previous meta-analysis (Sottilare, et. al., 2017) 
in which a number of teamwork themes were identified, including coordination, cohesion, communication, 
cooperation, conflict, and others. The teamwork measures developed for this effort focus primarily on coordination. 
This construct is defined in various ways throughout literature, but for our purposes we treat coordination as the 
synchronization and awareness of team member actions in pursuit of a common team goal. Communication among 
team members is a large part of coordination (and most teamwork constructs), but communications were not able to 
be captured and analyzed in GIFT during this effort. Verbal communication analysis requires the ability to capture 
individual speech utterances from each team member and perform speech-to-text processing on the audio. There is 
currently no approach integrated into GIFT to analyze verbal communications and it was beyond the scope of this 
effort to develop one. Furthermore, while the text chat (such as instant messaging apps or VBS’s built-in capabilities) 
offers an alternative solution, it was deemed untenable for this scenario. Typing messages would require participants 
to stop moving and performing actions within VBS, which would interfere with the often highly-kinetic vignettes. 
As such, our focus of measurement was not on the communications themselves, but on the actions and behaviors 
that require communication and coordination to occur. 

We describe a selection of coordination measures developed for this scenario in Table 1. Several of these measures 
repeat across vignettes (such as maintaining team formation) and others are omitted here for the sake of brevity. 
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Table 1. Example Measures of Coordination 

Measure 
Name 

Description Measure Feedback 

 
 
 

Maintaini
ng Team 
Formatio
n 

During movement along the road the team should 
maintain a close formation. This initial measure will 

focus on the geodesic distance of the team, rather than 
on the relative positioning of each player. Geodesic 
distance is defined as the farthest distance any two 

team members are apart. That is, we measure the 
distance between each pair of individuals, and take the 

maximum. The geodesic distance and the teams 
(above/at/below) expectation rating should be 

reported every 15 seconds. 

Above Expectation: 8m < Geodesic distance < 12m 

At Expectation: 5m < Geodesic distance < 8m OR 12m < 
Geodesic distance < 15m 

Below Expectation: Geodesic distance < 5m OR Geodesic 
distance > 15m 

 
 
 

Completing 
a Team 

Halt 

 
The first person to notice a threat (IED, unknown 

individual in the road) should halt and give the 
command to teammates to halt. We define a maximum 

and minimum distance from the threat. Once an 
individual is within the maximum distance radius, we 

monitor their movement and look for a stop of 
movement. We then monitor other team members to 
identify if/when they stop movement. If an individual 

has reached the mini- mum radius before a halt occurs, 
the entire team fails. 

Above Expectation: first person halts between mini- 
mum/maximum distance, calls halt, other team members halt 

within 3 seconds of call. 

At Expectation: first person halts between minimum/maxi- 
mum distance, calls halt, some team members halt within 3 

seconds, but other team members halt before reaching 
mini- mum distance, but after 3 seconds. 

Below Expectation: Any team member crosses minimum 
distance radius before halt is complete. 

 
 
 

Completing 
the 5 C’s of 

an IED 
Encounter 

 
 

After noticing an IED, the team correctly selects the “5 
C’s” (Confirm, Clear, Call, Cordon, Control) from the 

drop down menu in the right order. Each person may 
only select one item from the list, and the selection 

should be completed in a timely manner. Team 
members should communicate and coordinate on who 

is completing a selection and the correct order of se- 
lection. 

Above Expectation: 5 different individuals correctly choose 
the 5 “C” s in the right order from the menu. Completes se- 
lection within one minute. 

At Expectation: At least 4 different individuals choose the 5 
“C”s, but in the wrong order or it takes longer than one 

minute, but less than two minutes. 

Below Expectation: The team fails to select the correct 5 
“C”s, makes an incorrect selection, or takes longer than two 

minutes, or selections are only made by 3 or fewer 
individuals. 

 
Attaining 

Visual 
Control of 

the 
Environm

ent 

The team should scan their surroundings for potential 
threats. To measure this, we take each team members 
orientation angle and assume that they can visually 
assess a +-30-degree arc from their orientation angle. 

The union of all of these field of view (FOV) arcs 
across the team should cover 360 degrees. 

Above Expectation: There are less than 10 degrees not 
covered in the union of FOVs. 

At Expectation: There are between 10 and 30 degrees not 
covered in the union of FOVs. 

Below Expectation: There are greater than 30 degrees not 
covered in the union of FOVs. 
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Table 1 (Continued). Example Measures of Coordination 

 

Measure 
Name 

Description Measure Feedback 

 
 

Identifying 
Hostile 
Actor 

Location 

After the first hostile bullet is fired we measure the 
time it takes to identify the location of the hostile ac- 

tors. The timer ends when one of the criteria is fulfilled: 
at least one team member has spotted the hostile 

actors through the binoculars or at least half the team 
members have their weapons pointed within +-10-

degrees of the hostile actors. 

Above Expectation: The team spots the hostile actors within 
10 seconds. 

At Expectation: The team spots the hostile actors within 20 
seconds. 

Below Expectation: The team takes longer than 20 seconds 
to spot the hostile actors. 

 
 
 
 

Applying 
First Aid 

 
After finding the pilot, the team correctly selects the 

MEDEVAC actions (Assess the pilot’s condition, 
Identify and Control Bleeding, Assess Breathing and 
Chest Injuries, Check for Burns, Monitor for Shock) 
from the drop down menu in the right order. Each 

person may only select one item from the list, and the 
selection should be completed in a timely manner. 

Team members should communicate and coordinate 
on who is completing a selection and which is the 

correct order of selection. 

Above Expectation: 5 different individuals correctly choose 
the First Aid steps in the right order from the menu. 

Completes selection within one minute. 

At Expectation: At least 4 different individuals choose the 
First Aid steps, but in the wrong order or it takes longer than 

one minute, but less than two minutes. 

Below Expectation: The team fails to select the correct First 
Aid steps, makes an incorrect selection, or takes longer than 
two minutes, or selections are only made by 3 or fewer 
individuals. 

 
Taking 

Cover from 
Harassing 

Fire 

After the first bullet is fired by the militants, we 
measure the amount of time it takes for all team 

members to take cover. In game, we define taking 
cover as either lying prone or crouching. The outcome 
metric is the amount of time between the first hostile 

bullet fire and the last team member to take cover. 

Above Expectation: The team takes cover within 5 seconds. 

At Expectation: The team takes cover within 10 seconds. 

Below Expectation: The team takes longer than 10 seconds 
to take cover. 

 

While the measures discussed here were initially developed with VBS in mind, we note that there is high 
potential for transfer to other learning environments. By abstracting away the specific doctrinal details, we arrive 
at general teamwork measures and GIFT condition classes that can be instantiated elsewhere. As an example, 
consider the “5 C’s” measure from the IED vignette and the first aid measure from the pilot rescue vignette. We 
refer to these as “team sequence” tasks, where team members must select the right choices, in the right order, 
across different team members. The developed condition class for this is applicable to any training environment 
where coordinated selection of ordered choices is required. Another example is the team formation measure, 
where team members are required to stay relatively close but not bunch up. The corresponding condition class 
measures the geodesic distance of the entire team and compares that against acceptable thresholds. This 
condition class is applicable to any spatially-oriented training environment, where relative location of team 
members is important. 
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CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

The new architecture for training teams in GIFT discussed in this paper provides a straightforward, scalable 
approach to delivering teamwork skill training content. By utilizing one team-level DKF, content develop- ers 
can focus on measure development, implementation, and training delivery. While currently only team- level 
feedback can be delivered through this approach, individualized or sub-team feedback will be possible with future 
implementations. 

The scenario developed under this architecture provides realistic team training in a virtual environment. The 
individual vignettes are reconfigurable and provide opportunities to develop a variety of teamwork skills. The 
initial focus of team training has been on coordination, but future work will expand to measure cohesion, 
communications, conflict management, and others. The new condition classes implemented in GIFT are 
generalizable to a variety of training scenarios and training content. 

Future technology development will also seek to incorporate naturalistic communication assessment through 
speech-to-text and natural language processing capabilities. This will further enable teams to gain invaluable 
skills, while minimizing the need for more obtrusive or burdensome communication assessment techniques, such 
as chat or menu selections, which can distract from the central goals of the training. Finally, additional 
customizations to GIFT will provide better immediate and after action review feedback through the use of the 
learner action panel. 
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Authoring Team Tutors in GIFT: An Automated Tool for 
Alignment of Content to Learning Objectives 
Benjamin Bell1, Keith Brawner2, Elliot Robson1, Debbie Brown1, Elaine Kelsey1 

Eduworks1, US Army RDECOM-NSRDEC2 

INTRODUCTION 

The process of authoring Intelligent Tutoring Systems (ITS) in the Generalized Intelligent Framework for 
Tutoring (GIFT) (Sotillare et al, 2013) is assisted by a continually-evolving collection of authoring tools. These 
tools can accelerate GIFT development by supporting instructional design tasks like sequencing, feedback, 
adaptation, and assessment. With growing demand for team tutoring in support of rapidly- evolving Army 
requirements, GIFT tutors must be able to scale learning to meet team training needs, be capable of incorporating 
broad content; and offer instructional value for both individual Soldiers and teams (Sottilare et al, 2011; Sottilare 
et al, 2018; Salas et al, 2015; Sottilare et al, 2017b; Fletcher & Sottilare, 2017). A key need is to help ITS authors 
efficiently find and maintain relevant content, and to assist authors with discriminating between content 
supporting individual learning objectives and team learning objectives. Addressing this need efficiently calls for 
automation that supports the analysis of information and its alignment with learning objectives (LOs) (Bonner 
et al, 2016). 

In this paper we introduce a new authoring aid, to be incorporated within GIFT, to help ITS developers find, 
organize, and curate resources aligned with desired individual and team learning objectives. Ma- chine-Assisted 
Generation of Instructional Content (MAGIC) analyzes source documents and extracts content that aligns with 
specified learning objectives. MAGIC additionally lends much-needed support for team training development 
by performing this alignment for both individual and team learning objectives. Building on and extending 
existing artificial intelligence (AI) and natural language processing (NLP) techniques, MAGIC will streamline 
content alignment, distinguish between individual and team content, and help extend the reach of GIFT 
tutoring to meet Army team training demands. 

MAGIC will contain three layers: backend algorithms and analytics, services and APIs for integration into the 
GIFT ecosystem, and integrated end user tools for authors. In this paper we describe our initial focus on 
developing the underlying techniques used by MAGIC and creating a prototype interface for training developers 
that presents algorithmic outputs. We will describe our work in extending existing NLP and machine learning 
(ML) libraries to extract and organize learning objectives and integration of these libraries to create an LO 
repository. A novel aspect of this work is applying ML models to the discrimination between individual and 
team LOs. We then describe development of automated methods for aligning excerpts of content with LOs and 
specific roles within a team. 

Our plans include implementing an end-user toolset for integration with GIFT to help authors organize LOs and 
topics and tag, find, sort, and repurpose content that aligns with given LOs and role-based parameters. Finally, 
we discuss our longer-term plans for incorporating multimedia resources by applying automated transcription 
techniques. The work we present will advance the state-of-the-art in applying machine learning and NLP to 
authoring and development of training and in particular team tutoring, and will extend GIFT by supporting 
authors in collecting and aligning content with individual and team learning objectives. (Gilbert et al, 2017; 
McCormack at al, 2018; Sotillare et al, 2017a; Sinatra, 2018) 



Proceedings of the 7th Annual GIFT Users Symposium (GIFTSym7) 

141 
 

SCALING TEAM TRAINING 

Scaling virtual training for teams to fully address Army needs requires tools and techniques for efficiently 
creating team tutoring simulations. While GIFT supports several instructional design tasks, finding and 
organizing content that aligns with desired learning objectives remains a labor-intensive process that takes place 
outside of GIFT. Achieving scale means that virtual training must span broad content. Maintaining relevance 
means that virtual training must be readily adaptable as learning needs shift in response to equipment upgrades, 
changes in tactics, evolving threats, and operations in new theaters. 

To benefit teams, authors of team tutoring must navigate complicated content management tasks related to 
distinguishing content that supports individual skills and content aligned with team skills, as well as trying to 
identify content associated with specific roles within a team. Creating and maintaining virtual team training 
systems thus remains costly and time-consuming. To help developers of team training find and tag relevant 
content more efficiently, automation is needed that supports analysis of content and its alignment with team and 
individual learning objectives. 

MAGIC answers this need by helping training developers find, organize, and curate resources aligned with 
desired learning objectives. MAGIC analyzes source documents and extracts excerpts of content that aligns with 
specified learning objectives, and performs this alignment for both individual and team learning objectives. 
Moreover, MAGIC identifies content associated with specific roles within a team. A schematic depiction of 
MAGIC is shown in Figure 1. 

 

Figure 1. MAGIC at a glance. 
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STREAMLINING TRAINING DEVELOPMENT BY MATCHING CONTENT 
TO OBJECTIVES 

MAGIC supports three tasks in a generalized GIFT authoring workflow (Figure 2). 

Figure 2. Primary authoring process tasks supported by MAGIC. 

Using the MAGIC prototype UI, a training developer provides a list of learning objectives and selects the target 
library (or corpus of documents) to be analyzed as shown in Figure 3. For our initial demonstration of the 
MAGIC algorithms, we drew learning objectives from battle drills in the Maneuver domain; for the library we 
used the Central Army Registry (CAR) and the Milgaming portal’s Training Support Packages (TSPs) to create 
a collection of over 1,200 documents. 

 

Figure 3: Selecting LOs and corpus documents to configure a content analysis. 

MAGIC then generates a collection of text excerpts from across the selected documents, each tagged by the 
learning objectives, individual or team types, and team roles the excerpt aligns with. In the current demonstration 
interface, these results may be viewed, filtered, and compared with human rater results when available (Figure 
4). In future work, the toolset will offer more flexible export packaging options designed to integrate into GIFT 
repository search and authoring components using the MAGIC API. 
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Figure 4. Filtering content by LO, task type, and role 

MACHINE LEARNING: THE MAGIC BEHIND MAGIC 
 

MAGIC uses ML and NLP techniques to train algorithms that associate content with learning objectives, tag 
content as having individual or team relevance, and associate content with specific team roles when applicable. 
We developed three sets of ML models for our initial research and testing: (1) unsupervised general models trained 
using Wikipedia and the New York Times Annotated Corpus to map concepts; (2) unsupervised domain-specific 
models trained with military-sourced documents to define domain-specific concepts; (3) supervised, domain-
specific models trained with human-tagged data from a team of instructional designers and subject-matter experts 
to enhance outcomes. 

In the case of the battle drill use cases, we manually created learning objectives (LOs) outlined as hierarchical task 
procedures, based on original document text, and manually tagged content with task type and role as depicted in 
Figure 5. The manually tagged LOs were used to train the ML algorithms for task type and role detection. 

  

 

Figure 5. Example learning objectives for a battle drill. 

To create the tagged data we used a team of three human raters with instructional design, research, and military 
backgrounds, led by an expert in instructional design. Raters were trained on the rating task, which included 
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scoring relevance of sections of content to a learning objective and tagging with individual/team and team role 
identifiers. The resulting tagged data set consists of 3,132 tagged items and was segmented into two corpora: one 
for training the supervised learning models, and one for evaluating performance of all three ML model sets. The 
average interrater reliability (n=3) was 81.6% for text selection and extraction, 87.8% for distinguishing team and 
individual content, and 78% for identifying team roles. 

NOVEL SOLUTIONS 

A challenge MAGIC addresses is matching content excerpts to a learning objective (typically a short text string) 
rather than to a topic (typically supported by larger amounts of descriptive text). To address this difficulty, we 
extended existing work in word embedding approaches (e.g. Word2Vec, GLoVe) (Mikolov et al, 2013; Pennington 
et al, 2014) , to develop a new technique we refer to as concept embedding. The approach first involves parsing an 
input corpus of documents to detect entities and relations as short phrases (rather than as individual words) using 
TensorFlow- or SyntaxNet-style dependency parsing along with traditional ontological approaches (Goldberg & 
Levy, 2014). In the next step, we build corpus models using the resulting dependency trees as the input into distinct 
entity and relation embedding models, where ‘concepts’ are defined as tight clusters of phrases in the resulting 
vector spaces (Levy & Goldberg, 2014). By mapping entities and relations separately, and then linking them 
through a combined (modified W2V-SG) model, we are able to instantiate concepts as tight clusters of phrases 
that exist in the resulting entity and relation vector spaces. For example, this approach might instantiate the concept 
“Santa Claus” as associated with “Jolly Old St. Nick” and “the fat man in the red suit.” (Li et al, 2016, Shalaby et 
al, 2018), 

This concept embedding approach gives MAGIC the ability to extract a richer description of meaning from very 
short text strings (namely, learning objectives). In our use case, the approach is applied in multiple steps to perform 
excerpt extraction: 

• Extract entities and relations from the LOs 

• Generate an embedding space 

• Map entities to concepts 

• Use any available context to disambiguate between concepts 

• Map documents to the concept space (both concept and topic levels) 

• Match concepts in each LO to concepts in the corpus 

• Rank results based on match to both entity-concepts & relation-concepts of given LO 

In order to discriminate between individual or team LO types, we applied a hybrid ML approach that was combined 
with syntactic-semantic patterns (Kelsey et al, 2017). On the ML side, we first extracted the semantic and syntactic 
features and tested using Naïve Bayes and Support Vector Machine (SVM) classification techniques which 
produced similar results. However, these two approaches were more accurate and required less training data than 
either a Convolutional Neural Network (CNN) or Recurrent Neural Network (RNN) implementation. On the 
Syntactic-Semantic side, we extracted combined syntactic-semantic features using SyntaxNet with TensorFlow, 
and then matched using the pattern library. We achieved the best results by applying both the ML and Syntactic-
Semantic Pattern approaches and then using context-specific heuristics (where ‘context’ is derived from features 
of the source document and larger source text) to resolve any disagreements when selecting the team or individual 
label. 

When identifying an appropriate team role for an excerpt, we determined that the link to LOs/competency 
frameworks can provide important role implications as well as provide a predefined list of possible roles. Our 
approach was to expand each role into a Concept using the Concept Embedding Model, and then to apply a similar 
matching approach. We continue to take steps to improve results with role assignment by using human-labelled 
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data to detect discourse and semantic-syntactic markers for a list of common domain-specific roles. The application 
of a supervised learning layer using human-tagged samples is expected to further enhance MAGIC outcomes, with 
a goal of achieving accurate extractions and tag selections more often than the human raters. 

PRELIMINARY RESULTS 

To provide early metrics of MAGIC’s performance, we used the second set of labeled data as a test set. Both the 
training and test sets comprised approximately 5,000 comparisons of a text excerpt to a learning objective, and 
each task was completed by the three independent raters. Interrater reliability was 81.6%. 

Figure 6. Preliminary results for each of MAGIC’s ML models. 

The results (Figure 6) demonstrate the algorithms performing slightly below human performance when using only 
the domain-general unsupervised model, at or near human performance when adding the unsupervised domain-
specific model, and slightly above human performance when adding the supervised domain-specific model. 

CONCLUSIONS AND FUTURE WORK 
 

With preliminary results already meeting human-rater levels of reliability using the combined unsupervised 
general and domain specific models, and with the addition of a supervised domain-specific model performing 
better than the human raters, the MAGIC approach is showing promising results and a path for continued 
enhancement. Based on these early findings, we see the potential for automated content discovery using LO auto-
alignment and text extraction will result in faster, scalable team training development processes. Integration of 
MAGIC services into the GIFT authoring workflows will propel reuse of training materials, while helping training 
developers overcome the challenges of distinguishing content supporting team or individual learning and aligning 
content with specific team roles. 

Our next steps in the MAGIC project will include creating a supervised domain-specific model for assigning team 
roles; incorporating non-text content (such as metadata or automated transcriptions); designing a MAGIC services 
API; testing and evaluation of MAGIC with authors of team training simulations; and the integration of MAGIC 
services with Army-selected authoring/CMS/LMS tools. 
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INTRODUCTION 

A key goal of The Generalized Intelligent Framework for Tutoring (GIFT) project is to scaffold the development 
of tutoring scenarios that support team-training and assessment (Sinatra, 2018). As Ruis and colleagues (Ruis, 
Hampton, Goldberg, & Shaffer, 2018) argue, a critical component of team training and assessment is the ability to 
model team performance. In this paper, we describe a specific approach to modeling team performance at both the 
individual and team levels that prior work suggests is more valid than extant approaches. Moreover, we argue that 
modeling team performance is not sufficient on its own—given the goals of team tutors, we also need 
visualizations that effectively summarize team performance and provide actionable information at both the team 
level and the individual level. Here, we describe the design of a team-tutoring dashboard that would allow tutors 
to monitor individual and team performance in real-time. This system could inform assessment or guide the 
delivery of feedback either in real-time or after the tutoring scenario is complete. 

TEAM PERFORMANCE 

When individuals on teams solve problems, their processes include (a) actions toward accomplishing a task and 
(b) actions toward managing the processes of collaboration. Thus, team processes are not simply the sum of 
individual actions; rather, individual actions interact with one another, creating a context independent of any single 
individual. As interactions unfold, they contribute to the common ground, or the shared knowledge and experience 
that exists between people when they interact (Clark, 1996). As a result, the discourse of the team is 
interdependent: the actions of one individual impact the actions of others on the team. Moreover, team processes 
have an important temporal dimension: team processes unfold in time and are interpreted with respect to the 
immediately preceding actions—or recent temporal context—not the entire history of team interaction (Reimann, 
2009; Suthers & Desiato, 2012). 

This complexity suggests that valid models of team performance at the team level should account for relationships 
among the recent contributions of the team, and valid models at the individual level should account for 
relationships between a given individual’s contributions and the recent contributions of the rest of the team. 

Modeling Team Performance 

Despite these suggestions, many extant modeling approaches still employ coding-and-counting (Chi, 1997; 
Suthers, 2006). At the team level, this involves aggregating behavioral markers or codes over the entire history of 
a team task or scenario, ignoring temporal aspects of team processes. Similarly, coding- and-counting at the 
individual level ignores temporality, and because it separates the processes of individuals from the processes of 
the team, it also ignores the interactive and interdependent aspects of individual contributions (Csanadi, Eagan, 
Shaffer, Kollar, & Fischer, 2018). More nuanced analyses are often conducted with techniques that model frequent 
sequential events in data, such as sequential pattern mining; however, similar to coding-and-counting, such 
techniques can only model individuals irrespective of the team (Swiecki, Lian, Ruis, & Shaffer, in press [A]). 

An alternative approach that can account for these critical aspects of team processes at the team and individual 
levels is epistemic network analysis (ENA) (Shaffer, 2017; Shaffer, Collier, & Ruis, 2016; Shaffer & Ruis, 2017). 
Specifically, ENA models team activity by identifying categories of action, communication, cognition, and other 
relevant features and characterizing them with appropriate coding schemes into smaller sets of domain-relevant 
nodes. The weights of the connections among network nodes (i.e., the association structure of key elements in the 
domain) are then computed and visualized. Critically, ENA models team actions and interactions in such a way 
that it is possible to extract information about each team member’s contributions to team performance. 
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ENA uses statistical and visualization techniques to enable comparison of the salient properties of different 
networks, including networks generated by different teams or by teams at different points in time, teams in different 
spatial locations, or teams engaged in different activities. These salient properties are modeled not just in terms of 
the general structure of the networks, but ENA also extracts properties relevant to the actual content of the network. 

In other words, ENA can analyze (a) what teams are doing, (b) how they are thinking, (c) what role individuals 
are playing in team performance, and (d) how teams compare to one another in the context of real problem solving. 
Moreover, prior work using ENA to model the performance of U.S. military teams—a key domain of interest for 
GIFT—has shown that ENA has both statistical and interpretive advantages compared to coding-and-counting and 
sequential pattern mining (Swiecki et al., in press [A]; Swiecki, Ruis, Farrell, & Shaffer, in press [B]). 

TEAM-TUTORING DASHBOARD 

While models such as those produced by ENA are useful tools for examining team performance, they are designed 
primarily for researchers. As such, their affordances are not necessarily aligned with the goals of other audiences 
that have an interest in understanding team performance, such as tutors or the teams themselves (Swiecki & 
Shaffer, 2018). For example, an important goal of researchers is to advance their understanding of phenomena or 
make predictions, and they are trained to understand and use complex models and visualizations to help them do 
so. Tutors, on the other hand, need to assess performance and guide interventions, and they may lack the training 
required to effectively use complex models and visualizations. In turn, tutors need tools that quickly highlight the 
teams or individuals that need their attention the most, while also providing them information that can guide their 
interventions. 

As a first step toward integrating such a system with GIFT, we have created preliminary designs of a team-tutoring 
dashboard. This dashboard uses simplified ENA models to provide actionable information on the performance of 
teams and individuals. These designs are based on prior work in which we successfully designed, built, and 
implemented an ENA-driven team performance dashboard in a simulation-based learning environment (Herder et 
al., 2018). The ENA models presented in the designs are based on prior work by Swiecki and colleagues (in press 
[A], in press [B]). We summarize the data and relevant models from this work in more detail below. 

ENA Models of Team Performance 

As part of the Tactical Decision Making Under Stress project, sixteen teams participated in training scenarios to 
test the impact of a new decision-support system on team performance in the context of air defense warfare 
(Johnston, Poirier, & Smith-Jentsch, 1998). During the scenarios, teams needed to detect and identify ships and 
aircraft (referred to as tracks), assess whether they were threats, and decide how to respond. Each team consisted 
of six members who held either a leadership role, such as the Commanding Officer (CO), or a support role, such 
as the Electronic Warfare Supervisor (EWS). The dataset consists of transcripts of team communications and 
performance scores for each team. 

To create the ENA models, we developed and validated an automated coding scheme that captured the critical 
aspects of the team task. After coding, we used ENA to create models at the team and individual level. The ENA 
algorithm uses a sliding window to construct a network for each turn of talk in the data, showing how codes in the 
current turn of talk are connected to codes within the recent temporal context. In other words, ENA defines a 
connection between codes as their co-occurrence within a specific number of turns of talk. To create networks for 
each unit of analysis, ENA aggregates the networks associated with their turns of talk. In this way, ENA can model 
the network of connections that each team or individual makes between concepts and actions while taking into 
account the recent actions of others (Siebert-Evenstone et al., 2017). 

Two coordinated representations are produced for each team or individual network: an ENA score and a weighted 
network graph. ENA uses a dimensional reduction via spectral value decomposition (SVD) to create an ENA score 
for each team or individual that summarizes their network of connections. These scores give their location in the 
ENA space created by the dimensional reduction. Typically, this dimensional reduction maximizes the variance 
accounted for by each dimension. However, ENA can also combine SVD with a hyperplane projection such that 
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the first dimension maximizes the variance between the means of two subpopulations—for example, high and low 
performing teams—present in the data. 

The nodes of the weighted network graphs correspond to codes, and the edges are proportional to the relative 
frequency of connection between two codes. The positions of the network graph nodes are fixed across networks, 
and their positions are determined by an optimization algorithm that minimizes the difference between the ENA 
scores and their corresponding network centroids. This relationship implies that ENA scores toward the extremes 
of a dimension have network graphs with strong connections between nodes located on the extremes. As a result, 
dimensions in this ENA space distinguish teams in terms of connections between codes whose nodes are located 
at the extremes. In addition, ENA can produce network difference graphs which subtract the edge weights of two 
networks to show the connections that are strongest in one network relative to another. 

At the team level, our analysis suggested that high performing teams made frequent connections between tactical 
information, such as track behavior and track detection, and tactical actions such as combat orders. Low 
performing teams made relatively frequent connections to seeking information, suggesting that they had difficulty 
maintaining situational awareness (Figure 1, left). 

At the individual level, our analysis suggested connections for leadership and support roles that distinguished those 
on high and low performing teams. Connections that distinguished individuals in leadership roles were very similar 
to those that distinguished high from low performing teams, so we do not describe them in detail here. Individuals 
in support roles on high performing teams made frequent connections to status updates, suggesting that they played 
a critical role in updating the team on the evolving tactical situation. Individuals in support roles on low performing 
teams made more frequent connections to seeking information which suggests that they were focused on repairing 
the team’s understanding of the tactical situation (Figure 1, right). 

 
 

Figure 1. ENA Models of Team Performance: ENA difference network between high performing teams (left, green) and 
low performing teams (left, red). ENA difference network between individuals in support roles on high performing teams 
(right, green) and individuals in support roles on low performing teams (right, red). Difference network for individuals in 

leadership roles not shown due to similarity with team network. 

In the next section, we describe our process for integrating ENA models in to a team-tutoring dashboard using 
these data and results as an example. 

Dashboard Designs 

The proposed dashboard features a performance overview of all teams and individuals and the ability to drill down 
to more specific information about the performance of a team or individual. In the performance overview (Figure 
2), each row represents a different individual in a particular role (e.g., CO, EWS, etc.) grouped by their team; each 
column represents a different training scenario. For a given scenario, high performing individuals are indicated by 
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a green circle, average performers are shown in yellow, and low performers in red. Team members with no activity 
a represented by an empty circle, and those with no relevant activity by a grey circle. High, average, and low 
performance indicators are determined by thresholds on the distribution of ENA scores from either the leadership 
or support ENA model. For these designs, thresholds were set at the first and third quartile of the distributions, but 
in the general case, they would be customizable. 

This overview has several affordances for team tutors. First, it provides a quick reference for how teams or 
individuals are performing, and thus directs attention to those who may need an intervention. Second, it presents 
the performance of a team or individual in the context of others, which facilitates comparisons. 

Third, the horizontal axis allows tutors to track performance over time to examine and compare trends. Finally, 
the vertical axis allows tutors to track performance across a given scenario to examine whether that scenario is 
more or less difficult than others. Such affordances are important because they scaffold decisions about whether 
an intervention is necessary and what kind of intervention to provide. For example, a CO who has high performance 
across all scenarios but one would likely need a different intervention than a CO whose performance was more 
variable over time. 

 
 

Figure 2. Performance Overview 

By clicking a team or individual, tutors can drill down to see more detailed information about their performance. 
For example, Figure 3 shows a simplified network model of one team’s performance at the end of a training 
scenario. Green connections between codes are characteristic of high performing teams; red connections are 
characteristic of low-performing teams. In other words, high-performing teams will have a higher frequency of 
green connections relative to red. 

To create this simplified network model, we selected the connections from the ENA models described above that 
explained the most variance between high and low performing teams in the dataset—that is, the connections at the 
extremes of the first dimension in the ENA space. Unlike the models described above, the node placement of the 
simplified networks is designed for easy comprehension, with nodes connected by green (i.e., indicative of high 
performance) connections placed at the top of the display. In addition, this drill down view shows the team activity 
represented in the network model—in this case, the coded team transcript. Turns of talk in the activity record with 
black circles have a code present in the turn. Below the network is a description of the connections present in the 
network (See Figure 5 for more details). Note that placeholder text is used for the activity record and network 
description in all designs except those in Figure 5. 
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Figure 3. Team Network Model 

Tutors can access similar drill downs for each individual on the team. For example, Figure 4 shows the network 
visualization of this team’s EWS, who holds a support role, at the end of a training scenario. Green connections 
are characteristic of high-performing individuals in support roles; red connections are characteristic of low 
performing individuals in support roles. To create simplified network visualizations for individuals in either 
leadership or support roles, we selected the connections from the ENA models described above that explained the 
most variance between individuals in those roles who were on high performing versus low performing teams. Node 
placements match the positions of the team networks to maintain visual consistency between individuals and 
teams. 

 

Figure 4. Network Model 
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Tutors can use the arrows in the description below the network model to step through the scenario in time and 
review each connection (and the activity contributing to the connection) made by the individual or team. For 
example, in Figure 5, we can see the first connection made by the team’s CO in this training scenario. Here, the 
CO is responding to tactical information from the Tactical Action Officer (TAO) with an order. 

 

Figure 5. Network Review 

In addition to stepping through the network model, tutors can examine the activity contributing to a connection by 
clicking the connection in the network model. As shown in Figure 6, clicking a connection in the network 
highlights the most recent activity in which the connection occurred. 

Figure 6. Connection Inspection 

Similarly, as shown in Figure 7, tutors can also click a segment of activity in the activity record to highlight any 
connections that may have occurred within the recent temporal context of that segment. 
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Figure 7. Activity Inspection 

Features such as stepping through the network model and investigating connections and their corresponding 
activity can facilitate after-action reviews by the tutor with teams or specific individuals. 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

The work presented here suggests two recommendations for GIFT. First, team-tutoring assessments in GIFT 
should include models, such as ENA, that account for the interactive, interdependent, and temporal nature of team 
processes at both the team and individual levels. Second, in order to be successful, such assessments should include 
actionable visualizations that help tutors monitor, assess, and provide feedback on team performance. The designs 
described above are one proposal for such an approach. 

While these designs used specific data from a particular domain for illustrative purposes, the approach is agnostic 
to both the kind of data collected and the domain from which it comes. The only constraints are that the data 
consists of a machine readable record of ordered events, which may be talk, gestures, mouse- clicks, or other 
actions, and that there exists a reliable automated coding scheme for the data. In cases where the data is not in a 
textual format, such as raw audio or video recordings, the system would need a means of converting the data in 
real-time into a format which could be automatically coded. Moreover, while the network models described here 
were data driven, it is also possible for authors to specify a priori the connections that distinguish high and low 
performance for teams and individuals. 

Our future work will include adapting the dashboard designs to different team structures, such as squads or 
platoons, and mapping the components of these designs to the inputs of domain knowledge files that manage 
assessment and pedagogical requests for teams or individuals during a GIFT-managed scenario. 
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INTRODUCTION 

ITSs have continued their conceptual evolution and implementation in parallel to modern technologies that can be 
configured to add value to ITSs’ overall effectiveness. Along with the evolution of technology and software, the 
Department of Defense (DoD) and the U.S. Army have evolved their programmatic practices to include 
modernization priority updates for 2018-2019. As part of this volunteer effort; it is to experiment-with and add-
value-to one of those modernization priorities, namely Soldier Lethality that the authors proposed that GIFT could 
be used to supplement. 

GIFT was configured to integrate with and utilize Commercial-Off-The-Shelf (COTS) hardware for both VR 
solutions and external sensors in this effort to create an experimental scenario for modernized adaptive training. 
GIFT also had some of its internal user interfaces updated to display dynamic mastery and competency information 
using a CASS test database at https://cassproject.github.io/cass-editor/. By combining GIFT’s capability to adapt 
training content with a competency standards system such as CASS, the authors hoped to enable formal 
experiments that measure training value as a system when compared to the individual software components alone. 

Primarily, this effort created the framework with which to further experiment integrating GIFT with biometrics 
and virtual reality, along with other future IOT devices and software suites. The authors’ teams consisted mainly 
of working professional engineers contributing to nonprofit efforts, but the direct team member roster did not 
contain Army Subject Matter Experts (SMEs) or behavioral scientists / doctors with which to form experimental 
hypothesis and validations. It was the authors’ intent that the framework may now be tailored to suit specific 
scientific needs in the community having enabled the prototype functionality. 

The framework was secondarily created to provide GIFT with another set of sensors and applications with which 
to integrate and perform future training scenarios with. The training scenario produced as part of the paper’s effort 
was not constructed as an actual DoD course, but rather as an example on “the art of the possible” on how to use 
many of the technological evolutions that the IOT- style of hardware production has provided modern society. 
Sample IOT devices included with this experiment include pulse monitoring sensors, indicator lights, haptic 
motors, and real-time situational team knowledge simulation, all of which can be purchased through COTS 
providers for under $20 total per trainee. 

Combining GIFT, VR, CASS, COTS IOT hardware, and the team’s engineering experience, the authors created, 
to best effort, a breadth-first course containing a shallow dive into all of these different areas proving high levels 
of interoperability from GIFT. Proposed future experimentation variables include the type and fidelity of VR 
content, learner characteristics such as familiarity with VR and trainee career background, length of time in VR 
while in a scenario, difficulty of the scenario referencing the number of IOT devices selected, and the quality of 
results as different types of adaptation are used during a scenario. This project was not funded from any source and 
is released with full rights to any interested public entity. Even in this case where the quantity of training content 
was minimal, the results of the effort should prove to be of interest to the research community, the GIFT team, and 
possibly multiple branches of the military as training scenarios continue to modernize along the path of higher 
technology. 
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Parts List and Descriptions 

This section describes the parts and components that were used in the making of the prototype system described 
in this paper. Interested community members are encouraged to request further information or specifications from 
any of the authors if desired. 

GIFT Software Suite 

At the time of this writing, GIFT 2019-1 has been released at www.gifttutoring.org/projects/gift/files. If the reader 
has not yet created a GIFT account to enable the download, registration is free by following the link to ‘Register’ 
on the web page. The GIFT 2019-1 download will allow the reader to install and configure their own local GIFT 
server for any purpose. Instructions for configuring a GIFT server and discussions on the matter can be found 
included with the download and on the Forum tab at the www.gifttutoring.org homepage. 

CASS Online Test Database 

By following the https://cassproject.github.io/cass- editor/ link, readers may explore the site to edit and configure 
their own competency and mastery framework. This server is maintained by the Advanced Distributed Learning 
(ADL) CASS team, but any user has full permissions to create and edit their own framework. Readers may search 
for ‘GIFTSym7’ to examine the framework created for this paper’s effort. Readers may also register with the 
CASS project at https://www.cassproject.org, download the open source code from the referenced GitHub project, 
and build/configure/maintain their own CASS server. 

 

Figure 1: Screenshot of CASS Framework for GIFTSym7 in CASS Editor Web Tool 

MQTT Online Network Communication Server  

A tool called Mosquitto (with two T’s) is a lightweight communication protocol that follows a publish/subscribe 
model  of  network  communications.  Furthermore, a public test server is available at https://test.mosquitto.org. 
Readers may also download the server/client itself to setup their own instance on any available machine. The 
online server is free for the public to use, and was incredibly valuable as an online communication server through 
which to test messages being passed between the various components of the paper’s system. While building the 
prototype system simply using ‘localhost’ methodologies was possible, the team wished to demonstrate the 
potential power and distributed nature of open API software such as GIFT, CASS, Unity VR, and modern IOT 
devices. 

Unity 

The Unity game engine was chosen to host the prototype virtual environment due to GIFT’s pre-existing 
integrations  and  course  content  utilizing  Unity. A personal version of Unity may be downloaded from 
https://unity.com for noncommercial users. It should be noted that GIFT is an agnostic ITS, meaning that there is 

http://www.gifttutoring.org/projects/gift/files
http://www.gifttutoring.org/
http://www.cassproject.org/
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no restriction on which virtual environment that adaptive tutoring can be performed in. For instance, GIFT already 
contains a Course Object to manage many available interactions with Virtual Battle Space (VBS): 
https://bisimulations.com/products/virtual-battlespace. Proper configurations of network communications 
according to GIFT’s open API instructions allow for any environment to become part of adaptive training and 
allow for virtual environment events to be monitored or injected  according  to  GIFT   course  direction.  New 
experimental features in GIFT that are currently being developed also allow for more generic communications and 
management of scenarios within virtual environments. 

 

Figure 2: Unity Scenario Room with HUD 

Learner Record Store – Learning Locker 

Interfaces to a Learning Management System (LMS) and/or Learner Record Store (LRS) were not integrated as 
part of this paper’s effort, but GIFT does contain existing interfaces to an LRS called Learning Locker, 
https://www.ht2labs.com/learning-locker/. When tracking permanent student performance, specifically as it relates 
to competency and mastery acquisition, GIFT can agnostically communicate with any open API LMS or LRS 
given software development time to create the simple translations of existing network messages. This capability 
will allow GIFT to store permanent individual and team performance measures and progressions accessible in the 
CASS database as Army Subject Matter Experts (SMEs) enter in competency information and relationships. 

Figure 3: Learning Locker xAPI-Enabled Communications Across Different Devices 

Hardware 

In order to further demonstrate that local GIFT servers can operate in conjunction with modern VR and IOT devices 
while performing adaptive training, a variety of hardware was chosen with cost and existing available equipment 
being the main driver in selection. Not included are the PCs and peripherals necessary to run GIFT locally, and 
powerful enough to run VR-capable applications. 

• Vive VR System: https://www.vive.com/us/ 

• 3-Watt, 8-Ohm Single Cavity Mini Speakers 

• ¼-Watt, 470-Ohm Resistors 

• Jumper Wires for Arduino 

http://www.ht2labs.com/learning-locker/
http://www.vive.com/us/
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• Arduino Uno Microcontroller 

• Arduino Network Shield 

• 8,000 RPM Micro DC Motors 

• 40V, 600mA, 300MHz, 625mW Transistors 

• Red and Green 6-13V LED Diodes 

• 10uF, 50V, 105c Capacitors 

• Solderless PCB Breadboard 

• Pulse Sensors 

• ¼-Watt, 1k-Ohm Resistors 

• 1000uF, 25V Capacitors 

Figure 4: Arduino Hardware Components 

The hardware listed above resulted in a combined system that was capable of monitoring a trainee’s pulse rate 
tracking “health readiness,” sending Go/No-Go visual and audio cues, sending indicator vibrations at different 
strengths through haptic motors attached to a trainee, all while performing a scenario in a desktop or VR Unity 
simulation tracking masteries referenced in CASS being monitored and managed by GIFT. 

Methodologies 

This section further explains the configurations, interfaces between disparate systems, and the experimental 
framework that was created as a result of this paper’s effort. 

GIFT Installations, Configurations, and Modifications 

It is assumed that the reader has a working knowledge of the GIFT software suite in order to fully understand this 
section. Special attention is given to the new areas of study that this paper explores, but only brief mention is given 
to basic GIFT topics. For more information, the reader may refer to GIFT documentation at 
www.gifttutoring.org, or How-To YouTube videos at https://www.youtube.com/channel/UCWtI_V8f2mN5X 
D6h2lCjsAA. 

Prerequisites to this section include having downloaded GIFT 2019-1, fully having configured GIFT server, and 
having configured network communications and hosting to the point of understanding the reader’s system being 
localhost vs. hosted online at a specific IP address or DNS web address. The authors wished to fully demonstrate 
GIFT’s interoperability with the distributed online world, and thus used fully-hosted online servers for all 
following development described in this paper. 

A key concept to understand about configuring GIFT to be part of a distributed system is the nature of ActiveMQ 
/ MQTT network communication. GIFT maintains its own ActiveMQ server on the machine it is running on, as 

http://www.gifttutoring.org/
http://www.youtube.com/channel/UCWtI_V8f2mN5X
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well as being able to communicate with other non- centralized network servers through many different methods 
such as RESTful web service calls or custom ActiveMQ/JSON messages. Fully explaining security, safety critical 
messaging, and ActiveMQ server configurations is beyond the scope of this paper, but the reader is encouraged to 
visit http://activemq.apache.org for further information. Of important note for this paper topic is the knowledge 
that the authors setup and configured another Mosquitto (MQTT) server to enable distributed communications. 

CASS Server Installations and Database Entries  

At the time of this writing, the authors are in the process of installing a CASS Server, the code of which is 
accessible by following links in the CASS Developer Guide here: http://devs.cassproject.org/index.html, on an 
Amazon Web Service (AWS) Elastic Compute Cloud (EC2) instance. While the instance hosting this new CASS 
server was not completed at the time of this writing, the authors are in the process of finalizing the configurations 
and will be offering connection information to the community as an additional test CASS server based on the most-
current GitHub code base. 

During many programs, such as ADL’s Total Learning Architecture (TLA) initiative, various entities have 
interfaced with a CASS server and entered in various maturities of frameworks. One such entry, for instance, 
resulted in Army SMEs creating a custom framework for use in a Fort Benning experiment in late 2018. By enlisting 
subject matter experts to populate a CASS database with relevant competency relationships, an ITS such as GIFT 
becomes enabled to read and analyze these relationships to better-adapt training content tagged with similar 
metadata. The authors created a faux-framework for use during this paper’s efforts at 
https://dev.cassproject.org/api/data/schema.cassproject. org.0.3.Framework/ba049c98-0d69-4fc3-96e1- 
931b90035fe3 which can be accessed in a GIFT course through a RESTful API call. CASS servers return data 
about frameworks and competencies in JSON formats. 

By linking a GIFT Course Property menu item to the CASS database information, it became dynamically possible 
to populate a GIFT course that read in competencies that the course could then be linked to. For instance, a 
competency of “Attach Biometric Smart Clothing” <Broadens> a competency of “Sync Biometric Smart Clothing 
to Network.” In reverse, the 2nd competency in the previous sentence <Narrows> the 1st competency according to 
CASS vocabulary. Other examples of CASS relationships include <Equivalent to>, <Requires>, <Is Enabled By>, 
<Is Related To>, and <Desires>. Every competency can be related to every other competency within a framework, 
and even to other framework’s competencies as well. 

The GIFT code enabling these CASS properties to be linked to a GIFT course will be made available to the public 
community in a following release of GIFT, and also made live in CLOUD GIFT at https://cloud.gifttutoring.org 
when ready for release by the development team. 

This paper’s effort concluded with a GIFT course reading information in from a CASS database and displaying it 
in a read-only fashion, but not storing any information permanently as exact specifications on how to integrate 
GIFT and CASS are still being discussed by the GIFT community. 

 

Figure 5: GIFT Unity Course Object Assessment 

The live Unity simulation was also coded to read in CASS database information dynamically over the internet, 
and during the scenario was able to temporarily store “competency progression” as goals in the virtual world were 
completed, completing the GIFT-CASS-VR distributed system proof as all communication was handled through 

http://activemq.apache.org/
http://devs.cassproject.org/index.html
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an intermediary and agnostic Mosquitto server online at https://test.mosquitto.org/ (no 2 systems in this paper’s 
effort were localhost, viewing all IOT devices together as “one system”). 

Virtual World Scenario in Unity 

The Unity level was built primarily using existing art assets or low-cost acquisitions from the Unity Asset Store. 
It is recommended that if the reader wishes to integrate a Unity application with GIFT for the first time that the 
WebGL version of a Unity build be used according to existing integration instructions in the GIFT documentation 
and Course Object meant for such interactions. 

The authors treated this paper effort’s scenario as an external application, however, as demonstrating GIFT in a 
distributed environment was a desired outcome. The virtual world scenario can operate on any PC capable of 
running a basic Unity application, and communicated to the distributed Mosquitto server and the online CASS test 
server through the UnityWebRequest Unity library with   which   REST   calls  were  made. For further information 
on enabling stand-alone Unity scenarios to communicate with non-local systems, the reader is encouraged to 
reference https://docs.unity3d.com/ScriptReference/Networking. UnityWebRequest.html. 

The Unity scenario can be run in Desktop or VR modes that Unity allows for with first class citizen libraries. The 
scenario was also coded to display identical CASS database competency information in the Heads-Up Display 
(HUD). Also included in the HUD were representational self-health and squad-health biometric symbols, each of 
which represented the trainee in the lesson and simulated squad members, respectively. By allowing the trainee to 
see both the virtual world complete with buildings, non-player characters, equipment, furnishings, weather effects, 
while simultaneously displaying HUD information with “extrasensory” information about the environment, the 
authors wished to demonstrate not only virtual reality but what an augmented reality system could, in the future, 
begin to take the form of when integrated with GIFT. 

The GIFT course operates in parallel with, and preferably launches, a virtual world scenario similar to how 
interfaces between GIFT and VBS are utilized. Any course training enabled through (and constrained by) virtual 
reality and/or any game engine can be constructed through using GIFT Course Objects and adaptive training 
measures. Examples include Real Time Assessments, Tasks, and Conditions that can be authored using the GIFT 
Authoring Tools (GAT) that respond to and inject events into the virtual environment scenario. Thanks to the open 
API design of both systems, training within a course topic and mix of competencies read in from CASS can be 
communicated from and to each of the discussed systems to great effect. 

Shown below in Figure 6 is an example of how independent systems can communicate with a virtual world 
scenario. By listening to messages from the Mosquitto server, a simple HUD can listen for changes in self or squad 
health, offer visual indicators of masteries waiting to be acquired or already achieved, and offer advice to the trainee 
at a level the instructor or a GIFT course deems to be most-valuable to the training experience.  

 

Figure 6: Unity HUD with CASS and Biometrics 
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IOT Devices and Communications 

The complete setup instructions to configure an Arduino microcontroller with breadboards, custom voltages, 
wiring, and IOT devices is beyond the scope of this paper, but if interested, the reader is encouraged to reference 
the following online documents for instructions: 

• Speakers:https://www.deviceplus.com/how- tos/arduino-guide/entry019/ 

• LEDs:https://www.deviceplus.com/how- tos/arduino-guide/entry_002/ 

• Long_Range_Communication:https://www.de viceplus.com/how-tos/arduino-guide/arduino- long-range-
communication-tutorial-lorenz- shield/ 

• Pulse_Sensor:https://pulsesensor.com/pages/in stalling-our-playground-for-pulsesensor- arduino 

With the prototype system libraries, hardware listed in the above 2.6 Hardware section, and GIFT-CASS-VR 
system operational, the same network paradigm of minimal Mosquitto messaging was used to link in IOT devices 
to the software suite. The authors began by connecting IOT devices to each other and a microcontroller, all of 
which are traditionally very limited in all of power, range, “disk space,” APIs, and capabilities, and then connected 
these devices to network/long range communication capabilities. After integration efforts inspired largely by open 
source communities, the authors were able to have all IOT devices managed through a single microcontroller, report 
their sensor data, and respond to system messages passed-to and received-from the Mosquitto server.  

While for this paper’s effort the authors only managed the simplest of message passing between the IOT devices 
and the rest of the system, the primary goal of proving interconnectivity of a system of systems with GIFT acting 
as the ITS was satisfied. In addition, communication with parallel virtual environments (eventually formally 
multiplayer instead of simulated) and the distributed nature of the system as a whole was satisfied as a secondary 
goal. The authors look forward to future discussions with the community in these areas of interest. 

Team Training Perspectives 

The framework described thus-far resulted in a prototype system built with multiplayer and squad perspectives in 
mind. By creating a system in a distributed network with no (or at the very least, reconfigurable) single point of 
communication failure, a system in which nodes can be stood up-or-down on demand has had its foundation 
formed. Using principles and paradigms of load balancing made commercially-ready from companies such as 
AWS, nodes such as GIFT can better recover from a downtime perspective upon degraded performance being 
detected (a sensor slipping off, network communications being jammed, etc.). This also means a plug-and-play 
smart IOT uniforms could be developed and switched out with minimal interruption, or virtual scenarios 
dynamically configuring themselves to detect squad data for each team member and simulating or removing 
entities based on scenario configuration settings. With these distributed system paradigms in mind, frameworks 
such as the prototype presented in this paper form the basis for managing squad training in scenarios with ITSs 
(GIFT) and competency systems (CASS) in an active role, with completely variable sensor data and number of 
active players being switched out as training needs dictate. 

Enabled Experiment Frameworks 

The authors wish to provide the results of this effort back to the community as a nonprofit effort and will work with 
the GIFT team and community to determine the best path forward in this regard. 

Some options include formal delivery of GIFT code updates to builds pushed out to CLOUD GIFT, specifically 
those updates relating to CASS database interactions. Other options include experimental branches that the 
community can request specific access to, or downloadable builds and configurations that enable capabilities based 
on individual or organizational needs. 

http://www.deviceplus.com/how-
http://www.deviceplus.com/how-
http://www.deviceplus.com/how-
http://www.deviceplus.com/how-
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As a prototype volunteer effort, the authors will work to the best of their ability to discuss any GIFT team and 
community interest to provide access to the experimental framework that can enable future research in the areas of: 

• GIFT communication with LMS, LRS, or Competency (CASS) systems 

• Competency metadata incorporation into GIFT courses 

• Biometric and IOT device status monitoring in a GIFT course 

• Virtual reality scenario creation and integration into a GIFT course 

• Mixing 1-to-1 GIFT course and virtual world scenarios, 1 GIFT-course and single-player- team-simulation 
courses, and n-GIFT courses to n-virtual world scenario experiments in parallel 

Conclusions and Future Research  

The authors set out to perform a software engineering feasibility study that GIFT would be able to act as a 
centralized ITS in a decentralized system of systems. Through combining GIFT, CASS, Unity VR scenarios, and 
IOT devices, the authors have shown how GIFT’s open API communication protocols allow for efficient 
integration into larger-scale training systems. Of specific interest to the authors is future involvement with systems 
such as CASS that enable, among other capabilities, a system of standards with which to track relevant learner 
skills and metadata to allow for improved adaptive training. Combined with an LRS and/or LMS, the authors 
hope to continue these paper’s efforts to improve adaptive training by incorporating modern technologies and 
extending GIFT course functionality to include even more capability to handle simultaneous team member squad 
training. 
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