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GIFT is a free, modular, open-source tutoring architecture that is being developed to capture best tutoring 

practices and support rapid authoring, reuse and interoperability of Intelligent Tutoring Systems (ITSs).  

The authoring tools have been designed to lower costs and entry skills needed to author ITSs and our 

research continues to seek and discover ways to enhance the adaptiveness of ITSs to support self-

regulated learning (SRL).   

This year marks the sixth year of GIFT Symposia and we accepted 30 papers for publication in this year’s 

proceedings.  None of this could happen without the efforts of a fantastic team.  Our program committee 

this year did an outstanding job organizing and reviewing, and we want to recognize them for their 

efforts. 

  

We are proud of what we have been able to accomplish with the help of our user community. This is the 

sixth year we have been able to capture related research and development efforts for the Generalized 

Intelligent Framework for Tutoring (GIFT) community which at the writing of these proceedings has well 

over 1500 users in over 76 countries. 

In addition to providing a record of the symposium content, these proceedings are also intended to 

document the evolutions of GIFT as a tool for the authoring of intelligent tutoring systems (ITSs) and the 

evaluation of adaptive instructional tools and methods.  Papers in this volume were selected with the 

following goals in mind: 

 The candidate papers describe tools and methods that raise the level of knowledge and/or 

capability in the ITS research and development community 

 

 The candidate papers describe research, features, or practical applications of GIFT 

 

 The candidate papers expand ITSs into previously untapped domains with recommendations for 

future GIFT capabilities 

 

 The candidate papers build/expand models of automated instruction for individuals and/or teams 

The editor wishes to thank each of the authors for their efforts in the development of the ideas detailed in 

their papers and their thoughtful presentations.  As a community we continue to move forward in solving 

some significant challenges in the ITS world and in this light GIFTSym has evolved. GIFT and the GIFT 

Symposium continue to take on a broader perspective as the new Center for Adaptive Instructional 

Sciences (CAIS) was formed this year begins formal operations under ARL’s Open Campus Initiative.  

The purpose of CAIS is to encourage the community development of adaptive instructional systems 

(AISs), capabilities & standards. Since our last GIFTSym, the IEEE Learning Technologies Standards 

Committee (LTSC) has approved the development of an AIS standards study group and GIFTSym has 
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allocated a full-half day session to inform AIS stakeholders. You can learn more about CAIS and our 

IEEE AIS standards activities by signing up at https://www.arl.army.mil/opencampus/centers/cais. 

We would also like to encourage readers to follow GIFT news and publications at 

www.GIFTtutoring.org.  In addition to our annual GIFTSym proceedings, GIFTtutoring.org also offers 

volumes of the Design Recommendations of Intelligent Tutoring Systems, technical reports, journal 

articles, and conference papers. GIFTtutoring.org also includes a users’ forum to allow our community to 

provide feedback on GIFT and influence its future development.  We encourage you to subscribe and to 

send us your stories and experiences using GIFT as part of our GIFT_around_the_Globe series. 

Finally, ARL has developed about GIFT instructional videos which are now available on YouTube at: 

https://www.youtube.com/results?search_query=generalized+intelligent+framework+for+tutoring. We 

encourage you to subscribe. 

Many thanks to all of our GIFT users… 

Bob 

Robert A. Sottilare, Ph.D. 

GIFTSym6 Chair and Proceedings Editor 

 

 

 

 

 

 

https://www.arl.army.mil/opencampus/centers/cais
http://www.gifttutoring.org/
https://www.youtube.com/results?search_query=generalized+intelligent+framework+for+tutoring
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Architecture and Ontology in the Generalized Intelligent 

Framework for Tutoring: 2018 Update 
 

Keith Brawner, U.S. Army Research Laboratory 

Mike Hoffman, Dignitas Technologies 

INTRODUCTION 

The first version of the Generalized Intelligent Framework for Tutoring (GIFT) was released to the public in 

May of 2012. One year later, the first symposium of the GIFT user community was held at the Artificial 

Intelligence and Education conference in Memphis, Tennessee. Since then, the GIFT development team has 

continued to gather feedback from the community regarding recommendations on how the GIFT project can 

continue to meet the needs of the user community and beyond. This current paper continues the conversation 

with the GIFT user community in regards to the architectural “behind the scenes” work and how the GIFT 

project is addressing the user requirements suggested in the previous GIFTSym5 proceedings.  The 

development team takes comments within the symposium seriously, and this paper serves to address 

requirements from prior years.  

As a follow up to the “GIFT 2015 Report Card and State of the Project” (Brawner & Ososky, 2015), the 

GIFT 2016 Community Report (Ososky & Brawner, 2016), and the GIFT 2017 Architecture Report 

(Brawner, Heylmun, & Hoffman, 2017), the feature requests and responses have been broken out among a 

number of papers, and into logical sections of this work. This paper discusses the ongoing architectural 

workings and changes in support of the various sets of projects. The number of projects which the GIFT 

overall projects is now well over 50, which represents a) the inability for significant direct support of any 

individual project and b) the relatively little support that individual projects need to be successful.  GIFT 

generally works well enough to support research studies without direct developer guidance or specifically 

developed features.  

The research and technology innovation efforts presented in the current document include those that are 

informed by the GIFT user community, and only represent a fraction of the overall research, development, 

and implementation work associated with GIFT. We invite the reader to review the other chapters in this 

volume, publications on GIFTTutoring.org, and other references described below, to get a sense of the total 

body of work on the GIFT project. Major themes in this current, 2018 GIFT report include tighter integration 

with wide-scale systems such as EdX and LearnSphere, further work in enhancing authoring, significant load 

tests for supporting many simultaneous users, the first and second GIFT Summer Camps, an upcoming shift 

to better conversational agents, and the move to individualized training for teams and during psychomotor 

tasks. 

WELCOME 

First, to the new members of the GIFT community and new GIFT users – Welcome!  There are a number of 

recommended resources that will help to orient you to this project and ecosystem.  GIFT has come a long 

way since its original goals were defined in its description paper (Sottilare, Brawner, Goldberg, & Holden, 

2012). First, we would encourage you to simply get started, as the tools and example courses have been 

designed to try to be as easy as possible for the creation of intelligent tutoring systems. 
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If you struggle with any individual aspect of the system, however, the team has produced short “how to” 

videos to try to help around the sticking points.  There are now around 20 such videos, available at the 

following youtube channel URL: 

https://www.youtube.com/channel/UCWtI_V8f2mN5XD6h2lCjsAA/videos, which is the first result if you 

search “Generalized Intelligent Framework for Tutoring Youtube” on Google.  If you would like additional 

help getting started, please consider the GIFT Quick Start Guide (Ososky, 2016) as another place to start. 

In addition to a Quick Start Guide, usable tools, and videos, there is support for developers in the help 

forums and documentation.  The GIFT user community is also invited to ask questions and share your 

experiences and feedback on our forums (https://gifttutoring.org/projects/gift/boards). The forums are 

actively monitored by a small team of developers, in addition to a series of Government project managers. 

The forums are a reliable way to interact with the development team and other members of the GIFT 

community. The forums, at the time of this writing, have over 1200 postings and responses.  Documentation 

has been made freely available online at https://gifttutoring.org/projects/gift/wiki/Documentation, with 

interface control documentation 

https://gifttutoring.org/projects/gift/wiki/Interface_Control_Document_2018-1, and a developer guide 

https://gifttutoring.org/projects/gift/wiki/Developer_Guide_2018-1.  These documents are updated each 

software release.  The concept document was also updated in 2017 (Sottilare, Brawner, Sinatra and Johnston, 

2017). 

CLOUD GIFT GENERAL REPORTING 

Cloud GIFT has now been up and running for the last two years.  Increasingly, users start on the Cloud GIFT 

instance to make and take their first courses.  With minimal outages, the system has now been up for a 

number of years.  While initially envisioned as a “try before you buy” program (Brawner & Ososky, 2015), 

user expectations and general usability have demanded more mature software functionality from this 

research project.  We have responded to the community demand for reliability in the Cloud GIFT instance by 

increasing its accessibility significantly.  We, the development team, did not anticipate that users would 

author surveys with multiple hundreds of questions, open the system up to 100+ users on Amazon 

Mechanical Turk simultaneously, or other relatively high-demand tasks.  This is a good problem to have, and 

we have taken several actions to harden the system to the level of robustness demanded from the community. 

First, updates to GIFT Cloud now significantly precede the updates to the downloadable GIFT.  

Downloadable GIFT still operates on the 12-month developmental cycle, while Cloud GIFT is now operating 

on a 7-day release cycle.  This effort has required significant re-tooling to move to a dev-desk, dev-cloud, 

and production model.  As a byproduct, the team responds much quicker to bug requests.  These changes are 

transparent to the end users but involve significant effort from the team.  The latest stable regression-tested 

GIFT release is still available for download at gifttutoring.org, but a clone of what is available at 

cloud.gifttutoring.org is always available upon request. 

Second, as part of the move to Cloud GIFT developmental cycles, we have been coordinating stress tests in 

order to identify system weaknesses and harden against them.  Early weaknesses were identified in survey 

editing, survey requests, course validation, content upload, and other database-intensive requests.  One initial 

stress tests of the system showed as few as 6 simultaneous users could successfully perform database-

intensive operations.  Modern tests after performance improvements have been made, at the time of writing, 

are reporting on the order of magnitude of 100 simultaneous users.  These changes are transparent to the end 

users but involves significant effort from the team. 

https://www.youtube.com/channel/UCWtI_V8f2mN5XD6h2lCjsAA/videos
https://gifttutoring.org/projects/gift/boards
https://gifttutoring.org/projects/gift/wiki/Documentation
https://gifttutoring.org/projects/gift/wiki/Interface_Control_Document_2018-1
https://gifttutoring.org/projects/gift/wiki/Developer_Guide_2018-1
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Third, as a part of hardening the system for research, the end use capability has been the ability to run 

educational experiments with cloud-deployed software instantaneously across the country.  This capability is 

relatively mature, and the author is aware of several such experiments which have been run with 100+ users, 

by the teams for Adaptive MOOCs (Aleven et al., 2017), Long Term Learner Modeling (Biddle, Lameier, 

Reinerman, Matthews, & Boyce, 2018), Structural Equation Modeling (Robson, Ray, & Sinatra, 2017), the 

After-Action Review (Brawner, Carlin, Oster, Nucci, & Kramer, 2018; Carlin, Nucci, Kramer, Oster, & 

Brawner, 2018), and Tutorial Planning (Rowe, Pokorny, Goldberg, Mott, & Lester, 2017).  This capability is 

available for use by the general public. 

Virtual Machines Available Upon Request 

As part of the move to Cloud GIFT, we have a number of specialized processes which run in the background.  

Figure 1 shows the current structure of the Virtual Machine (VM) instances which operate Cloud GIFT.  At 

its basic level, GIFT runs on two VMs; a Windows VM for all of the core GIFT features, and a Linux VM 

hooked up to an Amazon Relational Database Service (RDS) for the content.  These items are what are 

contained in the downloadable GIFT instance.  In addition to the basic instances, however, are services for 

monitoring GIFT; PiWik monitors user behaviors within the system, while the GIFT monitoring service 

monitors usage for future performance improvements.  GIFT now includes an instance to a Social Media 

Framework (SMF) and Learner Record Store (LRS), which are based around Elgg and Learning Locker, 

respectively.  GIFT’s copies of these configurable items are available upon request, and posted to github, but 

the authors would urge users to select their own instances of commercial sharing and data warehousing items 

dependent upon their own individual needs; there is nothing tying GIFT to a specific SMF, LRS, PiWik, or 

monitoring framework.  We do not think of these items as core to GIFT, only that they are reported 

outwards.  

Windows

GIFT Runtime

GIFT Authoring

UMS/LMS SQL 
Db

Linux

Nuxeo RDS

Linux

SMF

Linux

GIFT 
monitoring

Linux

PiWik

Linux

Learning Locker 
(LRS)

GIFT 
Experiments

GIFT logs

Core Additional 
Features

Usability 
Reporting

 

Figure 1: Simplistic Diagram of Cloud Gift Items 
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NEW INSTRUCTIONAL MODELS 

GIFT has historically been based on the Engine for Management of Adaptive Pedagogy (EMAP) processes.  

These processes were based upon an extensive literature review which diagnosed the best types of content to 

give learners, based on the traits of the content and learner.  This framework has expanded to accommodate 

Chi’s interactive, Constructive, Active, and Passive (iCAP) framework (Chi, 2009; Rowe et al., 2017).  

Within the authoring tools, this expansion involves the addition of the “remediation” area to the existing the 

Rules, Example, Recall, and Practice areas of the Adaptive Courseflow object.  Content from this 

remediation area, if require, is then given preferentially to content in the other areas.  If no remediation 

content is available, or all of the remediation content has already been given, the system will then give a 

single piece of content from the content within the other bins.  This is a change to the behavior of the GIFT 

adaptive Courseflow object in two manners: 

1. Remediation content will be considered before other content when presenting remedial content. 

2. Regardless of student performance, only one piece of content will be given prior to retesting 

Existing courses are being automatically upgraded in order to use this instructional model, and two 

instructional events have been added with the ability to be authored within the remediation content block as 

active/constructive activities – highlight passage and summarize passage.  The seamless migration from one 

instructional model to another instructional model is one of the features of the GIFT system, was designed 

from the beginning, and is now put to the test. 

The move to this instructional model is based upon evidence of effectiveness and is being done in order to 

support machine learning processes for the optimal selection of remedial content based upon the evidence of 

effectiveness within an individual course (observed effectiveness) as opposed to effectiveness based upon 

research projects (theorized effectiveness).  More about this project, its results, and the machine learning 

processes which are being used can be found in (B. S. Goldberg, 2018). 

VIRTUAL HUMAN TOOLKIT (VHTK) 

There are many problems with the “talking head” process which GIFT has used since the beginning of the 

project.  Firstly, we used this talking head for relatively simplistic reasons – it was already being used as part 

of the AutoTutor integration and using it by default limited integration cost.  Secondly, the character usage 

was not an open source item, as opposed to the rest of GIFT.  Changing the avatar, voice, or character 

responses usually involved paying Media Semantics a fee.  Thirdly, the Media Semantics Character Server 

and Builder were required to run on Windows, which is also not open source or free.  Fourth, Media 

Semantics has discontinued support of the avatar for modern browser compatibility standards.  In summary, 

it costs money, costs OS maintenance, limits new user adoption, and isn’t supported by the company which 

created it. 

For the reasons above, we have wished to switch to another virtual human technology.  Previous efforts in 

allowing GIFT to be more ontology-driven (Nye, Auerbach, Mehta, Hartholt, & Fast, 2017) have allowed for 

us to use interchangeable agents, and were demonstrated at the last GIFT Symposium.  The lack of 

developmental support for the MSC forced our hand to switch to the new ontology-driven agent processes. 

The Virtual Human Toolkit (VHTk) is a collection of modules, tools, and libraries designed to aid and 

support researchers and developers with the creation of virtual human conversational characters (Hartholt et 

al., 2013).  It provides a way for users to generate virtual humans and integrate them across many projects.  
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Experiments have been performed to assess the ease of the creation of agents, with outputs driving tool 

design.  VHTk is now available open source, and the characters that GIFT will use in the future are VHTk-

based, with a VHTk-based agent planned to be available upon the cloud before the publication of this work. 

LEARNING TOOLS INTEROPERABILITY 

In previously publication, GIFT supported one part of a full LTI connection (Aleven et al., 2017; Brawner et 

al., 2017).  This functional enabled GIFT to be part of an EdX course, or any other LTI Consumer.  A GIFT 

course was run as part of an EdX course, through the LTI interface.  EdX passed control of the module to 

GIFT, students took the GIFT course, and control was passed back to EdX.  This flow of connection makes 

GIFT an “LTI Provider.” 

GIFT is now also an LTI Consumer, meaning that it can serve the same role as EdX did for GIFT – control 

during a GIFT course can be relinquished to an external training application, such a Cognitive Tutor 

exercise, and then returned back to GIFT with score reporting, which can be used elsewhere in the GIFT 

course per configurable assessment shown within Figure 2.  This information can then be used later in the 

course. 

 

Figure 2: LTI handoff interface 

LEARNER RECORD STORE 

For a number of years GIFT has supported the functionality of reporting data to a Learner Record Store 

(LRS) in a configurable xml file.  By default, this redirected to a publicly accessible LRS.  At the time of 

writing, Figure 1 shows the connection of GIFT to a hosted LRS, which is now in active use in Cloud GIFT.  

A sample of the authoring and user interface settings for GIFT is shown in Figure 3.  The coming 
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developmental cycle will see the use of LRS data for filtering courses and for pulling learner information for 

future courses; creating an overarching learner profile used in many places.  LRS data is planned to be able 

to be used across a wide variety of other systems from other Governmental agencies, such as within the 

Competency and Skills System (CASS). 

 

Figure 3: LRS Survey configuration and user experience 

AUTHORING 

The previous GIFT Symposium put forth the idea of creating a GIFT Course Wizard, which walks a novice 

author through the process of creating a course, eventually leading them to a created course on the existing 

course creator page (Murray, Pico, Redmon, & Rowan, 2017).  This process has not been implemented, but 

efforts have been made to streamline the authoring tools, and to help novice authors with the creation of the 

Quick Start Guide (Ososky, 2016) and the GIFT YouTube video series mentioned earlier. 

The most challenging area of authoring remains to be the authoring of the assessment logic which occurs 

within simulations.  In the public example GIFT courses, the reader can see assessment logic configurations 

for the following, with the following: 

 PowerPoint courses 

o over/under-dwell assessments 

 Unity simulations 

o Assessment based on button-click events 

 Medical training scenarios 

o many domain-specific assessments, such as time to apply tourniquet 

o Assessment is handled with external assessment engine called SIMILE (Mall & Goldberg, 

2014)  

 Excavator training scenarios 

o Assessment based on movement of the machine 

 VBS training scenarios 
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o Assessment based on learner movements and actions 

The overwhelming challenge is how to support authoring of this diverse set of assessments, without 

requiring coding knowledge, in a manner independent of the simulation, preferably while authoring 

simulation scenarios.  Further, this functionality should be available for domain experts who are not experts 

in instruction, simulations, or GIFT.   

Technically, what this authoring tool authors is a Domain Knowledge File, which contains a hierarchal task 

breakdown of the domain in the form of tasks, conditions, and standards.  In the authoring tool, at the time of 

writing, this is called a “Real Time Assessment” and is authored as a series of Tasks, Concepts and 

Conditions.   A project for building this capability has been ongoing and the functionality that is has 

developed is reported elsewhere within these proceedings (F. Davis, Riley, & Goldberg, 2018) , as requested 

and needed in the previous GIFTSym proceedings (F. C. Davis, Riley, & Goldberg, 2017; Ososky, 2017).  

The functionality of the new tool is anticipated to be deployed in the upcoming GIFT release. 

UPCOMING RESEARCH DIRECTIONS: TEAM AND PSYCHOMOTOR 

TRAINING 

Part of the goal of the GIFT project is to expand tutoring systems from relatively well-defined domains to ill-

defined domains, from desktop training to “in the wild” training, and from individual training to team 

training.  This is part of the military interest in intelligent tutoring technologies – Warfighters train as a 

group, and within the training environment. 

Team Training 

In the realm of team training, the GIFT project has recently finished a project reviewing the literature for 

what works with team instruction (RA Sottilare et al., 2017).  Further, a number of small studies of teams 

were completed by the team at Iowa State University (Gilbert et al., 2017).  These research studies were 

useful for the initial assessment of the team models, although are lacking in a number of manners.  As part of 

these research discoveries, the system is being re-architected in a manner so as to support team “roles”, with 

tutoring being role specific, but not team-member specific.  The reasoning behind these decisions can be read 

within other research papers (Brawner, Sinatra, & Gilbert, 2018).  Specific research implementations can be 

read elsewhere within this proceedings (Sinatra, 2018). 

Psychomotor Training 

Psychomotor, or “in the wild” training is a significant part of the reason for military investments in the 

intelligent tutoring technologies.  As part of this effort, work within the domain of marksmanship has been 

well-published (B. Goldberg, Brawner, Amburn, & Westphal, 2014).  Since the previous GIFTSym, the 

GIFT project has put measures in place to support training of tactical breathing (Kim, Sottilare, & Brawner, 

2018) and land navigation.  It does so through the use of a mobile application which reads and reports sensor 

data for physical actions or positioning, respectively, reported to the GIFT server.  In prototype fashion, this 

has worked for one experiment, and a second experiment has been scheduled.  The GIFT Mobile App is 

available upon request, but, at the time of writing, has not been fully tested for functionality. 
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OTHER NEW FUNCTIONALITY 

There are a number of other features which have completed their experimental and developmental cycle are a 

now either scheduled for integration and deployment, as urged in prior GIFTSym publications, or completed.  

For the sake of completeness, these are included in the below list: 

 Copy Course, downloadable in the latest release, deployed to Cloud GIFT 

 VBS3 support, downloadable in the latest release 

 Unity support, downloadable in the latest release 

 Importing surveys from Qualtrics, downloadable in the latest release, deployed to Cloud GIFT 

 Microsoft Band support, downloadable in the latest release 

 Adaptive After Action Review (Brawner, Carlin, et al., 2018; Carlin, Brawner, Nucci, Kramer, & 

Oster, 2017; Carlin et al., 2018), scheduled at time of writing  

GIFT AND IEEE STANDARDS 

As part of this year’s GIFT Symposium, there is an associated standards meeting.  This standards meeting 

will be among those which occurred over the course of the year, including telephone calls, in-person 

meetings, proceedings presentations, and other activities.  The IEEE Learning Technologies Standards 

Committee, with support from the GIFT community and the Government, is now seeking involvement in 

standardization activities.  The GIFT community invites the reader to join the conversation on what data 

exchange standards for learning technologies might look like in the future – there is now active IEEE 

community on the subject, to which the GIFT project is contributing meaningfully.  Interested readers are 

encouraged to go to www.instructionalsciences.org or the IEEE LTSC meetings to become involved. 
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Potential to Migrate ElectronixTutor to GIFT 
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INTRODUCTION 

Integrating disparate learning resources into a common framework presents several standard challenges. The 

learning resources are potentially diverse: texts, videos, diagrams, VR, open-ended and multiple-choice 

questions, natural language tutoring, simulations, and so on. How do we equate progress from one system to 

another? How do we assess a learner’s progress within a learning resource and across resources? How do we 

recommend the best way forward for the learner? How do we handle different roles of users? All these 

critical questions have answers arising from the structure of the Generalized Intelligent Framework for 

Tutoring (GIFT; Sottilare et al., 2012a; 2013). However, if a system has not been created in GIFT from the 

ground up, the potential for migrating into that structure requires careful consideration.  

ElectronixTutor represents the culmination of several years of development in electrical engineering 

intelligent tutoring systems (ITS) (Graesser et al., 2018). In the Office of Naval Research STEM Grand 

Challenge, the University of Memphis is leading an effort to integrate several separately developed 

computer-based learning aids on the topic of electronic circuits. The resulting system constitutes an 

expansive, adaptive pedagogical tool with the potential to substantially elevate conventional instruction. This 

paper discusses the commonalities and differences of ElectronixTutor and GIFT, with an eye toward 

migrating the innovative functionality and breadth of the former into the standardized structure established 

by the latter. There are two primary reasons for this migration: (1) To improve the quality of existing content 

by following GIFT standards, and (2) To allow easier expansion of content and learning resources.  

COMMON FEATURES IN ELECTRONIXTUTOR AND GIFT 

Current implementation of ElectronixTutor is in the form of Moodle (version 3.4.1). Moodle (Dougiamas & 

Taylor, 2003) is a learning platform or course management system. It is a free open source software package 

designed to help educators create effective online courses based on sound pedagogical principles 

(http://www.moodle.org) and it is now the most popular adapted open source learning management system 

worldwide, notably used by US government agencies such as Advanced Distributed Learning and the Office 

of Personnel Management. 

GIFT (www.gifttutoring.org) is an empirically-based, service-oriented framework of tools, methods and 

standards to make it easier to author computer-based tutoring systems (CBTS), manage instruction and 

assess the effect of CBTS, components and methodologies (Sottilare et al., 2012b). GIFT is being developed 

under the Adaptive Tutoring Research Science & Technology project at the Learning in Intelligent Tutoring 

Environments Laboratory, part of the U.S. Army Research Laboratory’s Human Research and Engineering 

Directorate. 

There are high-level similarities between GIFT and ElectronixTutor. The similarities include, but not limited 

to: 

1. ElectronixTutor (as a Moodle implementation) and GIFT are open source and highly used by 

learning organizations. While Moodle is used widely by various learning organizations, 

ElectronixTutor and GIFT are primarily for the government/military of the United States. 

http://www.moodle.org/
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2. ElectronixTutor (not necessarily Moodle) and GIFT are especially designed to integrate theory-

driven, research-based learning resources.  

3. ElectronixTutor and GIFT use the same standards-based learning behavior data repository. 

ElectronixTutor utilizes a module to connect Experience Application Programming Interface (xAPI, 

Advanced Distributed Learning, 2016) and a Learning Record Store (LRS, such as LearningLocker, 

https://learninglocker.net/). GIFT has a utility that sends xAPI statements to the LRS. 

4. ElectronixTutor and GIFT have a Learning Content Management System with built-in authoring 

tools for native learning resources. 

DIFFERENCES BETWEEN ELECTRONIXTUTOR AND GIFT 

There are a few distinctive features that differentiate ElectronixTutor (Moodle) and GIFT that need special 

attention when we migrate ElectronixTutor to GIFT. Some of the distinctions are technological in nature, 

whereas others are based on application details.  

1. Moodle and GIFT are implemented using different underlying technologies. The Moodle interface is 

HTML5 generated by PHP pages with a backend mySQL relational database. The open source 

nature is applicable to almost every aspect of the application, including module integration and a 

look & feel theme integration (and responsive design) that fits a variety of client platforms. GIFT 

was originally designed for military use and has much more restricted underlying technology. It is 

less flexible, but more stable with specially designed modules.  

2. Moodle is optimized as an Internet application and best used as a browser-based application1, such 

that there are no limitations on the source of the learning material as long as it is accessible. GIFT 

has two versions: a cloud-based version and standalone version. While the cloud-based version is 

similar to Moodle, where there are no special limitations on the source of the learning content, the 

stand-alone version limits the source of the learning content. This limitation requires that all learning 

resources are from authenticated sources (in the current implementation of GIFT, they need to be 

from *.gifttutoring.org). This limitation will have some impact when we migrate ElectronixTutor to 

GIFT, if we want to have a GIFT version of ElectronixTutor as a standalone learning platform. 

3. The GIFT domain knowledge is an XML file that contains the information needed to execute a 

single lesson. The information in this file is essential for other GIFT modules, such as the learner 

module and the pedagogy module. ElectronixTutor does not have (and is not intended to have) 

detailed information within each of the integrated learning resources. For example, when 

ElectronixTutor selects one of its component resources, such as AutoTutor or Dragoon, 

ElectronixTutor only uses limited information from the instantiated lesson because it is run on a 

different server and may use a different pedagogy. ElectronixTutor only requires that the learning 

resource returns a value of 0 to 1 on an associated knowledge component and/or topic. 

                                                      

1 There are mobile applications made for Moodle, so there is a non-browser version of Moodle. However, the 

viewing of the learning content still uses a browser on mobile devices.  

https://learninglocker.net/
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SYSTEM MAPPING FROM ELECTRONIXTUTOR TO GIFT 

Given the similarities and differences between Moodle-based ElectronixTutor and GIFT detailed above, we 

consider the following mappings between ElectronixTutor and GIFT.  

From ElectronixTutor Knowledge Components to GIFT Concepts 

The substantial challenge in creating a single, sensibly integrated system like ElectronixTutor includes 

determining a way to have the component systems communicate with one another in a mutually 

comprehensible way. To do this, we use Knowledge Components (KCs) as basic units at the conceptual level 

(Koedinger, Corbett, & Perfetti, 2012). These KCs map onto skills or information in electrical engineering 

and periodically appear in a given learning resource. Each learning resource can contribute a score (varying 

from 0 to 1) on a given KC or combination of KCs for a problem presented to the learner. Scores contribute 

to the learner’s level of mastery on that KC.  

KCs are analogous to the GIFT concept whose assessments are conveyed via game state messages. This 

structure allows them to be integrated as game state messages with two variables: name and value. In a 

migrated GIFT/ElectronixTutor system, the MessageTypeEnum would be updated to include “SaveKCScore” 

as a message type, which would be the message type sent each time a learner completes an item and 

generates a KC (concept) score. Conditions that assess the game state messages could simply return the 

name/value pair provided. 

From ElectronixTutor Learning Resources to GIFT Modules/Lessons 

ElectronixTutor includes several distinct learning resources that range from ITSs to conventional learning 

aids. They include simple multiple-choice questions that provide feedback and adaptivity (BEETLE-II, 

LearnForm), questions on skill building (ASSISTments), component manipulation and simulated circuit 

problems (Dragoon), and conversational deep reasoning and knowledge checks (AutoTutor). These 

intelligent and adaptive systems complement more traditional static resources such as topic summaries and 

Navy manual readings (NEETS). These learning resources are analogous to the GIFT Learner Module. Each 

learning resource could be integrated as a course object. 

Of all these modules, some (such as Dragoon and ASSISTments) are integrated as external applications. 

Others (hypertext such as videos, slides, etc.) can be re-authored and improved using existing GIFT course 

objects for topic introductions, and conventional surveys or tests for assessments. The most complicated 

resource, AutoTutor, is already an object as part of GIFT. As we have pointed out earlier, if ElectronixTutor 

resources are external (such as Dragoon and ASSISTments), they will not be available for the standalone 

GIFT unless they are implemented with the authenticated servers (such as *.gifttutoring.org). 

From ElectronixTutor Resource Organization to GIFT Domain Course File 

In ElectronixTutor, learning resources are organized by our Recommender System, combining typical course 

progression and user characteristics to identify optimal next steps. These take the form of Topic of the Day 

and Recommended Items. Users can also self-direct learning. Within GIFT modules, learning resources 

within a course are organized by a domain course file. A domain course file is an XML file that contains the 

information needed to follow a single course, which may contain one or more lessons. The domain course 

file allows substantial control and flexibility in determining the flow between course objects. Externally 

integrated learning resources and GIFT-native resources are organized in the domain course file (in the form 
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of XML). ElectronixTutor’s resource organization and GIFT domain course file can be made structurally 

equivalent, so that ElectronixTutor’s Recommender System can be mimicked by GIFT. 

Topic of the Day 

Determining what content to present to the learner at a given time is handled by our Recommender System. 

This pedagogical component considers a typical progression through electrical engineering education 

(roughly equivalent to a syllabus), where the learner has exhibited proficiency (from the Learning Record 

Store), and on which types of learning resources the learner has performed well or poorly. Topics always 

begin with a topic summary to orient (or reorient) the learner, then progress to a conversational reasoning 

question. These fall roughly in the upper-middle of the difficulty spectrum among the ITSs and hold the most 

potential for discriminating the level of proficiency among aspects of a single question. Based on 

performance, the Recommender System can send users “up” to the most difficult Dragoon problems, or 

“down” to multiple choice, decomposed circuit problems, skill builder items on Ohm’s or Kirchhoff’s laws, 

and possibly to summary static readings. This process involves differential determinations based on KCs 

constituent to the topic, so excellence in one area does not supersede the learning trajectory of another topic. 

The selection of learning resources for the topic of the day could be handled in GIFT’s pedagogical module.  

Recommended Items 

Recommended items are generated from a combination of learner KC scores and pre-defined rules. Among 

these rules, topics are repeated if a learner’s topic performance score falls below a threshold. Next there is a 

focus on underperforming knowledge components. Topics with medium performance scores and individual 

knowledge component scores below a threshold are recommended. In addition, we include an option to 

“push the envelope”, where learners who often perform above a threshold receive resources that have a 

higher intrinsic difficulty. Finally, we have motivated and unmotivated “bottom dwellers”, where bottom 

dweller is defined by topic performance scores often occurring below a threshold whereas motivation is 

determined by falling outside of processing time thresholds. The Recommender System is more complex 

than expressed here, but it is beyond the scope of this document to give a full specification. 

These rules that the Recommender System uses are analogous to some but not all of the GIFT strategies. 

More generally, the Recommender System is handled by GIFT’s pedagogical module and could be encoded 

as such in our migration. Further, the Recommender System’s consideration for learner aptitude on various 

learning resources could dovetail with the ICAP framework (Chi & Wylie, 2014) available within GIFT. 

This framework delineates stages of interactivity with a learning system—interactive, constructive, active, 

and passive—that correspond neatly with current learning resources.  

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

ElectronixTutor is currently implemented within the open source Moodle infrastructure. Moodle provides 

different user roles, a common housing for learning content (in the “activity window”), and a broad 

community of users from which to draw inspiration or consult on obstacles. But Moodle does not afford 

analysis and alteration at a fine-grained level, a positive feature of GIFT (Sottilare et al., 2013). This paper 

identifies some of the structural similarities of ElectronixTutor and GIFT at a high-level specification with 

the ultimate goal of migration to GIFT. Our focus now turns to how that migration can proceed.  

 

The challenges listed above, and their respective solutions in the current manifestation of ElectronixTutor, 

have many similarities to the GIFT architecture. First, GIFT’s User Module is directly analogous to our 
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Learning Record Store. Both use xAPI and serve the purpose of informing the system of user characteristics 

relative to the system. The Domain Module in GIFT corresponds closely to the knowledge components and 

topic mastery adopted in ElectronixTutor. These domain-specific aspects of learning serve as the currency to 

evaluate learner progress. That progress is managed in GIFT by the Pedagogical Module, structurally similar 

to the Recommender System described above.  

 

We are exploring the process of migrating ElectronixTutor from the Moodle infrastructure to GIFT. The 

primary challenges lie in the details. For example, the custom-made Recommender System serves a similar 

function to the Pedagogical Module, but the pedagogical rules are not exactly the same. Likewise, Moodle 

presents the Learning Resources in an idiosyncratic way, with unclear mappings to GIFT interface structures. 

This paper describes a preliminary evaluation of the challenges and opportunities for integration of the 

ElectronixTutor system within GIFT. 
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INTRODUCTION 

Adaptive Training is intelligently tailored, computer-guided experiences for individuals and units focused on 

optimizing training performance, training efficiency, deep learning, and transfer of skills to the operational 

environment. Training adaptation is multi-faceted. For example, training must adapt to the needs of the 

individual trainee as well as organizational groupings of trainees (e.g., an Army unit). Training must be 

tailored based on trainee and team state (cognitive, affective, social, etc.) and to trainee and team task 

performance. Adaptations might be determined and delivered in real time during training events or 

determined through assessment of learner data over extended time and delivered periodically (non-real time). 

Adaptations may seek to inform and optimize instructional strategies both during training and off-line 

(between training sessions). From a "training systems" life cycle perspective, the adaptation approaches must 

seek to optimize training over learner and team lifecycles through optimal blending of training types and 

modalities (e.g., computer-based, game-based, simulation-based, Live, Virtual, Constructive, and Game 

(LVC&G), etc.). A central barrier that impedes increased use of adaptive team training is the time and cost 

required to build and maintain these complex training applications. This paper describes an ontology-driven 

framework method that targets this challenge. The paper describes: (i) an ontology-driven method for hybrid 

(multi-domain, multi-task, multi-objective) adaptive team training; (ii) an enhanced Generalized Intelligent 

Framework for Tutoring (GIFT) architecture to support the hybrid adaptive team training method; (iii) sensor 

and task based individual and team performance evaluation approach; and (iv) hybrid adaptive training 

application examples that show the practical benefits of the method. 

Current simulation-based training systems are incapable of dynamically generating and maintaining 

scenarios in an instructionally sound manner.  Instead, scenarios are hand-crafted, static representations of 

training and mission contexts (Benjamin et al, 2012).  The research described in this paper targets the multi-

domain team adaptive training challenge – the ability to affordably build training applications in different 

domains that dynamically adapt training to rapidly changing learner needs.  The long term goal of our 

research is to establish a multi-domain team, adaptive training capability suitable for application to a variety 

of warfighter contexts. 

MOTIVATIONS 

Current simulation-based training systems are incapable of dynamically generating and maintaining 

scenarios in an instructionally sound manner.  Instead, scenarios are hand-crafted, static representations of 

training and mission contexts (Benjamin, Akella, Malek, & Fernandes, 2005).  The research described in this 

paper targets the multi-domain hybrid team adaptive training challenge – the ability to affordably execute 

team trainings in different domains that dynamically adapt to rapidly changing learner needs.  The long term 
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goal of our research is to establish a multi-domain adaptive team training capability suitable for application 

to a variety of warfighter contexts. 

Federated military simulation-based training exercises typically require the exchange of information between 

multiple warfighter functional areas and echelons.  The complexity of mediating these information 

exchanges is intensified because of the multiplicity of simulation-based training tools and systems that are 

required in such training exercises.   

Simulation-based training models require the representation of complex information structures.  The 

information contained in these models depends on a systematic connection between the components of the 

representation and the real world.  It is this connection that determines the semantic content of the data being 

represented.  Generally, the semantic rules of a representation system for a given application of a simulation-

based training tool and the semantic intentions of the tool designers are not advertised or in any way 

accessible to other agents in the warfighter organization.  This makes it difficult for such agents to determine 

the semantic content of the simulation-based training models.  We refer to this as the problem of semantic 

inaccessibility (Benjamin et al, 2005).  This problem often manifests itself in different ways, including 

unresolved ambiguity (as when the same term is used in different contexts with different meanings) and 

unidentified redundancy (as when different terms are used in different contexts with the same meanings).   

An important practical problem is – how to determine the presence of ambiguity and redundancy in the first 

place? In other words, how can we assess the semantics of simulation-based training data across different 

contexts?  How can we define the semantics objectively in a way that permits accurate interpretation by 

agents outside the immediate context of this data?  Our focus in this paper is to provide a solution approach 

to address this problem for simulation-based adaptive training applications that use GIFT. 

GIFT 

The Army Research Laboratory (ARL) is developing GIFT as part of its adaptive training research program.  

Adaptive Training is “intelligently tailored, computer-guided experiences for individuals and units focused 

on optimizing training performance, training efficiency, deep learning, and transfer of skills to the 

operational environment” (Sottilare, 2014).  Training ‘adaptation’ can be multi-faceted.  For the trainee, the 

delivery of training must adapt to individual trainee needs, as well as to the organizational groupings of 

trainees (e.g., an Army unit).  Training must be tailored to trainee state (cognitive, affective, psychomotor, 

social, etc.) and to trainee task performance (Sottilare, 2013).  Adaptations might be determined and 

delivered in real time during training events or determined through assessment of learner data over extended 

time and delivered periodically (non-real time).  Adaptations may seek to inform and optimize instructional 

strategies both during training and off-line (between training sessions).  Training content adaptations might 

be automated, semi-automated, or human (instructor)-driven.  From a ‘training systems’ lifecycle 

perspective, the adaptation approaches must seek to optimize training through optimal blending of training 

types and modalities (e.g., computer-based, tutor-based, game-based, simulation-based, live training-based, 

etc.).  In support of ARL’s adaptive training research, GIFT is being developed as open-source software, 

with a modular architecture whose goals are to reduce the cost and skill required for authoring adaptive 

training and educational systems, to automate instructional delivery and management, and to develop and 

standardize tools for the evaluation of adaptive training and educational technologies. 
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ONTOLOGY-DRIVEN METHOD FOR HYBRID TEAM ADAPTIVE 

TRAINING  

The ontology-driven method for hybrid team adaptive training is summarized using the IDEF0 function 

modeling method (Figure 4). 

 

 

 
Figure 4. Ontology-Driven Training Application Integration Method 

The steps of the ontology-driven training application integration approach are: 1) Establish and Maintain 

GIFT Ontology; 2) Establish Hybrid Team Reference Ontologies; 3) Determine Ontology Mappings; 4) 

Determine Hybrid Team Training Flow; 5) Evaluate Hybrid Team Performance; and 6) Adapt Hybrid Team 

Training.  These activities are described in greater detail in the following paragraphs. 

Establish and Maintain GIFT Ontology 

The creation and maintenance of a GIFT ontology is an important first step towards building GIFT-enabled 

integrated simulation-based training applications.  The multifaceted GIFT ontology includes concepts such 

as course, scenario, task, assessment, and conditions, in addition to classes, vocabulary, and attributes 

(Figure 5).  An important aspect of the ontology are the relationships between the concepts and the 

cardinality restrictions of GIFT attributes.  An initial GIFT ontology has been developed (Benjamin et al 

2016).  Once the GIFT ontology has been developed, it needs to be maintained over extended time. 
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Figure 5. GIFT Ontology Fragment 

Hybrid Team Ontologies 

This important activity formulates mappings between the GIFT Ontology and the ontologies of the team or 

teams involved in the training (Figure 6). Note that for a given military training event, a federation of several 

simulation tools and models often need to be integrated and made to work together in an effective manner 

that addresses the warfighter training objectives. 

 

Figure 6. Mapping Team Ontologies to the GIFT Ontology 

Such a method results in a framework that is configurable to different target domains through the insertion of 

an ontology of that target domain.  We refer to this reconfiguration strategy using the term ‘ontology-based’.  

The basic idea is to create and maintain an adaptive-training reference ontology that is utilized to 
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semantically determine and mediate the needed data and information exchanges between the adaptation 

framework elements and the core training system elements.  Additionally, the ontology provides the 

adaptation framework with the domain knowledge required to evaluate team performance (using both task 

and sensor based methods).  

Example Hybrid Team Ontology 

An example application ontology for hybrid adaptive team training is shown in Figure 7. This ontology 

includes various components of an intelligence domain team interacting with a medical team to execute 

attending to wounded during attacks.  The ontology is not meant to be comprehensive but is intended to 

provide basic constructs of an ontology that is useful for hybrid multi-domain adaptive team training.  The 

ontology includes team member roles, training applications, tasks, dependencies (e.g. member 1 task 1 

triggers member 2 task 2), and evaluation methods.  If this type of ontology model was to be utilized by 

GIFT, it would need to be mapped to various components of the GIFT domain knowledge files (DKFs) for 

each member of team.   

 

Figure 7. Notional Application Ontology Example for Hybrid Adaptive Team Training 

Team Performance Evaluation Approach 

The method incorporates the fusion of both sensor and task based team performance evaluation.  Using an 

ontology (or set of ontologies), a system such as GIFT would help with the extraction of the necessary 

domain knowledge for robust hybrid team performance assessment. The method utilizes Bayesian data 

fusion techniques to integrate team sensor and task data in order to determine overall team performance 

scores. 



 

 

Proceedings of the 6th Annual GIFT Users Symposium (GIFTSym6) 

 

 

38 

 

 

Figure 8. Evaluation Criteria Extracted from Ontology and Fused for Team Performance Evaluation 

Sensor-Based Team Training Performance Evaluation 

The sensor-based performance evaluation activity involves: (i) measuring cognitive indices from multiple 

sensors; and (ii) inferring cognitive states and trainee learning conditions using multi-senor data fusion.  The 

reference ontology is used to: (i) select a set of cognitive indices and cognitive states relative to the training 

application objectives; (ii) adapt a multi-sensor data analyses suite to determine values of the selected indices 

and states; and (iii) map the cognitive states to trainee and team learning conditions. Figure 9 shows a high 

level concept of sensor data information fusion.  It is assumed that artificial neural networks (or other 

analytical methods) are being utilized within the sensor module to evaluate learner state based on data 

coming from sensors. 
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Figure 9. Sensor Data Fusion for Performance Evaluation 

Task-Based Team Training Performance 

The task-based measurements are tied to: (i) the overall mission outcomes; (ii) individual trainee skills; and 

(iii) team skills.  The reference ontology is then utilized to determine how specific task data applies to the 

outcomes and skills (both individual and team). A rule-based approach is then utilized to encode the logic to 

compute the values of objective metrics from training system output data.   

Team Training Performance Evaluation Example 

for a proof of concept demonstration implementation of  multi-domain adaptive team training using Tactical 

Combat Casualty Care Simulation (TC3 Sim) tool, the Generalized Intelligent Framework for Tutoring 

(GIFT) software, and KBSI’s MAESTRO™ (ISR training tool) is described here.  TC3 Sim is used to run a 

battlefield medical evacuation training scenario where the trainee is a medic who is embedded with a unit 

patrolling hostile streets.  The squad leader is tasked with locating the village elder to discuss opportunities 

for local support and humanitarian aid.  Intelligence reports indicate possible insurgent activity in the 

surrounding buildings.  The unit is to secure the area while discussions are held to improve safety.  When the 

unit is engaging insurgents, the medic should apply proper techniques of care under fire and tactical field 

care where appropriate.  In parallel, MAESTROTM is training intelligence personnel to gather real-time 

hostile data, process them, and feed situational awareness information to the squad leader in the TC3 Sim.  

The functions supported for training in the MAESTROTM scenario are ISR supported by the Mission 

Intelligence Commander (MIC), CAS supported by MQ-1 and A-10 platforms, JTAC who also interacts with 

the squad leader in TC3 Sim scenario, and the Ground Force Commander (GFC).   

In this notional multi-domain team training, two sets of tasked-based performance evaluation metrics have 

been designed, one set of metrics for the ISR Team training in MAESTROTM and the second set of metrics 

for the Patrol Team training in TC3 Sim.  The metrics for the ISR Team include: (1) did the MIC review the 

COP and send out follow up information on time? (2) did the MIC send the message to the right person? (3) 

did the MIC follow up with the person to whom he send the information? and (4) did the MIC use 

communication standards (with brevity and using the right terminology) while relaying information?  

Example metrics for the Patrol Team include: (1) was the criteria “stay close” violated? (2) by what margin 

(distance and time) did the team violate safe distance from building? (3) did the medic stop bleeding and 

stabilize victim? (4) did MEDEVAC process get initiated at the right time? and (5) did the Patrol Team 
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leader send acknowledge message to the MIC after receiving recommendations?  Each team is evaluated in 

their own environment and corrective (adaptation) strategies are used in each environment to rectify 

deficiencies.  The advantage of using a multi-domain team in this example application situation is that there 

is real synergy with different team members complementing each other’s effort while cooperatively working 

to achieve overarching and shared mission goals.   

In addition to the task-based performance evaluation criteria, sensor-based measurements are also captured to 

determine the cognitive state of the MIC and the Medic.  Example metrics for the ISR Team include (1) 

maintaining acceptable stress levels, (2) fatigue management, and (3) attentiveness.  Metrics for the Patrol 

Team include (1) limiting nervousness (for example, manifested ‘shaking’) by the Medic, (2) alertness, and 

(3) maintaining acceptable stress levels.   

Once the team performance evaluations are completed using the metrics described earlier, the individual 

trainees and the teams are ‘graded’.  The results of the performance evaluation were used to recommend 

adaptation strategies for (1) the two teams in MAESTRO and TC3Sim; (2) the ISR Team in MAESTRO; and 

(3) the Patrol Team in TC3 Sim.  To illustrate, suppose that the MIC does not use communication standards 

to relay information and that the unit leader does not acknowledge the message after receiving information 

from the MIC, then recommending that both the teams (ISR and patrol) must review “communication 

standards” learning module is an example of an appropriate adaptation strategy.  An example adaptation 

strategy for the ISR Team is as follows: when the MIC is overwhelmed because of ‘information overload’, 

he/she may not relay timely information to his/her squad leader.  To rectify this deficiency, the ISR Team is 

introduced to several ‘drills’ (simple scenarios) to help them achieve higher levels of the “situational 

awareness” skill.  If it is observed that a Patrol Team, in TC3 Sim, is violating the “stay close” criteria then 

the instructor would relax the ‘distance margin’ in order to help the team get more familiar with the team 

coordination effort and to better recognize uncertainties.   

A GIFT-BASED ARCHITECTURE FOR MULTI-DOMAIN TEAM 

ADAPTIVE TRAINING 

This section describes the two conceptual design options of a GIFT-based architecture for multi-domain 

hybrid team adaptive training using task and sensor based performance evaluation.  

Overview 

Currently, GIFT supports training in various domains with performance evaluations and adaptations specific 

to the training applications in those domains.  Our goal is to enhance and extend GIFT so that it will be able 

to support multi-domain hybrid team adaptive training without the need for team-specific extensions to 

GIFT.  In order to reach this goal, we have designed a method (outlined in the previous section) and two 

different architecture options for extending GIFT to support multi-domain hybrid team training.  As noted in 

the previous section, the ontologies provide the basis for allowing GIFT to ‘understand’ team structures and 

appropriately adapt the training content.  In GIFT terms, this would mostly involve an extension/plug-in 

utilized by the Domain Module. At the point of writing this paper, it is assumed that GIFT is being / has been 

extended to support team training (e.g. Team DKF, Team Model, and Team Pedagogy).  

GIFT Architecture Extension Option 1 

The first potential architecture extension (see Figure 10) is the less complex of the two options identified in 

this paper.  It would include only extensions to the existing GIFT code base, with very little modification of 
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the current code.  This architecture would contain three new components/plugins/services: 1) an Ontology 

Mapper; 2) a DKF Builder; and 3) a Bayesian Fusion Engine.   The Ontology Mapper would be utilized to 

map a team ontology to the GIFT ontology and the DFK Builder would build appropriate DKF files (both 

team and individual) based on the mappings.  There would then be picked up and utilized by GIFT’s current 

team and individual training execution and evaluation components.  The third new component, the Bayesian 

Fusion Engine, would be utilized by the Learner/Team Module to fuse individual and team states into overall 

team performance states.  In order for the Bayesian Fusion Engine to “know” how to fuse the states, the team 

DKF file would need to include state weighting information. 

 

Figure 10. Option 1 GIFT Architecture Extensions 

GIFT Architecture Extension Option 2 

The second potential architecture enhancement (see Figure 11) would require more extensive modification to 

the existing GIFT code base.  This architecture would contain two new components/plugins/services: 1) an 

Ontology Mapper; and 2) a Bayesian Fusion Engine.   Additionally, the Domain Module would have to be 

modified so that it could not only interpret/read DKF files, but also various ontology files and format.  The 

Ontology Mapper would be utilized by the Domain Module to map a team ontology to the GIFT ontology.  

The mapped ontology would then be utilized directly by the Domain Module to configure domain specifics 

of GIFT training sessions.  Furthermore, similar to Option 1, the Bayesian Fusion Engine would be utilized 

by the Learner/Team Module to fuse individual and team states into overall team performance states.   
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Figure 11. Option 2 GIFT Architecture Extensions  

Example: MaestroTM with GIFT and TC3 Sim for Multi-domain Team Training 

The notional scenario outlined in the “Task-Based Team Training Performance” section is described in detail 

here. The previously descried architecture options would support this training example in GIFT.  For the 

example, we will refer to the overall team, which includes the ISR Team and the Patrol Team, as the Hybrid 

Team.  In Figure 12, the image of ground assault teams engaged in mission is presented as (Common 

Operational Picture) COP inject to the MIC in MAESTROTM.  Looking at the image, the MIC should relay 

this information and follow up action (recommendation) to the unit on the ground within reasonable amount 

of time so that the relevance of the information remains current and timely.  The recommendation can be 

relayed either via chat messages or audio messages and a notional message for this situation can take the 

form of “You are too exposed, stay closer to the buildings, and stay out of sight.”  This message is sent to 

GIFT software which is routed to the TC3 Sim scenario and evaluated by the learn module as a correct 

response (at expectation).  As the unit is patrolling, suppose that an IED goes off at a distance and shrapnel 

hits a member of the unit.  The medic embedded with the unit now initiates a ‘victim stabilization’ process 

and then GIFT evaluates the medic’s performance as being ‘at expectation’.   

 

Figure 12: Information Flow between MAESTRO and TC3 Sim 
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Figure 13: ISR Team Simulation Data Captured in MAESTRO™ 

When a scenario is executed in MAESTROTM, incorrect responses, correct responses, and instructor recorded 

comments are logged and persistently stored in the database.  The categories of performance metrics are late 

response, echo in wrong chat room, incorrect response, response in wrong chat room, positive tag (best 

practices of trainees), and negative tag (egregious mistakes observed by instructor).  Responses to injects, in 

the form of chat messages, are evaluated in MAESTROTM as shown in the timeline view of Figure 13.  

MAESTROTM has the ability to persistently store trainees responses and this give the ability to collect vital 

statistics on their performance like how many times a trainee responded incorrectly, how many times trainee 

missed to response, average late response time of a trainee, etc.  The performance metrics derived from 

MAESTROTM evaluation are sent to SIMILE workbench, performance evaluation engine in GIFT, to 

determine trainee’s grade.  For example, trainee’s grade is set as below expectation if all the following 

conditions are met: (a) Echo in Wrong Chat Room > 3; (b) Incorrect Response >= 2; (c) Late Response > 3; 

(d) Negative Tag > 2; and (e) Positive Tag = 0.  Likewise, other rules are scripted for at expectation and 

above expectation grades.  These rules can be edited and tailored made for scenarios being trained.  

Adaptation rules can be developed to address observed deficiencies and recommend training scenarios for 

ISR Team in MAESTROTM tool.   
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Figure 14: Notional Evaluation Rules Scripted in the SIMILE Engine Using TC3 Sim Data 

There are a total of 60 injects defined in MAESTROTM and five of those injects (audio format) are routed to 

TC3 Sim through GIFT software.  The routed injects, initiated at certain times, are mapped to specific TC3 

concepts.  Three of the concepts – “stay with unit,” “return fire,” and “move to safe zone” – are found to be 

at ‘below expectation’ grade.  The trainee responses in TC3 environment is logged, which are evaluated to 

derive several metrics such as the one listed under the TC3 Metrics column in Figure 14.  Derived metrics 

are used to evaluate the TC3 concepts by SIMILE workbench engine, which uses scripted rules as shown in 

the figure.  Adaptation rules can be developed to address observed deficiencies and recommend training 

scenarios for Patrol Team in TC3 Sim environment.   

Now that performance states have been capture for both the TC3 trainees and MAESTROTM trainees, results 

are sent to the Bayesian Fusion Engine.  The Bayesian Fusion Engine combines the performance states into a 

final team state, resulting in an at expectation grade for the team as a whole. 

Adaptation rules are scripted for various performance grades to help trainees learn skills better by gradually 

presenting complex training concepts in a methodical way.  Examples of adaptation rules for the ISR Team 

in MAESTROTM environment include: (1) for ‘below expectation’ performance grade -- remove any TWO 

role types, remove injects that have more than ONE expectation, and remove injects that have expectation 

duration of less than 40 seconds; (2) for ‘at expectation’ performance grade -- remove any ONE role type and 

remove injects that have expectation duration of less than 20 seconds; and (3) for ‘above expectation’ 

performance grade -- reduce ALL expectations duration by 30% and eliminate FEW (three to five) COP 

images to impact situational awareness.  The first two adaptation rules are meant to reduce the complexity of 

the scenario so that the trainees can assimilate concepts better.  Third adaptation rule will increase the 

complexity of the scenario and help trainees enhance skills.   

Adaptation rules are scripted for various performance grades to help trainees learn skills better by gradually 

presenting complex training concepts in a methodical way.  Examples of adaptation rules for the Patrol Team 

in TC3 Sim environment include: (1) if less than 15% of the concepts are graded to be ‘below expectation’ 

then have the trainees review PowerPoint presentation on TTPs of key concept areas and repeat the scenario; 
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(2) if 20% to 30% of the concepts are graded to be ‘below expectation’ then relax grading criteria on 

concepts, for example, the distance range for being away from the unit can be increased from 10 meters to 20 

meters and with these adjustments the scenario can be repeated; and (3) if more than 30% of the concepts are 

graded to be ‘below expectation’ then the interface with the external team (ISR Team in MAESTROTM) can 

be removed and have the Patrol Team train exclusively within TC3 Sim environment.  These adaptation rules 

are gradually reducing complexity based on logical reasoning with the purpose of helping trainees learn 

better.   

Finally, adaption rules are built for various performance grades of the Hybrid Team as a whole.  These can 

become very complex if individual performance grades were taken into consideration.  For simplicity, we 

will consider only the overall team grade for these adaptation rules. Examples of Hybrid Team adaption rules 

include: (1) if ‘below expectation’, remove MAESTROTM injects containing more than one response 

expectation and send a PowerPoint presentation to the TC3 team to review TTPS; (2) if ‘at expectation’, 

increate simulation speed for MAESTROTM and TC3 by 10%; (3) if ‘above expectation’, reduce response 

time criteria for the ISR Team and the Patrol Team by 30%. In a more complex adaption configuration, team 

member weighting values could be utilized to determine more robust team adaptations. 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

The paper describes: (i) an ontology-driven method for hybrid adaptive team training; (ii) an enhanced 

Generalized Intelligent Framework for Tutoring (GIFT) architecture to support the hybrid adaptive team 

training method; and (iii) a hybrid adaptive team training application example that shows the practical 

benefits of the method.  Innovative aspects of the research described in this paper include: (i) a new 

ontology-based approach for hybrid adaptive team training; (ii) a standards-compliant and component-based 

architecting strategy that allows for rapid and affordable deployment of the adaptive training framework; and 

(iii) the ability to automate the generation of adaptive training scenarios.  Benefits include: (i) reduced 

training costs; (ii) improved team training effectiveness; (iii) reduced cognitive workload for instructors; (iv) 

significantly reduced time and effort for semantic knowledge sharing, communication, and semantic 

integration for distributed training applications; and (v) improvements in learner and team performance. 

Areas that would benefit from R&D include: (i) methods for extending and generalizing the GIFT adaptive 

team training reference ontologies; (ii) design of automated support for ontology analysis and harmonization 

to support training application integration; (iii) design and implementation of inter-application information 

exchanges with GIFT for a broader range of training application areas; and (iv) design of mechanisms to 

mediate and exchange adaptive training content across multiple training modalities and types. 
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THEME II:  

GIFT AUTHORING TOOLS 
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The GIFT Authoring Experience: 2018 Update  
 

Rodney A. Long1, Robert A. Sottilare, Ph.D.1 

Army Research Laboratory 1 

INTRODUCTION 

Intelligent tutoring systems (ITSs) are computer-based adaptive instructional systems (AISs) “that guide 

learning experiences by tailoring instruction and recommendations based on the goals, needs, and 

preferences of each learner in the context of domain learning objectives” (Sottilare & Brawner, 2018, p. 25).  

In general, the more adaptive an ITS is, “the more content it needs to support tailoring and personalization of 

instruction – which also leads to longer development times and higher costs” (Sottilare & Fletcher, 2018, p. 

1-2). 

The three primary barriers to the adoption of ITSs are 1) their cost, 2) the specialized skills required to build 

them, and 3) their lack of standardization and thereby lack of reusability.  All of these factors influence cost 

and therefore reduce the return-on-investment.  Their cost is largely driven by the usability (or lack of 

usability) of authoring tools and the high degree of skill in instructional design, domain knowledge, and 

computer programming required to construct and ITS that can function without human intervention.  

A major goal of the authoring tools for the Generalized Intelligent Framework for Tutoring (GIFT; Ososky, 

Sottilare, Brawner, Long, and Graesser, 2015) is to ease the development of ITSs in a variety of domains: 

cognitive, affective, psychomotor and social (Sottilare, Goldberg, Brawner, & Holden, 2012).  With this goal 

in mind, the US Army Research Laboratory (ARL) focused their authoring research and development in 

2017-2018 in four primary areas: 

 Enhance the user interface to make it easier to develop ITSs 

 Enhance user support for authoring tasks 

 Expand authoring support for new capabilities 

 Identifying opportunities for AIS standards 

ENHANCE THE GIFT USER INTERFACE 

In 2017, the cloud-based GIFT authoring tool was completely redesigned to allow users, without 

Instructional Systems Design (ISD) or computer programming expertise, to develop an intelligent tutor. As 

described in (Ososky, 2017), the redesigned authoring tools provide a graphical view of the adaptive course 

that is being created or modified. Figure 1 shows the current authoring tool which is made up of three 

frames. The one on the left shows the Course Properties (top), types of Course Objects that the author may 

choose (middle), and any media that the user has uploaded for use in the course (bottom). The center frame is 

the Visual Flow Editor and shows the flow of the course and allows the author to drag and drop various types 

of course objects onto the course flow diagram and then configure them to the specific domain of instruction. 

On the right side of the display is the Editing Frame that allows the user to edit/configure the selected course 

object. The focus of this paper is on new approaches to support GIFT authors to improve the user experience 

(UX), as well as authoring tool changes resulting from research conducted over the past year to add new 

capabilities to GIFT.  
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Figure 15. GIFT Authoring Tool 

ENHANCE GIFT USER SUPPORT 

In January 2017, a team of researchers from ARL went to Fort Benning, Georgia to gather feedback on the 

newly re-designed GIFT Authoring Tool from potential military users. While the collected data showed that 

there was some improvement over previous versions of the authoring tool, there was still much work to be 

done. To provide additional support for the GIFT authors, ARL commissioned the development of a GIFT 

Summer Camp to provide detailed instruction for potential ITS authors, the development of several GIFT 

instructional videos, and the production of exemplar tutors to illustrate how GIFT tutors are 

constructed/configured. 

GIFT Summer Camp 

The ultimate goal for GIFT is that a domain Subject Matter Expert (SME) should be able to use the GIFT 

authoring tools to develop adaptive instruction (e.g., training course) without any additional help from 

instructional systems designers, computer programmers, etc. While we have come very close to reaching that 

goal, some users may still need some help in using the authoring tools. As a result, we developed a two day 

course, GIFT Summer Camp that teaches participants how to use the GIFT authoring tools to create an 

adaptive training course. Learning material was provided to the participants to use in making an adaptive 

training course on human anatomy using GIFT. Participant feedback was collected and may be used to 

provide a commercial offering of the course in the future. 
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GIFT Instructional Videos 

Since not everyone will be able to attend a GIFT Summer Camp session, we have also generated several 

educational youtube videos that demonstrate how to use the various features of the GIFT authoring tools 

(https://www.youtube.com/watch?v=nGywC-jf0Mk). Table 1 provides a current list of the videos. More 

instructional videos will be added in the future to guide GIFT users. 

Table 1 – List of Available Gift Instructional Videos 

About GIFT  Difference between types of surveys 

GIFT Authoring Process Import Tutor 

Cloud vs. Downloadable GIFT Copy Tutor 

Adding a Survey Metadata Tagging 

Importing Media Course Concepts 

Where to find help  Linking to a simulation 

Computer-based Training vs Intelligent Tutors Question bank 

GIFTSym and Community Powerpoint vs Slideshow 

Course Objects Overview  Case Study – Excavator Simulator 

Export Tutor Making an experiment  

 

Since new functionality is continually being added to GIFT, the use of instructional videos is a quick and 

effective method to support GIFT authors in developing tutors. The videos are made in three phases: the 

script generation, the video demonstration, and the voice/video integration. The script is created and 

reviewed by the GIFT team to insure accuracy. We then have someone perform the specific function using 

GIFT while video capture software records the video from the computer screen. Once that is accomplished, 

the video is played back while the narration is captured. After final quality assurance and security review, the 

video is posted on youtube (Figure 2).  

https://www.youtube.com/watch?v=nGywC-jf0Mk
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Figure 2. GIFT Instructional Video on YouTube 

Exemplar ITSs 

To improve usability, we provided a set of public tutors that authors can use a models or exemplar tutors to 

guide development of their own tutors.  While the exemplar tutors are not full ITSs, they do illustrate how 

authors are using GIFT to develop tutors in a variety of domains.  Starting in FY18, ARL will be developing 

three additional tutors using the GIFT authoring tools to train knowledge and skills within three military 

contexts – land navigation, intelligence reporting, and visual signaling. The tutors will be authored to include 

multimedia components and will incorporate instructional system design principles for adaptive learning 

environments, to include passive, didactic training as well as interactive practice and rehearsal in prototypical 

scenarios. The GIFT-based tutors will incorporate external training applications like Unity and Virtual Battle 

Space (VBS3), and Leap Motion technology to incorporate real-time performance assessments to drive 

adaptive instruction.  

Throughout the development of the tutors, GIFT will be continually assessed and usability issues will be 

identified. The tutor development process will also be thoroughly documented. The project will provide a 

systematic evaluation of GIFT usability, with recommendations for areas of improvement in user interface 

design and user experience. The research will result in high quality, sharable tutor exemplars highlighting the 

“art of the possible” in developing ITSs with GIFT. The documented process to developing tutors will 

benefit other authors in the GIFT community, demonstrating GIFT’s utility for creating effective adaptive 

training. 
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AUTHORING SUPPORT FOR NEW CAPABILITIES 

There has been a lot of new functionality added to GIFT over the past year. Most of these capabilities 

required changes to the GIFT authoring tools. The resulting new capabilities are discussed below.  

Learning Tools Interoperability (LTI) 

Last year, the LTI protocol (https://imsglobal.org/activity/learning-tools-interoperability) was partially 

implemented in GIFT to support ongoing research in the use of Massively Open Online Courses (MOOCs; 

Aleven et al., 2017). MOOCs are typically made up of recorded video lectures and outside learning 

activities. The main problem with MOOCs, however, is the very high drop-out rate compared to other on-

line learning environments. The goal for this project is to provide additional support to the leaners through 

the use of ITSs, to include CTAT and GIFT, to support the Big Data in Education MOOC. The GIFT 

authoring tools were modified to support LTI version 1.0 as an LTI provider. As a result, GIFT could 

send/provide learner performance data from these activities to the LTI compliant Learning Management 

System (LMS) including edX, Canvas, and Blackboard. This year, the rest of the LTI has been implemented 

and now makes GIFT an LTI consumer. This new capability allows GIFT to receive data from other 

educational systems. For example, GIFT can now use LTI to receive learner performance data from a CTAT 

tutor. This new capability allows GIFT to control the outer loop of a course (e.g., macro-adaptation) while 

the CTAT tutor supports the inner loop (micro-adaptation. 

Sketching Activities 

Over the past year, the Army Research Laboratory (ARL) and Northwestern University have been exploring 

sketching technologies to support spatial learning, as part of on-going cooperative research in adaptive 

training technologies (Long, Forbus, Hinrichs, & Hill, 2018). Cogsketch and its associated Sketch 

Worksheets were designed to be general-purpose and use artificial intelligence to provide feedback to the 

learner performing sketching assignments (Figure 3). Cogsketch also has its own authoring environment for 

domain experts and instructors, to enable them to create new worksheets. The goal of this on-going 

cooperative research is to leverage Cogsketch to support the use of a sketching modality in GIFT as a new 

type of instructional media.  

 

 

 

 

 

Figure 3. Cogsketch Authoring Tool 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

From the user feedback we received from GIFT users at Ft Benning, we realize that the GIFT authoring tools 

still have room for improvement. In the near term, we have provided additional support to authors in the 

https://imsglobal.org/activity/learning-tools-interoperability
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form of instructional videos, on-site training classes (summer camp), and exemplar tutors.  Future research 

should include a study to determine the effectiveness of the instructional videos, as these are fairly easy to 

make and provide just in time training for users that need support. In addition, we will continue to gather 

user feedback to improve usability of the GIFT authoring tools. 
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“outside the box” authoring support 
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INTRODUCTION  

The Generalized Instructional Framework for Tutoring (GIFT) is enabling training developers to create 

diverse and effective Intelligent Tutoring Systems (ITS) in support of a broad array of U.S. Army training 

needs. GIFT-enabled technology initiatives are developing new tools and methods for streamlining ITS 

development along numerous fronts. However, a general category of performance that is under-represented 

in ITS is skills falling within the psychomotor domain. Paradoxically, psychomotor skills are foundational to 

many of the competencies that compose the U.S. Army’s vision for 21st Century Soldier Competencies as 

expressed in the Army Learning Model (ALM).  

Although there has been steady improvement in GIFT tools, libraries and methods, development of tutors for 

skills falling within the psychomotor domain remains a challenge that designers must address with little 

support from GIFT or its contemporary authoring tools. Despite these challenge, a few examples have 

illustrated the promise of using ITS for psychomotor skills training in domains including marksmanship and 

tactical combat casualty care. The success of such demonstrations though has relied on significant 

investments of time by highly specialized training development and technology experts. In order to scale the 

production of training that incorporates psychomotor skills, ITS frameworks such as GIFT must support an 

author not only in creating the conventional elements of an ITS but also in interpreting information arriving 

from external sensors in a way that productively advances learning objectives. 

The Psychomotor Skills Training Agent-based Authoring Tool (PSTAAT) is an agent-assisted ITS authoring 

tool for the GIFT framework. In this paper we present our approach to helping an author link psychomotor 

measures from external sensors with performance thresholds and with corresponding instructional feedback. 

We discuss the use of guided examples and the agent’s encapsulated knowledge of psychomotor ITS 

authoring. We also introduce a new machine learning-based approach that analyzes sensor data to 

recommend performance ranges. We conclude with an example authoring interaction. 

PSYCHOMOTOR SKILLS: INSTRUCTIONAL CHALLENGES 

Psychomotor skills have properties that are distinctive from skills training in other domains (cognitive and 

affective, Bloom, et al., 1956). Psychomotor skills involve movement and coordination but generally de-

emphasize verbal processes. Tasks like fast-roping, applying a tourniquet, flying a CH-47, aiming a weapon, 

or traversing a chasm illustrate the prevalence and military relevance of psychomotor skills. 

Psychomotor skills typically include physical movement, coordination, and use of gross, fine, or combined 

motor-skills. Learning these skills (like all learning) requires practice. Tutoring systems to train psychomotor 

skills would thus emphasize practice of some kind, opportunities for skill performance with coaching and 

feedback, and assessed skill demonstration. However, tutoring systems in this domain of learning must 
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accommodate the distinctive metrics for assessing performance of psychomotor skills (e.g., speed, force, 

precision, distance, technique). 

Another differentiating property of psychomotor skills is the process involved in mastery – i.e., the stages of 

skill acquisition. Adopting a process model is important to authoring because it helps structure the authoring 

dialogue. Our model draws from multiple researchers who generally follow Bloom’s basic tenets. From 

theories advanced by Dave (1970), Simpson (1972), Harrow (1972), and Romiszowski (1999), we adopted a 

simplified synthesis of psychomotor skill learning suitable for organizing the PSTAAT authoring process 

(Brown, Bell & Goldberg, 2017), summarized in Table 1. 

Table 1. Psychomotor skill model synthesized by comparing multiple research models. 

Level Definition Example 

Observing Active mental attending of a 

physical event. 

The learner watches a more experienced person. Other 

mental activity, such as reading may be a part of the 

observation process. 

Imitating Attempted copying of a physical 

behavior. 

The first steps in learning a skill. The learner is 

observed and given direction and feedback on 

performance. Movement is not automatic or smooth. 

Practicing Trying a specific physical activity 

over and over. 

The skill is repeated over and over. The entire 

sequence is performed repeatedly. Movement is 

moving towards becoming automatic and smooth. 

Adapting Fine tuning. Making minor 

adjustments in the physical activity 

in order to perfect it. 

The skill is perfected. A mentor or a coach is often 

needed to provide an outside perspective on how to 

improve or adjust as needed for the situation. 

The authoring interactions in PSTAAT thus support creating activities for a learner progressing through 

observing, imitating, practicing and adapting. This analysis established a foundation for developing an agent 

to support the authoring of simulation-based ITS focused on psychomotor skills as discussed next. 

PSYCHOMOTOR SKILLS: AUTHORING CHALLENGES 

While successful development efforts have demonstrated that ITS are an effective approach to training 

psychomotor skills, developing these systems remains a costly and time-consuming enterprise. ITS authoring 

tools are limited in scope, capability, and generalizability, so the time, expertise and resources needed to 

create ITS persist. In contrast to general-purpose authoring tools, however, tools that address the 

development of a specific kind of ITS can be more powerful because they embody (and help authors adhere 

to) a set of assumptions about what the authored product will look like and how it will behave. PSTAAT is 

representative of a more specific tool, supporting authoring with an agent that encapsulates knowledge useful 

in guiding the authoring process, to include pedagogical knowledge tailored to instruction in, and assessment 

of psychomotor skills.  
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Psychomotor skills can be distinguished from cognitive skills because they involve movement and 

coordination, typically composed of physical movement, coordination, and use of gross, fine, or combined 

motor-skills. Because psychomotor skills are not inherently suited to be trained in conventional computer-

mediated learning environments, developing ITS that incorporate psychomotor skills training presents 

several distinctive challenges. Motor skill elements of a psychomotor skill must be practiced using a physical 

device, such as rudder pedals, a firearm, or a tourniquet. Physical devices that capture and digitize motions 

and actions have demonstrated the ability to replicate, to varying levels of fidelity, user effects in a simulated 

environment in domains including flying, driving, performing medical procedures, and firefighting.  

Training, however (in contrast to simulation), requires the additional capability to interpret performance from 

the stream of digital data flowing from the physical device. The ITS author must therefore be able to 

construct ways for the tutor to make sense of the data captured by a sensor. This presents specific challenges 

to the author, who must: (1) identify which among the specific data points sampled by the physical device 

should be attended to as indicators of expert versus novice performance; (2) calibrate each data source, in 

order to associate numerical data with performance markers; (3) define assessment and feedback associated 

with specific performance tiers; and (4) accommodate variable performance thresholds in cases where 

context can alter assessment thresholds. 

For training psychomotor skills, the primary factor for mastery is practice. Psychomotor skills tutoring 

should thus emphasize opportunities to practice physical skills with coaching, feedback, and assessment. The 

author must also consider the nature of performance metrics for psychomotor skills; measures such as speed, 

precision, distance, or technique might have to be monitored. The ITS author is thus faced with the complex 

task of correlating data from physical devices with multiple and composite performance metrics. 

PSYCHOMOTOR SKILLS: ASSESSMENT CHALLENGES 

To help an author apply the appropriate performance ranges associated with the use of a physical device, we 

introduce a new machine learning (ML) approach that analyzes and classifies sensor data. The ML 

algorithms automate the detection of sensor thresholds (e.g., detecting the difference between Expert and 

Novice performance) based on expert feedback. The ML algorithm processes raw sensor data using sensor-

appropriate scripts and integration with appropriate machine learning libraries through a Spark instance. 

Leveraging RapidMiner integrations with GIFT, it is also possible to bypass or adjust automated sensor 

threshold detection through direct adjustment of ML models. The ML algorithm applies a range of possible 

models to the test data generated in the performance modeling phase (or provided directly by the author), and 

attempts to determine the ‘best-fit’ model for a given combination of sensors and a given performance metric 

outcome or expertise level. 

The ML model uses the data imported from cases to learn one or more reward functions that characterize and 

explain expert behavior, using Inverse Reinforcement Learning (IRL); and to learn to distinguish expert 

behavior from novice behavior (i.e., clustering). Once the training data set has produced an ML model, we 

use it to auto-generate the logic model. The logic model then evaluates performance during task execution. If 

desired, the ML model can also be an additional source of feedback on how to improve performance (e.g., 

“reduce breathing rate during the latter half of task performance”). Figure 1 illustrates the steps in the 

creation and use of the ML model. 
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EXTENDING GIFT WITH PSYCHOMOTOR AUTHORING 

PSTAAT is designed to work within the Army Research Laboratory (ARL) Generalized Instructional 

Framework for Tutoring (GIFT) (e.g., Sottilare, 2012; Sottilare, Goldberg, Brawner & Holden, 2012).  

PSTAAT is thus an extension to GIFT that supports the authoring of psychomotor skills specifically, and that 

leaves to the broader GIFT environment support for authoring skills in the cognitive domain. 

PSTAAT uses an exemplar ITS to provide relevant illustrations for authoring and to inform the design of the 

authoring tool itself. This exemplar, the Adaptive Marksmanship Trainer (AMT), was created in the GIFT to 

enhance an existing Engagement Skills Trainer (EST) that uses instrumented emulators of several types of 

firearms. AMT enhances this system by incorporating adaptive tutoring and automated performance 

measures (Goldberg, Amburn, Brawner & Westphal, 2014).  

 

Figure 1. Steps in creation and application of machine learning model. 

An initial step of the authoring dialogue is to instantiate the instructional model (recall Table 1). The author 

may incorporate some or all of the phases of the model for the psychomotor instruction being developed. 

Within each phase the author specifies the psychomotor activities to be performed by linking to a 

corresponding training application (e.g., a Unity application incorporating a backhoe emulator). 

To help the author conceptualize the mapping from device outputs (e.g., a trigger squeeze, an aim point) to 

performance assessment for any given activity (external simulation), we adapt from AMT a layered mapping 

to associate sensor outputs with skill metrics, mediated by a middle layer that encapsulates the mechanisms 

for analyzing input data to determine a performance threshold. Figure 2 shows the layers using the exemplar 

ITS sensors and skills. This abstraction helps an author focus on mapping sensor data (top layer) to skill 

performance (bottom layer). The processing of those inputs (done by performance profiles, middle layer) is 

defined by the author and guided by PSTAAT to create adaptive, contextual feedback specific to the 

learner’s detected performance (currently, above, at, or below expectation).  
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Figure 2. Example of layered mapping of sensors to skills, mediated by performance profiles. 

GIFT IMPLEMENTATION 

To provide psychomotor domain-specific authoring support, PSTAAT introduces a Psychomotor Activity 

Course Object to the GIFT Course Creator. A course object is an element that can be selected from a panel of 

supported types and added via a drag-and-drop authoring interface to a course flow sequence being created in 

the Course Creator. Each type of course object represents a different method of presentation and/or 

interaction with the learner and can be combined in any order in a course sequence. The PSTAAT extension, 

called the Psychomotor Activity Course Object, is depicted in Figure 3. 

 

Figure 3. Schematic diagram of PSTAAT course object for mapping sensors to target skills 

When a Psychomotor Course Object is added to the Course Creator, PSTAAT auto-generates a GIFT-

compliant template, organized by the phases of the psychomotor domain (Observe, Imitate, Practice, Adapt). 

For each phase, the author selects a performance profile (that related sensor outputs to skill performance). At 

this point, the author can choose an existing profile, modifying it if desired, or create a new profile, a process 
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discussed later. Once each phase is configured with a selected psychomotor profile, the PSTAAT agent auto-

populates the psychomotor activity with placeholder learner states and guides the author through 

development of instructional strategies to complete the tutor. 

To define a psychomotor activity, an author selects configured sensors as inputs and defines adaptive content 

delivery for the configured target skills. This adaptive behavior is defined by associating tailored feedback 

with corresponding performance levels calculated by a Psychomotor Profile (Figure 4). A Psychomotor 

Profile processes data from active sensor feeds to derive measures of performance (using an above/at/below 

expectation scale). The algorithms driving this assessment are informed by cases – previously generated data 

captured from subjects performing a task and tagged with performance outcomes. During data capture, data 

is tagged in one of two ways; either by an objective measure of task performance (e.g., a score generated 

automatically by the task environment) or by a subjective, human labeling of task performance (e.g., an 

expert observer determining that a given instance of the task performance was “above” expectation).  

 

Figure 4. Schematic showing detail of the Psychomotor Profile. 

PSTAAT thus manages the authoring dialogue in three segments: skills profiling, sensor mapping, and 

course object definition (i.e., activities, sequencing). The PSTAAT authoring agent provides contextual 

authoring support for each of these general-purpose task areas, and recommends the use of psychomotor 

domain instructional approaches and adaptive feedback strategies in the form of templates and examples. 

EXAMPLE INTERACTION 

A brief example illustrates an authoring interaction. For brevity we omit preceding steps typical in the GIFT 

Course Creator unrelated to PSTAAT. The author first chooses a preferred instructional model, skips the 

Observing phase, and selects an existing performance profile for the Imitating phase (Figure 5). 
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Figure 5. Selecting an instructional model and assigning performance profiles to each phase. 

The author then adds instructional feedback and remediation for the selected performance profile (Figure 6). 

At any time, the author may edit the threshold values internal to a performance profile. Figure 7 illustrates 

threshold values for different performance tiers for a given device displayed. From this editor, the author can 

modify this configuration, add sensors, and link this profile with an external application. 

 

Figure 6. Assigning feedback and remediation for a selected performance profile. 

CONCLUSIONS AND FUTURE RESEARCH 

Streamlining ITS authoring remains an elusive goal, but steady progress in tools and frameworks such as 

GIFT are bridging this gap. For ITS that train psychomotor skills, authors face additional challenges. To 

support the integration of external training simulations and corresponding physical devices with a tutoring 

system, PSTAAT demonstrates an agent-driven system that employs templates, editors, and sensor data 
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processing via machine learning-derived assessments. When fully integrated, PSTAAT will expand the reach 

of ITS authors by enabling them to incorporate psychomotor skills training along with cognitive skills 

training, cultivating a richer diversity of training applications emerging from the GIFT community. 

PSTAAT demonstrates an integrated approach to GIFT ITS authoring that uses performance support and 

agent techniques to provide informative feedback and guidance to the author during the ITS development 

process.  We discuss how psychomotor task performance models and sensor configurations can be abstracted 

into reusable psychomotor profiles that both simplify and streamline the design of psychomotor activities 

within GIFT.  

The process to develop ITS thus remains time-consuming and costly. For the Army to successfully realize 

the ALM vision, creating ITS that target psychomotor skills must be an affordable, replicable, and reusable 

process.  

 

Figure 7. Performance Profile editor for viewing/modifying performance thresholds and adding sensors. 
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INTRODUCTION 

Simulation-based training is an important tool for preparing learners to perform a broad range of complex 

tasks and skills. A key functionality of simulation-based training environments is delivering scenarios that 

drive learning interactions that approximate real-world situations. However, simulation-based training 

scenarios are typically resource-intensive to create. Some simulation environments provide authoring tools 

that enable new training scenarios to be manually created by subject matter experts, but these tools often 

require a high degree of specialized knowledge to be utilized effectively. Authored scenarios often cannot be 

reused in other training environments, and the knowledge associated with particular authoring tools has 

limited transferability. Further, learners are usually limited to training with a finite set of training scenarios 

provided by the system's designers. If learners have mastered the learning objectives associated with the 

available set of training scenarios, there is marginal benefit provided by further training with the simulation. 

Finally, training simulation scenarios are often delivered following a one-size-fits-all approach: they have 

limited capacity to dynamically respond to the broad range of individual differences in knowledge or 

behavior that are typical among learners. 

Automated scenario generation offers considerable promise for addressing the needs of simulation-based 

training. By utilizing automated scenario generation techniques, simulation environments can account for 

individual differences in how learners respond to different types of scenario events.  Further, they can create 

effective variations on training scenarios without requiring every scenario to be manually authored or 

managed by human experts. By leveraging generative techniques from interactive narrative technologies, we 

can dynamically create training scenarios that are configured to address instructors' learning objectives and 

tailored to the cognitive and behavioral characteristics of individual students (Riedl & Bulitko, 2012; Wang 

et al., 2017).  

Recent advances in machine learning, including artificial neural networks (in general) and deep learning (in 

particular), have spurred growing interest in data-driven approaches to interactive narrative generation. For 

example, deep reinforcement learning (deep RL) has begun to show significant promise for personalizing 

events in narrative-centered learning environments (Wang et al., 2017). However, there are many open 

questions regarding how we can most effectively leverage machine learning in order to automatically 

generate training scenarios that are tailored to instructors’ and trainees’ learning objectives. To begin to 

address these questions, we are launching a new collaborative effort between North Carolina State 
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University, Intelligent Automation, Inc., and the U.S. Army Research Laboratory to investigate the design 

and development of a deep RL framework for automated scenario generation in GIFT. To serve as a testbed 

environment, we are generating training scenarios for Virtual Battlespace 3 (VBS3), a widely used 

simulation platform for small unit training within the Army, with an initial focus on Call for Fire (CFF) 

training. 

In this paper, we provide an overview of the deep RL framework for automatic scenario generation. We 

describe how to formalize automatic scenario generation as a deep RL task. We discuss several key 

components of the framework, including the scenario adaptation library, simulated learners, and a deep 

neural network model of multi-objective rewards. We describe the VBS3 training simulation that we are 

utilizing as an initial testbed environment. Next, we describe preliminary findings from a proof-of-concept 

implementation of a reinforcement learning-based scenario generator that centers on generating initial 

scenario conditions for CFF training using multi-armed bandits (i.e., a stochastic scheduling technique that is 

related to deep RL).  

AUTOMATED SCENARIO GENERATION WITH DEEP 

REINFORCEMENT LEARNING 

We approach the task of automated scenario generation from the perspective of interactive narrative 

technologies. Automated scenario generation and interactive narrative generation share several key 

characteristics. First, in both automated scenario generation and interactive narrative generation, users are 

active participants in virtual worlds that dynamically respond to users' actions. Second, both automated 

scenario generation and interactive narrative generation center on generating sequences of events that 

achieve author-specified objectives to produce scenarios that are effective and engaging. Third, both 

automated scenario generation and interactive narrative generation produce scenarios that are realized in 

immersive simulation environments.  

We formulate automated scenario generation as an instance of data-driven interactive narrative generation 

using deep RL (Wang et al., 2017). Deep RL is a computational framework that integrates two 

complementary families of machine learning techniques: reinforcement learning methods for training models 

for sequential decision-making under uncertainty, and deep neural networks for pattern recognition and 

representation learning with big data. Reinforcement learning is the task of a software agent inducing a 

control policy for selecting actions in an uncertain environment with delayed rewards (Sutton & Barto, 

1998). Deep neural networks combine weighted summations of non-linear functions to extract and model 

multi-layer hierarchical representations of data using supervised, semi-supervised, and unsupervised machine 

learning techniques (Goodfellow, Bengio, & Courville, 2016). By integrating reinforcement learning and 

deep neural networks, deep RL provides a formalized framework for sequential decision-making in complex 

environments.  

Deep reinforcement learning provides a natural computational framework for formalizing dynamic scenario 

generation: the generator is tasked with making a series of decisions about how specific scenario events 

should unfold at runtime to optimize student performance on a pre-specified set of learning objectives. 

Dynamic scenario generation can be modeled as a sequential decision-making task in which a scenario 

generator introduces successive adaptations to scenario events over discrete time steps. A time step 

represents the time point when an adaptable event, such as the introduction of an obstacle or elimination of a 

resource, is triggered in the scenario. Using this formalization, deep RL can be utilized to dynamically 

generate adaptive “child” training scenarios from a canonical (i.e., “parent”) scenario that explicitly 

optimizes for both author-specified objectives and trainee learning outcomes. By inducing multi-objective 

reward models for controlling run-time decisions about training scenario events, we intend to enable authors 
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to specify learning objectives that generate personalized training scenarios in immersive simulation 

environments integrated with GIFT. 

The deep RL framework for automated scenario generation consists of several key components: (1) a deep 

Q-Network model for controlling run-time scenario adaptation decisions that optimize multiple scenario 

objectives, (2) a scenario adaptation library that specifies possible transformations of “parent” scenarios to 

generate “child” scenarios, and (3) a simulated learner framework for generating synthetic data to train an 

initial version of the scenario generator. In addition, the framework requires a software infrastructure for 

integrating automated scenario generation functionalities with GIFT’s modular software architecture. 

Deep reinforcement learning leverages a Q-Network, a type of deep neural network, to model the estimated 

Q values of state-action pairs gathered from past observations of student interactions with a scenario during 

reinforcement learning. Q-networks encode the expected benefits of specific scenario adaptations in terms of 

a “reward function,” an explicit mathematical expression of optimization criteria that guide automated 

scenario generation. In the original work on deep reinforcement learning for Atari game playing, the Q-

network was organized as a convolutional neural network, which is a natural choice for processing image 

data from 2D games. For automated scenario generation, we will investigate deep architectures that utilize 

long-short term memory networks (LSTMs), a type of recurrent neural network, for modeling sequential 

data as typically expected in simulation scenarios. LSTMs are specifically designed for processing sequences 

of temporal data. LSTMs have achieved high predictive performance in many sequence labeling tasks, often 

outperforming standard recurrent neural networks by using a longer-term memory than standard RNNs, 

preserving short-term lag capabilities, and effectively addressing the vanishing gradient problem. We 

anticipate that utilizing LSTMs will enable reinforcement learning-based scenario generators to extract 

complex nonlinear interaction patterns between observed events and scenario adaptation decisions. LSTMs 

will be utilized to implement multi-objective deep Q-networks for automated scenario generation, as well as 

to implement machine learning-based simulated students to generate synthetic training data in future work. 

Multi-objective reward functions will enable the automated scenario generator to consider tradeoffs between 

competing authorial goals, learning objectives, and learner engagement. This builds upon prior research by 

the NCSU team on multi-objective RL for interactive narrative generation (Sawyer, Rowe, & Lester, 2017), 

and it involves incorporating a vector-based representation of reward in the output layer of a deep Q-

network, where vector indices correspond to different reward sources. A multi-objective Q-Network is 

induced at training time, and it yields a run-time scenario adaptation model after the course author has 

specified relative preferences among competing reward sources at course creation-time. 

State representations for driving deep RL-based scenario generation decisions will consist of several 

complementary sources of information. First, state vectors will include domain-independent features 

encoding learner knowledge, traits, and performance characteristics. A key requirement for automated 

scenario generation is devising generalized assessment rules that can be applied to a broad range of generated 

scenarios within a given task domain; it would be prohibitive for a system designer to devise custom 

assessment logic for every automatically generated scenario. Second, state vectors will include several 

features that summarize the history of past scenario adaptation decisions performed by the scenario 

generator. Third, state vectors will include a one-hot encoding of the category of scenario adaptation decision 

under consideration in order to leverage modularity and maintain tractability of the reinforcement learning 

task. These state features are consistent with the Adaptive Tutoring Learning Effect Chain, and they are 

consistent with our project’s vision for investigating how scenario generation functionalities should most 

effectively be integrated with the Pedagogical and Domain Modules of GIFT.  
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Scenario Adaptation Library 

A key component of the deep RL-based scenario generation framework is devising a scenario adaptation 

library, which enumerates the range of possible transformations to a “parent” scenario that can be applied to 

generate “child” scenarios. By investigating different combinations of prospective scenario adaptations, the 

deep RL framework can generate a vast range of possible training scenarios that can be deployed with 

simulated or human learners, evaluated for their effectiveness in terms of trainee learning outcomes, and 

utilized to refine the scenario adaptation model for adaptive personalized scenario generation.   

Integrating deep RL-based scenario generation into GIFT is a key aspect of the project. A key interest is 

exploring potential extensions to GIFT that support domain-independent specifications of scenario 

adaptations—these would be specified with GIFT’s Pedagogical Module—in line with project objectives of 

generalizability of deep RL-based scenario generation. We envision a generalized taxonomy of scenario 

adaptations that includes several hierarchical domain-independent categories, including (1) inserting or 

removing obstacles; (2) constraining or increasing resources; (3) reconfiguring key objects; (4) adding, 

modifying, or removing sub-tasks; and (5) providing or removing embedded scaffolding. These categories 

will characterize a range of candidate adaptations that can be applied to a parent scenario in order to generate 

a set of “child” scenarios. These domain-independent scenario adaptations could be instantiated within 

GIFT’s Domain Module, which will configure and launch scenario events at runtime via a GIFT gateway to 

be realized in the simulation-based virtual training environment. 

Simulated Learners 

In order to train deep reinforcement learning-based models of dynamic scenario generation, we will utilize 

synthetic training data produced by simulated students created for each of the virtual training environments. 

The design of simulated students is informed by related work in artificial intelligence in education (McCalla 

& Champaign, 2013) and spoken dialog systems (Schatzmann, Weilhammer, Stuttle, & Young, 2006). We 

investigate how simulation parameters related to model granularity and model complexity influence 

synthetic data generation for deep reinforcement learning-based scenario generation (Rowe et al., 2017). 

Dynamic Scenario Generation User Experience 

The user experience of automated adaptive scenario generation functionalities in GIFT is likely to be 

different based on whether the user is a course designer, a student, or a software developer. For a pre-

integrated training environment, a course designer will select the training objectives that he is targeting in the 

GIFT Course Creator, and he can specify constraints on specific scenario adaptations that he would like to 

avoid in the generated run-time scenario. As long as the deep RL-trained scenario generator can produce a 

scenario that is consistent with the objectives and constraints provided by the author, the course will validate 

and it can be tested with live students. For a student, automated scenario generation will be invisible, and 

training events will be tailored based on the student’s individual traits, knowledge, and performance in the 

simulation environment. 

For a software developer seeking to integrate a new domain or training application, she will need to (1) have 

a deep knowledge of the “parent” scenarios supported by the training environment, (2) create a specification 

of possible “child” scenario adaptations that can be realized in the training environment, (3) develop a 

gateway module that mediates communication between scenario generation functionalities in GIFT and the 

training application, (4) have access to training data for inducing deep reinforcement learning-based scenario 

generation models if existing domain-independent models cannot be reused, and (5) integrate trained 

scenario generation models into run-time GIFT courses. Given these resources, a software developer will be 
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able to use deep reinforcement learning-based scenario generation functionalities to create a new scenario 

generator for a novel domain or simulation environment. 

GIFT Integration 

Integrating deep RL-based scenario generation into GIFT is a key objective of the project, and supporting 

automated scenario generation has several implications for the GIFT architecture, authoring tools, and 

software. For example, supporting automated scenario generation in GIFT will likely involve extensions to 

the GIFT Course Creator to enable instructors to identify relevant learning objectives that should guide the 

generation of relevant training scenarios. Further, devising tools for ranking and visualizing automatically 

generated training scenarios will be essential for instructors to configure scenario generation functionalities 

for use in training courses that they create. Devising generalized assessment logic that can operate across 

multiple scenarios, and be specified in GIFT DKF files, will be critical for ensuring that course creators do 

not need to hand-specify custom assessment rules for every generated scenario. Finally, the project seeks to 

investigate support for domain-independent specifications of scenario adaptations—these would be specified 

by GIFT's Pedagogical Module—in line with project objectives of generalizability of deep RL-based 

scenario generation. This generalized taxonomy of scenario adaptations will include hierarchical domain-

independent categories, such as (1) inserting or removing obstacles; (2) constraining or increasing resources; 

(3) reconfiguring key objects; (4) adding, modifying, or removing sub-tasks; and (5) providing or removing 

embedded scaffolding. These categories characterize a scenario adaptation library that defines the space of 

possible scenarios in a manner that holds potential for portability and reuse. 

 

Figure 1. Screenshot of Virtual Battlespace 3 simulation environment. 
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VIRTUAL BATTLESPACE 3 TESTBED ENVIRONMENT 

The selection of testbed simulation-based virtual training environments is guided by two key requirements. 

First, the simulation environment should either be open-source, or include APIs or tools for generating novel 

training scenarios, as well as models for specifying adaptations to scenarios at run-time. By enabling close 

integration between GIFT and the simulation-based training environment, it is possible to engage in rapid 

iteration cycles for designing, developing, and testing directions for dynamic scenario generation. Second, 

the selection of the simulation-based virtual training environment testbeds should prioritize environments 

that support scenario generation that enable the scenario generator to produce thousands (or more) of “child” 

scenarios from a single “parent” scenario. To fully exercise the deep RL framework’s generative capabilities 

(i.e., its ability to broadly explore a given scenario space) and fully stress test its computational capabilities, 

testbeds should include a broad range of event types, actors, and trainee interactions. 

The primary testbed simulation environment for the first phase of this project will be Virtual Battlespace 3 

(VBS3). Built by Bohemia Interactive Simulations, VBS3 is the Army’s most widely used simulation 

platform for small unit training (Figure 1). Designed as a flexible simulation tool for tactics training and 

mission rehearsal, VBS3 provides realistic physics, high-fidelity 3D graphics, expansive geo-specific 

terrains, and a large content library of 3D digital assets. VBS3 can be used for a broad range of training 

purposes, including training for cordon and search of specific structures, breaching obstacles, defense of 

territory with machine gun and mortars, and clearing highways of IEDs. VBS3 also includes features that 

enable dynamic modifications to training scenarios, as well as features for observation of the environment by 

instructors, and an After Action Review playback capability.  

Although it is a closed-source training simulation, VBS3 provides several developer tools that can facilitate 

research on automated scenario generation, including a real-time scenario editor, an offline mission editor, 

tools for importing new 3D assets, and flexible terrain creation functionalities. VBS3 is used widely in the 

U.S. Army, and it is integrated with GIFT 2017-1 through a previously developed gateway module. Further, 

our work with VBS3 will build upon prior research by IAI to devise low-cost assessment frameworks for 

intelligent tutoring systems through feedback from subject matter experts. 

During the first year of the project, we will focus on automated scenario generation in the task domain of 

Call for Fire training. The CFF task domain in VBS3 will encompass scenarios in which an infantry soldier 

requests indirect fire from supporting artillery (e.g., unmanned aircraft) on an identified target. The steps of 

this task include identifying the target, waiting for the artillery to move into position, calling for artillery fire 

using an established communication protocol, adjusting artillery fire, and providing a damage assessment. 

“Child” scenarios in the Call for Fire task domain will modify the type, visibility, and movement of the 

target; augment surrounding terrain and vegetation; change the weather and time-of-day; impact radio 

communications with artillery operators; augment the type of artillery fire (e.g., smoke, explosive); and 

influence the accuracy and damage of the artillery fire. 

PRELIMINARY FINDINGS ON AUTOMATED GENERATION OF INITIAL 

SCENARIO CONDITIONS 

As a starting point, we developed a prototype system using a multi-armed bandit (MAB) computational 

formalism, consisting of several components of the proposed deep RL pipeline. The MAB implementation 

utilizes initial versions of a scenario adaptation library, a simulated learner, and a reward function.  

A multi-armed bandit is a class of sequential decision problem in which a set of resources must be allocated 

between competing choices. MABs are related to reinforcement learning, but they do not account for 
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stochastic effects of sequential decisions on environment states. In an MAB, each choice, or arm, has a 

defined reward unknown to the system, thus requiring it to explore different choices to learn which of the 

choices provides optimal expected reward over a finite series of trials. Typically, bandit algorithms are 

designed to minimize regret, which is the difference between the reward accumulated by the system and the 

reward the system would have received if it had pulled the optimal arm at every trial. Depending on a variety 

of factors such as the type of rewards (stochastic, non-stochastic) or the type of regret being minimized 

(instantaneous or cumulative), different algorithms have been shown to obtain near optimal solutions 

(Vermorel, 2005). Variants of MABs have been shown to be an effective solution for a variety of tasks such 

as sequencing learning activities (Liu, 2014) and playing real-time strategy games (Ontanón, 2017). 

The first step in formalizing scenario generation as a MAB is defining a scenario adaptation library for the 

Call for Fires task. As MABs do not have a concept of state, and thus do not capture changes in the 

simulation environment, we focus our scenario adaptation library on initial conditions of Call for Fires 

scenarios. In this prototype we focus on 3 categories of initial conditions: weather, time of day, and target 

mobility. These categories were chosen because of they affect the difficulty of a Call for Fires scenario, and 

they can also be realized in the VBS3 environment. We defined three possible values for weather (clear, 

cloudy, rain), three possible values for time of day (day, dusk, night), and two possible values for target 

mobility (still, moving).  This corresponds to 18 possible scenarios that could be generated and evaluated by 

the MAB. 

Next, to provide data to train the system we created a set simulated learners. Each simulated learner consists 

of a competency score from 0 to 1, representing their ability for a Call for Fire task. To generate rewards for 

each scenario, we crafted a reward function that takes into account both the difficulty of the scenario and the 

skill level of the student. Difficulty levels were authored for each type and value of initial condition, with 

values being averaged to determine the difficulty of each generated scenario.  The difficulty level was then 

combined with the learner’s competency score to generate the probability that the learner would increase 

their competency level from creating the exercise. A 0 or 1 reward was then generated for the trial by 

sampling from a Bernoulli distribution that was parameterized using the combination of scenario difficulty 

and learner competency level.  

We ran MAB simulations for two populations of simulated learners. For the first simulation, a learner was 

selected for each trial from a Gaussian distribution centered around a “low” competency score (M = .2, SD 

=.1). For the second simulation, learners were selected from a distribution centered around a high 

competency score (M = .8, SD = .1). For each simulation, we ran 50,000 trials of an 18-armed bandit using 

the UCB1 algorithm to manage exploitation/exploration of the arms.  Figure 2 shows the average rewards of 

the top-5 arms (i.e., generated scenarios) for both types of simulated learners. We observe that after some 

shuffling, each arm begins to stabilize around the “true” reward for that given scenario. For the Low 

Competency learner group, the scenarios recommended are all “easier” scenarios with non-moving targets 

and high visibility, which is to be expected given that our reward formulation does not expect low-

competency learners to benefit significantly from difficult scenarios. Similarly, the High Competency learner 

group favors more difficult scenarios featuring moving targets and poor weather/visibility. 
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Figure 2. Average rewards over MAB trials for top-5 generated CFF scenarios for high- and  

low-competency simulated learners. 

This prototype highlights key design considerations for deep RL-based scenario generation, but it also has 

several limitations.  First, since MABs have no concept of state, they are not necessarily the ideal formalism 

for generating and evaluating dynamic, adaptive training scenarios required by more complex CFF tasks; 

MABs are well suited for generating the initial conditions of simple training scenarios but not sequential 

events. In future iterations, we will utilize reinforcement learning techniques that account for sequential 

decisions in order to address this additional source of complexity in scenario generation.    

A second limitation is that our current simulated learner and reward models only consider one competency 

and reward source. As we move forward, the system will need to consider multiple learning objectives and 

trade-offs between them. Additionally synthesized data will eventually need to be replaced or validated with 

data from real human learners. 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

Automated scenario generation is likely to serve a key role in the future of simulation-based training because 

of its significant potential to reduce the cost of creating novel scenarios and expand access to high-quality 

simulation-based training. Data-driven approaches to automated scenario generation hold promise for 

enhancing trainee learning experiences by leveraging recent advances in both machine learning and 

interactive narrative technologies. We have presented an overview of a deep RL framework for data-driven 

automated scenario generation, which formalizes the task in terms of sequential adaptations to a canonical 

“parent” scenario in order to generate “child” scenarios that can be evaluated with simulated or human 

learners to assess learning outcomes. Automated assessments of trainee learning outcomes drive the 

generator to iteratively refine its scenario generation policies and tailor scenario generation to individual 

learners and instructor training objectives. During the initial stages of the project, we are investigating deep 

RL-based scenario generation in the context of CFF training using the VBS3 simulation environment. To 

serve as an initial proof-of-concept for data-driven automated scenario generation, we conducted a 

preliminary investigation of multi-armed bandit techniques for generating initial conditions of CFF training 

scenarios. Preliminary results indicate that multi-armed bandits, combined with a simple simulated learner 
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model and scenario adaptation library, can produce a ranked ordering of automatically generated training 

scenarios that are tailored to learners’ individual differences.  

In future work, we plan to significantly expand the scenario adaptation library to capture a broader range of 

possible transformations to “parent” training scenarios, including sequential adaptations that can be 

performed dynamically over the course of a scenario. This will allow us to expand our formulation of 

automated scenario generation beyond initial scenario conditions and begin exploring deep RL techniques. 

Further, we plan to investigate richer simulated learner models that can serve as a bootstrapping mechanism 

for automated scenario generation, as well as multi-objective rewards to enable scenario generation that 

accounts for complex tradeoffs between complementary and competing learning objectives. Finally, we plan 

to investigate manual, semi-automated, and automated techniques for realizing generated scenarios in VBS3, 

enabling human learners to interact with adaptive training scenarios that have been generated using deep RL. 
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Automating Variation in Training Content 

for Domain-general Pedagogical Tailoring 
 

J. T. Folsom-Kovarik1, Keith Brawner2 

Soar Technology, Inc.1, U. S. Army Research Laboratory2 

INTRODUCTION 

The Generalized Intelligent Framework for Tutoring (GIFT) (Sottilare, Brawner, Goldberg, & Holden, 2012) 

is able to tailor training content selection and presentation in order to give individual learners the support or 

challenge they need (Goldberg, Sottilare, Brawner, & Holden, 2011). However, the effectiveness of tailoring 

is always limited by the choices available. Automated scenario generation (ASG) offers promise to create 

many more variations on training content than human experts can create alone. A proof of concept ASG 

implementation is being researched and developed. The ASG can create variants on training scenarios that 

encompass multiple types and parts of scenario content to include simulation events and narrative, entity 

location and size, and feedback or framing text. Combining several such variants will let GIFT 

simultaneously support and challenge different learning objectives in one training scenario.  
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A key insight in the work is that generated variants are labeled in a domain-general way according to their 

predicted impact across learning objectives. As a result, all the details of variations are expressed to GIFT in 

a manner easily processed by general pedagogical algorithms. Furthermore, the domain-general dimensions 

of support and challenge for each learning objective define a space within which the ASG components 

should search. That is, ASG does not simply find random variations on the scenario factors it can control 

directly, such as entity location and size. Apparent variation in those factors could easily turn out to be 

different only at a surface level – not different at a level that adds new kinds of support or challenge to the 

library of choices available to GIFT pedagogical tailoring. A key portion of this work is not the simple 

generation of many superficially different scenarios, but the generation of scenarios which are sufficiently 

different from one another while still being pedagogically valid. 

Two steps enable ASG to create variants that are valuable for GIFT to tailor learning content. First, ASG 

must perform search in a space where movements are possible to directly control, such as entity size and 

location. Second, ASG must translate the variants it made in that space into the space defined by 

multidimensional impact on learning support and challenge. The first step is carried out by a form of 

evolutionary algorithm called novelty search. The second step is carried out by defining a cognitive science-

based understanding of learning factors and creating domain-specific rules that translate expert knowledge 

into the terms of the generalized framework. 

In the initial days of research and development, ASG is being prototyped in a specific training system for 

decision-making in the employment of small unmanned air systems (SUAS). The training system contains 

expert-authored content such as maps with geographical features, tactical objectives and constraints, friendly 

and hostile entities; text briefing materials and initial conditions; and learner decision prompts and feedback. 

In the current state of research, an example is presented using map variation. The example illustrates how 

novelty search programmatically creates candidate arrangements of elements on the training scenario map, 

then labels each one according to its predicted impact on learning. Specifically those map variations that 

change the scenario challenge level are stored in a library for the GIFT pedagogical module to select, using 

the domain-general labels on each variant. As research and development continues, more elements of 

training such as text content will also be varied using ASG. The result of having many variants is that GIFT 

may individualize the training experience in order to simultaneously support one learning objective and 

challenge another, according to learners’ needs. 

BACKGROUND AND RELATED WORK 

ASG has combined relevance across multiple research fields. This section discusses the current state of the 

art in (1) evolving scenario content, (2) novelty search as an approach to addressing issues of traditional 

evolutionary algorithms, and (3) computational accounting of pedagogical impact. 

First, there have been several successes in procedurally generated content for games or training scenarios. 

Evolutionary algorithms have generated content such as scenario terrain, behaviors, events, and narrative 

(Luo, Yin, Cai, Zhong, & Lees, 2016; Stanley, Bryant, & Miikkulainen, 2005; Zook, Lee-Urban, Riedl, 

Holden, Sottilare et al., 2012). Evolution is well-suited to spaces where there are too many possible 

variations to explore them all or randomly choose variants to evaluate. In generating training content, 

effective search is needed because it may not be easy to predict how the changes that are easy to make, such 

as terrain or unit locations, will affect the desired outcomes, which are to change how instruction works for 

learners. As a concrete example, changing the position of an enemy unit from “left of the hill” to “right of 

the hill” may have no training effect for a ground-based tactical movement scenario, but significant training 

effect for an indirect fire scenario, where accounting for wind velocity and smoke effects is a training 

objective. 
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Second, evolutionary algorithms as a class suffer from certain shortcomings that are broad and practical in 

their importance. Evolution can require days to complete, or may demand high-performance server clusters. 

A key reason is that evolution typically needs to be carefully tuned to avoid premature convergence on one 

local optimum, finding the same variants repeatedly instead of new ones. However, a recent advance in 

evolutionary algorithms suggests that an entirely different approach both yields better results and reduces 

required computer resources. This approach is novelty search (Lehman & Stanley, 2008, 2011). Novelty 

search replaces evolution toward a higher fitness with evolution toward increasingly different individuals. 

Novelty search has been used with success to evolve content similar to training scenarios, such as game 

levels (Liapis, Yannakakis, & Togelius, 2015). 

Third, there is the question of letting novelty search predict the training impact of generated variants. 

Instructional designers, educators, and cognitive psychologists are among those who have created 

frameworks for predicting the effect of training scenarios, interventions, and other content on individual 

learners and in different training contexts (Campbell, Ford, Campbell, & Quinkert, 1998). Two factors that 

have been recently studied are scenario helpfulness and complexity. Helpfulness describes the explicit 

interventions that can be part of training, such as help messages, hints, or formative feedback—are they 

specific or broad, immediate or delayed, and so on (Shute, 2008). Complexity gives a good complement by 

measuring implicit interventions which vary scenario content in order to support or challenge learners, such 

as tailoring the number of enemies or the amount of time remaining to carry out a task (Dunne, Sivo, & 

Jones, 2015). Measuring different dimensions or categories of helpfulness and complexity has driven 

tailoring in past work, but has been manually defined for each variant (Folsom-Kovarik, Newton, Haley, & 

Wray, 2014; Folsom-Kovarik, Sukthankar, & Schatz, 2013; Graffeo, Benoit, Wray, & Folsom-Kovarik, 

2015).  

In summary, evolutionary approaches may be able to generate meaningful scenarios from the infinite set of 

possibilities, to do so quickly when using a metric such as novelty search, and objectively measure 

instructional relevance. The natural divisions of the “genotype” and “phenotype” space within an 

evolutionary approach lend themselves to representing the literal scenario content (genotype) and its learning 

impacts (phenotype). An evolutionary content generation method that would also let end users such as 

instructors and subject-matter experts understand and control the content evaluation in an objective manner 

would help to improve usability and user acceptance of the approach (Folsom-Kovarik, Wray, & Hamel, 

2013). 

NOVELTY SEARCH AND APPLICATION TO ASG 

Evolutionary algorithms are appropriate methods to search when a space is too high-dimensional, unevenly 

gradiated, or otherwise inappropriate for simpler enumeration or gradiant descent methods. Evolution 

typically maintains a notional population of points in the search space which are evaluated to find their 

fitness for the purpose at hand. The points in the population are then combined and varied with operators that 

aim to increase fitness of the next generation and remove points that have lower fitness. Novelty search 

addresses some limitations of evolutionary algorithms. Instead of working to increase fitness, the aim is to 

increase novelty and explore points that are as different as possible from what has been seen before. In this 

way, novelty search attempts to remove premature convergence concerns typical in evolutionary algorithms 

and produce many variants that can be filtered for fitness to a specific need. This is specifically an advantage 

in the training domain space where differences among the scenarios is an explicitly stated goal. 

This section describes the current state of the novelty search algorithm under development. Novelty search 

efficiently finds variants that are new in a domain-general sense. That is, the variants provide a different 

manner of support or challenge than any variant already available. As novel variants are created offline, they 



 

 

Proceedings of the 6th Annual GIFT Users Symposium (GIFTSym6) 

 

 

78 

 

can be stored for human review and access by GIFT. The novelty search is an “anytime” process meaning 

that it can provide results immediately or continue to improve the results as more compute time is available 

when not actively training. GIFT is then able to select in real time during training between variants using its 

existing, domain-general Pedagogical Module. Instructors will be able to see what variants are available and 

identify any gaps that still need to be evolved. This allows for both the generation of content that the 

instructor can approve and for the further development of training exercises for students if the amount of 

approved content is exhausted. 

The current implementation of novelty search is built on the open-source library Distributed Evolutionary 

Algorithms in Python (DEAP) (Fortin, Rainville, Gardner, Parizeau, & Gagné, 2012). DEAP offers a 

combination of fast prototyping now with fast computation and variant generation in future deployment. Like 

other evolutionary algorithms, novelty search depends on effective design of (1) genotype representation, (2) 

genetic operators, and (3) fitness function or in this case novelty evaluation function. In the current state of 

research, these are domain-specific. However, future research may be able to identify opportunities for reuse 

across broad domains such as the spaces of all images or all text documents. 

First, ASG differentiates genotypes from phenotypes in this way. Genotypes are those objects, such as 

strings of digits that can be easily changed during evolution, while phenotypes are the objects that can be 

evaluated for their novelty. The phenotype is the scenario variant itself that which the learner experiences 

during training and which the instructor must agree provides appropriate support and challenge. As a result 

of this difference, evolution is not needed when it is possible to jump straight to the desired phenotype. 

Instead, the separation of genotype and phenotype is necessary because the phenotype can be measured on 

dimensions that matter to instruction, like complexity and helpfulness, but the genotype cannot be measured 

until it is transformed into a phenotype. Conversely, at the genotype level there are a set of changes which 

are easy to apply to generate new variants, but it turns out to be difficult to make changes at will in the 

training experience phenotype, because human creativity would be required. 

The genetic representation currently used throughout the rest of this work in ASG is a direct representation. 

More complex representations such as neural networks or hypercubes (Kocmánek, 2015) have also been 

used in novelty search but were deemed unnecessary at this stage of development. The genetic representation 

encodes each element of the evolved training scenario one-to-one in a vector of descriptive values. For 

example, in order to evolve locations of objects in a two-dimensional space, the genetic representation would 

describe each object with its type, x-coordinate, y-coordinate, and perhaps scale or rotation values. The 

current representation describes points, lines, and regions in two-dimensional space, which is hypothesized 

to be extensible to multiple domains. 

Second, genetic operators in ASG are designed to make changes to genotypes. The changes are not 

guaranteed to produce a better genotype, but they should be designed to build on what has already been 

evolved and create new genotypes that have a reasonable possibility to be viable. The genetic operators used 

are element insertion, single-point mutation, and single-point crossover. Element insertion increases the 

complexity of lines and regions by adding a new point at random to the genotype. Single-point mutation 

chooses a numeric value uniformly at random and changes it by adding a random perturbation with Gaussian 

distribution about zero. The crossover operator combines two existing genotypes by choosing a point in the 

vector and taking all elements to the left of that point from one genotype, all elements to the right of that 

point from the other. Since direct representations have been well-studied in other evolutionary algorithms, 

these operators are standard in the field and do not introduce additional domain specificity. 

Third, the novelty evaluation function in ASG is the tool that determines when evolution has produced a 

variant that is new in an interesting way, as opposed to a variant that appears to be new on the surface but 

does not provide any difference in training support or challenge. The terms “support” and “challenge” are 
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considered to be opposite ends of a single continuous scale for the purposes of this work. The evaluation 

phase consists of applying domain-specific rules to each phenotype (training variant) in order to find its 

value on domain-general dimensions. Four domain-specific rules were created as a proof of concept and are 

described in the ASG Example section below. The domain-general measures that result from these rules 

describe facts about the training such as complexity of meeting one learning objective or another.  

 

Figure 1: Training complexity (a) in the first generation and (b) after 20 generations. The different point 

colors and x,y locations (spread) visualize the diversity of training options that the evolved variants offer. 

ASG determines which variants are novel in the training challenge sense by clustering variants on the 

training complexity values, finding the k nearest neighbors (k=2 for efficiency), and selecting the variants 

which maximize Euclidean distance from their respective nearest neighbors. A hall of fame was maintained 

to provide persistence across generations of the current maximally novel individuals. In this scheme, 

different factors that separately affect complexity formed additional dimensions in the complexity measure. 

Examples were number of distractors or time constraints. As such, evaluation was found to require a scaling 

step in order to make different dimensions comparable and prevent one dimension from outweighing others. 

The outcome of the overall algorithm for novelty search is an increasingly diverse collection of training 

variants. Figure 1 demonstrates the difference between an initial generation and the variation after 20 

generations. The example complexity measures described below are projected into two-dimensional space. 

The increasing distance between the individuals after evolution indicates that novelty search produced 

variants which provide GIFT with more choices between noticeably different levels of challenge and 

complexity. 

A DOMAIN-GENERAL REPRESENTATION OF SCENARIO CONTENT 

The creation of a domain-general representation of learning impact enables contributions from many 

instructors, authors, and researchers to work together to increase GIFT tailoring options. A computational 

representation of factors that impact learning also enables automatically evaluating what is novel in ASG and 

what will help learners at scenario runtime. GIFT has previously conducted a literature review to support the 

selection of domain-general factors, including complexity. This proof of concept adds to that review a high 

degree of precision that breaks down support and challenge into multiple contributing factors that can be 

separately measured, varied, and objectively compared across learning domains and systems. 

Diverse instructional theories suggest categorizing or sequencing learning tasks based on a continuum of 

complexity. Gagné (1965) organized learning tasks into a broad hierarchy consisting of stimulus recognition 
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at the least complex through application and problem solving as the most complex tasks for any particular 

identified skill. A similar concept of task complexity has been used in past research with a Dynamic 

Tailoring System (DTS) that could choose in real time between training variants that were labeled by human 

experts with scalar complexity values (Wray & Woods, 2013).  

In the context of ASG, a single scale for task complexity is not expressive enough to capture the different 

ways in which the same task can be varied to be more or less complex. Many generated variants are likely to 

have the same complexity when measured on a single scale – an example might be a hypothetical GIFT 

question bank that contains a hundred different multiple choice items. Empirically some challenge learners 

more than others and are answered correctly less often. However, they might all be evaluated as equal in 

complexity because they all require simple recognition (of the correct choice). In the multiple choice 

situation, which seems not atypical, two possible approaches could let a computer system differentiate the 

available variants in advance without human expert labeling. First, GIFT could have an extremely fine-

grained hierarchy of sub-concepts. In this case, GIFT could differentiate and sequence the available variants 

based on hierarchical relationships between the sub-concepts such as prerequisites. This approach is not 

attempted in ASG. The second approach, which is explored here, is to increase the dimensions by which 

variants may be described. Complexity itelf must be analyzed in more detail. 

Dunne, Cooley, and Gordon (2014) conducted an initial analysis of factors that contribute to learning 

complexity. These factors included task complexity factors such as number of actions required and number 

of interdependent actions, as well as learning context factors such as number of possible ways to complete a 

task and number of distractors. These factors appear in Table 1. On the other hand, Table 1 also introduces a 

notional definition of helpfulness. As a complement to complexity, helpfulness has not yet been 

operationalized to provide concrete measures and will be discussed here at an early stage of exploration. 

First, Dunne and colleagues suggest theory-based, countable measures that help provide a multidimensional 

framework for objectively measuring complexity. Complexity increases with each of the factors in Table 1, 

although possibly nonlinearly. Current work with ASG is working to build rules that predict the impact of 

scenario variants by counting factors such as the number of cues, actions, and distractors in each variant. 

Each dimension in the framework is furthermore related to one equation that calculates scenario complexity 

and has been initially validated with empirical study of a military training sequence in the same citation. The 

rules that carry out counting the complexity factors are domain-specific, but they result in domain-general 

measurements. The domain-general measures let the GIFT pedagogical module work without domain-

specific knowledge and enable objective comparison across variants. 

Table 1: Domain-general dimensions describing challenge and support for each task or learning objective. 

Measuring Complexity  Measuring Helpfulness 

Number of cues  Attention via perceptual arousal 

Number of actions  Attention via inquiry arousal 

Number of subtasks across actions  Relevance via previous link 

Number of interdependent subtasks  Relevance via needs link 

Number of possible paths  Confidence via evaluation link 
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Number of criteria to satisfy  Confidence via learner control 

Number of conflicting paths  Satisfaction via feedback positivity 

Number of distractors  Satisfaction via future link 

 

Second, a measure is needed which describes the dimensions on which extrinsic or direct interventions can 

be measured. Interventions such as hints, help messages, and text documents that deliver remediation vary in 

their helpfulness with respect to specific learning objectives. As an intuitive example, a help message 

delivered inside a scenario by a character over the radio can be clear, concise, and on point to provide 

support, or it can deliberately challenge learners by being ambiguous, wordy, or distracting. A cognitive 

science basis for enumerating the possible differences in how helpful scenario components are lies in the 

ARCS model of instructional design (Keller, 1987). This model describes factors of attention, relevance, 

confidence, and satisfaction that motivate an adult learner to engage with learning content. Unlike the Dunne 

model, research is still needed to produce an accounting of how a computer system can see factors in this 

model. One example that moves the ARCS model toward countable dimensions might be a heuristic measure 

of inquiry arousal from counting the number or frequency of keywords like “how” and “why.” 

The combination of complexity and helpfulness is hypothesized to provide ASG with multiple objective 

measures to describe and differentiate the impact of every variant on different learning objectives. In this 

way, a domain-general representation of scenario content is hypothesized to increase the opportunities to 

apply learning theory in GIFT’s automated design and selection of content that is tailored for learners. ASG 

can augment a hierarchical analysis or a fragmented, parts-to-whole sequencing with recommendations that 

reflect how adults learn material of increasing complexity in context (Reigeluth & Stein, 1983). 

ASG EXAMPLE FOR SCENARIO LAYDOWN 

ASG is being developed and evaluated in the context of existing training for proper use of small unmanned 

air systems (SUASs). The training consists of sequential problem presentations in the context of a narrative 

supported by mission briefings and maps depicting the area of operations (Figure 2). Learners are also 

presented with adaptive hints and texts for remediation depending on their performance. The system has 

been designed to teach nine terminal learning objectives and 48 enabling learning objectives, a huge number 

of dimensions for evolution to explore if all combinations of learning objectives can eventually be varied in 

complexity and helpfulness. In the present research and development, a subset of three learning objectives 

was chosen for initial exploration. The first target for evolution was the mission map. Future work is planned 

to evolve text-based content such as briefings, pop-up events, and hints or remediation documents. 
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Figure 2: The SUAS training domain for developing and evaluating ASG. 

The ASG example seeks to evolve variants on the mission map depicted in the top left of Figure 2. In this 

example, the elements that can be evolved are shown in Figures 3 and 4. These include the locations of 

friendly and hostile units, a no-fly zone (red oval), and the shapes of roads, water, and forest terrain features. 

According to the ASG algorithm described above, these elements could be moved easily on the generated 

map variants. The next step was to demonstrate how the variants could be measured in training complexity 

space and selected as being more or less novel from a training impact perspective. 

Three training complexity measures were created for the example implementation. The measures were 

simple rules reflecting three of the learning objectives in the real training system: enemy air defense 

avoidance, recon and surveillance, and airspace coordination procedures. The simplified rules showed 

examples of three dimension types: continuous scalar, discontinuous scalar, and categorical. (1) For enemy 

air defense, one rule was created that stated training complexity increases with proximity to an enemy unit. 

The enemy was considered to have air defense capabilities that made it difficult to operate when near the 

enemy, (2) for recon and surveillance, two rules defined one complexity dimension. If an enemy unit was 

located within a forest region, the complexity of the training increased with the size of the forest. If the 

enemy was outside a forest, the complexity decreased in proportion to the distance from the enemy to the 

nearest edge of a forest region, and (3) For airspace coordination, the rule was that complexity was high 

when a no-fly zone lay between the enemy and friendly units, while complexity was low otherwise. In 

Figures 3 and 4, red dots indicate scenarios with high complexity in this dimension while blue dots have low 

complexity. 
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During novelty search, the first generation maps (Figure 3) typically did not even contain both a friendly and 

a hostile unit. This helps explain why they are all rated as similar in the complexity of air defense avoidance 

(Figure 1 above). 

  

Figure 3: First generation of evolving scenario variants. 

The last-generation maps (Figure 4) have evolved a greater frequency of having one friendly and one hostile 

unit on the map, which probably helped to explore more possible values of air defense avoidance complexity 

and let ASG provide variants at more places on this scale. 

The last-generation maps also display increased complexity of the contours around water and forest regions. 

This is an example of a difference that is visually very apparent but makes no difference for the purposes of 

measuring training complexity. The value of novelty search using domain-general measures of the variants is 

that the simplicity or complexity of the scenarios are evaluated without regard to surface details except where 

a rule tells ASG that those will change the learning experience. 

  

Figure 4: Last generation scenario variants. 

In summary, the work of developing an example of ASG in a GIFT-enabled training domain has helped to 

develop some of the proposals and surface findings in this paper, as well as considerations that will be 

addressed in ongoing research and development. The initial novelty search examples presented here used 

only a small fraction of the potential dimensions that could be measured to describe the SUAS training. As a 

result, there is great potential for novelty search to create a large library of scenario variants that offer GIFT 

any desired combination of support and challenge for delivering tailored training. 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

Presented above are the first steps in the investigation of Automated Scenario Generation. This research 

divides the problem up into three problems – downselecting from an infinite number of possible scenarios, 

doing so in reasonable time, and making scenario variants which are instructionally relevant. The proposed 

approach uses genetic algorithms, with a novelty search fitness function and a domain-general representation 
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of scenario content, to enable variant selection without a specialized pedagogical module and to present to 

instructors and students. Generally, the above research is incomplete – it did not include an analysis on 

whether the generalized scenarios are useful to SMEs or what dimensions of changes are needed or desired. 

This work is yet to be performed. 

This work, thus far, is able to make use of the existing GIFT logic, structure, and modules. The scenario 

selection logic within the pedagogical module should be written in a general enough manner so as to be able 

to be applied to a large number of generated scenarios. Performance assessment within the generated variants 

is also needed. Fundamentally, GIFT will have to provide the same tutoring to the new scenarios as it does to 

the old – the functionality is built into GIFT and the DKF structure. Integration at the end of the project may 

be as simple as a pointer to the optimal fit in a library of generated variants when the student reaches the 

appropriate experience at runtime. In the ideal case, performance assessment could be dynamic and follow 

rules drawn from or similar to the novelty evaluation rules, in the same manner as the DKF currently allows 

for pointers to external assessment engines. 

Next steps in the near term will be to replace the illustrative ASG example presented in this paper with more 

realistic rules for complexity. Instructor and SME interviews are planned to determine which learning 

objectives and aspects of the real training system are likely to be most impactful to vary. Understanding what 

dimensions human expert instructors actually want and need to vary will inform a more comprehensive set of 

rules that will help test and improve the efficiency and effectiveness of the ASG approach. 

In regards to future work, scenarios represent the most complex piece of content represented within GIFT. 

The example ASG could easily be extended to other two-dimensional content like images or VBS terrain. 

Simpler pieces of content, such as prompted, hints, feedback strings, webpages and other items are also 

shown to the user in GIFT training but are not procedurally generated. Technology to procedurally generate 

these types of items may have to be implemented differently, as these items may rely on text or image 

processing techniques rather than modification and generation techniques, but there may be another class of 

ASG representations and operators that is effective for many types of text content. 
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Integrating Sketch Worksheets into GIFT 
 

Kenneth D. Forbus, Thomas Hinrichs, Samuel Hill, Madeline Usher 
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INTRODUCTION 

While there is evidence that sketching can improve student learning (e.g. Ainsworth et al. 2011; Jee et al. 

2014; Scheiter et al. 2017), sketching has rarely used in intelligent tutoring systems because it has been 

difficult for software to understand what a student’s sketch means. To tackle this problem, our group 

developed CogSketch (Forbus et al. 2011), which provides a robust model of high-level human visual 

processing and representation.  It has been used to model a variety of human visual reasoning and STEM 

problem-solving (Forbus et al. 2017), providing evidence that its representations and reasoning can provide a 

solid basis for creating new kinds of sketch-based educational software. 

One such new kind of sketch-based educational software are Sketch Worksheets (Yin et al. 2010; Forbus et 

al. 2017).  In a Sketch Worksheet, students tackle problems by drawing and modifying sketches.  At any 

point, they can request feedback, and then improve their sketch.  Gradebook software built into CogSketch 

enables instructors to rapidly grade sketching assignments.  CogSketch also provides instructors with 

detailed assessment data as to the student’s process as well as their final product.  Importantly, Sketch 

Worksheets can be authored by instructors, after learning some basics of CogSketch, without programming.  

This improves dissemnination, by broadening participation in authoring.  Sketch Worksheets have now been 

deployed in several classrooms and subjects (Garnier et al. 2017; Forbus et al. 2018).   

While Sketch Worksheets are useful, we believe there is much untapped potential to be explored for using 

sketching in new kinds of educational software.  This paper describes our next step in exploring sketching in 

intelligent tutoring systems more broadly, by integrating Sketch Worksheets as a medium in GIFT, to benefit 

from the adaptivity that GIFT provides, and to provide a new capability for GIFT tutors. We describe the 

basic ideas of sketch worksheets, how we are integrating them into GIFT, and the prototype Simple 

Machines tutor we are building as an experimental vehicle. Planned experiments are discussed. While this 

integration is still in progress, we plan to demo a version of the Simple Machines tutor during the 

symposium.  

SKETCH WORKSHEETS: A BRIEF REVIEW 

Here we summarize the basics of Sketch Worksheets, more technical details can be found in [Forbus, et al. 

2017].  A student tackling a Sketch Worksheet is trying to solve a problem, whose solution is expressed by 

them drawing or modifying a drawing.  For example, in geoscience, they may be asked to mark up a 

photograph, indicating the properties of the geological strata it illustrates.  In engineering graphics, a student 

might have to redraw a design shown in perspective projection in orthogonal projection.  In cognitive 

science, a student might have to draw a concept map representing the semantic content of a sentence.   

Being able to do this range of tasks with the same software requires a fundamentally different approach than 

the usual view that identifies sketch understanding with sketch recognition.  The mapping from concepts in 

STEM education to visual shapes is many to many: Recognition typically isn’t an option.  Instead, people 

talk when they sketch with each other.  CogSketch provides a simple interface that enables students to 

identify how they are considering their ink as partitioned into objects, and give them a label in terms of 

concepts from the underlying knowledge base (which, to the student, look like natural language words or 
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phrases).  CogSketch computes visual relationships between the ink entities that students draw, including a 

rich vocabulary of qualitative relationships that can be used to connect spatial concepts to language.  When 

an instructor authors a worksheet, they draw their solution using CogSketch, which analyzes their ink.  The 

instructor marks some subset of the facts CogSketch computes as important, assigning points to each such 

fact and providing text to be provided if the analog of that fact is not found in the student’s sketch.  When a 

student tackles a worksheet, they draw (or modify existing ink, depending on the worksheet) their solution.  

When they ask for feedback, CogSketch performs the same analysis as it did on the instructor’s sketch, and 

uses analogy (Forbus et al. 2016) to compare the facts computed about the two sketches.  Any differences 

that correspond to important facts lead to the appropriate advice being produced for the student, or an 

indication that they’ve successfully finished the worksheet.  They are free to continue working on it as long 

as they like. 

For assessment purposes, CogSketch records timestamps for all of the ink, as well as what order entities were 

drawn in.  The state of the sketch at every time the student asked for help is also recorded, so the instructor 

(or educational data mining software) can examine their performance in detail and look for patterns across 

students.   

INTEGRATING SKETCH WORKSHEETS INTO GIFT 

Our approach is to integrate Sketch Worksheets as a new kind of media that can be used in GIFT tutors.  

Since GIFT is implemented via an Amazon-based cloud, we are building a cloud-based version of 

CogSketch to support these experiments.   

The cloud-based version of CogSketch is called WebSketch.  The services are implemented as Docker 

containers grouped together in a stack that can be deployed on various cloud services.  In order to integrate 

with GIFT (as well as other educational software infrastructures) our WebSketch stack also contains services 

to support the LTI protocol (Learning Tools Interoperability, https://www.imsglobal.org/activity/learning-

tools-interoperability).  Figure 1 shows how this would work with GIFT.   

GIFT communicates with WebSketch through LTI.  When a GIFT course makes use of a Sketch Worksheet, 

GIFT uses LTI to handoff control to WebSketch.  The student works through the worksheet and a score is 

returned to GIFT.  WebSketch is functioning as an LTI Tool Provider and GIFT is an LTI Tool Consumer in 

this setup.  

The LTI Authorization service in the WebSketch container stack handles the initial communications from a 

Tool Consumer (GIFT in this case).  This includes confirming that the request is coming from a valid Tool 

Consumer that has permissions to use WebSketch and starting an LTI session.  The initial communications 

from GIFT include a unique and consistent identification of the student (anonymized), which worksheet 

should be used, and a URI to which the student’s score should be returned.  

If the LTI request is valid and authorized, control is passed to the WebSketch Node Management service, 

which chooses an available WebSketch node from a pool of nodes.  The selected node is used for the 

student’s session with WebSketch.  Each time a student requests tutoring advice from WebSketch, the 

student’s score is updated and conveyed to GIFT.  When a student is finished working, their sketch is saved 

in our Sketch Repository.  The saved sketch can be accessed later as needed for assessment and aggregate 

data collection.  If a student revisits a given worksheet through GIFT, the worksheet can be retrieved in the 

state they last left it. 
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Figure 16. WebSketch/GIFT integration 

There are several steps remaining before our initial implementation is finished.  The first is a Sketch 

Worksheet service, which needs to have a repository of blank worksheets, and a registry that connects an ID 

used in the GIFT tutor with a sketch file.  We have implemented a Sketch Repository to store student work, 

but it is currently running outside the Docker container, whereas for portability it needs to be part of the 

WebSketch Docker Swarm.  There are also a variety of WebSketch UI improvements to be made, including 

support for CogSketch annotations.  We are planning to have these improvements finished before the 

Symposium. 

EXPERIMENT IN PROGRESS: A SIMPLE MACHINES TUTOR 

A common topic in STEM instruction for K-12 students, and relevant to understanding and maintaining 

many kinds of Army equipment, are simple machines: Levers, pulleys, screws, and so on.  Aside from their 

practical importance, simple machines provide an interesting application of scientific principles, and 

provides a bridge between intuition and qualitative understanding to mathematical models that support 

design and predication.  They are also inherently spatial, which makes them a natural for sketching activities.  

Consequently, we are using GIFT and Sketch Worksheets to create a Simple Machines Tutor.   

The learning goals for our curriculum are that, after working through it, a student should be able to 

1. Understand the kinematics and force dynamics of simple machines. 

2. Recognize structural components, salient relations, quantities and ratios relevant to their operation.  

3. Recognize simple machines in the everyday world 
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4. Understand the tradeoffs between distance, force, and work and how these tradeoffs are manifested 

in physical systems 

5. Have an improved physical intuition for how mechanisms can or will behave and be able to use 

calculations to verify that intuition  

6. Understand the design space of alternative ways to achieve a given effect.  

Simple Machines Curriculum Design 

The medium of sketching is not limited to representational drawing.    It also includes annotating existing 

sketches or photographs, labeling, and re-arranging constituent components of sketches.  With these 

interactions, it becomes possible to go beyond simple presentation and multiple choice questions to tease out 

more subtle misconceptions and knowledge gaps.  

The curriculum will initially focus on recognition and qualitative analysis of each type of simple machine.  

Starting with an informal definition and exposure to multiple examples of a simple machine in the context of 

common everyday devices and situations, the learner is encouraged to compare and make his own analogies 

to induce a general concept.  That generalization can be tested with additional classification examples and 

near-misses.  

Next, more subtle relations can be conveyed in a generative fashion by having the student modify a sketch to 

alter critical relationships.  For example, they might be asked to move the fulcrum in a lever to change it 

from a first-class to a second-class lever.  By not providing explicit choices, it is possible to detect a broader 

range of misconceptions (e.g., can they even recognize the fulcrum in this context?)  

The next activity involves qualitative comparative analysis in which two machines of the same type but 

different quantitative relations are presented side-by-side.  Here, the task is causal reasoning about 

differences, e.g. which machine would apply greater output force given the same input force.  The learner 

must annotate the depictions to identify which quantity is larger (or smaller) in the selected machine, and 

also which visual property gave rise to this conclusion, giving a window into their reasoning. 

With a solid qualitative foundation, the formal notion of mechanical advantage can be introduced.  The three 

quantities involved (distance, force, and work) will be presented in the context of one kind of simple 

machine (e.g., inclined plane) and then by analogy those concepts are extended to other machines.  So if 

distance travelled is straightforward in the context of an inclined plane, what does distance travelled 

correspond to in a screw?  (translational distance? distance along the helix?)  How about in a block and 

tackle?  

Once correspondences between quantities across different types are established, it becomes possible to draw 

more abstract analogies between different types of machines.  For example, a screw can be conceptually 

unrolled into an inclined plane.  What activities might support comparing the mechanical advantage of one to 

the other?  

As quantities are introduced, it becomes possible to present simple parametric synthesis tasks, in which the 

student labels a machine’s lengths, angles, and ratios with numerical values to achieve a desired 

performance.  For example, a problem might specify the desired mechanical advantage and one structural 

parameter, leaving the last parameter open, to be added as an annotation. Finally, when exploring mechanical 

advantage, we want to avoid functional fixity, in which all machines are seen as force amplifiers, by 

illustrating the design tradeoffs in other directions.  So for example, sometimes the problem will be to attain 
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greater precision rather than force amplification. Vernier calipers exploit the ratio of rotational distance to 

translational distance to attain high precision.  An exercise will have the student modify a sketch by 

swapping out one or more components of a simple machine (e.g., the pitch of a screw or the diameter) to 

achieve different kinds of goals, such as minimize displacement, or reduce overall physical size of the 

machine.  

The last set of exercises will addresses structural synthesis.  Here, we have to consider simple machines in 

the context of more complex compound machines.  The first kind of synthesis exercise is the sketching 

analog of fill-in the blank questions.  The learner will be presented with an incomplete kinematic chain and a 

desired global property.  They must fill in the missing element by sketching and labeling it, along with its 

relevant parts and quantities.  For example, if the direction of force needs to be reversed, a first-class lever 

could be used, or a pulley.  If rotational to translational conversion is required, either a wheel and axle or a 

screw could be used.    

Another synthesis exercise would be to arrange a fixed set of simple machines into a configuration that 

achieves a goal.  Here, the machines are provided as building blocks and put together, although there could 

be more than one right answer.  

A capstone challenge problem will be to assemble a complex machine in such a way as to demonstrate an 

understanding of the design space and tradeoffs.  Rather than focus on practical quantitative design (which is 

beyond the scope of this curriculum), the problem may be presented more as the design of a "Rube 

Goldberg" type machine.  The goal could be to translate one displacement into another (or one force to 

another) with particular inputs and outputs, but using as many types of simple machine as possible.  Or it 

might be to use as few machines as possible.  It is not yet clear whether this can be achieved with purely 

open-ended drawing or whether it would be more feasible to construct a solution from prototypical building 

blocks that can be stretched, flipped, scaled and positioned.  In either case, there is no single right answer, 

but the ability to compare solutions to a generative grammar of compound machines and analogically 

compare kinematic pairs to teacher-authored prototypes should allow this exercise to be evaluated and 

scored. 

 EXPERIMENT DESIGN AND MATERIALS PREPARATION 

In experimenting with the Simple Machines curriculum, we plan on using a two by two design.  The first 

factor will be whether or not sketching is used, the second is whether or not GIFT’s adaptive tutoring 

capabilities are used.  In the non-sketching conditions, additional examples presented via text and diagrams 

will be used to provide balance, to reduce time at task differences as being a source of confounds. Our 

qualitative predictions for these conditions are shown in Table 1.   

 

Table 1. Qualitative Predictions for Student Learning 

 No Sketching Sketching 

Non-Adaptive Least learning In between 

Adaptive In between Most learning 
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We will measure learning by using a pre-test and post-test, both administered within the GIFT tutor, so that 

we can recruit participants on-line.  We have created a bank of just over 90 questions, focusing on true/false 

and multiple choice questions for simplicity.  The questions are drawn from open-license materials (e.g. the 

CK-12 Physical Science for Middle School textbook) or made up ourselves. We estimate that 20 questions 

for each test will provide enough statistical power to measure learning.  We have already selected two sets of 

20 questions, balanced in terms of difficulty by ensuring that for every question in the pre-test, there is a 

roughly equivalent, but not identical, question in the post-test.  The pre/post tests will be identical for every 

participant.  We will use different questions in the adaptive conditions from either the pre/post-tests.  

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

This paper summarizes work in progress on integrating Sketch Worksheets with GIFT, to explore how 

sketching can be combined with adaptive tutoring to hopefully improve student learning better than either 

could alone.  The Simple Machines curriculum we are developing as a testbed will cover each type of simple 

machine, and include recognition, analysis and synthesis activities, qualitative and quantitative concepts and 

relations, and includes parametric and structural synthesis tasks.  The key to supporting these activities is the 

ability of CogSketch to permit open-ended sketch input and to extract meaningful relationships from that 

input.  In particular, this allows a student to use annotations to show her work and justify answers – not just 

say what will happen, but also why.  Another advantage of open-ended input over multiple choice is that it 

can permit vastly more possible answers than would be practical to enumerate explicitly, as in tasks such as 

unscrambling a shuffled machine or filling in gaps in a kinematic chain with missing elements.  

Given where we are on this project, the conclusions and recommmendations we have only concern 

technology development, rather than tutor effectiveness.  First, we suggest that finer-grained granularity on 

saving be supported, i.e. even when questions are incompletely filled out during authoring, and during long 

quizzes when taking a course.  We recommend that future versions of GIFT consider introducing stronger 

relationships between test items, so that balanced pre/post tests can be automatically generated from a large 

question bank.  We also recommend that development of the LTI interface continue, expanding as that 

protocol is fleshed out, to provide a richer channel between Sketch Worksheets (and other extensions) and 

GIFT. 
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Iterative Development of the GIFT Wrap Authoring Tool 
 

Fleet C. Davis1, Jennifer M. Riley2, and Benjamin S. Goldberg3 

Humanproof LLC1, Design Interactive Inc.2, U.S. Army Research Laboratory3 

INTRODUCTION 

The Generalized Intelligent Framework for Tutoring (GIFT; Sottilare, Brawner, Goldberg & Holden, 2012; 

Sottilare, Brawner, Sinatra & Johnston, 2017) is an empirically-based, service-oriented framework of tools, 

methods, and standards aimed at overcoming the challenges associated with authoring computer-based 

tutoring systems (CBTS), managing instruction and assessing the effect of CBTS, components and 

methodologies (“Generalized Intelligent,” n.d.). One of the primary developmental objectives for GIFT is the 

creation of an integrated, user-friendly authoring experience that can be used across training applications. 

Humanproof, with teammate Design Interactive, is working to fulfill this objective via continued 

development of the GIFT Wrap prototype. This prototype, currently in its third generation, allows training 

developers to configure the real-time, automated delivery of instructional content triggered by assessing state 

changes within the training application’s environment (e.g., entity location) and/or learner (e.g., concept 

mastery). This ongoing research and development effort is focused on the design and implementation of the 

user interface (UI) that guides users through the configuration of tutoring events driven by real-time 

assessments within a training application. Integration with the LandNavHD Unity game, a computer-based 

land navigation trainer used as a practice environment for dead reckoning procedures, served as the most 

recent use case for this ongoing effort. The third generation of GIFT Wrap’s development focused on 

building new integrated, user-friendly tools for authoring real-time assessments within the context 

LandNavHD training environment. This effort also included the continued integration of legacy authoring 

functionality into the GIFT Wrap design. The following sections briefly describe the previous GIFT Wrap 

development efforts, provide an overview of the third generation of GIFT Wrap, present usability findings, 

and discuss concepts for extending GIFT Wrap to live training environments. 

BACKGROUND 

From a conceptual level, GIFT manages interaction within a training environment through the Learning 

Effect Model (LEM; Sottilare, Ragusa, Hoffman & Goldberg, 2013). The LEM outlines the inference 

processes captured in GIFT that leads to the selection of an instructional strategy based on observed 

performance. In this model, raw data is consumed by GIFT and routed to the domain module for assessment 

purposes. In this instance, the domain module uses the raw data to compute a performance state on a set of 

defined concepts, where Condition Classes designate performance as at-, above-, and below-expectation for 

the associated concept being assessed. This performance state is combined with learner relevant information 

(i.e., individual differences) to inform the pedagogical model for a strategy selection. The challenge here is 

establishing the necessary assessments required to capture appropriate performance states that associate with 

the objectives of the training event. To meet this challenge, user-centered design approaches are being 

applied to current architectural components with the intent of providing training developers and subject 

matter experts with intuitive tools to configure these assessments themselves. 

Authoring Challenges - Real-time Assessments 

In previous versions of GIFT, there were two major challenges for users authoring the real-time assessment 

component of a course. First, authoring the Domain Knowledge File (DKF) using the DKF Authoring Tool 
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(DAT) proved to be too complex for the average user and much better suited for power users that would be 

more likely to take full advantage of the DKF’s extensive functionality. Second, users were required to 

author using both the DAT as well as any content creation tools for the training application (e.g., the Virtual 

Battlespace mission editor) in order to configure real-time assessments and other elements of adaptive 

training. Without real-time communication between GIFT and the training application, direct integration was 

not possible, making the authoring experience disjointed and cumbersome for users (Davis, Riley, & 

Goldberg, 2017).  

Overcoming Authoring Challenges 

GIFT Wrap was purposely designed to overcome the challenges associated with authoring real-time 

assessments by providing users with an integrated, user-friendly authoring tool. The first generation of GIFT 

Wrap took an initial step towards addressing integration with training applications by providing users with a 

tool that allowed them to author tutoring content (i.e., a check on learning (COL)) while simultaneously 

interacting with the training application’s content creation tools (i.e., the Augmented Reality Sandtable 

(ARES) terrain map) (Hoffman, Markuck, & Goldberg, 2016).  

The first generation of GIFT Wrap served as proof-of-concept that led to the development of the second 

generation. The second generation of GIFT Wrap advanced the tool’s functionality by (1) providing a 

redesigned UI for creating, configuring, and managing a DKF that would eventually replace the DAT, and 

(2) creating a “blended authoring environment” that allowed users to author real-time assessments (e.g., 

COLs) directly within the context of a training application’s content creation tools via an “Overlay UI” with 

the flexibility to rapidly switch back to the main GIFT Wrap UI and configure the rest of the DKF (Davis, et 

al., 2017).  

THIRD GENERATION GIFT WRAP 

Incorporating DAT Functionality 

The second generation of GIFT Wrap was designed to be flexible enough to incorporate all existing DAT 

functionality into a new, more user-friendly UI that could support both novice GIFT users as well as more 

experienced GIFT training authors (Davis, et al., 2017). The third generation of GIFT Wrap contains several 

new features (see Figure 1) that previously only existed in the DAT including, but not limited to, the 

following: 

 Users may now create child Concepts nested up to three layers deep allowing training developers the 

flexibility to assess Concepts at different levels of granularity. 

 User may now create multiple strategies for state transitions and/or assessment levels for a given 

Condition Class.  

 Users may now add time delays for Task triggers to better control the pace and timing of tutoring 

events. 
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Figure 17. GIFT Wrap New Features 

Extending the Blended Authoring Experience  

Beyond incorporating additional DAT functionality into the new GIFT Wrap design, the blended authoring 

experience was extended outside the ARES training application to include the LandNavHD Unity game. In 

order to accomplish this, GIFT Wrap was integrated with the GIFT Unity plugin to establish communication 

between GIFT Wrap and the LandNavHD. Also, two new event handlers were created in the LandNavHD 

Unity project that send messages to GIFT providing information used for real‐time assessment. Once GIFT 

Wrap and the LandNavHD were fully integrated, new real‐time assessments were created specifically for the 

LandNavHD. Carrying forward the land navigation training use case used with the second generation of 

GIFT Wrap, the following Condition Classes were created to support the training tasks used in the 

LandNavHD: Avoid Area, Follow Path, and Locate Navigation Points. Next, the GIFT Wrap Overlay UI was 

updated to accommodate authoring these new real-time assessments within context of the LandNavHD 

environment. The current version of the LandNavHD does not include content creation tools that would 

allow users to create or edit new scenarios. To account for this, a top‐down image of the terrain was 

extracted and a new layer was created in the GIFT Wrap UI to simulate the functionality of authoring within 

the training application’s virtual environment. Each of the new LandNavHD real-time assessments and 

corresponding Overlay UIs are described below. 

Avoid Area 

This Condition Class checks whether or not a specific entity avoided an area in the virtual environment. This 

is used to assess the learner’s ability to move by terrain association and/or dead reckoning while avoiding 

certain obstacles, areas, terrain features, etc. GIFT Wrap allows users to easily draw areas to avoid directly 
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on the LandNavHD terrain (see Figure 2) rather than requiring manual entry of a set of coordinates. Users 

may also adjust the positioning of the area, name it, change its color, and set a tolerance (e.g., entity entered 

area for more than 30 seconds). While this assessment was created for land navigation, it is generalizable to 

numerous scenarios relating to zones of interest and trainee location within that interacting space. 

 

 

Figure 18. Avoid Area Overlay UI 

Follow Path 

This Condition Class checks whether an entity traveled along a series of connected straight line paths in the 

virtual environment within a set of thresholds for deviation. This is used to assess a learner's ability to move 

by dead reckoning, point‐to‐point land navigation. GIFT Wrap allows users to easily draw paths/routes to 

follow directly on the LandNavHD terrain (see Figure 3) rather than requiring manual entry of a set of 

coordinates. Users may also adjust the positioning of the end points and set a tolerance (e.g., entity may 

deviate no more than 30 meters from the path). 
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Figure 19. Follow Path Overlay UI 

Locate Navigation Points 

This Condition Class checks whether or not an entity reached the location of a specific location (coordinate) 

in the virtual environment within a set threshold. This is used to assess the learner’s ability to navigate to 

specified locations in the virtual environment. GIFT Wrap allows users to easily drop points directly on the 

LandNavHD terrain (see Figure 4) rather than requiring manual entry of a set of coordinates. Users may also 

adjust the positioning of the point and set a tolerance (e.g., entity must be within 30 meters of the point). 

 

Figure 20. Locate Navigation Point Overlay UI 
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VALIDATING THE DESIGN 

The third generation of GIFT Wrap represents the most recent attempt to develop user-friendly authoring 

tools aimed at configuring real-time assessments that occur during training. However, user testing is always 

needed to validate claims that the most recent design iteration is indeed an improvement over previous 

versions. Therefore, a small scale usability test was conducted to compare and contrast authoring a DKF 

using the DAT and the third generation of GIFT Wrap. A total of seven of participants were asked to 

complete a comparable set of tasks with both interfaces, in a counter-balanced manner, in order to gather 

user feedback on their perceived ease of use as well as compare system performance. The results (i.e., 

descriptive statistics) from each survey and performance measure, findings from the user interviews, and test 

facilitators’ observations are reported in the following sections. 

Subjective Measures 

Subjective Workload 

All participants reported experiencing higher workload with the DAT (M = 62.71, SD = 8.34) than with 

GIFT Wrap (M = 37.86, SD = 9.21) on the NASA-Task Load Index (NASA-TLX) (Hart & Staveland, 1988) 

(see Figure 5). The subscales that appear to have contributed the most to differences in the overall score were 

Mental Demand, Performance, and Frustration (see Figure 6). That is, the participants reported higher 

Mental Demand and Frustration and poorer Performance associated with the DAT than GIFT Wrap. 

 

Figure 21. NASA-TLX Total Scores by Participant by Tool 
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Figure 22. Average Score by Scale 

System Usability Scale 

All but one participant reported better perceived usability for GIFT Wrap (M = 67.86, SD = 17.76) than for 

the DAT (M = 36.79, SD = 24.01) on the System Usability Scale (SUS) (Brooke, 1996) (see Figure 7). In a 

review of 500 studies, a score of 68 was found to be the SUS national average (Sauro, 2011). GIFT Wrap 

received a score roughly equivalent to C while the DAT received a score equivalent to an F. 

 

Figure 23. SUS Scores by Participant by Tool 
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Objective Performance Measures 

All participants required more time to complete the test tasks with the DAT (M = 1309.00 (21min 49s), SD = 

353.92) than with GIFT Wrap (M = 592.00 (9min 52s), SD = 89.74) (see Figure 8). Furthermore, participants 

required more prompting to complete the test tasks with the DAT (M = 16.00, SD = 7.02) than with GIFT 

Wrap (M = 5.71, SD = 2.75) (see Figure 9). 

 

Figure 24. Completion Times by Participant by Tool 

 

Figure 25. Prompt Count by Participant by Tool 
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Participant Feedback & Other Observations 

Table 1 below summarizes the participant feedback collected immediately following each test session as well 

as other observations captured by the test facilitators during the usability testing. 

Table 2. Participant Feedback & Other Observations 

 GIFT Wrap DAT 

Common  

Usability  

Issues 

 Determining how to add a new 

concept 

 Remembering to complete the end 

trigger 

 Determining how to rename items 

(e.g., Concepts) 

 Recognizing horizontal panels/tabs 

(e.g., Strategy panel) 

 Save and exit errors (i.e., accidental close out of 

DAT with the intent of saving) 

 Determining how to set-up and assign 

waypoints 

 Determining how to set-up and complete 

strategies and/or state transitions 

 Determining how to add sub-concepts 

 Confusion about end trigger at start of 

authoring a task, prompted with need to return 

to it later 

Users Liked 

Best about 

the Tool 

 Layout 

 Intuitiveness, Simplicity 

 Process flow (i.e., tree menu 

structure) 

 Only relevant info presented to 

user 

 More features and options apparent 

 Descriptive (e.g., tool-tip-text, instructions) 

 UI “Style” (e.g., colors) 

Users Liked 

Least about 

the Tool 

 Fewer instructions at interface 

 Fewer apparent options 

 Confusing, Not intuitive 

 Frustrating flow 

 Not user friendly, hard for soldiers to use 

 Lots of clutter and/or information on interface 

Taken together, the results of this usability test indicate that users perceive GIFT Wrap to require less effort 

and to be more user friendly than the DAT, legacy GIFT authoring tool. Furthermore, the participants were 

able to complete the tasks much quicker and with less assistance with GIFT Wrap than the DAT.   
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CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

The third generation of GIFT Wrap successfully incorporated additional DAT functionality into a more user-

friendly design and extended GIFT’s authoring capabilities to a new training application with the 

LandNavHD Unity game. Furthermore, usability testing demonstrated that GIFT Wrap is much more user-

friendly than legacy authoring tools making GIFT more accessible to the average user without eliminating 

the important features power users need. However, while GIFT Wrap’s design outscored and outperformed 

the DAT, the test results showed that many design features could be improved. Future developers of GIFT 

Wrap should take these findings into account as they strive to iteratively improve the design. 

 

GIFT Wrap is now capable of supporting the authoring of land navigation training across multiple training 

applications (i.e., ARES, LandNavHD). These authoring tools and real‐time assessment capabilities are 

easily extendable to new applications including training in live environments via integration with mobile 

devices. Efforts are currently underway to determine the “back-end” functionality necessary for GIFT to 

communicate with mobile devices to retrieve real-time assessment data and to push instructional 

interventions to learners via a mobile tutor UI. This initial proof-of-concept will aim to layer GIFT’s tutoring 

capabilities on top of an existing live terrain walk exercises conducted at the United States Military Academy 

at West Point.  

 

The lessons learned from the first three generations of GIFT Wrap will be used to inform and guide the 

development of the fourth generation of GIFT Wrap. Near term GIFT Wrap research and development 

efforts will focus on developing new, user-friendly authoring capabilities that will be integrated with web 

mapping services (e.g., Google Maps) to create a new authoring layer. Work will also be done to apply 

existing capabilities to this new environment and to develop authoring tools for terrain walk specific real-

time assessments (e.g., pace count, plotting routes). This fourth generation of GIFT Wrap will eventually 

provide training developers with the tools they need to easily create land navigation training using the GIFT 

ITS to scaffold the learner’s phased skill development across three complimentary training environments  
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Learner Models in the Generalized Intelligent Framework for 

Tutoring: Current Work and Future Directions 
 

Gregory A. Goodwin 

U.S. Army Research Laboratory – Human Research and Engineering Directorate 

INTRODUCTION 

The function of an intelligent tutoring system (ITS) is to adapt or tailor training to an individual learner. As 

with a human tutor, this requires the ITS to have some “knowledge” of the learner (i.e., a learner model). The 

ITS uses and updates the learner model as the learner progresses through the material. For example, if the 

learner masters some concept, the learner model must be updated to reflect this. On the other hand if the 

learner has difficulty with a concept, the ITS needs to be able to understand where deficiencies lie in order to 

prescribe the appropriate remediation. 

Understanding why the learner might have had difficulty with a particular concept is no simple task as the 

list of reasons could be quite extensive. Perhaps the learner lost focus during the presentation of a key piece of 

information, lacks some key prerequisite knowledge, or has a low aptitude for the domain. The list could go 

on and on. 

All of these possible explanations require assessment of the learner. As can be seen from the above example, 

assessments can include information about the learner’s background, experiences, traits, and aptitudes, as well 

as measures of the learner’s affect, behavior, and performance during the training session. The more 

completely the learner model represents the learner, the better the ITS will be able to effectively adapt training. 

Dimensions of Learner Modeling 

In September of 2015, we published a report outlining research challenges in the area of individual learner 

modeling (Goodwin, Johnston, Sottilare, Brawner, Sinatra, Graesser, 2015). This report described a frame- 

work for assessment of the learner to support learner modeling. This framework provides a way of 

classifying different types of measures and relates those measures to adaptive methods. 

The framework categorizes measures into four groups in a 2 x 2 matrix. One axis in the matrix divides 

measures into state-like or trait-like categories. Trait like measures are what the learner brings to the training 

event. Examples would include physical strength and aptitude. State-like measures on the other hand are 

things resulting from the training. Examples include fatigue or confusion. State-like measures are fairly stable 

and either don’t change, or change very slowly. Trait-like measures change fairly quickly and are often 

transient. 

The other axis in the matrix divides measures into content-dependent or content-independent categories. 

Content dependent categories are learner measures that are directly relevant to the content being trained. 

Examples include prior knowledge or comprehension. Content independent measures are traits and states 

that are relevant to training generally rather than to specific content. Examples include aptitude and 

personality traits. Each of these four cells apply to three domains of learning (cognitive, affective, and psycho- 

motor, vis. Bloom, 1956). 

State-like and trait-like measures have some interdependencies (Goodwin, Murphy, & Hruska, 2015). For 

example, a student with high aptitude or prior experience would be expected to perform better in training 
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(Schafer & Dyer, 2013). Additionally, some state-like measures could update trait-like measures. For 

example, as the learner completes a block of training, his or her performance (state-like measures) would 

then update the trait-like measures, (e.g., indicating the learner had mastered a particular skill or completed a 

certification course). 

ITSs need both state like and trait like measures to adapt training effectively (VanLehn, 2006). For example, 

before an ITS can initiate training, it needs to know something about the learner. What does the learner 

already know? What is the learner’s aptitude? How motivated is the learner to complete the training? The 

ITS might use this information to determine the difficulty level of the training or what topics to skip. These 

are often described as outer-loop adaptation. As the ITS delivers training, it will measure student 

comprehension, attention, as well as the types of errors made, and level of frustration and/or boredom. The 

ITS can use these measures to choose remedial content or to change the pace or difficulty of the training – so 

called inner loop adaptation (VanLehn, 2006). Table 1 summarizes the kinds of measures that can be used 

for adaptation of training in GIFT. 

Table 1. Components of the Learner Model. 

 Learner Measure 

Category 

Trait-Like 

(Outer Loop Adaptation) 

State-Like 

(Inner Loop Adaptation) 

C
o
n

te
n
t 

D
ep

en
d

en
t 

Cognitive Relevant prior cognitive 

experience/knowledge/training 

Comprehension of concepts 

presented in the training 

Psychomotor Relevant prior psychomotor 

experience or training, 

Measures of Skill improvement 

Affective Fears, likes, goals, attitudes 

relevant to the training. 

Arousal and emotions in response 

to the training 

C
o
n

te
n
t 

In
d
ep

en
d
en

t 

Cognitive Intellect/Aptitude, Memory, 

Meta-cognitive skills 

Attention, Cognitive Workload 

Psychomotor Physical strength, stamina, 

sensory acuity 

Endurance and fatigue 

Affective Personality Traits, general test 

anxiety 

Arousal, emotions resulting from 

factors independent of training 

 

Using this assessment framework for developing learner models has a couple of benefits. First of all, by 

understanding that there are different uses for each type of assessment, it is possible to think about ways that 

those uses might be standardized in GIFT modules. This might be especially true for content-independent 

measures. Second, it is useful in identifying research and technical challenges that affect certain types of 

assessments. 

For example, in-training assessments of learner state are challenging because they must be frequently and 

rapidly assessed in a nonobtrusive way by the training system. Such assessments rely on measurement 

technologies like eye-trackers and physiological measures that can be expensive and may only be available in 
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certain training facilities. This highlights the need for research and development to bring the cost of these 

capabilities down and to increase their validity. 

Assessment of trait like factors is time consuming and so we want to avoid doing this every time a learner 

starts a training session. Ideally GIFT would access pre-existing databases containing that information (e.g., 

personnel records, learner records). Research is needed to develop ways to access that information in a secure 

way using open standards. Services also need to be developed to facilitate interoperability among databases. 

The next section outlines ongoing research in the area of learner modeling. 

AREAS OF RESEARCH ON INDIVIDUAL LEARNER MODELS FOR GIFT 

The following are areas of research on individual learner models for GIFT that are currently being 

investigated: 

Personality: A key to motivating our learners 

This report by Biddle, Lameier, Reinerman-Jones, Matthews, and Boyce (2018) describes an effort to utilize 

the personality of the learner (a trait-like factor) to identify key motivators that will improve learning 

performance. This association between personality and motivators can then be used by GIFT to use those 

motivators to tailor training to each individual. For example if people who are outgoing find social 

affirmation to be a powerful motivator, GIFT might utilize something like leaderboards or feedback from 

other learners to incentivize those learners. 

In fact, prior research has shown that personality and motivational factors are related. For example, learners 

with intrinsic motivation, which refers to an internal desire to succeed, are more likely to have a high level of 

the personality trait Conscientiousness (Duckworth et al, 2007). 

Last year, the authors presented work which identified items for a Motivator Assessment Tool (MAT). This 

tool identified individual motivational traits and specific associated reinforcers. This year, the authors have 

added items to these scales and check the reliability and factor structure and provide final refinement to the 

MAT items and then examine the relationship between the MAT items and the Big Five personality traits 

finding some interesting associations between personality and motivators. For example, they report that 

individuals who are open, conscientious, and/or agreeable tend to associate with self-directed learning. On 

the other hand, individuals who score high on neuroticism tend to find the learning environment threatening 

and would be difficult to motivate. 

Currently GIFT only tailors training based on a classification of learners as novice, journeyman, or expert. 

The next phase of this work will focus on integrating this survey into GIFT to provide a classification by 

personality. Using the associations that were discovered between personality traits and motivators, the course 

could then be tailored by the pedagogical module accordingly. 

This work also highlights the need for GIFT to implement a long-term learner model to avoid having to re-

assess learners each time they take a GIFT course. As noted, traits tend not to change over time and so there 

is little need to re-administer a survey that should essentially yield the same score each time. In fact, as noted 

by the authors, subjecting learners to the same survey over and over would probably be a demotivator. 
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Perceptual-cognitive Training Improves Cross-cultural Communication in a Cadet 

Population 

In this paper by Folsom-Kovarik, Boyce, and Thomson (2018), the authors explore ways to more efficiently 

develop remediation for training in GIFT using a cross-cultural communications lesson plan. More 

specifically, the investigators explored ways to adapt training using patterns of learner behaviors, common 

misconceptions, and a specific type of adaptation known as mid-lesson reports. 

The concept patterns refers to the ways in which learners tend to progress through the lesson. Some learners 

may persist until they achieve success. These learners are willing to try different strategies to solve the 

problems until they get it right. Other learners may not shift a response strategy, trying the same strategy 

over again, possibly several times, before quitting. Still others fall somewhere in between these two 

extremes. 

The concept of common misconceptions is fairly self-explanatory. For any given question, incorrect 

responses are often associated with a specific misconception. In the case of this project, the learning objective 

had to do with cross-cultural communication. The questions required the learner to balance different values or 

outcomes and then choose the best, though imperfect, course of action. Misconceptions identified by the 

authors included an authoritarian response in which the learner was mostly focused on being respected or 

obeyed, or a rules focus in which the learner inflexibly adheres to rules. These, and other, misconceptions 

could be applied across a wide range of question responses. 

In this experiment, the identification of the misconception, allowed the appropriate remediation to be 

selected by the pedagogical module in GIFT. The remediation was provided in the form of mid-lesson feed- 

back pointing out the error by challenging the misconception and encouraging further reflection before 

responding. The interventions worked on most of the responses, improving learning outcomes. 

One of the outcomes of this report is a recommendation to enhance the learner model to understand the 

patterns of responding by particular learners. Does a learner easily adapt his or her response strategy or doe 

the learner seem to persist in using an unsuccessful strategy? By understanding the learner’s response 

pattern, GIFT may be able to tailor prompts to these different types of learners. 

Another suggestion made by the authors of this report was to identify common or general misconceptions 

that learners make when responding to topical questions. The reusability of those misconceptions could make 

it easier to author remediation. If the content author simply identifies the misconception associated with a 

response, the pedagogical module can apply the appropriate remediation (e.g., encouraging the learner to 

apply a different response strategy) avoiding the need to author a unique remediation for each response of 

each question. 

Predicting Students’ Unproductive Failure on Intelligent Tutors 

In this report Park and Matsuda (2018) examine a method for detecting a type of unproductive failure known as 

wheel-spinning. Wheel spinning occurs when a student seems to be unable to figure out how to solve a 

particular problem or problem type. The result is that students spend an extended period of time on a 

problem without making progress. Students can become frustrated and will eventually give up. Needless to 

say, this is not effective or efficient learning and being able to detect students that are heading into this hole 

before they get too discouraged is critical to improving learning outcomes. 
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The investigators in this report used archival data in DataShop to explore modeling methods for predicting 

this pattern of learner behavior. They used four student factors: performance, hint usage, sum of response 

time, and difficulty of problem type. Employing a data mining method using a gradient boosted decision tree 

model yielded a model that could predict wheel spinning patterns of behavior about 62% of the time after the 

third opportunity to solve a problem and 83% of the time by their sixth opportunity. Future work will need to 

focus on how to adaptively and constructively respond to this pattern of learning so that students do not get 

frustrated and improve their learning outcomes. 

Modeling the Determinants of Training Time in GIFT 

Adaptive training promises more effective training by tailoring content to each individual insuring that it is 

neither too difficult nor too easy. Another, less discussed benefit of adaptive training, is improved training 

efficiency. This efficiency comes from minimizing the presentation of unnecessary material to learners. 

Typically, non-adaptive training is developed for the lowest tier of learners. While this insures that no learner 

will be unable to complete the training, it also means that many students are given material that is not well 

suited to their current level of understanding. 

The focus of this effort (Goodwin, Niehaus, 2018) is to determine how the fit between learner characteristics 

(e.g., aptitude, reading ability, prior knowledge), learning methods employed by the adaptive training system, 

course content (e.g., difficulty and length, adaptability), and test characteristics (e.g., difficulty, number of 

items) all determine the time to train for a population of learners. 

We use a probabilistic model to represent the different factors and instructional strategies that impact the 

completion time of a MAST module, as well as probabilistic inference techniques to determine a distribution 

of a course completion time. 

For example, if a trainee normally reads at 100 words per minute, there are 100 words in the text, and the 

trainee is tired, the reading time of the trainee could be distribution uniformly from 1 to 2 minutes. The 

reading speed of the trainee is also a non-deterministic variable that depends on how much prior knowledge 

the trainee possesses about statistics about how fast the general population of trainees read. 

One of the benefits of building a probabilistic model to represent the completion time is that not all of the 

information in the model is needed to estimate the completion time. For example, if we know how much 

prior knowledge the user has about the subject (for example, from a pre-instruction questionnaire), we can 

post that knowledge as evidence to the model that would be taken into account when estimating the 

completion time. If we do not possess that information, we can treat the variable as latent and use a prior 

distribution to represent the state of the variable. For example, we can estimate that only 20% of trainees 

taking the course have prior knowledge of the subject. These prior distributions can be estimated from the 

literature review or expert knowledge, and then learned over time based on the outcomes of actual testing. 

In this second year of this effort, the focus has been on further elaboration of the MAST model, identification 

of GIFT training content for use in the validation experiment for the final year of this effort and developing 

interoperability between the predictive model and GIFT. 

RESEARCH CHALLENGES 

As can be seen, GIFT-based research on learner modeling is still relatively nascent. However, the projects 

described above are pursuing a number of interesting approaches to both developing learner models and 
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using them to adapt training to improve both training effectiveness and training efficiency. All of the key 

research challenges identified last year continue to need more work. These are described below.  

Cross platform training. The major benefit of interoperable student models is the ability to adapt training 

across technology platforms. Using the xAPI specification, performance data can be recorded and interpreted 

from a wide variety of platforms, including desktop and mobile devices. While some Army-sponsored efforts 

have focused on assessing student performance across a range of training platforms (e.g., Spain, et al., 2013), 

maintaining a complex student model across these platforms – and adapting training accordingly – has yet to 

be successfully accomplished in a military context. Integrating GIFT with xAPI data would enable 

investigations into the best practices for adapting training across platforms. 

Macro- versus micro-adaptive interventions. Multi-faceted student models based on cognitive, psychomotor, 

and affective components are inherently complex, and may be representative of both “state,” or situationally 

dependent components such as level of workload and “trait,” or more persistent student characteristics such 

as personality traits. Whether to adapt training on a macro level (e.g. course selection) or a micro level (e.g. 

real time adaptation of content) based on these complex models has yet to be fully investigated. While some 

research suggests macro-adaptive strategies are more appropriate for more persistent characteristics (Park & 

Lee, 2004), this question has not been addressed across domains. 

Adaptation based on a combination of learner states. Assessing a learner’s affective state during the course of 

training has been a focus of ITS research over the past decade (e.g., D’Mello & Graesser, 2007). How- ever, 

research into how to adapt training based on this state is in its infancy (e.g., Strain & D’Mello, 2015). 

Arguably the state of the art in intelligent tutors, Affective AutoTutor (D’Mello & Graesser, 2007), senses 

student cognitive and emotional states such as boredom and frustration and acts to alleviate states. If a 

negative emotion is detected, the avatar within the tutor responds with an encouraging phrase and facial 

expression. In Affective AutoTutor, student affect and learning are managed through separate models; that is, 

interventions that are geared toward managing frustration are distinct from interventions aimed at 

manipulating content difficulty. The extent to which different interventions could be used to address 

combinations of these states has yet to be determined, but is a research question GIFT could support. 

Scenario-based training. GIFT is unique in that it supports intelligent tutoring in scenario-based platforms 

such as the Army’s Virtual Battlespace 3 (VBS3). How to assess competencies across complex student 

models using key events within one of these scenarios has yet to be investigated. If scenario data were 

recorded in xAPI specification scenario events could be diagnostic of both performance and affect. Key to 

this development is the careful mapping of competencies to decision events in a scenario. Best practices for 

accomplishing this have yet to be established. 

Predictive analysis of performance. Persistent learner models provide the opportunity to prescribe 

interventions based not only on performance during training but also prior to training on both the macro- and 

micro-adaptive level. Based on performance in one training setting, a student model could reflect a number of 

cognitive, psychomotor, and affective attributes which could then predict performance in another setting, 

given the domains were sufficiently interrelated. These data could be used to prescribe courses of instruction, 

training platforms, and even micro-adaptive strategies. To date, this potential has not been investigated. 

Return on investment of different types of interventions. To date, research into addressing interventions 

based on complex student models is feasible. However, whether or not a learning intervention is effective is 

not that same issue as whether or not it is effective enough. With defense budgets becoming increasingly 

limited, the question is whether adapting training based on complex representations of student competency is 

worth the investment. Implementing intelligent tutoring systems to date has been limited due to their domain 

specificity and cost to develop. While the GIFT initiative aims to address these issues specifically, the 
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relative cost of some interventions has yet to be determined. For example, emerging physiological technology 

enables the unobtrusive measurement of student cognitive and affective state (Murphy et al, 2014),  but does 

adapting training based on these types of measures produce sufficient learning gains to warrant their cost? 

These questions have yet to be fully investigated. 

CONCLUSIONS 

This discussion highlights a number of research questions that can be addressed as the result of integration of 

complex, interoperable learner models into the GIFT architecture. Through the use of xAPI data, 

representations of student performance can incorporate data from a multitude of sources. The GIFT team 

envisions a multi-faceted learned model consisting of psychomotor, cognitive and affective aspects of 

competencies. This model can be used to drive training adaptations across technological platforms, across 

do- mains, and across the course of a learner’s career. While the potential to fully model the lifelong learning 

of a student is promising, research is needed to fully evaluate the utility of these learner models. Some of this 

work is currently underway at the Advanced Distributed Laboratory under a program known as the Total 

Learning Architecture (TLA, Johnson, 2013). 

As an initial attempt at addressing these issues, several projects are using a marksmanship use case for an 

initial investigations of this capability. Marksmanship is an ideal domain for implementing multi-faceted 

learner models. While marksmanship skills may appear to be straightforward, effective performance is much 

more than simply hitting a target with a bullet. The marksman must master a range of psychomotor, 

cognitive, and affective skills in order to be successful, and must have an understanding of how myriad 

environmental factors play into his or her accuracy. Furthermore, marksmanship is a skill that every Soldier 

must master, so it has a broad applicability to the Army and its sister services. 

It is important to note research in learner modeling is still in its infancy. Consequently, our efforts are a first 

step toward developing definitive guidelines and best practices for how to best leverage interoperable 

performance data. Further research will be needed to expand an understanding of how these learner models 

play into the development and use of intelligent tutors across domains, training audiences, and platforms. 
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INTRODUCTION 

The Army is working toward enhancements in soldier training systems using synthetic training 

environments (STEs) and mission rehearsal capabilities. This capability will augment live training on the 

range and in many cases will be self-guided, meaning that the trainee will not require a tutor or instructor 

to administer the training. The STE enables single user training and training of teams in small local 

groups and across operational networks involving large groups. Adapting the training scenarios to the 

capabilities and training needs of individual trainees is a proven way to enhance individual training 

effectiveness.  

In distributed training evolutions, proper adaptation of the training scenarios takes on an even more 

important role, as such exercises involve many trainees at various stages of their training maturity and 

skill. Problems arise when less experienced, or lower-skilled, trainees are exposed to training scenarios 

that are too advanced, or complex, for their level of experience. This can easily happen if the STE does 

not consider the capabilities and limitations of the individual trainees. Such unprepared trainees are more 

likely to fail their training mission and thereby reduce the benefits of training, further exacerbating 

frustration in the trainee. In addition, the failure may jeopardize the success of other trainees who 

depended on a reasonably successful outcome of a mission task element in the scenario. Failure of a 

single trainee to accomplish his/her mission may result in a chain reaction of adverse events in the 

training evolution that may reduce the value of the training exercise or increase cost. Conversely, trainees 

exposed to missions that are not sufficiently challenging may experience boredom, or even apathy, 

resulting in a negative training benefit. Adaptive scenario administration is needed in STEs to avoid such 

breakdowns and to enhance individual training effectiveness.  

There are many STEs and tools available such as VBS 3 (Virtual Battle Space 3). These tools often allow 

the creation and storing of scenarios that contain the starting conditions of a training module but the 

scenarios themselves are usually administered on a brute-force lesson plan. The structure of the 

simulation tools actually encourage such lesson based administration as it is very easy to create and save 

static scenarios. What is needed, however, is a mechanism to continually adapt the scenarios to match 

them to student abilities at their respective stages in the training program. Additionally, students need rich 

feedback on their performance and guidance on ways to modify behaviors to increase performance, if it is 

not at or above expectation.  

In our work, we have created an adaptive training framework from three separate systems, (1) the 

Generalized Intelligent Framework for Tutoring (GIFT), (2) the VBS 3 simulation framework, and (3) the 

Cognitive Assessment Tool Set (CATS) workload quantification library. We developed a generic method 

to incorporate the GIFT performance grading scheme into VBS 3. This allows for on-the-fly 

configuration of adaptive VBS 3 training scenarios. Additionally, through CATS, this script can take into 

consideration the workload exhibited by the trainee and adapt the scenario to avoid over or underload 

conditions. This adaptive training framework is governed by student performance, workload, and task 

difficulty. Performance and workload were incorporated as aggregated scores. Workload is assessed using 

the CATS workload library that is attached to GIFT. Both performance and workload drive the selection 
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of upcoming training scenarios by modulating task difficulty such that the trainee is challenged at an 

optimum level. A script in VBS 3 uses a decision tree on the basis of performance (below, at, above 

expectation) to manipulate the level of task difficulty to maximize training effectiveness.  

In the current development cycle, we will perform a human factors study to assess the efficacy of adaptive 

training using two distinct adaptation schemes, one based on performance only, and one based on a 

combination of performance and workload. The results of the study will be used to determine if 

workload-adaptive training scenarios are more effective than training scenarios that only consider 

performance. 

BACKGROUND 

The value of adaptive training and its positive effect on training effectiveness has been well documented. 

The idea is of course not new (Lintern G. & Gopher D., 1978). The underlying principle is based on two 

hypotheses, (1) the learning of a complex task is best accomplished using less difficult versions of the 

task and increasing levels of difficulty until the whole task can be mastered, (2) learning of a task is better 

when transition from one level of difficulty to the next is guided by the performance of the student rather 

than brute-force administration of a rigid training regimen. 

In one-on-one training settings, expert instructors use this principle almost instinctively to keep students 

motivated throughout the building of critical skills. For example, flight instructors may teach the difficult 

skill of auto-rotating a helicopter using increasing levels of difficulty by gradually increasing the 

complexity of the maneuver. In the example of autorotation, adaptation is not only representative of good 

training didactics, it is essential for survival of both the instructor and the student, as poor performance 

can lead to mechanical damage to an expensive helicopter, such as through over speeding the rotor 

system, or it could lead to a fatal crash such as allowing the rotor RPM to drop below an allowable 

minimum or initiating the landing flare too late. Control of this task requires manipulation of four inter-

dependent controls (collective, lateral cyclic, longitudinal cyclic, and tail rotor pedals) as well as at least 

four inter-dependent performance parameters (airspeed, flight path, rotor RPM, aircraft attitude). To an 

uninitiated person, this maneuver is extremely scary and cognitive workload will be very high. It makes 

no sense to scare a student on each and every repetition of that maneuver as this will only increase the 

possibility that the student will never master it and be unable to use it as a needed emergency skill. 

Expert instructors will ease their students into auto-rotations through adaptive training principles by 

giving the student only one control axis at a time (e.g. the collective) or through adjustment of the flight 

path (straight in path instead of curved). As the student gains confidence in his/her ability to master this 

skill at a given difficulty level, performance will improve and workload will go down. As is typical in the 

acquisition of many critically important skills, the decrease in workload is highly indicative of 

autonomous mastery. In the early stages, students may be able to master the skill at an acceptable 

technical level but only with the highest levels of cognitive workload expenditure. This is usually 

sufficient for passing a check-ride or to graduate with a certificate but it is hardly a proper level of 

training for critical skills in warfighters. Instructors and instructional systems owe it to the warfighter to 

train them to a higher standard. High levels of cognitive demand causes significant draw on limited 

attentional resources (see Figure 26) which adversely affects the performance of perception, memory, 

decision making, and response execution. Trainees who master the skill to a point of automaticity will 

expend less cognitive workload and thus retain more attention resource capacity. This will afford them to 

devote those resources to mission critical task elements, which is essential in the projection of military 

power and for the self-protection of the warfighter.  
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Figure 26. Wickens Information Processing Model (Wickens C. D., 1992, 2008) 

In our research, we are working on building the adaptive expertise that good instructors apply almost 

instinctively into automated Synthetic Training Environments (STEs).  

Even as far back as the Seventies, adaptive training was conceived of as a closed-loop controller system 

(Lintern G. & Gopher D., 1978). Such a system depends on measurement of task performance. 

Unfortunately, automatically generating performance measures is not always easy and in many training 

tasks has eluded us to this day. Additionally, the most optimal way to make the training scenario adaptive 

is not always easily evident. Much research has been devoted to the question of how to make training 

tasks adaptive. Part-whole training is an adaptation scheme where essential subtasks are learned as 

building blocks to enable mastery of the whole task. Part Task (PT) training was found to lead to 

significantly faster convergence of a tactical skill in a video game when compared to Full Task (FT) 

training (Mané, Adams, & Donchin, 1989). An interesting observation of their work is that the part tasks 

were not fully representative as fractions of the whole task but when learned in sequence lead to better 

performance than if the full task is learned at once. An additional observation is that the PT training took 

longer than FT training. However, the skill transfer rates from the PT were 100% and the overall 

performance of demonstrating the full task was much better. Thus, while PT may not yield net time 

savings, the fact that better performance is achieved may mean that less remedial training will be needed. 

Mane and Wickens (Mane A. & Wickens C., 1986) studied the effects of task difficulty and workload on 

training. They noted that training systems should adapt to maintain high levels of workload as otherwise, 

trainees will learn short-term resource preserving strategies that are counterproductive toward mastering 

of the long-term skill. Rigid (i.e. non-adaptive) training methods allow such maladaptive resource 

preservation strategies to take hold. In our work, we use real-time measures of cognitive workload to 

quickly close that short-term loophole for the trainee by adjusting training difficulty to maintain high 
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levels of workload while at the same time preventing overload or defeat of the student through scenarios 

that are too difficult (e.g. auto-rotations).  

Gerjets et al. (Gerjets, Walter, Rosenstiel, Bogdan, & Zander, 2014) describe the relationship between 

cognitive load theory (CLT) and training outcomes through optimal loading of working memory load 

(WML). The main challenge is a continuous classification of cognitive workload to allow adaptation of 

the training scenario to modulate WML. They describe methods such as subjective probes or secondary 

tasks measures. Both methods of workload estimation are disruptive and hinder training effectiveness. 

They used EEG as a means to estimate workload with some success. The use of EEG signals for 

classification of workload is well represented in the literature, two additional examples of which are 

presented here. Wilson and Russell (Wilson & Russell, 2003) attempted to classify workload using a 

combination of sensors, including six channels of brain electrical activity, eye, heart, and respiration 

measures. Those authors were able to achieve classification accuracies around 82%. However, their tasks 

consisted of only two variants of the same test. Additionally, the high number of sensors used to collect 

the data, is sub-optimal for many scenarios including in flight measurements. Matthews et al (Matthews 

et al., 2008) used a wireless EEG sensor helmet to classify workload in real-time. Those authors achieve 

classification accuracies on an average of 80.5%. In well over a decade of workload estimation research at 

the University of Iowa Operator Performance Laboratory (OPL), we have come to the conclusion that the 

technical readiness level and diagnostic capabilities of EEG based workload probes is very low and 

unsuitable for a real-world training environment outside a highly controlled laboratory.  

A much simpler sensor montage is possible through a three-lead electrocardiogram (ECG). At OPL, we 

have used discrete deterministic nonlinear models of the full ECG waveform to obtain reliable and highly 

diagnostic real-time measure of cognitive workload. It is important to note that our method of ECG based 

workload estimation is NOT a heart rate based method or a time-series based analysis. Rather, we 

continually transform the entire ECG signal into an embedded phase space and classify workload on the 

basis of the dynamic representation of the heart though an ergodicity map of the electrical heart signal. 

We start with the realization that the heart is a chaotic system that is under control of the nervous system. 

Chaotic systems are often not well represented via the normal scalar time series. Instead, the dynamics of 

the system are obfuscated in the single dimension whereas they become apparent when a transform of the 

data is made. This transform moves the data from the single dimensional scalar space into a multi-

dimensional embedded phase space (Richter & Schreiber, 1998). In our method, the ECG time series data 

is transformed into phase space using the CATS software tool (OPL, 2014). This step established the 

Ergodicity Transition Matrices (ETMs) (Engler & Schnell, 2013) that represented the dynamics of the 

ECG signal in phase space for the different workload conditions. To generate a real-time workload 

estimation, we can either use the ETMs directly through lookup of model ETMs using nearest neighbor 

classifiers or through models of statistical transitions within the ETM called the Transition Probability 

Variance (TPV). TPV calculates the variance of the probabilities of transition from one cell to another 

different cell of the course-grained ETM. The TPV therefore captures the variability in the dynamics of 

the ECG signal as the trainee undergoes different levels of cognitive loading. TPV varies inversely to the 

degree of workload with higher TPV numbers seen under low workload conditions and low TPV numbers 

seen under high workload conditions. The benefit of the direct ETM based discrete classifier is its very 

high accuracy level (near 100%). The downside of this method is that model ETMs need to be established 

for each participant and each desired level of workload. The TPV method is less accurate (around 85-90% 

classification accuracy) but it does not require a model. The TPV method provides a continuous measure 

of workload no more than three heartbeats after the ECG system has been turned on. The TPV system has 

excellent cross-person and cross-task validity and is easily deployed in complex real-world environments 

(Schnell T et al., 2017; Schnell T., Hoke J., & Romeas T., 2017; Schnell T., Reichlen C., & C., 2017). 
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Another trainee specific dimension that may be applied in the context of adaptive training systems is that 

of trainee affect and engagement. As with performance based adaptation, expert instructors generate a 

motivating and interesting training experience and they have the ability to detect affectual cues from the 

trainee such as frustration, fear, boredom, or anger. Effective instructors can interpret affectual cues as 

levers that affect learning. The affective domain of training provides a framework for instruction that 

includes student awareness, response, value perception, organization, and integration (FAA, 2008). A 

trainee has to be aware of the material being taught. It is the responsibility of the instructor or 

instructional system to raise the awareness level in the trainee through immersive and interesting content. 

The student responds through active participation, decides on the value of the training, organizes the 

training into his/her belief system, and finally, internalizes it. Motivation and enthusiasm are important 

enabling components of the affect domain.  

Ocumpaugh et al. (2017) provided a thorough review of the role of emotions in training. A quantitative 

understanding of affect dynamics allows not only for an understanding of a learner’s current affective 

state but also enables prediction of future affective states. Ocumpaugh et al. leverage data of the trainee’s 

affect dynamics toward making better adaptive training transitions. A proposed approach for 

incorporating affective state assessment into the GIFT training system draws from the observed model of 

affect dynamics presented by D’Mello and Graesser (D’Mello & Graesser, 2012). 

 

Figure 27. D'Mello & Graesser Model of Affect Dynamics 

We identify the following states and definitions from the referenced work 

 s1 – Engagement/Flow: A state of engagement with a task such that concentration is intense, 

attention is focused, and involvement is complete. This is of course a desired state in a training 

system. 

 s2 – Confusion: A state experienced while encountering the “cognitive disequilibrium” that occurs 

when confronted with obstacles to goals, interruptions of organized action sequences, impasses, 

contradictions, anomalous events, dissonance, incongruities, unexpected feedback, uncertainty, 
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deviations from norms, and novelty. In the context of a training system, this is a “productive” 

form of confusion as the resolution of the impasse provides a sense of accomplishment.  

 s3 – Frustration: A state experienced while encountering the “hopeless confusion” that occurs 

when an impasse cannot be resolved, the learner gets stuck, there is no available plan, and 

important goals are blocked 

 s4 – Boredom: A state experienced when a learner disengages from the learning process 

The model depicts six primary state transitions, but the design focuses on four (4) transitions that have 

pedagogical implications to an adaptive training system 

 s1  s2: Caused when an impasse is detected and the learner engages is effortful problem solving 

 s2  s1: Caused when an impasse is resolved. Additional positive affective states, such as delight, 

may occur as a result of achieving goals or receiving positive feedback 

 s2  s3: Caused when an impasse cannot be resolved, the learner is stuck, or important goals are 

blocked  

 s3  s4: Caused when persistent frustration prompts the learner to disengage from the learning 

process 

While it is not documented in this model, a direct s1  s4 transition may also occur if the learner is under-

tasked, or when concentration or attention is broken. Proposed training adaptations are presented in two 

specific contexts: affective state alone and affective state coupled with physiological workload. If the 

trainee is in a prolonged state of equilibrium, scenario complexity should be increased to trigger the s1  

s2 transition and cause the learner to engage in effortful problem solving. Sustained equilibrium should be 

managed to prevent an s1  s4 transition. The s2  s1 transition back into equilibrium does not require 

immediate intervention, as it indicates problem solving has been applied to successfully achieve a goal or 

resolve an impasse. However, the transition should trigger the system to monitor for a prolonged state of 

equilibrium. The s2  s3 transition into frustration does not require an immediate intervention; however, it 

should trigger the system to monitor for a prolonged state of frustration. Sustained frustration should be 

managed by reducing scenario complexity to prevent the s3  s4 transition. If the s3  s4 transition 

occurs, the scenario complexity should be reduced to present the learner with a more simplified problem, 

but the complexity of the problem must also increase the learner’s interest in re-engaging with the training 

session. If an s1  s4 transition occurs, the scenario complexity should be increased to present the learner 

with a more complex problem that also increases the learner’s interest in re-engaging with the training 

session. 

Physiological workload assessment techniques can reinforce, or modify, the adaptations based solely on 

affective state. For brevity, the differences to the list above are included here. Stable or decreasing 

workload reinforces the adaptation that increases scenario complexity and triggers the s1  s2 transition 

during a prolonged state of equilibrium. A decreasing workload trend should immediately trigger the 

adaptation to prevent an s1  s4 transition. Workload provides an added dimension to the s2  s3 

transition into frustration. The transition to frustration, paired with a stable or moderate increase in 

workload, does not require an immediate intervention, but should trigger the system to monitor for 

prolonged frustration. The s2  s3 transition accompanied with a dramatic increase in workload should 

result in a reduction in scenario complexity to prevent a rapid s3  s4 transition. Ideally, the coupling of 
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affective and physiological state should allow for early detection and prevent the s3  s4 transition from 

occurring. 

STUDY: PHYSIOLOGICAL BASED ADAPTIVE TRAINING 

This paper describes a study that we are preparing to conduct over the next few months. Unfortunately, 

we cannot present any results art this time. However, we feel that there is value in conveying our test plan 

to the scientific community. 

The present study is intended to assess the value of adaptive training systems that use measures of subject 

workload. We intend to test the hypothesis that adaptation using performance and workload (P+WL) will 

lead to better training outcomes than adaptations using performance only (P). Stated as a testable 

hypothesis EH1: 

 H0: performance only based adaptive training score = performance with workload adaptive 

training score 

 H1: performance only based adaptive training score < performance with workload adaptive 

training score 

In this experiment, both groups (A and B) will receive task training using their respective P+WL or P 

only adaption scheme. The effectiveness of that training will then be assessed in a graded capstone check-

ride. Throughout the training, we will periodically administer subjective workload probes to allow us an 

independent validation of the accuracy of the OPL workload algorithm. 

Each subject will wear a NeXus 4 channel wireless ECG system that collects raw data used by the 

UPCAT system to assess workload of the participants. Performance metrics from within the virtual 

environment along with workload are used to adapt the scenario. Figure 28 shows the system architecture 

used to collect and assess subjects’ performance and workload. All audio and video from the HMI, as 

well as audio and video of the subject is recorded and synchronized. Figure 29 shows the system 

architecture used to collect and synchronize audio and video data. 
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Figure 28.  UPCAT System Architecture 

 

Figure 29. System Architecture for Video and Workload Data Capture

Each participant will complete a GIFT based training course in accordance with the group assigned 

adaption scheme (P+WL), (P). Within this course, each participant will complete a number of tasks. With 
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the exception of the non-adaptive introduction (warmup), each task has three levels of difficulty 

(i.e. Easy, Medium and Hard). Participants will return approximately 14 days after their initial 

course to complete the capstone check-ride. This general GIFT course flow can be seen in Figure 

5. 

 

Figure 5. Training Course Flow 

Each participant will first attempt each task at the medium difficulty level. Participant performance and 

workload are assessed throughout the training task and summarized for the adaptation decision at the end 

of each attempt. For each separate level of difficulty, participant outcomes are classified into one of three 

groups based on their performance score (green bubbles) as being below expectation, at expectation, or 

above expectation. The transition to the ensuing task level follows the decision tree shown in Figure 30 

and Figure 31 for (P) and (P_+WL) groups, respectively. These adaptation decision trees were adapted 

from (Mark et al., 2018).

 

Figure 30. Adaptation Flow for Performance Only 

Adaptation (P) 

 

Figure 31. Adaptation Flow for Performance with 

Workload Adaptation (P+WL) 
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The capstone check-ride consists of one ever increasingly difficult task that encompasses all task elements 

from all previous part tasks. Participants continue through this increasingly difficult capstone check-ride 

until they fall below performance thresholds. The point in the check-ride where they fail is the dependent 

measure of training effectiveness with a later failure being better than an early one. We chose this method of 

testing to avoid ceiling or floor effects where many or all participants pass or fail a check-ride of a selected 

level of difficulty. 

Throughout the experimental GIFT driving course we evaluate four conditions. They include the GIFT 

Corridor Boundary, OPL Workload, Maintain Speed, and Collision Avoidance. GIFT evaluates both 

Corridor Boundary and Workload Classifier conditions while VBS 3 evaluates Maintain Speed and Collision 

Avoidance conditions. VBS 3 maintains a state variable for each Corridor Boundary, Workload Classifier 

and Maintain Speed conditions. Each GIFT condition has three state transition strategies: one for each of the 

below, at or above expectation evaluations (increasing, decreasing and maintaining for workload), in 

accordance with the flow graphs shown in Figure 30 and Figure 31. 

We added six new Environmental Control Enums; one for each condition at each evaluation which are used 

in GIFT state transition strategies. Using the sendCommand() function from GIFT’s VBS 3 Plugin Interface 

we are able to send any valid VBS 3 script command. For example, assume that the subject has trouble with 

tracking the vehicle in the middle of the driving lane. Therefore, the Corridor Boundary condition will 

evaluate to a value of below expectation. GIFT executes its corridor boundary from anything to below 

expectation state transition strategy which sends the VBS 3 command ["BELOW”] call setCorridorState, 

and the Corridor boundary state variable maintained by VBS 3 is updated to BELOW. The same happens for 

all evaluations and accompanying state transition strategies for both the Corridor Boundary and Workload 

Classifier conditions. 

Currently we have hard-coded the commands through the use of the Environmental Control Enum. This is 

restrictive as VBS 3 allows for thousands of commands. We experimented with the sendCommand() 

function, and were able to send multiple commands separated by a semi-colon with a single call to 

sendCommand(). We believe the ability to create custom commands within the state transition strategies 

instead of the restrictive hard coded example we are using to be an appropriate addition to GIFT. We could 

add a single CUSTOM_COMMAND enum to the list of GIFT Environmental Control Enums. The 

command(s) could then be written into, and read from, the course .dkf file when GIFT calls the state 

transition strategy implementing that command. 

Both Maintain Speed and Corridor Boundary Conditions are called inside of an event handler attached to the 

subject object which fires every time the subject object moves. The event handler includes a timer that only 

calls the evaluation functions for both conditions for every evaluation interval (currently every 1 second 

while the vehicle is moving). For both the Corridor Boundary and Maintain Speed conditions, VBS 3 

maintains a timer for each of the below, at or above expectation evaluations. At every evaluation interval, 

VBS 3 checks the current state of the two conditions and adds the elapsed time from the previous evaluation 

to its corresponding timer. The final evaluation for each of the Corridor Boundary and Maintain Speed 

conditions is assigned based on what percentage of the total time was spent in each state based on Table 1 

(note that actual logic accounts for ranges and not set values). 
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Table 1. Evaluation Assignment for Corridor Boundary and Maintain Speed Conditions 

Below/Total At/Total Above/Total Evaluation 

0% 0% 100% ABOVE 

0% 25% 75% ABOVE 

0% 50% 50% ABOVE 

0% 75% 25% AT 

0% 100% 0% AT 

25% 0% 75% ABOVE 

25% 25% 50% AT 

25% 50% 25% AT 

25% 75% 0% AT 

50% 0% 50% AT 

50% 25% 25% BELOW 

50% 50% 0% BELOW 

75% 0% 25% BELOW 

75% 25% 0% BELOW 

100% 0% 0% BELOW 

 

Maintain Speed condition is graded through the use of a target speed and a speed window. If the subject is 

outside the speed window, they are evaluated to below expectation. If the subject is inside the center one-

third of the speed window, then they are evaluated to above expectation. If the subject is between inner one-

third and outside of the speed window, then they are evaluated to at expectation. Let the target speed be 35 

km/h, and the speed window be 6km/h. If the subject’s speed is more than 41 km/h or less than 29 km/h, then 

they are outside the speed window and are evaluated to below expectation. If the subject’s speed is between 

37 and 41 km/h or between 29 and 33 km/h, then they are evaluated to above expectation. If the subject’s 

speed is between 33 and 37 km/h, then they are evaluated to at expectation. 

Collision Avoidance is graded through the use of upper and lower bounds. If, at the end of an attempt, the 

subject has had fewer collisions than the lower bound they are evaluated to above expectation. If the subject 

has had more collisions than the upper bound, then they are evaluated to below expectation. Anything in 

between receives an evaluation of at expectation. 
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The performance evaluation used for adaptation is an aggregate of these three condition evaluations. Each 

task weights the evaluation of the three conditions differently, and some are not even used at all for some 

tasks. Let Task one be driving in reduced visibility, where the subject is evaluated on maintaining speed and 

corridor boundary while driving through a sandstorm. It is important to maintain their speed, but it is more 

important to stay on the road. So a fair weighting of the singular evaluations to determine the aggregate 

performance evaluation could be set to Equation 1. The aggregate performance and workload evaluations are 

then used to decide on the scenario adaptation based on the adaptation trees from Figure 6 and Figure 7. 

 

Equation 1. Aggregate Performance Grade for Task 1 

The aforementioned evaluation and adaptation logic is controlled by various scripts and event handlers. VBS 

3 init.sqf script (called at the start of the scenario) compiles multiple scripts that set-up the global variables; 

the VBS 3 waypoints, create the files used for data collection; task, time, grading and GIFT message related 

functions; event handlers; and scripts that set-up the evaluation of conditions. The scenario adaptations 

needed for each level of difficulty for each task are also contained within their own scripts. 

The current GIFT Corridor Boundary condition did not allow an evaluation of above expectation, and we 

were concerned about fairness in the evaluations of the two groups (A & B). For example: the ability of 

subjects from group A to reach an evaluation of above expectation and an adaptation of up 1 level compared 

to subjects from group B’s ability to reach the same adaptation through an evaluation of at expectation with a 

decreasing workload as shown in the adaptation trees in  Figure 6 and Figure 7. We saw a potential for a 

biased evaluation and made changes to allow GIFT’s Corridor Boundary condition to evaluate to above 

expectation. 

It works in much the same way as the Maintain Speed condition. If the subject is outside the corridor, they 

are evaluated to below expectation just as before. The change we made affected the way the subject is graded 

while inside the corridor. If the subject is inside the center one-half of the corridor, then they are evaluated to 

above expectation. If the subject is between inner one-half and outside the corridor, then they are evaluated 

to at expectation. Let the corridor be 10 meters wide. If the subject is more than 5 feet away from the center 

of the corridor, then they are outside the corridor and are evaluated to below expectation. If the subject is less 

than 2.5 meters from the center of the corridor, then they are evaluated to above expectation. If the subject is 

less than 5 meters but more than 2.5 meters away from the center of the corridor, then they are evaluated to 

at expectation. 

For purposes of our study, we write all data related to decision making with respect to the evaluation of the 

different conditions, aggregate scoring and adaptations throughout the course to .csv files. Each data point is 

timestamped with the system time (the exact time and date according to the computer the subject is using). 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

We invested considerable effort in the establishment of an architecture that tightly integrates the capabilities 

of the GIFT framework with VBS 3 as a representative of an Army Synthetic Training Environment (STE). 

This architecture provides a robust control interaction capability between the two systems. Additionally, this 

architecture includes tight integration of a continuous workload assessment system (CATS) using a 

deterministic nonlinear workload classifier that analyses the ECG waveform in embedded phase space. This 

apparatus is capable of assessing learner state in real-time, in this case using a driving task, and applying 

performance and workload assessments to automatically configure scenario transitions for adaptive training.  
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Additionally, we invested significant effort integrating an existing GIFT learner affect classifier library 

(Ocumpaugh et al., 2017) into this framework. This classifier uses a Kinect sensor to track features on the 

learner’s face to classify states of emotion. Even though we spent a tremendous amount of effort in an 

attempt to integrate this library, we were, to date, not yet able to gain a reliable classification from it. 

Therefore, in the upcoming validation study using this apparatus, we decided not to use learner affect as a 

state variable to invoke scenario transitions. If we manage to get the affect state library to work, we will 

collect data from its affect state classifier for separate and off-line analysis. 
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Predicting Students’ Unproductive Failure on Intelligent 

Tutors in Adaptive Online Courseware 
 

Seoyeon Park and Noboru Matsuda  

Department of Teaching, Learning and Culture Texas A&M University 

INTRODUCTION 

The wheel-spinning phenomenon in the current paper refers to students’ unproductive failure within a com- 

puter-based learning environment using Intelligent Tutoring Systems (ITSs). Beck and Gong (2013) found 

that students often spend a considerable amount of time practicing a skill in ITSs without making progress. 

This phenomenon is coined wheel spinning because students’ learning pattern is like a car stuck in the mud. 

The wheel-spinning phenomenon has been observed universally on many ITSs (Beck & Gong, 2015). When 

wheel spinning, students often become frustrated and demotivated to learn (Cen, Koedinger, & Junker, 2007; 

Baker, Gowda, & Corbett, 2011). Therefore, several studies explored building an effective and reliable 

wheel-spinning detector to detect the moment of wheel spinning. Beck and Gong (2015) suggested a generic 

model using logistic regression to predict wheel spinning with three aspects: student’s performance on the 

skill, the seriousness of the learner, and general factors of the learning material such as skill difficulty. Matsuda, 

Chandrasekaran, and Stamper (2016) built a more simplified wheel-spinning predictor as a combination of 

the probability of mastery based on Bayesian knowledge tracing, and a neural-network model. 

In the current paper, we investigate the wheel-spinning phenomena in the context of adaptive online 

courseware where many ITSs are embedded into the online courseware. Students are provided with multi- 

media instruction, including paragraph text instruction, images, videos, and traditional formative assessments 

such as multiple choice and fill-in-the-blank questions. ITSs are embedded in the courseware as a type of 

formative assessment as well. In this rich learning environment, we aim to predict the moment of wheel 

spinning so that the system can provide proactive scaffolding to maintain students’ motivation and 

engagement. 

The goal of the current paper is to contribute to the Generalized Intelligent Framework for Tutoring (GIFT) 

framework by investigating the wheel-spinning phenomena on the adaptive online course platform with 

many ITSs on which wheel spinning will happen. We discuss the unique nature of the wheel-spinning in this 

environment and our current progress. The current work is part of our on-going project where we develop 

evidence-based learning-engineering methods to build adaptive online courseware, called PASTEL 

(Pragmatic methods to develop Adaptive and Scalable Technologies for next generation E-Learning). 

The existing models for wheel-spinning detection have some limitations. First, existing models have low 

recall rates around 0.25-0.50, suggesting that these models are weak and can only detect less than half of 

actual wheel-spinning cases. Since not catching a moment of wheel spinning would impact students’ 

motivation, we need to develop a model that has a high sensitivity to wheel spinning. 

Second, most of the existing models are aimed to detect a moment of wheel spinning, instead of predicting 

students who are likely to get stuck. Matsuda et al. (2016) applied a neural-network model to predict wheel 

spinning at an early stage of learning. However, its prediction power is approximately 0.25, which is still 

insufficient for practical use. The primary purpose of catching wheel spinning is to maintain students’ 

motivation for learning, it is crucial to predict the moment of wheel spinning in advance. With the early pre- 

diction, we can provide students with proactive scaffolding that keep those students from experiencing wheel 

spinning. 
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Third, existing wheel-spinning detectors/predictors explain wheel spinning on individual skills (the skill- 

level model), indicating the likelihood of a student to fail to obtain mastery on a particular skill. Historically 

speaking, this trend has been held because problems on ITSs are broken down into a fine-grained skill set, 

often called a knowledge component (KC) model (Koedinger, Corbett, & Perfetti, 2012). Taking skills as a 

unit of analysis works well for a “standalone” ITS (including ITS with “units”). As mentioned above, we 

target the adaptive online courseware as the platform for wheel-spinning prediction. During our initial trial 

for creating an instance of adaptive online courseware (called CyberBook) with in-service teachers as 

curriculum consultants, we asked in-service teachers to tag each ITS with the most essential skill that students 

will learn by solving problems on a corresponding ITS. We observed that in-service teachers often tagged an 

ITS with a skill that does not appear in any steps on the ITS (as opposed to selecting one of the steps on an 

ITS as the most essential step hence the most essential skill). For example, an ITS that teaches how to 

compute the slope of a given linear equation involves steps such as subtracting and dividing terms, but no 

single step is about “computing the slope.” On CyberBook, when a student gets stuck (i.e., wheel spins) on a 

particular ITS, the system provides the student with proactive scaffolding by showing a link to the related 

instruction paragraph. A naïve research question therefore is: Should wheel spinning be predicted on steps 

within an ITS (hence triggers the proactive scaffolding) or on the ITS as a whole? Given our observations 

from in-service teachers tagging ITSs with a skill, we hypothesized that the ITS as a whole should be the unit 

of analysis for wheel-spinning prediction. 

The goal of the current study is to develop a wheel-spinning predictor, which can distinguish students who 

have a high possibility to wheel-spin as quickly as possible, at the problem level. The specific research 

questions are as follows: 

1. How accurately can we predict wheel-spinning at the problem level? 

2. How early can we detect wheel-spinning at the problem level? 

To build a wheel-spinning prediction model that can find wheel-spinning cases with high accuracy and 

speed, we propose to use four general factors, students’ performance, hint usage, the sum of response time, 

and difficulty of each problem type. These factors are generally available on most ITSs and are known to be 

effective in predicting students’ academic performance. We have previously built a wheel-spinning predictor 

at the step-level (Park & Matsuda, under review). In the current paper, to understand whether the problem-

level prediction is any better than step-level prediction, we apply logistic regression and an ensemble 

modeling to predict wheel-spinning cases at the problem-level. 

DATA PREPROCESSING 

We used an existing dataset from DataShop, entitled ‘Cog Model Discovery Experiment Spring 2010’ in the 

‘Geometry Cognitive Model Discovery Closing-the-Loop study’ project. There were 49 skills forming 

45,597 observations done by 123 students in the ‘KTracedSkills’ model in this data. This dataset contained 

5,279 student-skill pairs. The DataShop data uses fine-grained skills that are decomposed by Learning Factor 

Analysis. In order to predict wheel-spinning at the problem level, we needed to create ‘problem type’ as a 

different dimension of measuring wheel-spinning. We used a text-mining technology named SMART to 

create ‘problem type’. SMART is an AI technology that can compute the similarity among words within the 

text and extract a keyword. We input hint message of each intelligent tutor and set an arbitrary k number; k=25, 

50, 75, 100. After SMART generates problem types, those problem type models were validated with the 

DataShop knowledge component model. Table 1 shows the result of comparing SMART generated problem 

type models. 
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Table 1. Comparison of SMART generated problem type models 

 

Model name Problem 

types 

Observations 

with Problem 

types 

AIC BIC RMSE 

(student 

stratified) 

RMSE 

(item 

stratified) 

SMART k=25 17 85,115 46,986.00 48,454.30 0.273130 0.271673 

SMART k=50 28 85,115 46,787.87 48,461.83 0.272680 0.271298 

SMART k=75 40 85,115 47,114.50 49,012.91 0.274457 0.272230 

SMART k=100 39 85,115 47,145.30 49,025.00 0.273595 0.272066 

KTracedSkills 49 41,756 29,096.28 31,005.13 0.333781 0.324864 

 

KTracedSkills row is the baseline when comparing other SMART generated problem type models. We chose 

to use the problem type model named ‘SMART k=50’ because this model shows the lowest root mean 

squared error (RMSE). Comparing to KTracedSkills model, ‘SMART k=50’ has bigger AIC and BIC, but 

these figures are affected by the number of observations. Considering that the number of observations of our 

SMART generated problem type models is more than twofold, the AIC and BIC figures make sense. 

We employed the ‘SMART k=50’ problem type model and did data preprocessing. There were 28 problem 

types and we created 1,889 student-problem type pairs. Mastery in this study is defined as three consecutive 

correct responses on one’s first attempt within 10 practice opportunities (Beck and Gong, 2013) on a problem 

level. We filtered out “indeterminate” students, who did not practice on enough opportunities, which was 10 

opportunities in this study, for us to define their mastery (Beck & Gong, 2015). After removing 

indeterminate student-problem type pairs, this dataset came to contain 1,794 student-problem type pairs and 

31,801 observations with 123 students. The dependent variable is whether a student shows mastery (M) or 

wheel-spinning (W) on a problem type within 10 opportunities, based on the response sequences of each 

student-problem type pair. In order to see how early we can predict wheel-spinning on a problem type, we 

made subset at each practice opportunity from the third opportunity to the ninth opportunity. 

FEATURES 

We used four features that are all general factors in any dataset of ITSs. This is because first, we want to 

show that predicting wheel-spinning at the problem level can be generalized among any ITS construct, and 

second, we want to build a more simple and scalable wheel-spinning model. 

Student’s performance on each problem type 

The first feature we used is how well a student did on a problem type. This represents a student’s ability to 

solve a certain type of problem. This is calculated as the average probabilities of correct first attempts per 

each student-problem type pair. 
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Problem type difficulty 

The second feature is the difficulty of each problem type. We calculated this variable by getting the average 

correct response rate of each problem type across all students who practiced the problem type. 

Max_hint 

Hint usage is regarded as one of the important factors in explaining students’ learning (Feng, 2009; Rivers, 

2017). Thus, we used the maximum number of hint usage of students on each problem type. 

Sum_duration 

Response time is one of the key features in a wheel-spinning model (Beck and Gong, 2015). Each problem 

type has several steps, so we added step duration of constituent steps to get the response time of a student on 

each problem type. 

PREDICTION MODELS AND RESULTS 

A basic model for wheel-spinning prediction at the problem level 

With the combination of features above, we trained a logistic regression to build a basic model for wheel- 

spinning prediction at the problem type level with ten-fold cross validation. The coefficients would not be 

suggested due to the limit of space. This basic model for wheel-spinning prediction shows high accuracy 

throughout practice opportunities in Table 2. The overall accuracy in percent correct is 92.75% and overall 

AUC is 0.916. Considering the accuracy of the generic wheel-spinning model in a skill level (Beck and 

Gong, 2015), which was less than 90% in percent correct and 0.9 in AUC, this basic model shows a 

sufficient performance with even using the smaller number of features. 

Table 2. Accuracy of a basic model per practice opportunity 

 

 opp3 opp4 opp5 opp6 opp7 opp8 opp9 

Percent correct 0.908 0.91 0.917 0.923 0.932 0.949 0.950 

AUC 0.856 0.863 0.894 0.939 0.938 0.949 0.975 

 

We not only need to see the accuracy of this model but also precision and recall rates in order to have an 

insight into its classification. Table 3 shows the precision and recall rate of this model at each opportunity. 

Both rates are increasing by each opportunity. However, the precision rate is 60% and recall rate is 33.65% on 

average across the third through ninth opportunity. These figures are relatively low comparing to those of 

existing wheel-spinning models (around 70% in precision rate and 25~50% in recall rate). Moreover, using 

this basic model, we cannot predict wheel-spinning on a problem type level as early as possible due to its 

weak recall rate in every practice opportunity. 
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Table 3. Precision and Recall rates of a basic model per practice opportunity 

 opp3 opp4 opp5 opp6 opp7 opp8 opp9 

Precision 0.358 0.440 0.551 0.619 0.666 0.755 0.814 

Recall 0.0798 0.176 0.230 0.285 0.417 0.612 0.554 

 

The upgraded model for wheel-spinning prediction at the problem level using gradient boosted decision tree 

model. We found that the basic model has some limitations in terms of its precision and recall rates. Thus, 

other data mining techniques were explored to find a better prediction model. Especially, we focused on 

getting a higher recall rate in the early phases so that we can predict wheel-spinning on a problem level as 

quickly as possible. We discovered that the gradient boosted decision tree model using the same combination 

of features shows much better performance in accuracy, precision, and recall rate. Gradient boosted trees is 

an ensemble of multiple tree models to create a powerful prediction model for classification. This algorithm 

generates a series of trees where trees are made by correcting poor predicted examples of the previous trees in 

the series. We trained this model with a ten-fold cross validation by each practice opportunity. The overall 

accuracy of the upgraded model is 96.90% and 0.97 in AUC. Table 4 shows that this model shows higher 

accuracy throughout opportunities. 

Table 4. Accuracy of the upgraded model per practice opportunity 

 opp3 opp4 opp5 opp6 opp7 opp8 opp9 

Percent correct 0.953 0.955 0.961 0.972 0.974 0.985 0.981 

AUC 0.942 0.96 0.974 0.985 0.987 0.991 0.997 

 

This model also has a much higher performance on both precision and recall rates than those of our basic 

model. Overall, the precision rate is 87% and recall rate is 75% across the third through ninth opportunity. 

These figures are showing that this upgraded model has greater wheel-spinning prediction power than other 

existing models. Applying this model, we can predict wheel-spinning on a problem type on students’ fifth 

opportunity with 65% accuracy and over 80% accuracy on the sixth opportunity. 

Table 5. Precision and Recall rates of the upgraded model per practice opportunity 

 opp3 opp4 opp5 opp6 opp7 opp8 opp9 

Precision 0.792 0.834 0.867 0.843 0.840 0.958 0.963 

Recall 0.616 0.606 0.651 0.829 0.865 0.864 0.813 
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Figure 1. Precision and Recall rate of two models 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

The goal of the current study is to seek the way in which we can predict wheel-spinning at the problem level 

(i.e., an individual ITS as opposed to a step in an ITS) with high accuracy, prediction power, and speed. We 

have some important findings in this work. First, we found that the four general variables (i.e., students’ 

performance, hint usage, the sum of response time, and difficulty of each problem type) that are available for 

most ITSs can sufficiently build a prediction model for wheel spinning at the problem level. Our basic model 

with four general variables shows similar performance with existing models in its accuracy (average percent 

correct is 0.93 and overall AUC is 0.92). Its recall rate (0.34) is higher than that of the other wheel-spinning 

prediction model (Matsuda, Chandrasekaran, and Stamper, 2016). 

Second, we explored other machine learning techniques to improve the accuracy of wheel-spinning predic- 

tion. Our upgraded model with gradient boosted decision tree algorithm shows enhanced precision and recall 

rate with an average recall rate of 0.75. A pragmatic merit of this upgraded model is its speed—the recall rate 

on the sixth practice opportunity is around 0.83. This would expand our chance to promote students’ efficient 

learning in ITSs by keeping them from wheel spinning in advance. 

As for the contribution to the Generalized Intelligent Framework for Tutoring (GIFT), the current study 

demonstrated a generic technique to predict students’ unproductive failure (wheel spinning) on an ITS 

embedded into adaptive online courseware. The adaptive online courseware with embedded intelligent tutors 

has a tremendous potential for future online learning hence investigating fundamental techniques such as the 

wheel-spinning prediction plays an important role. We also demonstrated an importance of building the 

wheel-spinning predictor at the different level of granularity of the skill model. 

For future study, one intriguing topic would be to find what we should do once we predict wheel-spinning 

cases. What would be an effective intervention for those who are predicted to wheel spin on a problem? 

Another suggestion is to explore other machine learning techniques to improve the current wheel-spinning 

prediction model. This study used logistic regression and gradient boosted decision tree. Our upgraded 

model using gradient boosted decision tree shows significant improvement in predicting wheel-spinning, 
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however, a drawback of using this technique is that it is hard to interpret the model itself. Finally, it would 

also be an interesting idea to extend the research regarding why students show unproductive failure in 

learning by using ITSs. 
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ABSTRACT 

Adaptive training promises more effective training by tailoring content to each individual. Where non- 

adaptive training may be just right for one segment of the student population, there will be some students that 

find it too easy while others find it too difficult. Another, often ignored benefit of adaptive training, is 

improved training efficiency by minimizing the presentation of unnecessary material to learners. One im- 

plication of this is that intelligent, adaptive training should require less time to train a population of learners to 

a given level of proficiency than non-adaptive training. The gains in efficiency should be a function of several 

factors including learner characteristics (e.g., aptitude, reading ability, prior knowledge), learning methods 

employed by the adaptive training system, course content (e.g., difficulty and length, adaptability), and test 

characteristics (e.g., difficulty, number of items). This paper describes work in the second year of   a three year 

effort showing the results of a predictive model for training efficiency based on those factors and how it could 

be integrated into the Generalized Intelligent Framework for Tutoring (GIFT) architecture. How this model 

supports return on investment decisions for authors is also discussed. 

INTRODUCTION 

The Generalized Intelligent Framework for Tutoring (GIFT) is an open-source, modular architecture developed 

to reduce the cost and skill required for authoring adaptive training and educational systems, to automate 

instructional delivery and management, and to develop and standardize  tools for  the evaluation  of adaptive 

training and educational technologies (Sottilare, Brawner, Goldberg, & Holden, 2012a; Sottilare, Goldberg, 

Brawner, & Holden, 2012b). By separating the components of ITSs, GIFT seeks to reduce development costs 

by facilitating component reuse. 

Meta-analyses and reviews support the claim that intelligent tutoring systems (ITS’s) improve learning over 

typical classroom teaching, reading texts, and/or other traditional learning methods. (Dynarsky et al. 2007; 

Dodds and Fletcher 2004; Fletcher 2003; Graesser et al. 2012; Steenbergen-Hu and Cooper 2013, 2014; 

VanLehn 2011). In fact, ITSs have been shown to improve learning to levels comparable to Human tutors 

(VanLehn et al. 2007; VanLehn 2011; Olney et al. 2012). 

As shown in Figure 1, while improved training effectiveness is certainly a benefit of ITS technology, an- other 

important benefit is improved training efficiency over one-size-fits-all training. The goal of an ITS is to 

identify the gaps in knowledge specific to each learner so that training can focus on filling just those gaps. One 

of the problems of one-size-fits-all training is that to insure all trainees can comprehend the instruction, it must 

be developed for trainees with the least experience, knowledge, and aptitude. Though less costly to develop, 

the material is presented a pace that is slow and that includes content not needed for more experienced, higher 

aptitude trainees. An ITS would be expected to reduce the time needed to deliver training to such trainees. 

The reduction in time to train (i.e., improved acquisition rate) is an important metric because reductions in 

training time represent cost savings. This is especially true for military trainees who are paid a salary. 
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Reductions in the time needed to train those trainees save salary costs for both trainees and instructors. For 

large-volume courses, those savings can be substantial. 

 

Figure 1: Benefits of adaptive training. On the left, adaptive training can increase the subject comprehension 

from a fixed time to complete. On the right, adaptive training can decrease the time to complete training content 

with a fixed level of comprehension. 

All of this highlights the need for a means to model and predict training efficiency gains (i.e., time saved) by 

ITSs generally and GIFT specifically. Having the ability to model time saved by the use of adaptive, intelligent 

training, as compared to existing or non-adaptive training would have benefits throughout the lifecycle of a 

course. During the design of new training, the training developer could more easily make decisions about the 

relative costs and benefits of adding adaptive features. For example, adding extensive remedial training for 

easy-to-understand concepts may benefit such a small percent of the population of learners, that the net 

reduction in training time would be too small to make those features worth the cost of development. 

During training delivery, actual trainee data could be used to verify and/or improve the model. For example, 

suppose the model assumed that learners with an aptitude above criteria A would have a 95% probability of 

understanding concept B without needing any remediation. Learner data could then be used to validate or 

adjust that probability. This improved model could then be used to better determine the true time-savings of 

the course when delivered by GIFT. 

During training evaluation and refinement, the disparity between predicted and observed training outcomes 

could be used to refine the training. For example, if a segment of training proves to be more difficult than 

anticipated for a group of learners, it is possible that the training segment should be refined or redeveloped. 

An example of such a model was developed by McDonnell Douglas (1977). This model incorporated 

predictor variables in four broad categories: course content (e.g., difficulty, length of content), instructional 

design (e.g., instructional strategies/techniques), test characteristics (e.g., difficulty, number of items), and 

trainee characteristics (e.g., aptitude, motivation). The model predicted about 39% of the variability in 

trainee’s first-attempt lesson time for self-paced computer-based instruction. 

To understand how GIFT might begin to model and predict training time for learners, it is necessary to 

understand how training is adapted by this system. GIFT is a framework that modularizes the common 

components of intelligent tutoring systems. These components include a learner module, an instructional or 

tutor module, a domain module, and a user interface. One of the main motivations for creating this framework 

was to lower the cost and labor needed to create intelligent tutoring systems by facilitating re- use of 

components and by simplifying the authoring process (Sottilare et al., 2012a). 
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GIFT adapts training using the learning effects model. At the first point of this model, learner data informs the 

learner state in the learner module. The learner module receives assessments from both sensors and the 

domain module. The learner state is used to determine the appropriate instructional strategy by the tutor 

module. The instructional strategy is then interpreted by the domain module and used to determine the 

domain specific learning activities needed to instruct the learner in that domain. The responses of the learner 

to that activity then update the learner module which starts the cycle over again. 

Developing a predictive model in GIFT is not a straightforward process given the ways that training is 

adapted to each individual. We should note that our goal is not to predict the single path that a trainee would 

be expected to take through a specific course, but rather the probability associated with all possible paths 

through the training for a given learner. From that we can determine the range and distribution of times that 

would be expected for that learner to complete the training. Taking this one step further, we could apply this 

to a population of learners and predict the range and distribution of the time for that population to complete 

that training. 

The development and integration of a probabilistic model for predicting time to train into the GIFT architecture 

is currently in the second phase of a three phase plan. Goodwin, Kim, and Niehaus (2017) reviews the 

approach and results of the first phase of this effort, which focused on the design and feasibility of these 

predictive models of tutor time to complete. In this paper, we describe work being done in the second phase. In 

the second phase, we are enhancing a predictive model for training efficiency and integrating this model with 

GIFT architecture, so that GIFT course creators can use these models directly with their GIFT tutors. In the 

third phase of the work, we will empirically validate the predictive model in GIFT and enhance the models with 

experimental and collected data. 

METHODS 

This section (1) reviews our method for modeling adaptive training content and predicting distributions of 

completion times for both individuals and groups using the GIFT excavator trainer as an example and (2) 

describes our approach for integrating these models with the GIFT architecture. 

Modeling the Content of Adaptive Training 

Predicting completion time for a tutor requires a model of the content and how the student can transition 

between the content. In GIFT, this transition logic is maintained in the Adaptive Course Flow object 

(formerly known as the Engine for Management of Adaptive Pedagogy – EMAP, e.g., Sottilare, 2014; 

Goldberg, 2015). It supports adaptive capabilities for training based on instructional strategies such as the 

Component Display Theory (CDT, Merrill, 1983). The CDT supports a general framework of skill training 

that progresses through two types of learning activities, each with two categories: expository (rules and 

examples) and inquisitory (recall and practice). According to Merrill, learners should progress through these 

four quadrants in order starting with rules (presentation of general principles), then to examples (presentation 

of a specific instance), then to recall (declarative knowledge test of the trainee’s comprehension), and finally 

to practice (opportunity for the trainee to perform the skill). By sorting learning activities into these four 

quadrants, adaptive training systems like GIFT can apply the CDT to any domain as long as content for that 

domain is so labeled. 

To model the content of adaptive training, we use the Methodology for Annotated Skill Trees (MAST) 

(Bauchwitz et al. 2018). In MAST, the “skeleton” of the skill tree breaks down entire procedures into 

constituent steps, tasks, and subtasks. Annotations are added to the procedure model. Figure 2 shows a portion 



 

 

Proceedings of the 6th Annual GIFT Users Symposium (GIFTSym6) 

 

 

142 

 

of a MAST skill tree for an example training GIFT course, the excavator tutor. This skill tree focuses on the 

information elements that most heavily influence the completion time.  On the left, the overall course on 

Excavator is the root of the tree structure. Its children are the different topics covered by the course, 

including the Boom Movement topic. This topic features a number of slides with Pictures, Audio, and Text 

Components. Individual trainees may vary in the amount of time they spend examining the Pictures, whether 

or not they listen completely to the Audio, and the amount of time taken to read the text. Trainees may also 

choose to view optional Slides explaining concepts that they may not be familiar with, adding more time. If 

trainees fail to demonstrate sufficient knowledge in the quiz or fail to complete the simulation tasks 

appropriately, they are sent back to the beginning of the Boom Movement topic on Slide 1, adding significant 

time to completion of the course. This model may be expanded to represent a maximum number of failures 

before the trainee either moves to a different topic or ends the course. 

 

Figure 2: High-level design of a MAST skill tree of a GIFT module with representations of individual 

instructional elements, branching content, and variables that influence completion times. 

After reviewing the Slides, the trainees are asked to practice their skills in Simulation.  The MAST model of 

the simulation can be either a complex procedure describing the steps needed to complete the scenario and 

optional steps that may or may not contribute to the overall goal. The MAST simulation model may also be 

simple, representing just the type of simulation and the number of scenarios. To save modeling time and 
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effort, these MAST models are constructed with only the level of detail needed to sufficiently and accurately 

predict the completion time. 

Integrating with GIFT 

To effectively predict completion time, we must combine models of students with models of the adaptive 

training content. We construct probabilistic models of students in the Figaro probabilistic programming 

language with key variables that influence their completion time of generic content. Figure 3 shows an 

example of one such set of variables. This student has a fatigue value to represent how tired they are. They 

have a read speed variable to represent how many words per minute they read under normal conditions. They 

have an expertise variable that represents how familiar they are with the concepts in the tutor. They have an 

effort level variable that represents how much effort they are putting into the training. They have an innate 

comprehension level that represents their general learning aptitude. They also have some status variables that 

record how many repetitions of different drills and quiz failures they have had during the course of training, 

for reporting purposes. These and similar parameters can be used to characterize the main student features that 

influence their completion time of training content. To be used in actual courses, these parameters must be 

learned and validated with real world data, such as records of previous students attempting a course. 

 

Figure 3: UML for example Student model 

Figure 4 shows a model of how a GIFT course can be represented as a set of learning material that the student 

must read or experience. At the top, the course is composed of multiple concepts. According to Merrill’s CDT 

theory, each concept is taught by presenting a number of rules (on slides), examples (on slides), and quizzes to 

test rules, and exercises to test understanding of the examples. Each slide has a selection of media, which can 

include text, audio, and video, and is also rated for comprehensibility (e.g., more difficult slides take more time 

to comprehend). Quizzes are composed of a set of questions, which rules for how many must be answered 

correctly before the quiz is passed. Exercises are similarly composed of a set of drills with individual 

difficulties. Representing in the course in this way, along with the control logic that determines which piece of 

content the student is provided with next, enables the probabilistic modeling of the interaction between 

anticipated student populations and course content. It also enables the analysis of which content or sections of 

the course are contributing most to the completion time. 
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Figure 4: Partial UML diagram for PAST Time model of a Merrill’s instructional theory GIFT Tutor 

To effectively use these models, they must be integrated into the authoring cycle of adaptive training. Figure 5 

shows a mockup of an interface to enable GIFT adaptive course authors to use these models for predicting 

completion time and understanding the impact of course design decisions on the ROI of adaptive training. At 

the top, the user specifies the GIFT tutor of interest, and which student model to use. The student model 

determines which parameters will be used to represent the student, such as those in Figure 3. The user is also 

presented with the option of including previous performance data to better tune the models to the population 

of interest. 

To request a prediction, the user specifies a single student or a group of students according to the student 

model. In the single student case, this can be done by selecting exactly which values are set for each student 

parameter. In the group of students case, this can be done by specifying joint distributions of these values for 

the group of interest. Once these parameter values are specified, the models are executed and summary 

statistics of the prediction are presented, with the option for the user to explore the various components of the 

prediction. 
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Figure 5: Mockup of PAST Time GIFT integration interface. 

RESULTS 

Implementing the Adaptive Training Models 

This section presents a sample of the implementation of completion time models, and analysis of results of 

running these models with mock data. The probabilistic model is being implemented using Charles River 

Analytics’ open source probabilistic programming language, Figaro™ (Pfeffer 2012), to construct and learn 

probabilistic models of the relationships between these factors. The use of Figaro greatly simplifies the 

authoring of these models which can be complex and require a high degree of experience by users who may 

not be experts in probabilistic reasoning. 

Figure 6 shows an example Figaro function that predicts the completion time for a student reading a slide of 

information and updates the effect of reading the slide on the individual student. The reading time is 
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computed by summing the media ingestion time of all the media on the slide (e.g., reading some text, looking 

at pictures, listening to audio, and watching video). The student’s internal variables are then updated to reflect 

the effects of reading this slide; their fatigue is increased by a small amount and their expertise in the current 

concept is increased according to a specified function. The student is updated, the reading time is recorded, and 

the simulated student is then given the next piece of course content to complete. 

 

Figure 6: Figaro function that models a student’s reading time for a slide 

Figure 7 shows the model for a student taking a quiz as part of the adaptive training content. A quiz has 

multiple questions, which take time to complete. Based on the student’s performance and the quiz passing 

threshold, the student may be sent to remediation for the current concept. In this function, the probabilities of 

success for each question are determined by the questions difficulty (currently, in classic item response theory) 

and the student’s current aptitude at the concept. The reading time is given by the sum of the reading and 

thinking times for all the questions. The fatigue is updated by a marginal amount, and the new student is 

created. The probability of success on this quiz is also returned, so that Figaro can sample across the space of 

probabilities. 

 

Figure 7: Figaro function that models a student’s completion time of a Quiz 

Figaro probabilistic programming is useful in this context for a number of reasons: We can automatically build 

a model given a specification of the MAST skill tree, the trainee model, and a set of known relation- ships. 

Prediction based on the model is already coded in Figaro’s inference algorithm, so additional effort is not 

required to use the model. Figaro supports the creation of dynamic Bayesian networks that model the temporal 

processes of variables, simulating fatigue and practice effects. We can continuously learn using these models; 

the probabilistic programs are flexible enough to update relationships between variables based on historical or 

dynamic data. Figaro’s encapsulation mechanism enables easy creation of reusable components. Trainee 

def readSlide[T <: TrainingElement](slide: Slide[T], concept: Concept, student: Student): (Student, 

Element[Double]) = 

{ 

val readingTime: Element[Double] = mediaIngestionTime(slide.media, student) 

val newFatigue = Math.min(1, Math.max(1.005*student.fatigue, 0.00000001)) 

val newExpertise = student.expertise |+| Map(concept -> expertiseIncrease[T](slide, con- cept, student)) 

(student.copy( 

fatigue = newFatigue, expertise = newExpertise 

), readingTime) 

} 

def takeQuiz(quiz: Quiz, concept: Concept, student: Student): (Student, Element[Double], El- 

ement[Boolean]) = { 

val probs: Seq[Element[Boolean]] = quiz.questions.map(q => probOfSuccess(q, concept, stu- dent)) 

val questions = Container(probs: _*) 

val readingTime = Reduce((x: Double, y: Double) => x+y)(quiz.questions.map{q => mediaIn- 

gestionTime(q.media, student)}: _*) // thinking time 

val newFatigue = Math.min(1, Math.max(1.05*student.fatigue, 0.00001)) (student.copy(fatigue = 

newFatigue), readingTime, questions.count(x => x).map(_ >= 

quiz.successThreshold)) 

} 
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models and MAST skill trees can be reused for future prediction models. It is embedded in a general purpose 

language, Scala, which allows the creation of front end graphical interfaces that can edit and invoke the models 

created in Figaro. 

To test the current models, we created a set of mock simulated students to run on a mock tutor. Figure 8 shows 

the student sampling process, with samples across the space of initial fatigue, innate comprehension, effort 

level, and reading speed. 

 

Figure 8: Mock student generation for system testing 

Figure 9 shows the results of this sample set on completion times. Because this is a sample to test model 

dynamics, the completion time units on the y-axis are arbitrary. In this plot, there is a combined effect of the 

main variables. In the left, when fatigue is low, low effort and comprehension only make a moderate difference 

in completion time. On the right, when initial fatigue is high, low effort and comprehension are compounded, 

as the mock students begin failing quizzes and drills, which causes them to repeat content, which causes them 

to become more fatigued. At the far right, several samples included one or more students that exceeded our 

modeling time limit, causing them to be marked as 0 for the purposes of this graph. This effect can be seen in 

Figure 10 where the relationship between failures and completion time is exponential due to the compounding 

fatigue factor. 

object StudentGenerator{ 

def generateStudents: Seq[Student] = { for{ 

fatigue <- 0.0 to 0.5 by 0.1 

innateComp <- 0.5 to 1 by 0.1 

effortLvl <- 0.5 to 1 by 0.1 

readSpeed = 300 

}yield{ 

Student(fatigue, Constant(readSpeed), Map(), effortLvl, innateComp, Map()) 

}}} 
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Figure 9: Completion time of mock students, sampled across the space 

 

 

Figure 10: Relationship between failures on quizzes and drills and completion time of mock students 

Models like these enable adaptive training course authors to quickly explore what-if scenarios with ranges of 

students and different configurations of adaptive content. The third phase of our effort will focus on learning 

actual student models from empirical data, enabling us to calibrate these models to actual performance, 
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realistic completion times, and identify which observable and latent variables are most valuable in this 

prediction. 

DISCUSSION 

We believe that including a capability to predict training time for trainees in GIFT has several significant 

advantages for accelerated learning. First, it facilitates return on investment (ROI) calculations by enabling 

the author to determine training time reductions resulting from the addition of adaptive features. Second, it 

provides a means for GIFT to monitor student progress against an expected timeline. Students who take much 

longer to complete training than expected may not be fully engaged in the training or may be having difficulty 

with the material. These are conditions that might prompt a response by GIFT. Finally, it can play a role in 

quality control of GIFT courses. For example, if segments of a course take much longer than expected across 

multiple trainees, GIFT could flag those sections for review by the course author to insure that the material is 

presented clearly. 

Determining the ROI for training is not always easy. As Fletcher and Chatham (2010) put it, how does one 

determine the benefit of a pound of training? In some cases it may be fairly straight forward. For example, one 

might measure the increase in revenue produced by the introduction of new training for a sales staff. While this 

may work for commercial businesses, the military is not a profit making organization, therefore one must look 

at other factors like cost avoidance to get a measure of ROI. 

Determining this can be quite difficult as one rarely has before and after data on the operational impact of 

training. In rare cases it can be found. For example, Fletcher and Chatham (2010) examined the benefits of 

Top Gun training given to pilots during the Vietnam war. Because of this training, kill ratios of Navy pilots 

improved from 2.4 enemy kills per loss up to 12.5 enemy kills per loss. The authors determined that the 

training had reduced U.S. losses by about 10-12 aircraft during the war When they looked at the cost of 

procuring and employing that many aircraft during the war, they calculated that the training had saved the 

Navy about $132 million dollars for an ROI of about 2.5. 

Determining the ROI for adaptive vs. non-adaptive training in terms of cost avoidance measures in an 

operational context would be very difficult. Adaptive training is still relatively new and opportunities to do 

side-by-side comparisons with traditional non-adaptive training are virtually non-existent. Rather than try- ing 

to quantify an impact in the operational environment however, we can look at the impact in a training 

environment. Specifically, one of the key advantages of adaptive training would be to reduce the overall time 

needed to deliver the training to a population of trainees. 

A challenge for authors of adaptive training is determining how adaptive the training should be. While adding 

adaptive features can potentially save training time, it also increases the cost of development. How does one 

determine, when the training is adaptive enough? Using an ROI metric can help to answer this question. On 

one hand is the cost of adding the adaptive feature. On the other hand is the value of the time saved by that 

adaptive feature. The value of that time could be calculated by looking at the total salary paid to the trainees 

over that time (e.g., 1,000 trainees/year x .5h/trainee x $35/h = $17,500/year). So, as long as the cost of adding 

the adaptive feature was less than value of the time saved, there would be a positive ROI and therefore 

justification for adding that particular adaptive feature. 

As can be seen, our model supports this strategy for the design and development of adaptive training in GIFT 

by helping to predict the effect of adaptive features on the training time for a known population of learners. 
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There are several challenges we may face as we develop this model. First, the initial MAST skill tree may not 

contain sufficient variables to predict adaptive training completion times. Our initial literature review and 

analysis have identified a potential set of most influential variables, but these variables may not be reflective of 

the completion time upon closer inspection. We will mitigate the identified risk by widening the scope of task 

models to incorporate more predictive variables if necessary. 

Second, while the model predictions may be highly accurate, there is a risk that the system will be too difficult 

or time consuming to use for some or all of the target populations of instructional designers, course managers, 

and instructional staff. We mitigate this risk by conducting a requirements analysis early in the effort to closely 

examine the needs of these user groups and design our system and interfaces to best meet those needs. We will 

apply human factors and user-centered design and understand the challenges of and methods for developing 

highly useful and usable decision-aiding tools for practitioners. 

Third, while this approach combines state of the art probabilistic approaches and identifies key variables from 

the literature and past experience, there is a potential that the initial predictions will not sufficiently account 

for the variability of trainee completion times. We plan to mitigate this risk by incorporating historical data 

early and adjusting the analysis techniques to capture the maximum amount of variability from data that can be 

reasonably collected in the field. 

When complete, this will be the first system to predict the completion times of GIFT and to enable effective 

assessments of the ROI that is useful for key design and implementation decisions of an adaptive training 

system. It includes an innovative application of the procedure skill modeling the MAST skill tree to flexibly 

represent the adaptive training content for analysis. It is the first application using a probabilistic programming 

language (i.e., Figaro) to predict completion times for adaptive training technologies, including both 

unobserved latent variables and temporal factors, such as trainee fatigue, boredom, or flow. 
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Personality: A Key to Motivating our Learners 
 

Elizabeth Biddle1, Elizabeth Lameier2, Lauren Reinerman-Jones2, Gerald Matthews2, Michael Boyce3 

The Boeing Company1, University of Central Florida2, Army Research Laboratory3 

INTRODUCTION 

The Motivation Assessment Tool (MAT), currently in development (Lameier et al, pending) will assess a 

learner’s motivation profile and provide instructional guidance via the Generalized Intelligent Framework 

for Tutoring’s (GIFT’s) authoring tool to enable an instructor to design a lesson that will personalize the 

learner’s experience to support and/or improve their motivation. Specifically, the MAT will provide a 

methodology for personalizing learning in GIFT. Learner motivation is influenced by a variety of traits 

and factors, which include student personality, learning performance history, intrinsic vs. extrinsic 

motivation tendencies, and self-regulatory skills (Reinerman-Jones et al., 2017). Understanding a 

learner’s composition of these traits is key to tailoring the instructional environment to support and 

encourage learner motivation. Intelligent tutoring systems provide a learning environment in which it is 

possible to seamlessly assess and tailor instruction to support the learner’s motivation. The goal for the 

MAT is to develop a method for identifying the motivational dispositions of GIFT learners. In turn, 

assessments using the MAT may guide methods for personalizing training to capitalize on the learner’s 

motivational profile with the outcome being improved mastery and retention.  This paper will describe an 

effort in support of the MAT’s development and validation to determine how strongly a learner’s 

personality profile describes their motivation. After discussing the analysis of the personality relation to 

the MAT, the paper will then focus on how the MAT will be implemented in GIFT and the associated 

benefits and the barriers.   

Motivation in Learning 

Motivation has been defined as being “moved to do something” (Ryan & Deci, 2000) and is essential to 

learning (Keller, 1987). When in a motivated state, a learner is inclined to initiate a task and persevere 

throughout its completion. As a result, motivation increases an individual’s level of engagement (Magill, 

1980). When learners are not motivated, they are more likely to disengage from the task. Motivation can 

be classified into two types (delSoldato & duBoulay, 1999; Kember, Wong, & Leung, 1999; Noels, 

Clement, & Pelletier, 1999): (1) intrinsic motivation, which refers to an individual’s internal desire to 

achieve, and (2) extrinsic motivation, which refers to external rewards that encourage an individual to 

achieve. Both intrinsic and extrinsic motivation are approached by the MAT as traits.  However, 

intrinsically motivated individuals rely on self-regulatory processes and internally driven incentives, 

whereas extrinsically motivated individuals need an instructor or automated learning environment to 

influence their motivation throughout learning.  

Personality in Learning 

An individual’s personality traits influence their cognitive, affective, and motivational processes 

(Matthews & Zeidner, 2004; Blickensderfer et al, 2003). Consequently, a learner’s personality profile will 

affect their reaction and experience with different learning environments and strategies (Komarrajuq et al, 

2011; Costa & McCrae, 1992). The Big Five model (Goldberg, 1981) is one of the most commonly used 

personality theories.  The five traits are:  Extraversion, Agreeableness, Conscientiousness, Neuroticism, 

and Openness. Extraversion is related to an interest in social events, talking with others and interaction 
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with environments.  Agreeableness refers to a cooperative disposition with little interest in competition, a 

willingness to put others first, being compliant, and trusting others. Conscientiousness refers to behaviors 

that focus on attention to details, organization, and being goal-directed. Neuroticism describes a tendency 

to exhibit negative emotions such as stress, anxiety, irritability, or sadness due to a predisposition to 

perceiving the environment as negative or threatening. Openness describes an inclination to explore, try 

and learn new things, and enjoy intellectual and creative activities. 

The “Big Five” personality traits have been connected to behaviors, academic achievement, and job 

performance (Judge et al., 2007; Larson et al., 1990). Further, learners with intrinsic motivation, which 

refers to an internal desire to succeed, are more likely to have a high level of the personality trait 

Conscientiousness (Duckworth et al, 2007). Komarraju and Karau (2009) found that Conscientiousness 

was the most influential trait and had positive correlations with intrinsic motivation and high GPA, while 

correlating negatively with extrinsic motivation and amotivation. They also obtained evidence that 

individuals with: 1) high intrinsic motivation also had higher tendencies towards Openness, 2) high 

Neuroticism was seen to have a higher amotivation, and 3) high Extraversion was more closely associated 

with extrinsic motivation. The authors obtained similar results in a later, related study (Komarraju et al., 

2011).  

MAT WAVE 3 ANALYSIS 

The MAT was developed to evaluate the multiple variables that influence a learner’s motivation to 

increase the precision in providing learning in GIFT tailored to the learner’s needs. The MAT has been 

constructed with two sections: 1) General Motivation, to assess the learner’s motivation traits, and 2) 

Motivator Inventory, to determine the optimal reinforcers that motivate the individual learner (see Table 

1).  The MAT development has undergone three waves of data collection and analysis. The first wave 

evaluated the original iteration of the MAT, which was created by combining and clustering items from 

prior motivation assessments, which each addressed a limited set of motivation variables (Reinerman-

Jones et al, 2017). Additional items were created and included in this first iteration to evaluate the types 

of reinforcers that support an individual’s motivation. In the second iteration, two scales for items 

important to motivation, attitudes and autonomy, were added to ensure these constructs were addressed by 

the MAT (Lameier et al, pending publication). This paper focuses on the third wave analysis, which was 

used to: 1) check reliability and factor structure, and provide the final refinement to the MAT, and 2) 

evaluate relationships between the MAT scales and the Big Five personality traits.   

Table 1. MAT Scales 

General Motivation Motivator Inventory Scales 

1. Attitudes 10. Workload 1. Feedback 10. High-value 

2. Learning 

Driven 

11. Organize and 

Structure 

2. Intrinsic feedback  11. Self-reward 

3. Autonomy 12. Social 3. Extrinsic feedback  12. Activity 

4. Goal 

Orientation 

13. Breaks 4. Recognition 13. Time 
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5. Loss of Effort 14. Extinction 5. IMI 14. Sensors 

6. Worry 15. Relatedness  6. Digital 15. Hobbies 

7. Freeze, Fear, 

Flight 

16. Effort Based on 

Punishment 

7. Energizer 16. Time During 

learning 

8. Competition 17. Positive outlook 8. Logical 

Consequences 

17. Negative Time 

9. Challenge 18. Self-regulation 9. Low-value 18. Activity 

 

Participants 

For the wave 3 analysis, 249 participants (112 females, 137 males) were recruited through Amazon 

Mechanical Turk, with ages ranging from 19 to 71 years. 

Materials and Procedures 

The participants completed the MAT, along with the Big Five Aspect Scales (BFAS; DeYoung et al, 

2007) to assess the Big Five personality traits, the Reinforcement Sensitivity Theory of Personality 

Questionnaire (RST-PQ; Corr & Cooper, 2016), and three assessments that evaluate aspects of 

motivation, which were the Portrait Value (Schwartz & Butenko, 2014), Grit and Ambition scale 

(Duckworth, 2009) and the 3x2 Achievement Goal scale (Elliot, Murayama, & Pekrun, 2011). The MAT 

contained 293 items across both sections of the MAT (general and motivator inventory). All of the 

questionnaires, including the MAT, were loaded into GIFT as evaluations. When the participants accessed 

Mechanical Turk, they were taken to GIFT via a weblink to complete the questionnaires. This paper is 

only addressing the evaluation of the relationships between the MAT and personality, while the 

evaluation of the MAT against the constructs evaluated by the other tools (e.g., grit, value, goal 

orientation) will be reported in subsequent publications.   

Results 

First, Cronbach α coefficients were calculated to evaluate the internal consistency of the scales identified 

in Table 1. The coefficients ranged from .794 (relatedness) to .955 (Freeze, Fear, Flight) in the General 

Motivation section and .791 (Intrinsic Feedback) to .935 (Recognition) in the Motivator Inventory 

indicating that each of the scales generally had satisfactory internal consistency. 

Table 2. BFAS Scales 

Big Five Personality Trait Trait Dimensions 

Neuroticism 
 Volatility – tendency for extreme variability in response to 

external environment 
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 Withdrawal – tendency to focus inward 

Agreeableness 
 Compassion – interest in feelings of others 

 Politeness – tendency to treat others with respect 

Conscientiousness 
 Industriousness – tendency to work hard to complete tasks 

 Orderliness  - detailed and organized nature 

Extraversion 
 Assertiveness – tendency to dominate social interactions 

 Enthusiasm – tendency to exhibit energy and positive attitude 

Openness 

 Openness  – willingness to explore new ideas and activities 

 Intellect  – tendency to synthesize information to guide, objective 

decision making 

 

To simplify the analysis, an exploratory factor analysis was conducted to determine the higher-order 

factor structure of the MAT General Motivation scales. A principal factor method was used for factor 

extraction, followed by oblique rotation using the direct oblimin criterion. The three primary factors 

identified were Social (need for social interaction and competition), Self-Directed Learning (ability to 

keep on task and determine appropriate use of time to complete learning tasks), and Threat Vulnerability 

(tendency to become anxious or stressed during learning). On the basis of the scree test and parallel 

analysis three factors were extracted, explaining 65 % of the variance. The range of factor correlations 

was maximum of .891 and minimum of .508. The three factors were then scored by their mean.  The 

Social factor included scales from challenge, extinction, competition, relatedness, social link, and 

punishment.  The Self-Directed Learning is composed from the autonomy, positive outlook, self-

regulation, organized structure, and break scales. Threat Vulnerability has loss of effort, workload, worry, 

and fear-freeze-fight scales.  A similar process was performed for the MAT Motivator Inventory and two 

primary factors were identified. The factors identified for the Motivator Inventory were Motivator 

(preference for specific type of reinforcer) and High Value Motivator (preference for reinforcer of high 

value).  Based on the scree test and parallel analysis two factors were extracted, explaining 59% of the 

variance. The motivator scale was created by intrinsic feedback, extrinsic feedback, acknowledgement, 

digital, energizer, logical consequence, low value, self, activity, sensor, hobby, level of interactivity, and 

time during learning scales. The high value factor was the only factor that loaded on the high value scale. 

The range of factor correlations was a maximum of .814 and a minimum of .478.  

Table 2. Higher Order Factors  

 Primary 

Factors 

Correlations (r) with Personality Traits and Facets 

G
en

er
al

 

M
o

ti
v

at
io

n
 

Social  

 

 Neuroticism (.204)  Agreeableness (-.276) 
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o Politeness (-.407) 

Self-Directed 

Learning 
 Openness (.554) 

o Intellect (.529)  

o Openness (.478)  

 Agreeableness (.465) 

o Compassion (.456) 

o Politeness (.373) 

 Neuroticism (-.335) 

o Withdrawal (-.311) 

o Volatility (-.322)  

 Conscientiousness (.457)  

o Industriousness (.403) 

o Orderliness (.384) 

 Extraversion (.373) 

o Enthusiasm (.396) 

o Assertiveness (.253) 

 

Threat        

Vulnerability 
 Neuroticism (.730)  

o Withdrawal (.714) 

o Volatility (.663) 

 Openness (-.485) 

o Intellect (-.575)  

o Openness (-.226) 

 Agreeableness (-.437) 

o Politeness (-.386)  

o Compassion (-.398) 

 Conscientiousness (-.467) 

o Industriousness   (-.650) 

 Extraversion (-.438) 

o Enthusiasm (-.418)  

o Assertiveness  (-.340) 

 

R
ei

n
fo

rc
er

 I
n

v
en

to
ry

 

Motivator 

 

 Extraversion (.321) 

o Enthusiasm (.300) 

o Assertiveness (.257) 

 Openness (.234) 

o Openness (.237) 

o Intellect (.201) 

High Value 

Motivator 
 Openness (.371) 

o Openness (.371)  

o Intellect (.322) 

 Conscientiousness (.329) 

o Orderliness (.357)  

o Industriousness (.214) 
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 Agreeableness (.347) 

o Compassion (.311) 

o Politeness (.310) 

 Extraversion (.164) 

o Enthusiasm (.201) 

 

 

A bivariate correlation analysis was conducted to examine the relationships of the other motivation 

assessments’ scales and the IPIP scales. Table 2 provides the Pearson correlation coefficients (r) for IPIP 

scales for each of the MAT higher order factors. There were notable correlations for the primary factors 

for the both the General Motivation and Motivator Inventory sections of the MAT. 

Threat Vulnerability demonstrated the strongest correlations with the Big Five personality traits and the 

10 facets. The strongest, and only positive correlation, was with Neuroticism (r = .730) and its facets 

Withdrawal (.714) and Votility (.663).  This type of learner would view the learning environment as 

intimidating making it difficult for the learner to maintain motivation due to feelings of hopelessness and 

likely have random reactions based on their successes and failures during the learning process. Threat 

Vulnerability was negatively correlated with the other 4 Big Five personality traits, indicated that this 

type of learner is most influenced by their predisposition to interpret their learning environment 

negatively.  The strongest negative correlations were with the facet of Industriousness 

(Conscientiousness, r = -.650) and Intellect (Openness, r = -.575), reflecting a learner that is not 

productive due to their tendency to worry and their reluctance to experience new activities and 

experiences. 

Self-Directed Learning was positively correlated with Openness (r = .516) and its two facets, Openness (r 

= .592) and Intellect (r = .470).  Given that Self-Directed Learning refers to an individual with an intrinsic 

motivation tendency and ability to complete learning tasks on their own, it makes sense that this type of 

individual would be open to new ideas and experiences. Self-Directed Learning was also correlated with 

Conscientiousness (r = .457) and its facet Industriousness (r = .403), which is indicative of the focus and 

follow-through a self-directed learner would need. Finally, Self-Directed Learning was also positively 

correlated with Agreeableness (.465) and its facet, Compassion (.456). While a student who can work 

autonomously does not require social skills, the relationship may be explained that this type of student is 

not threatened or competing with other students.  

While neither the trait of extraversion nor its dimensions were correlated with Social, the Agreeableness 

facet of Politeness was negatively correlated with Social. This may indicate that while some learners need 

interaction with others to be motivated to learn, they are not necessarily interested in the other students’ 

well-being, but having interaction with other learner. 

The Motivator Inventory demonstrated weaker correlations with personality. The Motivator scale had 

weaker correlations – primarily with Extraversion, which can be explained by their need and higher 

threshold for, stimulation from the external environment. The High Value scale had week correlations 

with all traits except Neuroticism. The lack of any correlation between the Motivator Inventory scales and 

Neuroticism is interesting and may suggest that it is the learning environment, interactions and feedback 

style, which is most important to motivating this learner type, rather than an externally provided reward. 

The results of this study indicate a learner’s personality trait composition is related to their motivation 

trait composition. Identifying a learner’s personality composition can provide insights that will support 

the provision of instruction that is tailored to optimize the learner’s motivation. Specifically, personality 
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trait identification can help determine whether the learner is intrinsic and able to learn independently or 

whether the learner is going to need positive support and encouragement.  

MAT IMPLEMENTATION IN GIFT 

The final version of the MAT will be implemented as an actionable survey within GIFT with its 

implementation functionally aligned with the pedagogical module and long-term learner module (LTLM).  

Currently, actionable surveys in GIFT use the results of the survey to immediately update the learner 

model and the pedagogical model, which results in a course adaptation. An actionable survey is scored 

based on the tags authored and attached to the concepts addressed by the individual survey questions to 

create the logic for scoring the survey. The information collected from the survey is sent to the learner 

model (found in advanced settings) and the scores for the concepts are updated.  

Implementation of the MAT will follow the process described above. However, rather than designating a 

learner as a novice, journeyman or expert, or high or low motivated, the resulting adaptations will be 

designed to implement a Learner Plan, which will be further described, that will support the learner’s 

motivation.  Furthermore, the results of the MAT will be stored in the LRS and use to select the optimal 

Learner Plan when the student enters GIFT and launches a lesson.  Figure 1 depicts how the MAT 

actionable survey will be implemented within GIFT.   

MAT Actionable Survey Implementation 

The final state of the MAT will be shaped by the results from the present study, as well as the planned 

verification experiment, which will evaluate the effectiveness of the Learner Plans based on MAT 

assessment to improve or maintain motivation and learning effectiveness. For implementation within 

GIFT, the MAT will be created as an actionable questionnaire. Currently, the MAT is divided into 

sections based on groupings the ITS would need to know such as intrinsic motivation, level of effort, 

affective tendencies, comparing/competitiveness, task (preference and strategies), reward orientation, and 

motivator inventory. Extrinsic tendencies will be scored from the reverse of the intrinsic tendencies.  
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Actionable Survey

-MAT or personality 

Tagged for scoring 

Possible multiple tagging 

Mark attributes or category to score

Scoring on:

- levels of personality and/or

Stringing of variables for plans

And/or Scoring of individual preferences

 

Pedagogical Configuration

Rules are written for 

personality,

Rules are written for type or 

motivation

Rules are written for the 

narrow scope such as 

reinforcers and preferences

 

Learner Record Store

- MAT data is stored for use 

with other tasks

-points scored saved

Leaderboard for each course 

stored and ranked but only 

shown based on individual 

motivation

Learner Profile

-Displays preference 

selections from the 

assessment and allows for 

the learner to change 

based on their state.

Shows leaderboard that is 

saved in LRS and points. 

Learner Configuration

 The data passes through 

learner configuration. 

Course

The rules are carried to the 

adaptive course flow based on the 

Merill’s Component Display 

Theory.

-Provide instructors specific 

authoring tool for the rule and 

adaptions to function.

 

Figure 1. MAT Implementation in GIFT 

Based on the results of the analysis presented earlier, as well as the wave 1 and 2 analyses, the final 

version of the MAT will likely be reduced, focusing on the higher level scales such that only a few 

Learner Plans may be required, such as Intrinsic/Self-Learner, Threat Vulnerable and Social.  For Social, 

there may be two different plans – one focused on challenge and one focused on reward.  For example, 

the cumulative scores for these higher-level scales will be made actionable by having specific delivery 

and pedagogy preferences associated with each scale. A tag will be set to score the various sections from 

the actionable survey (experiment dependent). For example, Tag 1 would be scored with the Intrinsic 

(Self-Learner) Learner Plan such that an intrinsic learner’s correlates are with a set of variables that need 

to be scored throughout the assessment and not just based on a few questions measuring one attribute. 

Tag 2 might be tied to the Extrinsic Learner Plan such that the extrinsic learner will need to provide the 

personality type (Scenario Developed below for further explanation) to help determine whether they are 

Threat Vulnerable or Social for instance. Tag 3 might be with additional MAT (e.g., challenge, breaks) or 

Motivator Inventory sections that will further guide the Social Learner Plan to accurately provide the type 

of schedule, level of support needed, and so forth (yet to be determined based upon the verification results 

and synthesis of the wave 1-3 analyses).  

The results of the MAT Actionable Survey will need to be stored into the LTLM rather than feed real-

time into the pedagogical configuration of the lesson. The next section discusses the LTLM 

implementation. 
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LTLM Implementation 

In the current version of GIFT, if a lesson has been implemented using an actionable survey, the data is 

then immediately used to configure the student’s lesson in run-time. Therefore, the learner must complete 

the survey each time he or she takes a lesson Trait information, such as the type of data being obtained by 

the MAT, is generally fixed for long durations. Repeating the survey each time the learner completes a 

lesson results in collecting the same data and will serve to demotivate the student. Therefore, we are 

recommending that the student be asked to take the MAT Actionable Survey the first time they log into 

GIFT and have the results saved to the long-term learner model (LTLM). Rather than the results directly 

feeding the pedagogical module during the run-time configuration of the lesson, it can pull the data from 

the LTLM based on the student’s login.   

The authors are anticipating that the LTLM will be implemented with a learner record store (LRS). Given 

the goal of GIFT is to include a LTLM that provides a historical learner model that contains previous 

learning experience data, as well as data pertaining to individual differences in learning, this project is 

planning to leverage this future capability. In this way, the LTLM will be used to tailor the pedagogy and 

delivery mechanisms without requiring the learner to complete surveys each time they enter GIFT to 

complete a lesson. However, the learner will need to retake the assessment after a period, such as a year, 

or for major life events that could jeopardize the stability of the trait. Additionally, we recommend that 

the learner have the option to retake the MAT or other relevant survey at any time if they feel the plan is 

not right from not answering honestly or a major life event. Some of the information should be shown to 

the learner on the profile where course history is kept. Students should be able to view the specific 

outcomes from the MAT scales including motivator preferences  

Learner Plan Overview 

At the end of Phase I of this project, a set of 4 Learner Quadrants (Intrinsic, High Neuroticism, High 

Neuroticism with Low Conscientiousness and Low Openness, and Low Conscientiousness and/or 

Openness) was proposed (Reinerman-Jones et al, 2017), as a means of identifying learner strategies that 

could be authored in GIFT to support learning motivation based on an assessment of the learner’s 

motivation and personality traits as assessed with the MAT. This present analysis supports Quadrant 1, 

which resembles the factor of Self-Directed Learning and high levels of Conscientiousness and Openness. 

These results from this study suggest that Quadrants 2 and 3 can be combined because an individual high 

in Neuroticism and the MAT factor of Threat Vulnerability is likely to be low in Conscientiousness and 

Openness. The results in general support Quadrant 4. Further analysis of the MAT scales relevant to the 

Social factor is warranted and may provide a way of decomposing into more specific learner plans. For 

example, competition and challenge are two scales of the MAT associated with the Social factor, so there 

could be a learner plan focused on including a challenge aspect to learner, such as providing a leaderboard 

with points or badges. A different learner plan may focus more on providing breaks to the learner. In 

addition, given the slight correlation to with Neuroticism, the type of social interaction may need to 

provide supportive interaction. 

Pedagogical Module Implementation 

In order to realize the Learner Plans in GIFT, the pedagogical module requires changes so that it can 

receive input from the LTLM at lesson run-time. The pedagogical module-authoring tool needs to be 

expanded to support options for the final MAT higher order scales and attributes for the associated 

learning plans. Figure 4 identifies the parts of the current pedagogical module authoring tool to be 

modified.   
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Attributes being considered for the learning plans are intended to promote and improve student 

motivation.  For example, the Intrinsically Motivated (Self-Learner) student’s Learner Plans would 

include: options to write in the learning goal, complete a pre-test, and potentially demonstrate competency 

and earn credit for the lesson or portion of the lesson and the ability to select their preferred method of 

task completion (e.g., text, video, game). Whereas, the Learner Plan for a Threat Vulnerable student may 

include: sub-goals for dividing the lesson into smaller segments, incorporation of positive feedback 

throughout the lesson and incorporation of relaxation techniques throughout the learning process. Finally, 

a Social Learner Plan for the Extrinsically Motivated learner who is low in Neuroticism may incorporate: 

leaderboard for competition with other students, and feedback to help the student maintain focus. 

 

Figure 4. Recommended Modifications to Pedagogical Module Configuration Tool 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

The results of the study described in this paper provide support that personality is a contributing factor to 

how a student interacts and performs within a given learning environment. Further, the study provided 

support that the use of a learner’s personality composition can be useful in developing a learning plan to 

support their motivation. The next step is to further analyze the MAT wave 3 results to better understand 

the variables that underlie the Social factor.    

Benefits of GIFT Implementation 

A verification experiment is planned to assess the contribution of Leaner Plans tailored to the MAT and 

personality assessments on mastery level (performance score) and retention of learning. It is anticipated 

that participants who receive instruction with the Learner Plan associated with their motivation and 

personality traits will improve their performance and retention, due to an increased level of motivation. 

With the MAT implemented within GIFT, it will help enable the provision of instruction to the learner in 

a manner that optimizes their learning outcomes. 
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Barriers to GIFT Implementation 

Implementation of the MAT into GIFT will require some changes to GIFT authoring (configuration) tools 

and run-time engine. First, the results of the MAT Actionable Survey will need to be stored in a LTLM.  

Secondly, the pedagogical module configuration tool will need to be modified to support the MAT final 

scales and Learner Plan attributes. In order to implement some of the attributes being recommended, such 

as the ability to write in goals or select method of task completion (e.g., game or videos), extensions will 

need to be made to GIFT to support learning environments beyond those currently supported by GIFT.  

Finally, the pedagogical module will need to be able to receive data from the LTLM after the student logs 

into GIFT, rather than pulling the results in run-time from an actionable survey. 

Summary 

The authors have designed a study to evaluate tailored learning plans that are providing support for 

Quadrant 1, 2, and 4 in the above model. The results of this study will be used to better inform 

modifications to the GIFT authoring environment. 
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Team Models in the Generalized Intelligent Framework for 

Tutoring: 2018 Update 
 

Anne M. Sinatra1 

U.S. Army Research Laboratory1 

INTRODUCTION 

The Generalized Intelligent Framework for Tutoring (GIFT) is a domain-independent intelligent tutoring 

system (ITS) framework that has many features and applications that can be used by ITS authors 

(Sottilare, Brawner, Sinatra & Johnston, 2017). The research and development associated with GIFT is 

divided into a number of different research vectors including, architecture, individual learner modeling, 

team modeling, instructional management, domain modeling, and training effectiveness. Many of the 

research projects that have been associated with GIFT have focused on developing new features and tools 

that ITS authors can use to create their courses. An ultimate goal of GIFT is being able to provide tutoring 

to teams. Examples of teams that GIFT plans to support are at the Squad level (9 people) and higher. An 

initial summary of the work in the team modeling vector through May 2017 was provided in the GIFT 

Symposium 5 proceedings (Sinatra, 2017).  The current paper provides an update in the progress and 

work that has been done in team models in GIFT. 

TEAM MODELING IN GIFT 

Theoretical Background 

Work in the area of team modeling in GIFT has been separated into two different divisions: theoretical 

and applied. The theoretical basis for the work in team modeling in GIFT was done as part of a large scale 

meta-analysis that covered the relevant team literature from 2003 to 2013. The results of this meta-

analysis were recently published in the Journal of Artificial Intelligence in Education (Sottilare, Burke, 

Salas, Sinatra, Johnston & Gilbert, 2017). As part of this project, behavioral markers were also identified. 

These behavioral markers provided ways of assessing team performance during a session. Many of the 

markers are heavily communication focused, and are traditionally assessed in person by a human 

observer. Future work is planned in which these behavioral markers will be specifically selected and 

operationalized in the context of real-time team intelligent tutoring. 

Applications of Team Modeling and Team Tutoring in GIFT 

Surveillance Tasks 

Team tutoring has been successfully demonstrated within the GIFT architecture in the form of a 

Surveillance Tutor. This tutor was developed using GIFT 4.0, and involved tracking both individual 

performance and team performance in real-time. This was initially implemented in the form of an 

experiment, which had two players who were working together to surveil an area in the Virtual 

Battlespace 2 (VBS2) software. The initial version had two team members who each surveilled a 180 

degree area and communicated to their teammate when they saw a threat (OPFOR) crossing into the other 

person’s sector. The lessons learned and information about the creation of this tutor was documented in a 

recently published article (Gilbert, et al., 2017). Depending on the condition that the team was in, 
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feedback was either provided at the individual level, the team level, or not at all. The GIFT system was 

adapted to support individual assessment files (Domain Knowledge Files; DKFs) and a team assessment 

file.  Each of the team members had his or her own DKF which tracked their individual actions and 

performances, and there was an overall team DKF which assessed team performance. The team DKF 

assessed the team tasks as a whole, and was unable to discern which team member engaged in which 

action.  

As a follow up to the initial implementation, the task was extended such that there were three individuals 

who worked together as a team to perform the surveillance task. While in the first implementation of the 

task there were two individuals who each performed the same role (spotters), in the expanded version 

there were the two spotters and an additional role, a sniper. The spotters surveilled their 180 degrees and 

instead of telling their partner when they saw a threat passing to the other sector, they communicated this 

information to the sniper. The sniper then was tasked with acknowledging that the information was 

received, locating the possible threat and identifying the threat level associated with the spotted 

individual. The sniper would determine if it was a civilian, a potential threat, or an imminent threat. This 

implementation used a similar DKF structure in GIFT, where each of the spotters had their own task 

specific DKF, and another DKF was generated for the sniper and provided assessment that was associated 

with that role. Finally, there was an overall team DKF that examined the team actions and could provide 

feedback based on them. In this version of the experiment, feedback was provided in one of two ways: at 

the individual level or at the team level. Lessons learned from this approach included that this particular 

approach to assessing team tutoring in GIFT would result in an increasing number of DKFs as the number 

of team members and roles were increased. Further, the overlap and reassessment in the team DKF 

required additional authoring and duplication of efforts. While not the ideal scalable approach to team 

tutoring in GIFT, this implementation was an important step forward, as it demonstrated the simultaneous 

assessment/tutoring of three individuals, and the ability to assess individuals in different roles.  

Search and Rescue Task 

The next implementation of team tutoring in GIFT will be in the Search and Rescue domain using the 

Virtual Battlespace 3 (VBS3) software. This work is still in initial development and the implementation is 

in progress (McCormack et al., in press). As part of this project, there will be effort made to 

operationalize previously identified behavioral markers (e.g., cohesion and cooperation), and create a task 

that will elicit appropriate team behaviors that are associated with them. The search and rescue task is 

being developed in such a way that it is military relevant, and subject matter experts are being consulted 

in order to ensure that the tasks within the scenario are as realistic as possible. The focus for this 

implementation is on the team performance overall, with less focus on the individual. The actions that the 

team members perform will ultimately be assessed in one team DKF, and feedback will be provided at the 

team level. This reduces some of the complications of using multiple DKFs as was done in previous work 

using GIFT. Additionally, as this scenario is expected to be made up of 9 people, and include subteams 

within the structure, providing assessment/feedback in this manner will reduce complications and allow 

for focus to be on developing a rich relevant scenario. While this project is ongoing, the GIFT team will 

be developing a scalable solution to the GIFT team architecture, which can both be merged with this 

scenario and used for future implementations in GIFT. 
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TEAM MODELING WORKSHOPS AND OUTPUT 

Team Workshop, March 2016 

As part of the meta-analysis project, a workshop titled “Building Intelligent Tutoring Systems for Teams: 

What Matters” was conducted in March 2016. This workshop focused on teamwork as it applied to ITSs. 

Brainstorming and discussion happened during the workshop about best practices in ITSs and what is 

relevant in order to conduct team tutoring. The discussion lead to the output of an edited book volume. 

Individuals who attended the workshop, in addition to others who were experts in the field were invited to 

contribute chapters. The book was recently completed and is in the editing process. The final book titled 

Building Intelligent Tutoring Systems for Teams: What Matters, Volume 19, with editors Joan Johnston, 

Robert Sottilare, Anne M. Sinatra, and C. Shawn Burke is scheduled to be released in September 2018.   

Team Taskwork Expert Workshop, June 2017 and Design Recommendations Book 

Volume 

In June 2017 a Team Taskwork Expert Workshop was held at Iowa State University in Ames, Iowa. This 

workshop was held as part of the ARL-University of Memphis cooperative agreement, and one of the 

goals was bringing together a group of experts in different areas of team research (including collaborative 

learning, team performance, and team tutoring) to discuss their work and how it is applicable to team 

taskwork in ITSs. The focus of the workshop was specifically on taskwork, or ways that intelligent tutors 

could be applied for specific tasks or domain areas. There were a wide range of presentations that 

included discussions about applications in the medical field, in military domains, in analyzing the content 

of team messages, and more. In addition to the discussions, the formal output of the expert workshop is in 

the form of an edited volume. The book, tentatively titled: Design Recommendations for Intelligent 

Tutoring Systems: Team Taskwork, includes four focuses areas about team taskwork: modeling, socio-

cultural applications, system design and assessment. The editors of the book are Robert Sottilare, Art 

Graesser, Xiangen Hu, and Anne M. Sinatra. The book is expected to be released in summer 2018. 

Assessment and Intervention during Team Tutoring Workshop, Artificial Intelligence 

and Education Conference, June 2018 

The GIFT team has an accepted workshop at the Artificial Intelligence and Education (AIED) Conference 

in June 2018 in London. Papers have been accepted to the workshop that highlight different areas and 

applications of team tutoring in ITSs. Areas of focus include collaborative problem solving, 

demonstration of team tutoring in action, and communication during team tutoring. During the workshop 

there will be a discussion of the commonalities in the different approaches to team tutoring and a 

discussion of gaps and steps forward overall in the problem area. The output of this workshop will be 

proceedings papers that will be available online and the information gathered from the workshop will 

impact the way forward for team tutoring in GIFT. 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

The lessons learned from the surveillance tutor and the recommendations for both intelligent team 

tutoring systems and GIFT in particular that have come out of the team workshops will be taken into 

consideration while developing the team architecture in GIFT. Providing real-time feedback and 

assessment for not only individual team members, but a team as a whole is a difficult challenge. As was 
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demonstrated in the initial surveillance tutor, it can be difficult to interrupt individuals in the middle of a 

scenario to provide real-time feedback, and it may result in them either reducing performance, or not 

being able to attend to the feedback. As a result of this, initial implementations in the future may use the 

approach of focusing on after action reviews that occur at the team level after the completion of subtasks 

within a scenario. By engaging in this manner it will not interrupt the event that is occurring and will 

ensure that the feedback is viewed by the team members. Additionally, as authoring multiple DKFs would 

be cumbersome, work should continue to be done in order to implement a scalable team architecture that 

lessons the authoring burden but still provides relevant assessment and feedback during tutoring sessions.  

Research into team modeling in GIFT should continue to be actively developed, and careful thought 

should be given into the implementation of the team architecture in GIFT. Additionally, work should 

continue to be done to use the theoretical foundation that was identified in order to implement successful 

team tutoring in GIFT. By operationalizing the behavioral markers and determining which can be 

generalized it will provide a powerful theory driven approach to team tutoring that tutor authors will be 

able to implement. Through the development of scenarios and the architecture, the initial plans for a team 

tutor authoring tool can be put into place. Ultimately, as GIFT is adapted for use with teams it will lead to 

it becoming more powerful and incorporating many additional relevant features that can be authored. 

Similar to the other authoring tools in GIFT, it is expected that the team tutor author will not need to be 

heavily versed in the team literature, but can use the tools, prompts, and recommended pedagogy within 

GIFT to construct a highly relevant team tutor that is pedagogically sound. GIFT continues to be 

developed in order to support team tutoring, with future work including demonstration of a Squad level 

team tutor, and approaches to assessing teams in real-time.  
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Team Performance and Assessment in GIFT – Research 

recommendations based on Lessons Learned from the Squad 

Overmatch Research Program 
 

Joan H. Johnston, Ph.D. 

Army Research Laboratory  

INTRODUCTION 

In 2015 a set of research objectives were developed for the Army Research Laboratory’s (ARL) adaptive 

tutoring program focusing on designing and developing effective team tutoring environments in GIFT 

(Goodwin, Johnston, Sottilare, Brawner, Sinatra, & Graesser (2015). An initial objectives is determining 

the important variables that drive small unit team performance and developing ways to measure and 

model those factors in an adaptive training system.  At the time the objectives were formulated the ARL 

research team had already begun a joint, collaborative research program called Squad Overmatch (SOvM) 

that conducted a series of team-based research studies that in part focused on addressing this question 

(Milham, Phillips, Ross, Townsend, Riddle, Smith, et al., 2017). The purpose of this paper is to describe 

how the SOvM program approached the problem of team performance measurement and describes 

lessons learned for measuring and modeling those factors in an adaptive training system.  

SQUAD OVERMATCH 

The SOvM research objective is to improve dismounted squad decision making under stress, with a focus 

on the following five skill domains: Tactical Combat Casualty Care (TC3); Advanced Situation 

Awareness (ASA); Resilience and Performance Enhancement (RPE); Team Development (TD); and 

conducting an Integrated After Action Review (IAAR). In 2016 an experiment with eight squads was 

conducted to determine the effect of training these skills using classroom, simulation, and live training 

compared to traditional live training exercises (Townsend, Johnston, Ross, Milham, Riddle, Phillips, & 

Woodhouse, 2017). The four-day SOvM curriculum involved Subject Matter Experts (SMEs) conducting 

classroom instruction on days 1 and 2 that was immediately followed by skills development in a virtual 

team training simulation, and then conducting practical skills application in an outdoor training facility on 

days 3 and 4. Following each 45 minute scenario, the Platoon leader and learning domain SMEs led the 

squads in guided team self-correction IAARs. The IAAR was aligned with the U.S. Army AAR doctrine 

for discussing the movement and engagement actions the squad performed during significant tactical 

events during the scenario. The IAAR focused on developing squad member skills in how to take 

personal responsibility for identifying behaviors that need correction, develop team cohesion, and set 

goals for improvement in the next scenario. For the first 20 minutes, the Platoon leader led the squad 

members in a critique of their tactical performance using video snippets of the critical events collected 

during the exercise. Then each domain SME spent about 5 to 7 minutes leading squad members in 

identifying tactical triggers, behaviors, solutions, and outcomes as they reflected on each of the areas, 

sometimes reviewing video snippets. Finally, the Platoon leader led the squad members in setting goals 

for improvement in the next scenario. In this manner, the teaching points were reinforced based on 

practical application, and provided a way to “adapt” how they used the next scenario to focus on 

performance objectives they had set themselves. 
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Team Performance Measurement Approach 

A major goal of the study was to test the hypothesis that squads receiving the SOvM training would 

demonstrate better performance on TC3, ASA, and TD over the control condition squads during and after 

the live training exercises. To construct measures of these skill domains, researchers leveraged two types 

of team competency models and measurement methods that had been previously validated in earlier 

research. The Team Tactical Decision Making competency model and the Teamwork competency model 

were used to develop performance objectives and measures for ASA and TD.  

Team Tactical Decision Making Competency Model 

The Team Tactical Decision Making model was developed by Paris, Johnston, and Reeves (2000) and is 

comprised of the four related dimensions of Identification, Elaboration, Planning, and Execution. 

Johnston, Fiore, Paris, and Smith (2013) validated the model by mapping Navy combat team behaviors to 

the four categories based on their performance objectives (i.e., the detect-to-engage sequence) for 

managing their air warfare tasks and assessing performance with the measure (Air Warfare Team 

Performance Index or ATPI) in simulation-based training exercises.  Spiker, Johnston, Williams, and 

Lethin (2010) then used the identification and elaboration categories of the TDM model to characterize 

dismounted rifle infantry squad member behaviors during training exercises designed to improve their 

collective decision making skills. The SOvM study used these identification and elaboration behaviors to 

guide development of ASA performance objectives in the simulation and live scenarios.  

Identification processes involve strategies for employing and manipulating one’s own cognitive resources 

and available assets to orient, observe, recognize, and identify potentially important hostile, friendly, and 

neutral players based on a particular configuration of features.  Such configurations tap an individual’s 

knowledge of cues in the environment, thereby enabling identification of hostile intent, projecting future 

actions of the players, and ultimately assigning threat potential (e.g., friendly, hostile, neutral, unknown) 

to them. Identification is an inherently team task as it requires the exchange of timely and accurate 

reporting of the ongoing state of those features to team members within the team and up the chain of 

command to feed the common operational picture. Table 1 lists the identification skill definitions and 

performance objectives developed by Spiker et al. (2010). 

Table 1.  Identification Skills and Example Performance Objectives. (Adapted from Spiker et al., 2010) 

# Identification Skills  Example Performance Objective  

1 Establish a geometry of fires 

to create an interlocking 

network of optics, 

intelligence, and 

communications  

Team members triangulate their communication, optics, and 

intelligence data to ensure comprehensive coverage of an event, 

individual, vehicle, anchor point, or habitual area. 

2 Utilize organic assets and 

natural light to make positive 

identification 

Team members use optics (e.g., binoculars and thermals) as 

effective substitutes in determining, for example, what part of a 

body was shot and how bad the wound is based on the color of the 

blood on the ground. 

3 Make innovative use of optics 

(and other organic assets) to 

help construct a baseline or 

Team members use range estimation capability in optics to 

determine opposing forces social status indicators (e.g., to 
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profile determine if a person of interest is a leader). 

4 Shift field of view – from 

wide to narrow and back – 

and thereby avoiding focus 

lock 

Team members watch a distant target for awhile with binoculars 

and then switch to naked eye in order to better interpret the context 

surrounding the specific action they are watching. 

5 Efficiently refocus 

observation scan to include 

both near and far objects in 

the scene 

Team members keep all parts of their viewing sector, both near and 

far, within their visual field scan and in their focal attention so that 

no important cues are missed. 

6 Orient observation or tracking 

toward potentially hostile 

players or good guys and 

ignore neutrals 

Team members economize their profiling by concentrating 

observations on potential hostiles (insurgents, informants) and 

potential friendlies (police, security), while reducing attention to the 

neutrals (regular population). 

7 Make effective and efficient 

identification of anchor points 

and indications of anti-

tracking 

Team members economize their observations by localizing their 

viewing on areas–anchor points–where hostiles tend to concentrate 

their illicit activities, such as specific parts of town or a building. 

8 Make effective and efficient 

identification of habitual areas 

and action indicators 

Team members economize their observations by localizing their 

viewing on areas–habitual areas–where townspeople congregate 

and which might represent a “soft target” for hostile activity, such 

as a market or mosque. 

9 Make effective and efficient 

identification of opposing 

force leaders 

Team members determine who the leader is in a village by using the 

four key indicators (entourage, direction, mimicry, adoration) of 

leadership. 

10 Adopt appropriate criteria 

based on objective cues 

observed to make timely, 

accurate decisions 

Team members use clue clusters to collect three pieces of evidence, 

such as three indicators of a leader or a terrorist planning cycle, 

before taking action. 

11 Induce or generalizes a 

pattern from a few individual 

cues 

Team members infer the presence of a larger event–such as a 

Vehicle Born Improvised Explosive Device (VBIED) or a complex 

ambush–by generalizing from the presence of a few cues (e.g., how 

a car is parked, or how a sniper team has been deployed). 

12 Look for prototypes (vs. 

template matching)  

Team members look for signature behaviors (e.g., insurgent, HVT, 

vehicle, or a track) and signature locations (e.g., habitual area, 

anchor point, or aerial spoor) through a cluster of cues. 

13 Establish an observation 

baseline to extract normalcy 

Team members make a systematic, sustained observation on a 

person, event, location, or vehicle to determine what behavioral 

profile constitutes “normal,” where this normal is used as the 

baseline against which deviations are noted. A baseline, for 

example, might be established for market behavior when insurgents 



 

 

Proceedings of the 6th Annual GIFT Users Symposium (GIFTSym6) 

 

178 

 

are not present. 

14 Look for anomalies – above 

and below baseline (including 

the absence of something) 

Team members look at the elements to note anything out of place or 

anomalous, either something there that should not be or something 

missing. As an example, team members should observe a group of 

people to see if someone seems out of place based on biometrics 

(e.g., they are sweating from running) or if a vehicle is parked in an 

unusual location (possible VBIED). 

 

Elaboration involves tapping into one’s background store of information that summarizes what has been 

learned previously about similar situations; it enables the team members to create a shared mental model 

of the situation.  Effective elaboration involves applying and discussing with other team members 

previous knowledge (e.g., of hostile profiles) about the current situation, such that the most reliable and 

acceptable hypothesis may be found with regard to the intent of a potentially hostile actor.  Team 

members map their current experiences onto a cognitive template they had developed from previous 

experiences, and then attempt to match each part of this template with some aspect of the current 

situation. Table 2 is a list of the elaboration skills that Spiker et al. (2010) produced from their study. 

Table 2. Elaboration PCR Skills and Example Performance Objectives. (Adapted from Spiker et al., 2010) 

# Elaboration Skills Example Performance Objective 

15 Take evidence-based 

approach to identifying 

hostiles using hard data to 

confirm or disconfirm a 

hypothesis 

Team members take the time to list three reasons why an 

individual is a body bomber or an HVT, rather than going with 

a hunch to save time. 

16 Generate explanatory 

storylines that tie individual 

items of information together 

Team members construct alternative explanations for how 

individual events or pieces of evidence might be related and 

part of a larger whole.  

17 Imagine alternative courses 

of action or alternative event 

outcomes by what-if mental 

simulations 

Team members attempt to “think through” what might be 

happening in an unfolding event (e.g., a possible complex 

ambush) by rapidly reviewing different, but plausible, 

alternative outcomes. 

18 Detect an unfolding event or 

activity by identifying a 

piece of it and inferring the 

rest 

Team members view a sequence of events as being tied together 

by some underlying process-unfolding like a movie- such as the 

steps to create and plant a bomb or the cycle of planning a 

terrorist attack. 

Teamwork Competency Model 

The Teamwork competency model is comprised of the four dimensions of information exchange, 

communication delivery, supporting behavior, and initiative/leadership. Information exchange involves 

team members passing relevant information to the right team member at the right time, seeking 



 

 

Proceedings of the 6th Annual GIFT Users Symposium (GIFTSym6) 

 

179 

 

information from all relevant sources, and providing periodic situation updates that summarize the big 

picture. Communication delivery involves using proper terminology, avoiding excess chatter, speaking 

clearly and audibly, and delivering complete standard reports containing data in the appropriate order. 

Supporting behaviors consists of offering, requesting, and accepting backup when needed, and noting and 

correcting errors, as well as accepting correction. Initiative and leadership consists of explicitly stating 

priorities and providing guidance, suggestions, or direction to other team members. Smith-Jentsch, 

Johnston, & Payne (1998) developed and validated the teamwork competency model in a series of studies 

with Navy combat teams. Then Smith-Jentsch, Cannon-Bowers, Tannenbaum, and Salas (2008) 

demonstrated in an empirical, field experiment that Navy combat teams that participated in facilitator-led 

guided team self-correction structured around the expert model of teamwork developed more accurate 

mental models of teamwork, demonstrated more teamwork processes, and achieved more effective 

performance outcomes after two training cycles than did those briefed and debriefed using the traditional 

Navy AAR method. The SOvM program adapted the Teamwork competency model and guided team self-

correction method to establish the Team Development and IAAR performance objectives.  

Translating Competency Models into Event-Based Training Scenarios 

The event-based approach to training method was applied to the SOvM training scenario design to ensure 

the skills identified in the TDM and Teamwork competency models would be learned (Rosen, Salas, 

Tannenbaum, Pronovost, & King, 2011). Critical tasks, task stressors, learning objectives, exercise design 

and execution, performance measurement, and feedback were clearly linked and documented prior to 

completing the scenarios.  An important feature in designing scenarios was including as much of the 

knowledge-rich environment in the virtual and live scenario events as possible so that pre-specified cue-

strategy relationships could be observable and would result in producing team responses that were 

observable and measureable.  

Five event-based scenarios of approximately 45 minutes in length were developed with a single 

overarching narrative that had the scenarios taking place over a fictional four week period of time. Two 

scenarios were designed for the team training simulation (B1 and B2) and three scenarios (M1, M2, and 

M3) were developed for the live training environment. Following the graduated exposure to stress 

guidelines each scenario was designed to provide an increasing number of task stressors (Driskell, Salas, 

& Johnston, 2006). Key events and associated ASA, TD, and TC3 performance objectives were 

developed for each scenario.  For example, Scenario M2 had the squad mission objective of conducting a 

zone reconnaissance in order to conduct a key leader engagement; exploit intelligence; confirm location 

of a suspected arms cache; and, exploit the site, if able.  

The chronological list of nine key events for M2 were:  

1. Establish listening post (LP)/observation post (OP). 

2. Depart LP/OP. 

3. Observe civilian interactions in village. 

4. Conduct key leader engagement and tactical questioning with high value target. 

5. Observe proxemics push as village civilians move away from the central square. 
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6. Squad moves north to tea shop to interview civilian woman. 

7. Sniper fire results in soldier receiving gunshot wound (GSW) to arm and a civilian woman receiving GSW 

to chest.  

8. Squad conducts movement toward sniper locations. 

9. Soldier receives GSW to chest at sniper location. 

 

Performance objectives were then mapped to scenario events. Table 3 presents 51 objectives developed 

for M2 and shows many objectives are repeated across events. The ASA behaviors represent the 

identification and elaboration behaviors described in Table 1 and the TD behaviors representing the four 

dimensions of teamwork. Multiple performance domains are represented in specific events to ensure the 

scenarios had sufficient levels of stressors. For example, the last row in Table 3 shows events 1, 7, and 9 

had many more performance objectives (15, 22, and 19, respectively) compared to the other six events.  

Many of the ASA identification and elaboration performance objectives were planned in Events 1 through 

6. For example, in Table 3, the ASA performance objective #1 expected squad members to “use tools or 

otherwise visually identify objects that are hidden in windows or shadows through the town.”  From 

Table 1, this behavior represents Identification skill #2 – “utilize organic assets and natural light to make 

positive identification.” The TD performance objectives were inserted throughout all the events. For 

example, the TD performance objective #17 expected squad members to “pass information among teams 

about their observations of the town.” This behavior is representative of the TD behavioral dimension of 

“information exchange.” During Event 7 a sniper fire results in a Soldier receiving a GSW to his arm and 

a civilian woman receiving a GSW to her chest. This was expected to elicit multiple TD behaviors, such 

as objective #26 – “provide complete and accurate medical reports” (Communication Delivery), and 

objective #31 – “squad leader and team leaders provide guidance and state priorities regarding roles for 

continuing mission” (Initiative/Leadership). Event 7 also involved the TC3 behaviors, such as objective 

#38 - waits for suppressive fire or other cover before retrieving casualty (Care Under Fire), and Objective 

#49 - provides medical updates to Squad Leader; completes MIST report, and 9-Line (Casualty 

Evacuation Activities).  

Table 3. Event-Based Performance Objectives for ASA, TD, and TC3 in Scenario M2. 

 PERFORMANCE OBJECTIVES M2 EVENTS 

  1 2 3 4 5 6 7 8 9 

                      Advanced Situation Awareness 

1 Squad divides into two separate forces for two LP/OPs to 

establish geometry of observation 

X         
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 PERFORMANCE OBJECTIVES M2 EVENTS 

  1 2 3 4 5 6 7 8 9 

2 Use tools OR OTHERWISE visually identifies objects that 

are hidden in windows or shadows through the town   

X         

3 Establishes geographic points of interest (avoidance or 

common use of an area) 

X         

4 Establishes atmospheric details (information that is or is not 

in line with baseline from intelligence ) 

X         

5 Establishes that groups of civilians are engaging in mimicry, 

adoration, directing attention, or are part of an entourage  

X         

6 Positively identifies Key Leader X         

7 Establishes key leader identification to include how key 

leader was identified and why it is believed it is the key 

leader 

X         

8 Establishes baseline behaviors of target X         

9 Employs guardian angel / geometries of observation  X  X  X    

10 Verbalizes nature of target nonverbal behaviors  X  X      

11 Communicates an assessment to include why s/he believes 

the validity, quantity of the information received 

 X        

12 Communicates deviations in baseline of behavior of target  X        

13 Offers some medical care to local national (good shepherd)   X       

14 Identifies that townspeople exhibit slight proxemics 

push away from the squad 

    X     

15 Identifies nonverbal and paralanguage cues that     X     
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 PERFORMANCE OBJECTIVES M2 EVENTS 

  1 2 3 4 5 6 7 8 9 

townspeople are uneasy about squad’s presence 

                                  Team Development 

16 Squad leader gives direction to separate into two LP/OPs X         

17 Squad members pass information among teams about their 

observations of the town 

X         

18 Use available resources to determine identifying 

characteristics (e.g., OPORD)  

X         

19 Communicate to team members when a townsperson fits 

description of key leader 

X         

20 Communicate to team members when groups of people are 

engaging in mimicry, adoration, directing attention, or are 

part of an entourage 

X         

21 Communicate to chain of command when key leader is 

identified 

X         

22 Correct errors in information repeated on radio X         

23 Backup is provided to the squad member engaging in the 

interview 

 X  X      

24 Communicates a situation update up the chain of command  X  X      

25 Communicates changes in priority from chain of command 

to other team members 

 X  X      

26 Provides complete and accurate medical reports       XXX  XXX 

27 Support Squad Leader & establish medical SA 

exchanges casualty information with Squad Leader 

      X  X 



 

 

Proceedings of the 6th Annual GIFT Users Symposium (GIFTSym6) 

 

183 

 

 PERFORMANCE OBJECTIVES M2 EVENTS 

  1 2 3 4 5 6 7 8 9 

and Village Leader / casualty. 

28 Squad asks higher for guidance in further care of 

civilian casualty 

      X   

29 Directs TMs to provide care       X  X 

30 Squad leader and team leaders exchange information 

about status of the squad 

       X  

31 Squad leader and team leaders provide guidance and 

state priorities regarding roles for continuing mission 

       X  

32 Squad members call out enemy position and status to 

squad, giving a complete report 

        X 

                      Tactical Combat Casualty Care 

33 Delivers some medical care to local national (good 

shepherd) 

  X       

34 Returns fire/provide security; weapons up; scans for 

enemy; fires weapon 

      X  X 

35 Provides MAN Down Report to Squad Leader       X  X 

36 Provides casualty status info to medic       X  X 

37 Establish security / provide cover after injury occurs, 

TMs face outward from casualty (360); guns up, 

looking for enemy. TMs lay suppressive fire to 

provide cover 

      X  X 

38 Waits for suppressive fire or other cover before 

retrieving casualty 

      X  X 

39 Retrieves casualty       X  X 

40 Treats casualty       X  X 

41 Squad Leader directs TLs to suppress enemy to 

maintain tactical focus 

      X  X 

42 Squad Leader collects medical and tactical info       X  X 
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 PERFORMANCE OBJECTIVES M2 EVENTS 

  1 2 3 4 5 6 7 8 9 

43 Squad asks higher for guidance in further care of 

civilian casualty 

      X   

44 Squad leader determines capability to continue 

mission 

      X  X 

45 Assigns medical & tactical resources to establish CCP       X  X 

46 Send up first 5 lines of 9-line report; Complete, 

accurate, brief, and clear reporting 

      X  X 

47 Medic provides advanced care       X   

48 Directs TMs to provide care       X   

49 Provides medical updates to Squad Leader; completes 

MIST report, and 9-Line 

      X   

50 Squad leader decides that squad remains combat 

effective and decides to move forward with the 

mission 

       X  

51 Consolidates CCP         X 

 Total Objectives Per Event 15 7 1 5 2 1 22 3 19 

Measures Development and Application 

The performance objectives for ASA, TD, and TC3 in each scenario were transformed into individual 

behavioral observation checklists in a spreadsheet format and on an android tablet so that SME raters 

could assess the squads during the scenarios. Observations of behaviors in virtual scenarios B1 and B2 

were attempted, but proved difficult as it was challenging to hear and see squad member behaviors within 

the virtual world (Townsend et al., 2017).  In addition, squad members were sitting next to each other 

using VBS3 and they often communicated face-to-face instead of using their radios, which added to the 

challenge to effectively observe.  It was also difficult to observe multiple team members in the virtual 

environment from one control station.  These challenges made it difficult to determine whether behaviors 

occurred or not, or were simply missed.   

During the live scenarios, assessors observed squad members moving through the urban village buildings 

and outdoor spaces on multiple video screens in the control room, and listened to squad communications 

via an audio system that was specifically developed for the experiment to enable isolation of 

communications among any needed subset of squad members in real time. The ASA and TC3 instructors 

followed and observed squads in the outdoor training site. The ASA and TC3 raters used spreadsheet 

based checklists. Following the exercises, they met with the respective SME instructors to establish 
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ground truth for squad performance on ASA and TC3 behaviors. This approach enabled the ASA and 

TC3 raters to obtain almost 100% certainty about squad performance.  

The two TD observers used the android tablet – based Mobile Performance Assessment Tool to make 

their event-based ratings during each live scenario run.   Townsend et al. (2017) found the average 

percent agreement score for scenarios M2 and M3 was 80%. The M2 scenario agreement score was 

higher (89%) than the agreement score for scenario M3 (70%), and the raters suggested that because the 

M2 scenario had fewer complex events it may have been easier to see squads and hear their 

communications, whereas, scenario M3 was more complex and the raters may have had more trouble 

seeing or hearing the squad members. In addition, raters determined that more practice was needed to 

make the right assessments of squad behaviors. All raters also used the recorded videos and squad 

member communications following the experiment to correct missing ratings and for the TD raters to 

develop 100% consensus on the performance assessments. 

Team scores for ASA, TD, and TC3 performance were calculated as the percent of tasks accomplished in 

a scenario. It was calculated by summing the number of behaviors performed by the squad on each of 

these skill domains and dividing it by the total possible number of behaviors that were expected to be 

performed in that skill domain.  

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

Implications for the GIFT architecture 

The measurement strategy defined in this study has implications for the Sottilare, Brawner, Sinatra, and 

Johnston (2017) GIFT functional concept for a “learning effect model for teams” that we briefly discuss 

here. The GIFT learning effect model presents an iterative data collection and learning methods delivery 

approach that presents specific functional features for team assessment (as noted in italics below). In this 

conceptual architecture, team members produce behavioral data during a training exercise that are 

detected and tagged by pre-defined behavioral markers. The behavioral markers populate the 

initialization data for teams (e.g., competencies) that in turn populates the long-term team model, and also 

the team data function. The team data function informs the team states. The TDM and Teamwork models 

could provide the competency framework for the initialization data for teams function and the long –term 

team model. The TDM and Teamwork competency behaviors could serve as the behavioral markers that 

GIFT needs to seek from the behavioral data generated by the team members during the exercise. As the 

behavioral markers of TDM and Teamwork are collected GIFT would generate team states for each of 

the four TDM and four Teamwork dimensions. Team states for the TDM and Teamwork dimensions 

would then be able to inform the GIFT team instructional strategy selection. For example, if the team is 

doing well on information exchange, but they are not catching and correcting errors (supporting 

behaviors), then GIFT would provide feedback in the AAR that the team needed to improve on 

supporting behaviors such as error correction, and sustain their good information exchange.  

Future Research  

Below are several research recommendations to continue to address the initially stated objective in this 

paper to develop ways to measure and model team behaviors in an adaptive training system. 
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Recommendation 1 

The SOvM study demonstrated that team competency models for TDM and Teamwork are generalizable 

for assessing dismounted squads conducting tactical and TC3 tasks and can be used to assess team 

performance progress during training. It is recommended that these competency models be used as a tool 

to diagnose team performance and that further analysis of the SOvM data needs to be conducted to 

categorize observed behaviors into the TDM dimensions for planning and execution to further validate the 

model and increase the diagnosticity of the measures.  

Recommendation 2 

The majority of TDM and TD behaviors assessed were obtained from a team’s verbal and non-verbal 

communications that trained human raters could hear, see, and categorize. A fairly high level of rater 

agreement can be achieved on TD behaviors using a tablet-based device, but increased rater error likely 

occurs as scenario events become more complex. It is recommended that adaptive tutoring needs to 

develop natural language recognition and processing to automatically categorize verbal behaviors into the 

TDM and TD competency models.  

Recommendation 3  

It was easier to observe and evaluate squads in the live exercises because the audio and video 

technologies were available and configured to the raters’ needs. Team assessment in the virtual training 

environment was impossible due to the noisy communications and inability to effectively observe the 

squad actions in the scenario on the small PC monitors. Research needs to focus on developing 

technologies that can diagnose squad performance information in a rapid and organized method in both 

simulations and live training exercises. Tools need to be developed for capturing event-based team 

simulation interactions representative of the TDM and TD models and organized for the event-based 

IAAR. For example, the virtual team simulation currently records squad actions in a scenario for human-

controlled replay in the AAR, but it is labor intensive and complicated to manipulate, and does not 

support the event-based approach to conducting the IAAR. With simulation recordings and speech to text 

recordings a more accurate representation of TDM and TD could be obtained with few to no humans in 

the loop collecting this information. In the live environment, sensor worn technologies that record audio 

and visual information, and location would enable more accurate and efficient assessments.  
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INTRODUCTION 

Breakdowns in teamwork are often cited as a cause for poor, and at times, devastating outcomes that lead 

to loss of life, limb, and material resources (Wilson, Salas, Priest, & Andrews, 2007). Such failures are 

often attributed to breakdowns in essential teamwork skills, such as coordination and communication, and 

emergent team states, such as cohesion and shared situational awareness. The relevance of these team 

constructs is evidenced in the academic literature across a variety of domains, including both medicine 

(Hughes et al., 2016) and the military (Sottilare, Burke, Salas, Sinatra, Johnston & Gilbert, 2017; Wilson 

et al., 2007). Additionally, the Army has recognized the importance of Soldiers demonstrating these 

teamwork concepts. Specifically, several of the principles of Mission Command outlined in ADRP 6-0 

align with these concepts, including “Build cohesive teams through mutual trust” and “Create shared 

understanding” (U.S. Department of the Army, 2012).  

While the importance of these teamwork concepts is recognized, there remain challenges to training them 

efficiently. To maximize effects while simultaneously minimizing costs, there has been a push toward the 

use of intelligent tutoring systems (ITSs) and ITS frameworks in training. However, these systems have 

been almost universally designed to train individuals, not teams. In particular, the Generalized Intelligent 

Framework for Tutoring (GIFT; Sottilare, Brawner, Goldberg & Holden, 2012; Sottilare, Brawner, 

Sinatra & Johnston, 2017) enables the ITS community to efficiently achieve learning effects for 

individuals. To date, all of the GIFT-based team tutoring applications have been limited to dyads or triads 

(Bonner, Walton, Dorneich, Gilbert, Winer, & Sottilare, 2015; Gilbert, et al., 2017). However, in order for 

GIFT to fully support Army training needs, it must scale to larger team structures, such as squads, 

platoons, and above. In this paper, the authors outline development of such a system within the GIFT 

framework and development of supporting training scenarios within the Virtual Battlespace (VBS3) 

simulation environment. There are two overarching objectives to this effort: 

1. The first objective is to demonstrate the utility of GIFT for adaptive team training in rich Virtual 

Environments (VEs), and specifically VBS3. Previous team tutoring implementations using GIFT 

focused on dyads and/or triads. The current effort aims to assess the utility of using GIFT for 

larger organizational structures (e.g., squads). 

2. Previous efforts have relied heavily upon expert observer rating scales and self-report surveys of 

team processes and performance. The current effort seeks to assess the utility of using 

unobtrusive measurement methods (Orvis, Duchon, & DeCostanza, 2013) instead.   

To accomplish these two objectives, the authors are developing a prototype training system in GIFT that 

can capture meaningful team processes and emergent states in a virtual training environment. In addition, 

the authors are developing realistic training scenarios that provide sufficient complexity and team 

interaction opportunities to enable effective team training. Specifically, the authors are developing 

scenario frameworks that enable GIFT to read data collected unobtrusively from teams training using the 

VBS3 platform, and computing measures of key teamwork constructs that will be used to assess and 
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debrief team performance. This paper will summarize developments to date towards achieving the above-

mentioned goals. 

TRAINING ENVIRONMENT 

Intelligent Tutoring System 

GIFT is a domain-independent intelligent tutoring system framework (Sottilare, Brawner, Sinatra & 

Johnston, 2017). Much of the research and the efforts to date in GIFT have focused on individual tutoring. 

However, the ultimate goal of GIFT is for tutoring to be conducted with teams. Both theoretical and 

practical work has been done with GIFT that will prepare it for scaling up for use with teams. A large-

scale literature search and meta-analysis has served as the theoretical foundation for team tutoring in 

GIFT (Sottilare, Burke, Salas, Sinatra, Johnston, & Gilbert 2017). As part of this effort, relevant 

behavioral markers were identified for several team constructs. Additionally, initial work has also been 

done to adapt GIFT for use by multiple users engaging in the same scenario simultaneously.  

The first work to implement team tutoring in GIFT created a two-person surveillance task using the 

Virtual Battlespace 2 (VBS2) software. The task consisted of two individuals (spotters) each monitoring 

their own sector and reporting to their teammate if a threat was passing to the other’s sector (Gilbert et al., 

2017). This task demonstrated that GIFT could have two individuals simultaneously engage in a 

simulation-based environment, and was able to provide feedback based on the actions of both individuals 

separately, as well as the team as a whole. The next step was adjusting the surveillance task such that it 

had three individuals working together as a team to achieve their goals. Two spotters continued to 

monitor their respective areas or responsibility, and a third role – a “sniper” who received information 

from both spotters – was added. The role of the sniper included receiving information from the two 

spotters, acknowledging receipt of that information, and making decisions based on it. Through the 

development of this scenario, it was shown that GIFT was capable of providing tutoring and real-time 

feedback to a three-person team in a simulation-based environment.  

Looking toward the future, it is important to demonstrate that GIFT is capable of tutoring large numbers 

of individuals simultaneously, such as a squad of, which is typically composed to two four-person fire 

teams plus a squad leader. Scaling GIFT’s team tutoring capabilities will require consideration of not only 

how to deal with the data of nine separate team members, but also how to measure teamwork within a VE 

and how to handle different team member roles. Therefore, new approaches should focus on defining 

roles within a GIFT tutoring scenario, simultaneously assessing the behavior of multiple Soldiers, and 

efficiently determining the team’s overall performance in real-time. The teams’ performance will then 

need to result in the proper feedback being given to the team either during or after engagement with a 

game scenario.  Additionally, future work should find efficient ways to implement team behavioral 

markers in the GIFT software so that the team’s performance can be assessed in real-time. 

Virtual Training Environment 

To train and assess teamwork skills, the authors utilize the VBS3 software. The decision to use VBS3 was 

two-fold. First, GIFT has integrated with VBS3 (and previous versions of the Virtual Battlespace 

software) throughout its development. Therefore, it already interoperates with the VBS3 architecture and 

data structures. Secondly, VBS3 is widely used throughout the Army. While we are not assuming that all 

research participants that will come through the training will have had exposure to VBS3, it is a readily 
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available training asset at many Army installations.  This will ensure adequate locations and candidates 

for validation of the training and teamwork measures.  

When it comes to infantry, virtual training proves to be an overall challenge. Many virtual training 

platforms have proven to be ineffective for numerous reasons.  These include overly cumbersome or 

counter-intuitive software interfaces, the system being too time-consuming to set up and tear down, and 

the lack of validated human performance measures.  With the instantiation of VBS3 into their virtual 

training toolbox, infantry Soldiers and Marines are able to gain valuable, training experiences prior to 

completing live training. The flexibility of VBS3 – in terms of actions, assets, and customization – means 

that it can support the development of scenarios that are rich enough to enable measurement of teamwork 

skills. 

Inherent in training and assessing teamwork skills is the ability for individual Soldiers to interact and 

communicate with one another.  VBS3 includes a built-in text chat feature will serve as a primary means 

of team communication and information coordination, as well as providing a rich set of data for teamwork 

measurement.  Team members will need to communicate about a number of issues throughout the 

scenario, such as detecting a threat, reporting a threat, and handing off a threat. Interaction and 

communication complexity can be manipulated by putting constraints on the communication structure. 

For example, the communication structure can be set up such that certain members of a team cannot 

communicate directly with members of another team, which mimics communication breakdowns during a 

mission.  

The specifications for an initial VBS3 scenario, as just described, should provide enough complexity to 

require sufficient teamwork interaction. However, the goal is to make the scenario readily scalable to 

accommodate different team sizes, as well as to support the training of Soldiers at different expertise 

levels. The VBS3 simulation engine itself has been shown to support over 100 simultaneous learners, and 

the structure and number of the teams, assets, threats and communication constraints can be scaled to 

support more or less complex conditions, as desired. 

SCENARIO DEVELOPMENT FOR VBS3 

To support teamwork training within VBS3, realistic scenarios are needed that provide ample 

opportunities for assessment and feedback. The authors have identified a number of constraints for 

training scenarios:  

1. Must be implemented within the constraints of the simulation environment (VBS3);  

2. Must represent realistic tasks, interactions, and outcomes to ensure Soldier engagement and buy-

in;  

3. Must support the training and assessment of teamwork-related constructs (e.g., coordination, 

communication, cohesion) that emerge as a function of the team members’ interactions;  

4. Must allow team members to communicate both naturally and in a manner that enables 

assessment of communications for measurement purposes;  

5. Must initially focus on the squad level, but also enable larger team structures to train within the 

simulation environment;  
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6. Be scalable to support higher echelon training objectives with more complex scenarios.  

Scenario Overview 

Working with an active duty Army infantry Subject Matter Expert (SME), the research team modified an 

existing Combat Search and Rescue (CSAR) training scenario that is currently being used at the Army’s 

Basic Leader Course (BLC) to train and assess small unit leadership skills (See Figure 1 for an overview 

of the scenario). The scenario focuses on search and rescue of a downed pilot within the Area of 

Operations (AO).  The team is a squad-sized element that is comprised of two four-person fire teams. The 

squad is led by a squad leader (a Sergeant); each fire team includes a fire team leader (a Corporal), as well 

as a Rifleman, a Squad Automatic Weapon (SAW) operator, and a Grenadier.  

The scenario unfolds over a roughly 1-mile linear pathway through a forest which includes a mixture of 

tall trees and scrub brush that are common to northern Florida (Camp Blanding Joint Training Center). 

While Soldiers were able to venture from the path into the forest, it both slowed their movement and 

impaired their visual scan. Because of this, the forest also served as an ideal place for small groups of 

enemy fighters to launch ambushes against the squad.  

Prior to starting the scenario, the Squad Leader is provided with a tactical map of the AO, along with a 

Fragmentary Order (FRAGO) that describes their mission. The squad leader is also provided with 

available intelligence (INTEL) about the location of the downed pilot as well as the number and 

disposition of enemy forces in the AO.   
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Figure 32. Notional CSAR Scenario 

The squad’s primary goal is to rescue a downed pilot. Their secondary goal is to complete a presence 

patrol in a local village in order to sustain their support against local enemy fighters. Along the way, the 

squad has to overcome several challenges.  

After leaving the starting point, the squad first encounters a suspected Improved Explosive Device (IED). 

Despite being an enemy hoax, the squad is still required to perform a series of threat-relevant tasks, such 

as: Confirming (and communicating) the exact location and description of the device; Clearing all 

personnel to a safe distance; Cordoning (marking) the area to prevent anyone else from entering; 

Controlling access to the perimeter; and Checking for secondary devices.       

The squad then continues down the path toward the estimated location of the downed pilot. Upon 

reaching the pilot’s location, the squad must physically secure the pilot, cordon off the area, apply first 

aid, and radio headquarters to request medical evacuation. During this time, a local farmer arrives upon 

the scene towing a wagon full of goods. Before the helicopter can arrive, the squad then needs to apply 

escalating force to prevent the farmer – who could be an enemy fighter in disguise – from getting within 

“danger close” proximity to the pilot. 

After the pilot is evacuated, the squad continues down the path toward the village. Along the way, they 

are ambushed by 3-4 enemy fighters who are equipped with small arms, such as AK-47 rifles. The 

fighters are largely unskilled and have poor aim. As a result, they cause little (or no) injuries to the squad, 
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but this element provides an opportunity to measure how well the squad maintains their formation and 

responds to the threat, while maintaining their primary and secondary objectives.   After dispatching the 

enemy fighters, the squad leader issues a Situation Report (SITREP) to headquarters, and redistributes 

ammo among the team.  The squad then continues down the path. Along the way, they encounter a second 

IED, which requires the same set of behaviors that were described previously. Finally, the squad enters 

the village. At this time, they interact with village leaders – including the mayor, religious leader, and 

elders.   

It is anticipated that during the scenario there will be several points where the scenario is paused and 

immediate feedback is given.  This will provide opportunity for adjustment and recalibration among the 

team, but requires that opportunities for teamwork measurement occur throughout the entire scenario. 

TEAMWORK MEASUREMENT 

Based on a review of existing theory and measures, Sottilare et al. (2017) developed a list of behavioral 

indicators for several teamwork constructs. This set of behavioral markers provides the foundation upon 

which the research team is developing unobtrusively metrics of teamwork skills. The authors initially 

decided to target two areas for measure development – task cohesion and physical coordination – which 

will highlight how different types of data (e.g., communications, scenario interaction data) can be used to 

measure teamwork skills. 

To develop our teamwork measures, the team uses a process based on the Rational Approach to 

Developing Systems-based Measures (RADSM; Orvis et al., 2013; see Figure 2), which has been 

successfully used to develop indicators and measures of team states (McCormack, Brown, Orvis, Perry, 

Myers, 2017). 

 

Figure 33. The RADSM Process for Measurement Development 
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The RADSM process consists of several steps, as highlighted in Figure 1, to ensure that developed 

measures are conceptually sound and contextually relevant. The end result of this process is a set of 

measures that can be assessed automatically and unobtrusively (that is, not requiring human coding or 

input) given the data available in the system.  

Step 1 is focused on identifying the context and construct of interest for measurement. For the current 

effort, the context is a teamwork task, described above, performed within VBS3, while the constructs of 

interest are cohesion and cooperation. Steps 2 and 3 apply top-down and bottom-up approaches, 

respectively, to measure development. Specifically, in Step 2, the goal is to leverage existing theory to 

identify behavioral indicators of the constructs that are conceptually grounded. Sottilare and colleagues 

(2017) have provided a basis for this step. In Step 3, the focus shifts to identifying the available data 

sources, and specific system-based information, that is available from the environment of interest. The 

RADSM process is data source-agnostic, supporting data available from a variety of sources. In this case, 

the goal is to document the various data elements that can be captured from the training scenario. Within 

VBS3, this data might include text chat, positional data of all entities, sensor actions and results, and 

weapon fires and remaining ammunitions.  

Once the behavioral indicators and list of available data or information is completed, Step 4 consists of 

bringing these two pieces together to operationalize the indicators using the types of data available in the 

environment. This transitions the conceptual nature of the behavioral indicators to specific, data-defined 

performance measures that can be implemented within GIFT. The intent is to develop several 

operationalized indicators of each teamwork skill, which could each provide unique insight into how the 

team is doing on that particular skill. It is important to note that any one indicator could be conceptually 

relevant to a number of teamwork skills, given the conceptual overlap of the teamwork constructs. The 

goal is to identify a set of indicators, that when used together, do the best job at assessing a unique 

teamwork skill, such as cohesion. The indicators tied to any one teamwork skill can be implemented and 

assessed individually, or aggregated to form a single, more comprehensive assessment of a teamwork 

skill. Table 1 provides examples of what this process looks like when developing measures of task 

cohesion. 

Table 3. Example of RADSM Step 4 for Development of Task Cohesion Measures 

Behavioral Marker 

How would this be 

demonstrated? Data Source(s) Data Features Analysis Method(s) 

Members are actively 

working together and 

pitching in to reach 

team goals 

All team members 

are communicating 

with each other 

 

Chat logs 

 

Sender/receiver 

of chats; 

number of chat 

messages sent 

by person 

 

Compute # of 

messages sent by 

each team member; 

Assess the 

distribution of 

communication 

actions across team 

members 

Each team member is 

taking the actions 

that they are 

responsible for (e.g., 

detecting threats in 

Movement and 

action logs; 

List of team 

member 

responsibilities 

Who did what 

action and when 

Comparison of user 

movements/actions 

against their 

responsibilities 



 

 

Proceedings of the 6th Annual GIFT Users Symposium (GIFTSym6) 

 

196 

 

their area) 

 

 

 

Occurrences of 

phrases like "great job 

everyone", "go team", 

"you're the best", 

"good work"; positive 

affirmations toward 

the team's work 

Team members using 

these phrases in their 

chat communications 

with one another 

Chat logs Sender/receiver 

of chats; content 

of chat 

communications 

Dialogue act 

analysis – sum 

instances of the use 

of words and 

phrases matching 

those associated 

with “positive 

affirmation” 

 

Once the team has compiled a set of operationalized indicators, Step 5 of the RADSM process will focus 

on implementing these measures in the GIFT environment. During this step, the team specifies the 

criterion for each measure (e.g., thresholds for effective and ineffective assessments). For example, if the 

distribution of chat messages across the team is concentrated on one or two individuals, this may indicate 

low task cohesion and would signal the need for feedback. 

Finally, in Step 6, the goal is to validate the measures of the teamwork skills developed in the previous 

steps. During the development phases of this effort, the primary focus of validation is establishing the 

face validity of measures.  That is, individuals with expertise in teamwork measurement as well as Army 

SMEs will provide assessment of the utility and accuracy of each conceptual measure.  In subsequent 

efforts, the team will develop and execute controlled experiments of the system using teams of active duty 

infantry Soldiers to establish and verify the validity of each measure. 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

This ongoing effort is aimed at training and assessing team performance within the GIFT environment.  

This serves two purposes:  demonstrating that GIFT can be effectively extended from individual training 

to team training, and demonstrating that reliable and valid measurements of teamwork can be assessed in 

a virtual team training environment such as VBS3.  Our progress to date has shown that there is ample 

opportunity to deliver rich training experiences through a VE and that there are a plethora of behavioral 

indicators and measurement opportunities within the scenario.  Next steps for this effort include continued 

development, refinement, and implementation of the scenario inVBS3; development and implementation 

of the unobtrusive teamwork measures; development of feedback strategies; and validation of the 

measures through both face validation and rigorous human-in-the-loop experimentation.  Future efforts 

will build upon this work, both in terms of the revised GIFT architecture for supporting team training, but 

also the scenario and team measures created. 
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INTRODUCTION 

While team performance has been the primary focus of team research (Sottilare et al., 2017), this 

analytical works directionally in a backwards manner, beginning with the end product assessment of 

successful output to determine the starting points of behavioral, attitudinal, and cognitive constructs that 

gave rise to that output. Additionally, team performance research has given rise to a breadth and scope of 

constructs identified and defined in the literature that are numerous, overlapping, and directionally 

unclear. As such, part of the complexity in unpacking team training models lies in the fact that team 

product outcomes are the result of numerable variations of institutions with tasks that require unique 

solutions and outcomes. Therefore, working backwards from a performance outcome approach lends 

itself to a great many possible model configurations that are almost unwieldly to empirical test.  

For the purposes of this paper, we are shifting our lens from team performance outcomes to team 

formation.  Using an existing team model based on the Mission Command paradigm of the US Army, we 

seek to examine the structural elements that are necessary for effective team formation modeled after this 

paradigm.  While our approach is domain specific, it is our expectation that our analysis on team 

formation will have broader industry applications.  

Specifically, our proposed team training model for GIFT is an adaption of Belbin’s theory of team roles, 

where the notion of balance of team roles is expanded to incorporate the effects of power/knowledge 

discourse (Foucault) and adaptive capacity. This approach is based both on qualitative observations 

conducted at the United States Military Academy (USMA), as well as a review of the literature on 

research related to team performance (Kjaergaard, Leon, Venables, & Fink, 2013; Sottilare et al., 2017), 

team role theory (Belbin, 1981; Fisher, Hunter, Macrosson, 1998; Hamada & Sugawara, 2013; Skvoretz, 

2016; Liubchenko & Sulimova, 2017), and team learning beliefs and behaviors (Kjaergaard, Leon, 

Veneables, & Fink, 2013; Massenberg, Spurk, & Kauffeld, 2015; Van den Bossche et al, 2006; 

Veestraeten, Kundt, & Dochy, 2014).  

Accordingly, this paper will first discuss the qualitative observations of team formation observed within 

the MS200 course in the Department of Military Instruction at USMA that gave rise to an identified 

Military Command Abdication Narcissistic (MCAN) model of team formation that can be used to inform 

team training modeling in GIFT.  After a discussion of contextualizing the face validity of this model 

within the broader instructional aims of the cadets as future members of the US Army, we will discuss the 

Revised Team Role Theory (RTR) components that can serve as a framework for implementing the 

MCAN team training model.  Lastly, we will briefly propose a methodology to validate this framework 

through a mixed methods research agenda. 
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MCAN MODEL  

We identify the emerging and established military populations as those who are seeking to obtain and 

those who have already obtained full membership within the US Army. The first population is identified 

as the cadet learners at USMA working in teams to accomplish learning objectives in preparation for 

serving in the role as Platoon Leader in the US Army upon graduation. The second population consists of 

team-sized elements conducting operations at the tactical-level of the US Army.  This paper will focus on 

the first population with an understanding that this cadet population is being trained for incorporation into 

the second population.  

Mission Command model of teams 

In analyzing the dynamics of teams in our identified second population, it is recognized that these teams 

within the operational forces conduct operations at a tactical level functionally under the umbrella of 

Mission Command as defined by the US Army. Within Mission Command, it is understood that the unit 

will fight to achieve a small number of key tasks until the point of either being destroyed or heavily 

attrited.  Specifically, that dictates junior leaders will assume responsibilities in the next role in the event 

a superior becomes incapacitated.  In order for this process to work effectively, not only do all members 

of the team need to have previously demonstrated sufficient competencies in their assigned roles, but a 

level of trust has to be developed across the entire organization where a tactical unit will still continue “to 

follow” if a subordinate leader assumes control and essentially must seamlessly adopt a new role within 

the team.  Therefore, as part of developing a team training model within GIFT oriented towards military 

instruction within a cadet population, elements of role adoption, role execution, and role adoption are key 

variables that need to be operationalized and assessed in order to support a cadet’s readiness to function 

within a Mission Command team model. 

USMA cadets in Department of Military Instruction 

At USMA, the cadet learner cohort is consistently presented with challenges within the Military Science 

environment.  To begin with, the population consists of second-year students with minimal experiential 

knowledge that consists of the most basic individual military tasks.  USMA’s central mission is to 

educate, train and inspire the Corps of Cadets so that each graduate is a commissioned leader of character 

committed to the values of Duty, Honor, Country and prepared for a career of professional excellence and 

service to the nation as an officer in the United States Army.  This also includes preparing cadet learners 

for their future roles as Platoon Leaders in the Army’s Operational Force.  Many variables within the 

venue delineate it from what would be likened to a “normal” college experience.   

Academically, the workload is immense comparative to a standard undergraduate curriculum track.  For 

example, it is mandated that a cadet learner execute between 21 and 22 credit hours per semester of their 

sophomore year.  Militarily, the cadet begins their immersive 47-month USMA experience where they 

have exposure to military development and mentorship that spans the moment they arrive on Reception 

Day as a freshman until they depart to rapidly integrate into the Army Operational Force.  Specific to this 

discussion involving salient variables of successful team training dynamics, the authors of this paper 

maintain that the Military Science 200 classroom within the Department of Military Instruction can 

indeed be categorized as a team unit.  Importantly, the Military Program seeks to instill in Cadets the 

foundational military competencies necessary to win in the US Army, inspiring them to professional 

excellence and service to the Nation. To accomplish this, the Military Program provides a framework for 

military education, training, and leader development focused on the roles and principles of being a future 

tactical Army small unit leader (Platoon Leader. Nested in this higher purpose of the Military Program, 
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the Military Science Program synchronizes across two of the four domains: Military and Academic. 

Specifically, the Military Science Program looks to develop the small unit leaders’ abilities to efficiently 

and effectively plan, prepare, execute and assess complex tactical missions by way of Troop Leading 

Procedures and Mission-type orders.   

To begin, the cadet learner is quickly immersed in a military environment through the span of their first 

summer period prior to officially entering into the Corps of Cadets and beginning academic studies.  

During this period, cadets are exposed to rigorous challenges such as hiking 12 miles with a personal 

equipment load of 45 pounds, uncomfortable conditions such as constantly being exposed to stifling mid-

summer heat often surpassing 95 to 100 degrees while conducting training, and being trained on the most 

basic military tasks such as rifle marksmanship, combat lifesaver training, and land navigation.  Cadets 

navigate through these experiences individually and collectively, enduring shared hardships alongside one 

another and rapidly developing their military experiential knowledge base.   

The initial summer venue serves as a lab comparable to executing a “hard science” academic degree lab 

to conduct experiments or test hypotheses.  From there, the entire population, segregated into two cohorts 

of approximately 600 cadets, executes the MS100 curriculum, transferring their initial military 

experiential knowledge and applying it to fundamental components such as understanding the basic land 

navigation techniques such as “handrailing.”  It is important to note that the pedagogical structure of the 

MS100 curriculum centers on providing foundational declarative knowledge.   

Once complete with both the initial lab and classroom experience, the next summer lab experiment, 

known as Cadet Field Training (CFT) becomes increasingly more difficult where they have to execute 

military training events both as members of squad and team leaders, navigating various experiences that 

includes a multi-day field training exercise (FTX) where the cadets remain exposed to the elements and 

have to conduct multiple small-unit operations such as an ambush or platoon attack.  After the lab 

concludes, the collective population reconvenes to execute the MS200 curriculum.   

Unique to the MS200 curriculum versus the MS100 curriculum is that the pedagogical structure 

completely changes.  Cadet learners are forced to learn and retain procedural knowledge consisting of 

varying conceptual frameworks such as the model to approach Enemy Analysis.  The Enemy Analysis 

framework consists of understanding Composition, Disposition, Strength, and Capabilities.  Simultaneous 

to understanding and anchoring themselves to this framework, they are learning how to craft the narrative 

to communicate this generated analysis as well as learning where to input the information into the 

Operations Order, a standardized written medium the Operational Force utilizes to communicate mission-

type military orders, essential to the true essence of Mission Command.  The facet of shared hardships is 

an example of one element of their assumed roles as emerging military member.  

Other salient elements that emerge from this dynamic include heuristic evaluations of their peers’ 

competencies both inside and outside of the classroom, shared beliefs in their goal orientation in 

accomplishing assignments, discourse negotiations in problem solving, and adaptability in shifting or 

adapting to new role assignments within a team when a deficiency is noted or occurs.  While the content 

frameworks are beyond the scope of this paper, taking a closer look at the dynamics of team formation as 

it relates to completing classroom assignments within MS200 becomes starting point for developing a 

Mission Command team model that can be employed in GIFT, and can further guide the construction of 

interventions to correct two commonly occurring dysfunctional team models: the abdication and 

narcissistic models. 
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Deviations from Mission Command: Abdication and narcissistic models  

The abdication and narcissistic models are two team models that have been identified as dysfunctional 

and ineffective within MS200, yet adopted by cadets upon being assigned a team assessment task.  As 

open dialogue and group activity is a central pedagogical approach to learning, cadet learners in the 

course are implicitly and explicitly making their own continual assessments of their peers to determine 

their competency with course content.  These heuristic competency assessments ultimately translate to 

how cadets self-select and form teams within the classroom. Noticeably, when there is a balance of 

competency and trust present among self-selected team members, the rudimentary elements of a Mission 

Command type team are in place. This in turn leads to a successful result in team assessment outcomes, 

and arguably provides a tangible model of how teams should effectively function in their post-USMA 

placements.  This, unfortunately, is not the only team configuration that emerges. Instead, there is 

observational evidence that two other team types form that deviate significantly from the Mission 

Command model.  These two other team configurations have been identified as abdication and 

narcissistic team constructs.  

An abdication team construct emerges when a self-selected team of underperforming cadets come 

together to minimally accomplish an assessment team task. This occurs when cadets create teams where 

there may or may not be a balance of competencies, but the intent of the team is to accomplish only what 

is minimally required to pass the assessment with the least amount of effort. In this model, while the team 

members might trust each other to do their assigned work, they abdicate any responsibility to put forth 

effort to essentially fight, or more appropriately, struggle, to succeed in their assessment task.  

In the narcissistic team construct, this dysfunctional configuration occurs when there is an imbalance of 

competencies and an absence of trust amongst the cadets.  In this model, the overachieving cadet believes 

their competency is superior to their peers and seeks out groups with substandard partners to insure he or 

she can produce all the required work independently. While the key tasks might be successfully 

accomplished, the team itself fails to work as a cohesive unit and in this way fails as a team assessment.  

While the dynamics of this MCAN model has been identified primarily within the confines of the USMA 

classroom, it is still a viable starting place from which to devise a team training model as the patterns of 

behavior that are exhibited in the classroom at USMA may very well carryover -- if not intervened upon – 

into the US Army more generally. In this way and within this context, then, designing a team training 

model devised on the initial observable dynamics and data that emerge within this course is a valid 

approach. What follows, then, is identifying the behavioral, cognitive, and attitudinal markers that shape 

the MCAN model so the proposed design of the GIFT MCAN model has clearly articulated possible 

points of adaptive interventions that can be devised for team training. Accordingly, what follows is an 

analysis of the relevant behavioral, cognitive, and attitudinal markers that factor into the MCAN model 

that we term the Revised Team Role theory (RTR) derived in part from Belbin’s (1981) Team Role 

Theory, Foucault’s notion of power and discourse, and adaptive capacity adopted from ecology and 

society literature.    

A REVISED ROLE THEORY 

While researchers are generally moving towards behavioral markers with more objective measures of 

psychological constructs (Wiese et al., 2015), this approach is limiting in that it does not account for pre-

performance team formation elements that should be included in team training modeling.  While 

behavioral markers may be effective to evaluate the cumulative success of a team and the outcomes of 

team performance, it does not include other markers that inform behavioral performances, such as the 
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function of role adoption in team formation, individual competencies and beliefs, power dynamics in 

discourse, and adaptive capacities, which could be used as a point of intervention during GIFT team 

training.  Accordingly, this paper suggests unpacking team training through a more comprehensive lens 

where markers are derived based on the Revised Team Roles Theory (RTR), an adaption and expansion 

of Belbin’s (1981, 1992) original Team Roles theory.  

Revised Team Role Theory: Role adoption 

Belbin’s theory of Team Roles (1981, 1992) maintained that a team’s performance could be predicted 

depending upon the knowledge of each team member’s team role.  Identifying the role profiles of each 

team members assigned to specific role types, and assuming there was the requisite balance of types in a 

team, Belbin maintained you could predict that a team would be high performing. For RTR, this first 

element of role adoption is akin to Belbin’s theory: teams emerge as individuals either are placed in, or 

self-selected to, roles on a team in order to problem solve and execute activities. The roles assigned and 

subsequently assumed by the individual starts from a place of competencies. If the individual has the 

competency to fill a specific role, they assume that role as part of the team. However, at this point, the 

RTR diverges from the Belbin’s model.  

The basic premise of RTR is that the notion that successful team outcomes is dependent upon a 

cumulative hierarchy of role adoption, role execution, and role adaption.  Within institutions, teams with 

specific roles are designed to solve a particular problem or task. The ideal role adoption occurs when an 

individual’s competencies align with the parameters of the specific defined role within the team. For this 

alignment to happen, competencies and traits must also be taken into consideration in the initial team 

formation, as these elements will influence the process of team performance. The vetting of competencies 

and traits happens at two levels: in initial team formation when an individual’s competency meets the 

required role to be filled. The second vetting occurs once team formation is in place, and other team 

members vet each other heuristically so to individually assess the competencies and traits of team 

members, and determine the balance of power within a group.  

Individual heuristic and more formal evaluations of traits and competencies is an ongoing process in a 

team, and revisions of prior conceptions of individuals can change as team members either confirm or 

dispel initial perceptions of competencies through their performance.  In this way, perceptions of 

competencies of is the cornerstone to establishing trust.  If you do not believe that your team member is 

competent to succeed in their assigned task, you will not trust them.  However, if they demonstrate 

competency in spite of your prior belief, then trust can be established, and through the assessment of 

individual competencies within a team, collective cohesion can be established. This first phase is critical 

to effect team performance. If the team cannot function because there are failures of competencies or a 

lack of trust, task will not be effectively or efficiently executed, and communication will be compromised. 

In short, the role execution phase will be flawed. 

Referring back to the MCAN model, one can see how the narcissistic and abdication models of teams 

emerges based on this first phase of role adoption and competency evaluation.  If one member of the team 

determines that the other members are not competent, they will not trust their team mates to successfully 

perform their tasks, and accordingly will work and make decisions independently.  If, however, 

collectively the team assesses that there is a lack of competency all around, then the team will readily 

perform at the lowest acceptable level, compromising an effective and successful team outcome in 

performance.    
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Revised Team Role Theory: Role execution 

In the second phase of RTR -- role execution -- the objective is to solve a problem that requires the 

competency of more than one individual, otherwise a team would be unnecessary.  As previously 

mentioned, if there are failures of competency or trust, the execution of the roles to address the assigned 

tasks may occur, but not at a level of optimal effectiveness or efficiency. If, however, competencies are 

vetted and trust is established, the execution of tasks may still be compromised if communication is 

compromised when the power dynamics that shape discourse within a team takes the shape of power as 

domination rather than power to shape ideas and solutions (Karlburgh, 2005).  

Power dynamics are distinct from organizational citizenship behavior (OCB), which according to Organ 

(1988), is “individual behavior that is discretionary, not directly or explicitly recognized by the formal 

reward system, and that in the aggregate promotes the effective functioning of the organization” (p. 4), 

later redefined by Organ (1997) as “performance that supports the social and psychological environment 

in which task performance takes place” (p. 95).  For this discussion, we are accepting Foucault’s premise 

that power is “everywhere” and that power is not inherently good or bad. Rather, power is a strategy that 

limits words and actions, but can also open up new ways of acting and thinking (Foucault, 1980).  

For example, if an individual in a team engages in a strategy of discourse that seeks to dominate and 

dictate the shape of ideas and decisions, this erodes trust within the team, dismantles collective efficacy, 

and impedes a team’s ability to use discourse to open up new ways of acting, thinking, and problem 

solving. Using power to dominate can originate either from an explicit or implicit role hierarchy within a 

team, where there is an understanding that some roles are more equal and awarded superior rights than 

others. But power to dominate can also emerge based on the character traits or an individual or set of 

individuals.  Accordingly, understanding how power is used in team discourse is a key element to 

understanding how teams engage in constructive or destructive communication patterns, sheds light on 

the difficulty of conflict management, and is instrumental in team cohesion and performance.     

Going back to our MCAN model, then, a functional representation of role execution can be 

operationalized when discourse is equitably engaged upon by team members with a predominance of 

news ways of acting and thinking in comparison to unproductive words and actions. Our narcissistic 

model would deviate from the MCAN model in that discourse is not equitably engaged upon by all 

members. Whereas the abdication model would have equitable engagement of discourse, but the 

discourse would be unproductive in words and actions. 

In sum, power dynamics are realized through discourse that emerges during role execution, through 

resisting or complying with power strategies, and mediated by individual traits, such as personality.  In 

this way, understanding the parameters of the roles adopted by individuals is as important as 

understanding how traits interact with strategic power negotiations. If roles are rigid, and power dynamics 

are non-negotiable, then communication and conflict management will be constrained – even if trust and 

collective cohesion have previously been established. 

Revised Team Role Theory: Role adaption 

The last element to consider in defining the MCAN model is the notion of role adaption, or adaptive 

capacity. Seen mostly in the literature of ecology of human societies, adaptive capacity refers to the 

conditions that enable people to anticipate and respond to change, and recover from and minimize the 

consequences of change (Adger and Vincent, 2005). For the purposes developing a team training model, 

adaptive capacity includes the notion of reflexivity, which is a group level construct on the ability for 

teams to reflect, communicate, and adapt objectives, decision-making and processes, (Widmer, Schippers, 
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& West, 2009), as well as an individual’s ability to shift, change, and adopt roles as needed. However, it 

also includes traits such as resilience, self-efficacy, innovative thinking, and selective retention (the 

ability to analyze and reason logically) (Brown 7 Westaway, 2011) that allow for individuals to move in 

concert beyond their initial adopted role and shift into new ones.  In short, adaptive capacity is a key 

element in the Mission Command model, and including it a team training model is instrumentally 

important. Key markers for adaptive capacity, then, include the cumulative effect of successful role 

adoption that includes trust and collective efficacy, successful role execution including constructive 

discourse, with the additional individual traits that allow for new ways of thinking and acting 

independently so to reconfigure team roles. In this way, RTR makes plain how team training is an 

ongoing, hierarchical, cumulative and iterative process – and the necessary components to configure in a 

MCAN model for GIFT.    

PROPOSED METHODOLOGY TO VALIDATE MCAN MODEL & RTR  

As part of the ongoing project in skill decay that is currently in development with the Department of 

Military Instruction at USMA, the authors of this paper propose a mixed method approach to validating 

the cumulative, hierarchical MCAN model of team training.  Qualitative observations on team dynamics 

will be conducted in the classroom, coding affect and behavior using the BROMP method while cadets 

are engaged in team assignments. Further, while cadets are engaged in using GIFT to complete team 

assignments, log files of interactions and communications will be captured and analyzed. Depending upon 

the actions/interactions and consequences of observed behavior, the next phase of validating the MCAN 

model would include a quasi-experimental study that would integrate self-survey instruments, such as 

self-efficacy, HEXACO personality test, with periodic surveys to evaluate the heuristic beliefs of cadets 

over the course of a semester.  Structural equation modeling will be used to test our cumulative 

hierarchical MCAN model using data from team assignments completed both via face-to-face and 

through GIFT.  

CONCLUSION  

This paper proposed how to best model effective team tutoring for both emerging and established military 

populations.  As a derivative of a concurrent effort to address how to best support content mastery and 

remediate skill decay on an individual level, the authors identified a target team model, MCAN, as well as 

articulated a cumulative, hierarchical framework (RTR) to identify behavioral, cognitive, and attitudinal 

markers that can be used to build the MCAN model in GIFT.  While this MCAN model and RTR 

framework is devised from qualitative observations and a review of the relevant literature, future work in 

this area includes executing a mixed method approach to empirically validate this model to obtain 

evidence towards adopting this comprehensive design architecture for military team training in GIFT. 
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Instructional Management in the Generalized Intelligent 

Framework for Tutoring: 2018 Update 
 

Benjamin Goldberg1 

U.S. Army Research Laboratory1 

INTRODUCTION 

The Generalized Intelligent Framework for Tutoring (GIFT) serves as a flexible domain-agnostic 

architecture used to author, deliver, and evaluate computer-based tutoring systems. An end state objective 

of the GIFT program is to establish a set of defacto best practices that guide the development processes 

when building adaptive training solutions across military, industry, and academic domain applications. To 

drive this need, a research vector dedicated to instructional management functions was established. This 

research vector is used as a road-mapping function to establish capability needs and potential R&D paths 

to meet recognized gaps. Serving as a framing discussion, we provide an introduction to ongoing work 

described in the instructional management focused chapters to follow. In addition, we briefly describe 

new pedagogical functions being developed that have yet to be reported. 

Instructional Management Research Vector 

In 2015 members of the GIFT team published a research outline that examined specific goals and interests 

associated with instructional management in ITS type environments (Goldberg, Sinatra, Sottilare, Moss & 

Graesser, 2015). The authors identified the following dimensions as critical benchmarks in driving 

capability enhancements: 

 Guidance and Scaffolding: focuses on identifying a set of pedagogical best practices that adhere 

to the tenets of learning and skill development. The challenge is identifying methods that 

generalize across domains and task environments, and providing tools flexible enough to create 

scaffolding that can be represented in domain-agnostic terms. Current research aims at creating 

logic to manage timing, specificity, and modality determinations of intervention content at the 

individual level.  

 Social Dynamics and Virtual Humans: focuses on the social component of learning, and building 

tools and methods that adhere to the social cognitive tenets of how individuals interact to instill 

knowledge and solve problems (Bandura, 1986; Vygotsky, 1978). From an adaptive instructional 

management standpoint, social dynamics is concerned with: (1) using technology to replicate 

interactive discourses common in learning and operational settings, (2) using technology to create 

realistic and reactive virtual humans as training elements in a simulation or scenario, and (3) 

using technology to create social networks for the purpose of supporting peer-to-peer and 

collaborative learning opportunities. 

 Metacognition and Self-Regulated Learning (SRL): focuses on instructional management 

practices that aim at building habits linked to successful regulation of learning practices and that 

promote metacognitive applications. This approach to instructional management varies from 

traditional guidance and scaffolding techniques as it focuses on behavior and application of 

strategy, rather than on task dependent performance. This research area is of interest as it is based 

around GIFT supporting SRL, and the efficacy of defining and modeling persistent metacognitive 
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strategies that can be applied across domain applications. The goal is to embed instructional 

supports that promote situational awareness, and guide learners in planning, monitoring, and 

reflection based activities. 

 Personalization (Occupational and Non-Cognitive Factors): focuses on the use of learner 

dependent information to personalize a training experience. This can involve personalizing 

content based on interests, with the goal of inducing a higher level of motivation when the 

context of a learning event is framed within a use case the learner cares about. In addition, the 

personalization dimension is also interested in identifying ways to automatically personalize 

training interactions based on occupational factors that are unique to their upcoming assignment 

or cur-rent job description. All of these instructional management practices require research to 

identify mechanisms for easily implementing personalization techniques, along with empirical 

evidence supporting their application for wide GIFT application. 

The dimensions reviewed above provide a means for organizing and prioritizing efforts to enhance 

GIFT’s current instructional management support. The dimensions should be ever evolving, as the needs 

and requirements of the end user is ever changing. To meet a near-term push to modernize the use of live, 

virtual and constructive simulations to train collective and team-oriented tasks across the Army, a major 

focus on instructional management research moving forward needs to be focused on team development 

and cohesion, as well as application of adaptive training applications in live environments through mobile 

device technologies. Each of these new problem spaces will be expanded upon as future programs mature.  

In the remainder of this chapter, we present the 2018 current state of practice for instructional 

management in GIFT, as those piece parts are the ultimate methods rolled out to the community at large. 

Following, we review ongoing efforts and how they apply to future enhancements that aim to meet the 

goals of the overarching instructional management capability dimensions. We end the review with new 

instructional management efforts that are based on new training concepts centered on worked examples in 

game-based environments and mobile computing technologies. 

2018 INSTRUCTIONAL MANAGEMENT PRACTICE IN GIFT 

Enhancements to the Baselines 

In the latest public release of GIFT, there have been many updates to the baseline that need to be noted. 

First, in an effort to extend the remedial capabilities of the Engine for Management of Adaptive Pedagogy 

(EMAP) to go beyond the passive delivery of new content and information, the previously reported ICAP 

activities framework was established in GIFT’s Adaptive Courseflow object (Chi, 2009; Rowe, Pokorny, 

Goldberg, Mott & Lester, 2017). The ICAP-Inspired EMAP course-object now supports a configurable 

‘Remediation’ phase (see Figure 1). In this block of the interface an author is tasked with configuring 

available content and feedback strategies dedicated for remediation purposes only. During this portion of 

the authoring experience, GIFT requires authors to specify metadata that corresponds with the concept 

that activity or content targets, and the classification of Constructive, Active or Passive determinations as 

they relate to Chi’s specified activity levels.  

This new remedial content addition is now available to all GIFT users. However, it must be noted that in 

its current state, selection of remedial content is managed by a policy set to randomly select among the 

ICAP configured resources. Ongoing work, which is reported below by Rowe et al. (2018), will establish 
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the first set of data-driven policies within the domain of COunter-INsurgency (COIN) based on a 

probabilistic tutorial planning approach.  

 

Figure 1. Remediation Content Configuration Interface in the ICAP-Inspired EMAP Course Object 

GIFT Personalization and Management through Learning Tool Interoperability 

Standards 

Next, to support efforts related to GIFT managing interaction across Massive Open Online Courses 

(MOOCs), development tasks were instituted to make the architecture compliant with the Learning 

Technology Interoperability (LTI) standards (IMS Global Learning Tools Interoperability Implementation 

Guide, 2012). The LTI specification establishes application programming interfaces with learning 

management systems. From this perspective, a learning management system is designated as an LTI 

consumer, while systems that provide learning activities themselves are considered LTI providers.  

For GIFT, two instances of LTI integration were implemented. First, GIFT was established as an LTI 

provider, where a learning management system can direct a MOOC learner to a GIFTCloud configured 

lesson for adaptive pedagogical delivery. As an example, GIFT is utilized within a course managed by the 

site edX.org, where an established lesson incorporates GIFT lesson activities, with completion scores 

communicated back to edX following execution (Aleven et al., 2017). Next, GIFT was modified to serve 

as an LTI consumer, where GIFT can call upon LTI providers for support in lesson execution. In this 

instance, GIFT can now direct a learner to an LTI compliant application to support instruction or practice 

on specified concepts. As an example, GIFT can now direct a learner to a Cognitive Tutor application 

within the GIFT lesson flow, where learner and pedagogical modeling controls are handed to that LTI 

client. Following completion, a score is provided back to GIFT for tracking purposes. 

One of the recognized shortfalls of this integration is the reported measure back. Currently, it is a value 

between 0 and 1, which is used to classify the performance for all assessments performed within that 

provider application. At the moment, that is not enough granularity to inform intended competency 

tracking functions GIFT’s overall aim strives to support. With new development efforts to support GIFT 

as an LTI consumer, new pedagogical paradigms are now made available. Through these mechanisms, 

GIFT can now re-direct a learner to an LTI provider within the flow of a GIFT configured lesson, which 

makes GIFT the managing application that guides the ultimate experience. However, seeing as the data 

provided following an LTI provider interaction are not granular enough to inform complex competency 

modeling techniques, future research efforts examining how best to manage LTI oriented data feeds is 

needed. 
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Enhancements Still Under Development 

Establishing Policies in the ICAP-Inspired Engine for Management of Adaptive Pedagogy 

With an infrastructure in place to support the ICAP-Inspired EMAP instance described above, the next 

step is establishing data-driven policies that will dictate run-time pedagogical decisions. To support this 

development task, experimentation using the Amazon Mechanical Turk platform is being prepared. This 

will enable the collection of a data set that will ultimately be used to generate a set of simulated students 

based on the distribution properties of the collected data points. This will enable replicating multiple 

instances of learner interactions to garner enough data to establish valid policies to inform the ICAP 

remediation determinations. The methodology to build the simulated student data set is described in last 

year’s GIFTsym proceedings (Rowe, Pokorny, Goldberg, Mott & Lester, 2017), with a breakdown of the 

testbed development to support this effort described in this year’s proceedings (Rowe et al., 2018). 

Following the creation of policy specifications, a reinforcement learning backend will be established to 

enable policy weight adjustments as evidence is collected on the utility of specified remedial materials.  

NEW INSTRUCTIONAL MANAGEMENT EFFORTS 

As an extension to last year’s update at the 2017 GIFTsym, this section is used to present new efforts 

currently being worked in the GIFT program that have not yet been reported upon. Each effort is currently 

in the early stages of implementation, with future experimentation planned across each capability. What is 

important to note as a grounding function is that each project presented is being applied within the 

domain of Land Navigation. The domain was selected due the amount of content and scenarios available 

to train the knowledge, skills, and abilities (KSAs) associated with land navigation execution, as well as 

excellent support from Subject Matter Experts (SMEs) that will guide assessment and remediation 

policies.  

For initial implementation, the following mechanisms are being researched: (1) using structured 

interviews in GIFT to facilitate scaffolded worked examples as it relates to procedural tasks that 

incorporate discrete inputs required to execute a task (e.g., plan a route from one point on a map to 

another), (2) using mobile app technologies and cloud-computing to guide self-regulated training 

exercises by blending the physical environment with didactic instruction and personalized assessments 

(e.g., conducting terrain association exercises), and (3) using metacognitive modeling techniques to track 

learner competencies across disparate training applications and using persistent models to drive feedback 

interventions. Each project will be explained in more detail below.  

Scaffolded Worked Examples across Procedural Tasks 

Worked examples provide a means to guide novice learners through procedural activities, where each step 

within that activity can be discretely defined for the purpose of guiding execution. In this instance, a 

system can provide the solution path to a defined problem, with directed engagement with students at 

specific steps within that process for the purpose of assessing understanding and correcting errors and 

misconceptions. This pedagogical approach has proven effective across many domains, most of which 

provide well-defined procedural tasks that require consistent execution to obtain an appropriate solution 

(Durlach & Spain, 2012). From this perspective, GIFT’s survey authoring system is being used as a basis 

to establish structured interviews for the purpose of using worked example instructional methods. These 

interviews associate with a set of procedurally related questions that are commonly applied across a set of 

tasks. For each question, a specific concept or sub-concept can be targeted, with contextualized responses 
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based on the scenario that serve as the assessment criteria. With this framework in place, specific steps 

within a solution path can be remediated, where focused interventions address direct misconceptions and 

impasses that result from the learner’s input to a step. 

As an example in the domain of land navigation, scenarios are designed in a game-based environment to 

train all concepts associated with dead-reckoning procedures (i.e., navigating from one point to another 

using a compass and a map). Trainees are responsible for locating points on a map, determining an 

azimuth to guide the direction by which they walk, determining an estimated distance, and identifying 

land features to help them orient as they walk. If the learning objective of the training event is to provide 

multiple opportunities to apply dead-reckoning procedures, then each discrete task can have an associated 

structured interview that can guide that interaction. Each task requires the same steps, with each input 

having new contextualized responses based on where they are on the map and where they are supposed to 

go. Once these interviews are in place, new logic can be established to infer a confidence state in a 

learner’s ability to provide the correct response on each step within the interview. With a high confidence 

rating, GIFT has the ability to adapt the pedagogical approach by modifying the complexity of the task. 

Rather than prompt the trainee for inputs on the required steps, the task can re-orient and instruct the 

trainee to navigate to the next point with a specified time constraint, thus increasing the difficulty and 

leaving the trainee to execute on their own accord.  

 

Figure 2. Sample Question from GIFT Worked Example Structured Interview 

This new instructional management concept has led to some structural changes to GIFT’s Domain 

Knowledge File (DKF), as well as to the survey authoring system. To support direct numeric inputs that 

orient with map grid points, azimuth directions, and estimated distances, GIFT can now deliver a survey 

with an open numeric input response with configurable assessments based on exact inputs, or inputs that 

fall within a defined range. Next, GIFT’s concept structure in the DKF will be leveraged to associate a 

specific question with a specific sub-concept so that remediation and feedback can be contextualized on 

the procedure step that scores below-expectation. In addition, new pedagogical logic will need to be 

developed that can adjust the conditions and standards of a defined DKF Task, based on the outcomes of 

the tasks completed before it. In this example, observing effective execution of two tasks in a row under 

the scaffolded worked example can lead to a pedagogical shift to increase the complexity by removing the 

help functions. 
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Live Training with Mobile Intelligent Tutoring Functions 

Another effort being worked with land navigation serving as a guiding domain is the first development of 

a GIFT mobile application. In this instance, GIFT is leveraging real-time positional and movement data to 

trigger training events in a live environment through the delivery of contextualized content, tasks and 

assessments (Goldberg & Boyce, 2018). The notion here is to extend the training space into the actual 

operational environment and embedding structured learning activities that utilize the elements of the 

space they are occupying. As an example, the first mobile application being developed is to support an 

exercise called a Terrain Walk. During this exercise, a trainee completes a specified course where 

designated spots along the path are used to train directed concepts that associate with land navigation 

fundamentals. In the traditional sense a Terrain Walk is completed by a live instructor with a group of 

trainees. To support a self-regulated delivery approach, the idea is to replace the instructor with a smart 

phone, where each trainee receives a personalized experience. 

 

Figure 3. GIFT Mobile App Example Interactions for Terrain Walk 

To support this implementation, GIFT has been configured to consume cellular network traffic data to 

monitor the exact location of an individual as they navigate through an environment. With this new data 

type, GIFT’s DKF can be configured to use location data to inform task start triggers that associate with a 

task, the concepts linked to that task, and its respective assessments used to infer performance and 

competency. When a trigger is recognized, GIFT can now deliver content, task directions, and deliver 

assessments through survey items (see Figure 3). The DKF applies timing functions to guide the delivery 

of content and items to assist in making the user experience an enjoyable one. Following completion of 

the first iteration of the GIFT Mobile App to support a Terrain Walk, there will be a designated data 

collection this summer at the United States Military Academy. 
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Metacognitive Training across a Network of Simulations 

The third new effort using land navigation as a guiding function is extending the learner modeling 

techniques in GIFT to support metacognitive training across a network of training environments. This 

approach is based on prior work aiming to establish a hierarchical approach to learner modeling that 

focused on cognitive skills, cognitive strategies, and metacognitive abilities (Rajendran, Mohammed, 

Biswas, Goldberg & Sottilare, 2017). This approach was originally developed within the domain of COIN 

using the game UrbanSim. Now, the learner model framework is being re-applied to land navigation, 

where approach will manage interactions across three distinct training events that focus on a 

crawl/walk/run modeling of training (Goldberg, 2017). In this example, the hierarchical student model 

will be used to infer KSAs as trainees interact with a virtual sand table to learn terrain association 

concepts, interact with a virtual game to rehearse dead-reckoning procedures, and interact on a live land 

navigation course. This approach requires the first implementation of a persistent learner model that can 

track experiences across a number of scenarios and lessons and use those recorded experiences to 

personalize future interactions through GIFT supported pedagogical functions. This effort is just starting, 

with much to share in future reporting. 

FUTURE CONSIDERATIONS 

As mentioned above in the introduction, team intelligent tutoring is a desired capability moving forward 

across the Department of Defense. With that said, a majority of the instructional management functions 

built in GIFT as of now are dedicated to the individual learner. Future research is required to implement 

pedagogical approaches to managing team interactions across the planning, execution, and review phases 

of a training exercise. Currently, there is much written on how to monitor and measure team development 

(Sottilare et al., 2017), but there is little contribution to the literature on instructional management 

techniques that associate with technology-based interventions. To this end, a pedagogical framework is 

required to associate with feedback and scenario adaptations that are based on team and task structures. 

Current chapters in the soon-to-be released GIFT Recommendations books will explore some notional 

theoretical approaches, with sports psychology playing a role in their instantiation. 

CONCLUSION 

In this chapter, we present current and future instructional management functions that are being built into 

GIFT. This review covers the last twelve months of development, with the introduction of new 

capabilities being rolled into the publicly available baseline, while future capabilities reviewed are being 

developed to support data collections and future extensions to be included in subsequent releases. With 

GIFT continually evolving to include more AI driven methods, future enhancements to GIFT’s 

instructional management functions will continue to mature that focus on data-driven agent methods, as 

well as exploring new approaches to manage team structures. 
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A Blended Approach to Adaptive Learning  
 

Barbara Buck, Ph.D.1, Matt Genova1, Robert Sottilare, Ph.D. 2, Benjamin Goldberg, Ph.D. 2 

The Boeing Company1, U.S. Army Research Laboratory2 

INTRODUCTION 

Adaptive training is often considered the gold standard for addressing the unique training needs of 

individual users.  These unique needs can result from different backgrounds, different experiences, 

different learning goals, different personal motivations for learning, and different degrees of engagement 

in the overall learning experience.  Adaptivity is the ability of a system to alter (change) itself to better fit 

or function in a given situation.  In order to optimize the learning experience for a unique person, a 

learning system should adapt to the individual learner or team for the specific situation, much like a 

human mentor or instructor would adapt to the individual needs of a student. 

The goal of an Intelligent Tutoring System (ITS) is to provide automated instruction equivalent to that of 

a skilled human tutor.  ITS development has gained momentum since the 1980’s, with numerous 

automated tutors being developed and applied in both university and Department of Defense settings 

(Bloom, 1984, Lesgold, Lajoe, Bunzo & Eggan, 1988, Anderson, Corbett, Koedinger & Pelletier, 1995, 

Hunt & Minstrell, 1994, Graesser & Person, 1994, Cohen, Kulik & Kulik, 1982). 

Adaptive training content can be time-consuming and expensive to develop, deliver, and manage.  If the 

adaptive solutions are ever to gain widespread acceptance within the educational and training community, 

we must find cost-effective ways to develop, deploy and manage content.  The U.S. Army Research 

Laboratory (ARL) has been developing one such solution, the Generalized Intelligent Framework for 

Tutoring (GIFT).  The GIFT program is an ARL effort to develop a framework for personalized, on-

demand, computer based instruction to improve the speed and quality of Soldier training (Sottilare, 

Brawner, Sinatra & Johnston, 2017).  In a separate effort, Boeing has been involved in a program of 

research and development to create an adaptive learning authoring and content delivery system.  The 

Boeing ITS provides a user-friendly authoring environment designed to rapidly create and deliver a rich 

personalized student-centered learning experience through the modeling of system knowledge, problem-

solving rules, and real-time assessment of student performance.  The learning experience provides 

dynamic scenario sequencing, tailored student feedback and student performance summary based on the 

perceived student strengths and weaknesses (Perrin, Buck, Dargue, Biddle, Stull, & Armstrong, 2007, 

Perrin, 2009).   

In this paper, we will present an aggregate prototype of adaptive learning that leverages these two distinct 

implementations: ARL’s GIFT solution and Boeing’s ITS solution. The product of combining these 

efforts is an integrated adaptive learning prototype. This presentation will describe our efforts to create a 

seamless adaptive learning experience on the part of the student, as well as plans to conduct an 

effectiveness study using the adaptive learning methods. 

GIFT Framework 

GIFT is an open-source, modular architecture developed to ease the burden of authoring, delivering, 

managing, and evaluating adaptive instruction across a broad array of domains (e.g., cognitive, affective, 

psychomotor, and social). As an adaptive instructional system (AIS), GIFT guides learning experiences 

by tailoring instruction and recommendations based on the goals, needs, and preferences of each learner 
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in the context of specific domain learning objectives. GIFT is composed of tools, methods, interfaces, and 

processes that capture and reinforce best instructional practices, effective learning strategies, and tactical 

actions for both individual learners and teams. Emerging capabilities include: user dashboards, data 

analytics, automated content curation, automated after action reviews, and standard messaging for reuse 

and interoperability.  

GIFT has several modules which model and act on data about the learner, instructional decisions, and 

domain content:  

 Domain Module - The primary function of the domain module is to create, maintain and assess 

domain sessions.  This module hosts or points to content used during instruction and contains a 

domain course file which is an XML file containing information needed to assess the learner’s 

progress toward proficiency for the concepts (learning objectives) identified by the course author. 

 Learner Module - The primary function of the Learner module is to determine the learner’s state 

(e.g., real-time performance, real-time emotional, or long term domain competency). 

 Sensor Module - The primary function of the sensor module is to read and filter sensor data to 

determine/predict learner states.  There are several sensors integrated with GIFT to provide data 

about the learner: Microsoft Kinect, Zephyr Bioharness, Affectiva Q Sensor, and others. 

 Pedagogical (Instructional) Module - The primary function of the pedagogical module is to use 

information about the learner’s state to generate recommendations (e.g., next course to take) and 

select instructional strategies (e.g., prompt learner to reflect) to enhance learning.  Instructional 

strategies are passed to the domain module for implementation. 

 User Management System (UMS) Module - The primary function of the UMS module is to 

manage a user session. It is responsible for storing information about the user such as 

biographical details, in addition to maintaining information about domain sessions. It does not, 

however, keep scoring records of user’s training history. That is handled by the Learning 

Management System.  

 Learning Management System (LMS) Module - The primary function of the LMS module is keep 

track of a learner’s instructional experiences and achievements as part of a history of learning. 

The GIFT LMS saves the scores of every assessment during every lesson experienced in GIFT.   

 Tutor Module - The primary function of the Tutor module is to provide an interface that allows 

interaction between GIFT and the learner.  Often referred to as the tutor-user interface (TUI), this 

is not a formal module, but is an interface capability. 

 Gateway Module - The primary function of the gateway module is to interface with external 

environments (e.g., game-based simulations).  The Gateway Module has interfaces with several 

applications such as: Distributed Interactive Simulation (DIS) networks, Virtual BattleSpace 

(VBS) serious game, Augmented REality Sandtable (ARES), Microsoft PowerPoint, Tactical 

Combat Casualty Care (TC3)/Virtual Medic, and the SCATT Pro Marksman Training 

Application.   

A component of GIFT being utilized specifically for this project is the Engine for Management of 

Adaptive Pedagogy (EMAP; Goldberg, Hoffman & Tarr, 2015). The EMAP is an underlying pedagogical 

framework in GIFT based on Merrill’s Component Display Theory (CDT; Merrill, 1994). The CDT 
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structures learning across four primary interactions: (1) learning the declarative and procedural RULES of 

a domain and its associated concepts; (2) seeing EXAMPLES of those rules applied across various 

contexts for better understanding of the interacting components; (3) RECALLING those associations on 

your own based on testing approaches; and (4) PRACTICING the application of those rules within 

dedicated scenarios and problem sets. The EMAP then applies personalization strategies within each of 

those four interactions based on individuals differences stored in GIFT’s learner model (e.g., prior 

knowledge, motivation, self-regulatory ability, grit, etc.). The EMAP also supports automated 

remediation loops based on performance outcomes in both the recall and practice interactions. The EMAP 

configurations are housed in GIFT’s adaptive courseflow object, which is the integration point for the 

resulting testbed developed utilizing the Boeing ITS functions. 

Description of the Boeing ITS 

Boeing’s approach to a learner-centered adaptive training implementation has evolved over the course of 

the past few years.  Initial implementations focused on creation of an architecture and authoring solution 

in support of intelligent tutoring.  The product of this effort was Web-based, SCORM®-conformant 

computer-based training.  Details of this approach is provided below. 

The Boeing ITS implementation features 3 components (illustrated in Figure 1): a Student Model, an 

Instructional Model, and an Expert Model. The Student Model implements a profile of dynamically-

maintained variables, each corresponding to one learning objective. These variables are evaluated over a 

number of observations. As a result, changes due to learning are reflected across exercises, as the score 

increases due to correct performance, or decreases as errors are made. The amount that scores are changed 

can be weighted according to the degree to which the action reflects mastery of the learning objective. 

The amount of change is also adjusted according to the degree of support provided to the student by the 

ITS in selecting this action.  

 

 

Fig. 34. Overview of ITS modeling approach 

The Instructional Model responds to student requests for help or student errors with information on 

problem-solving strategies. The specificity of the information increases as additional requests are made or 

additional errors occur. The Instructional Model is also tasked with providing within-scenario feedback to 



 

 

Proceedings of the 6th Annual GIFT Users Symposium (GIFTSym6) 

 

222 

 

guide the student, as well as performance summaries across all learning objectives at the end of the lesson 

scenario.  

The Expert Model is based on cognitive task analysis technique known as PARI, for Precursor, Action, 

Results, and Interpretation (Hall, Gott & Pokorny, 1995).  PARI provides methods to elicit detailed 

information from experts on how they represent a given state of a solution (what issues have been 

resolved and what issues remain), optimal and alternative paths to a solution, and their strategies for 

selecting actions at each step along those paths.  The Expert Model directly encodes these solution paths. 

For each path, the model also captures the expert’s summary of the situation (representation of the 

problem) and the rationales for the possible next steps.  Additional details of the ITS architecture and 

implementation have been published elsewhere (Perrin, 2009). 

Details of the Integrated Prototype 

As part of a three-year cooperative research and development agreement, Boeing and ARL have been 

working to develop an integrated adaptive prototype in which we combine the Army’s GIFT adaptive 

learning framework with the Boeing adaptive learning capabilities. The prototype is based on instructing 

a student on a basic aircraft maintenance task with aspects of troubleshooting and part replacement. In 

order to perform the task correctly, the student must understand some basics of electrical safety, as well as 

multimeter usage.  Once they have demonstrated an understanding of those basic concepts, then they are 

taught the fault diagnosis and repair procedure.  Basic lesson flow within GIFT is presented in Figure 2.  
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Fig. 35.  Lesson flow for the integrated adaptive prototype. 

The initial step in the adaptive learning lesson is knowledge assessment based on the course concepts of 

electrical safety, multimeter use and fault diagnosis procedural knowledge.  We employed the Question 

Bank knowledge assessment functionality within GIFT to assess student understanding on those concepts 

and to characterize them as a novice, journeyman or expert on each of the three concepts.  GIFT then uses 

those characterizations to sequence course content to the student and to adapt course content based on 

ongoing student parameter characterization as they move through the lesson content.  Students are 

presented with content for the corresponding Adaptive Courseflow Modules (as described above) for each 

course concept based on their assessed knowledge level.  Basic concept rules and examples content was 

delivered via PowerPoint presentations within the GIFT Adaptive Courseflow Modules.  Knowledge 

checks were presented in GIFT using a subset of the initial Question Bank questions.  If the student was 

deemed proficient, then the Boeing ITS capability provided the practice lesson content for selected 

learning concepts, launched from within the Adaptive Courseflow Module.  While progressing through 

the practice module for each leaning concept, the ITS adapts within-lesson content to maximize a 

student’s ability to successfully pass the practice portion of the lesson module on the initial attempt. This 

adaptation included within-lesson remediation on basic concepts if needed.  This step is in addition to the 

normal GIFT content sequencing.  GIFT functionality sequences the student through the rules, examples, 

knowledge check and practice components of each course concept’s Adaptive Courseflow Module, and 

when all are successfully completed, launches the final practice module.   

The final evaluated practice module is an external application using Boeing’s virtual maintenance training 

capability (Jacquin, 2016).  As part of the final practice assessment, students don a virtual reality (VR) 

headset, and using two 3D VR hand controllers, they are able to navigate to various places on the aircraft, 

perform the required troubleshooting tasks while adhering to required safety protocols, diagnose the fault 

and replace the faulty part (see Figure 3). Automated real-time performance assessment and adaptive 

learning capabilities within the virtual maintenance training system score the student on targeted learning 

objectives, provide on-demand student assistance to help locate components, and provide scoring to 

determine whether the student passes or fails the practical assessment. These final scores on the practical 

assessment are passed back to GIFT in order to evaluate whether or not the student successfully 

completed the entire lesson. 
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Fig. 3.  Maintenance trainee performing a task in the virtual maintenance trainer. 

At present, the first iteration of the integrated prototype is complete. Current efforts are focused on 

development of a test plan for the conduct of an adaptive training effectiveness study. Once the design is 

complete, any required modifications will be made to the adaptive training prototype in support of the 

effectiveness study.  

Initial Test/Study Plan 

Plans are in work to evaluate the effectiveness of the Boeing/GIFT prototype using cadets at West Point. 

The goal is to assess various manipulations of overall curriculum adaptation in an effort to determine 

which elements are best utilized to optimize student performance.  To determine these efficiencies, we are 

using multiple measures, including: time to competence as measured by performance outcomes, training 

transfer and knowledge retention.  

The plan is to evaluate the combined GIFT/Boeing prototype across a counter-balanced 3x2 experimental 

design (see Figure 4). The first independent variable is ITS Methods, with three defined conditions: (1) 

GIFT alone with personalization through the EMAP, (2) Boeing alone, with focused ITS interactions, and 

(3) GIFT/Boeing prototype that leverages both pedagogical methods. The second independent variable is 

prior-knowledge, with classification determined by outcomes on pre-test measures. Prior-knowledge will 

be scored on a concept by concept basis, with GIFT bypassing content on training materials a participant 

is showing mastery in. One potential option is to randomly assign students to one of those three groups, 

and then to divide them into high/low competency based on their initial knowledge assessments.  

Competency is only one of the potential personalization variables that we could use, as GIFT’s 

pedagogical configuration can support strategy determinations across any individual difference deemed 

worthy to inform personalization. Our initial prototype did not include personalized measures of 

motivation-based adaptation or personalized feedback based on individual performance.  Those are other 

options we are considering implementing once the study design is finalized.   
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Fig. 4.  Preliminary Effectiveness Study Experimental Design. 

 

The outcomes of this study will inform modifications to both the GIFT architecture and Boeing adaptive 

training approach. These recommended changes will be based on the results of comparative evaluations 

across performance measures, along with observations and log-data associated with student interactions 

and behaviors across all content, assessments and scenarios. New requirements will be defined to better 

meet the needs of students, with the final year of the CRADA dedicated to instituting those changes.  

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

Throughout the process of blending of two adaptive training solutions into one aggregate prototype, we 

have learned a number of lessons.  There are similarities in the two approaches, as both concepts 

emphasize development of expertise based on optimizing the learning experience by adapting to the 

student.  While both rely on performance assessment to adapt the lesson, implementations of how each 

used performance measurement to adapt was different.  This led to a number of challenges when merging 

the two approaches into the combined prototype.  On the positive side, we were able to successfully 

merge these capabilities into a lesson that was seamless from the perspective of the student.  We relied on 

GIFT to perform the initial knowledge assessment, and to determine a starting point within the lesson.  

For simplicity sake in the initial prototype, we did not attempt to integrate individualized student traits 

such as motivation or engagement into our pedagogical decisions.  We employed the GIFT adaptive 

modules to sequence through student need-based training, but then employed Boeing’s ITS lessons to 

provide within-module assessments and practice, enabling remediation and practice at a more finite level 

than that provided by GIFT alone.  We also demonstrated the ability to launch an external Unity-based 

VR practice module from GIFT, and showed that performance within that practice environment could be 

reported back to GIFT upon completion of the practice exercise. 

Along with the positive points, we did identify a number of challenges throughout the course of our 

development.  What follows is a summary of the lessons we have learned along with way. 

 With any approach to adaptivity, there are challenges in the implementation of these concepts 

within a complex task environment. When combining two methods into a single learning 
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solution, there are some additional complexities. For example, the Boeing approach to student 

assessment and adaptivity was different that the GIFT implementation.  In some instances, both 

adaptation rules could run in parallel, but in other instances, we had to reconcile the different 

approaches. 

 Long-term student record persistence is currently not implemented within GIFT.  It would be nice 

to have the ability to customize lesson content based on a previous lesson learning record, but as 

of now, all lessons are stand-alone. 

 Within a single lesson, we did not have the ability to remediate back to a previous adaptive 

learning module once it was determined to be mastered by the student.  The implementation of 

our lesson involved completing individual modules and then completing an integrated external 

simulation exercise which combined aspects of multiple learning concepts.  It would be nice to 

have the ability to remediate the student back to the individual adaptive module if they failed a 

concept during the final practice.  Or, as mentioned previously, to record that failure as a 

persistent record and then be able to re-launch the lesson and repeat those modules where the 

student struggled during the final assessment. 

 There was no GIFT standard for communicating with external applications. Interfacing external 

applications with GIFT required the creation of custom gateway modules which involved the 

implementation of message passing and parsing. Certain naming and scoring conventions 

between the external application and GIFT domain knowledge files were not intuitive.  There was 

a lot of trial and error to make the process flow as desired.  As GIFT becomes more pervasive and 

others attempt to interface with their existing applications, it would be beneficial to have a more 

standard approach to communicating with external applications. 

 We had a number of usability issues as we initially began to author in GIFT.  Some of those were 

due to bugs in the tool, while others were attributed to complexities in working with external 

applications.  Specifically, we had issues running GIFT behind a proxy.  In order to run the 

authoring tool behind the Boeing firewall, we had to disconnect from the internet and run it in 

offline mode.  We also had difficulties due to size limitations in importing and exporting large 

lesson files.  Users of GIFT could benefit from improved documentation or lessons on how to 

author.   

 Limitations of older technologies within The Boeing-developed applications (e.g. Flash-based 

lesson playback) made for some complexities in how those lessons were integrated and displayed 

within GIFT. 

We have learned through experience that there are strengths and weaknesses of different approaches to 

modeling students, providing feedback, and adapting content. As we continue to develop and test the 

overall effectiveness of adaptive learning in the coming year, we hope to capitalize on the best of each 

approach in creating a mutually beneficial joint solution. 
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INTRODUCTION 

There is broad recognition that intelligent tutoring systems (ITSs) are effective for enhancing student 

learning across a range of domains (Anderson, Corbett, Koedinger, & Pelletier, 1995; VanLehn, 2011; 

Ma, Adescope, Nesbit, & Liu, 2014). By leveraging computational models of adaptive pedagogical 

decision-making, ITSs create personalized learning experiences that are dynamically tailored to individual 

students. However, ITSs are resource-intensive to create. The amount of engineering effort required to 

develop one hour of ITS instruction is often estimated to be approximately 200 hours (Aleven, McLaren, 

Sewall, & Koedinger, 2009). To address this bottleneck, there have been several initiatives to devise tools 

for supporting ITS authors in creating adaptive training at reduced time and cost (Aleven et al., 2009; 

Sottilare, Baker, Graesser, & Lester, in press). These efforts hold the promise of making ITSs available 

across a broader range of subjects and contexts, enhancing the depth of current adaptive learning 

experiences, and enabling instructional designers and subject matter experts to create novel adaptive 

training solutions without requiring programming expertise. 

Over the past several years, the Generalized Intelligent Framework for Tutoring (GIFT) has emerged as 

an important initiative to address the authoring challenges raised by ITSs. GIFT is an open source service-

oriented framework of software tools, methods, and de-facto best practices for designing, developing, and 

evaluating adaptive training systems. GIFT provides instructors with a suite of web-based tools for 

rapidly creating intelligent tutors, and it is linked to several ongoing research efforts to devise methods for 

automating key elements of the adaptive training authoring process (Rowe et al., 2016). Many of these 

tools are available through GIFT's Course Creator, which provides a drag-and-drop interface for devising 

adaptive training experiences across a range of domains. The Course Creator is also continuously 

improving with new capabilities and usability enhancements released several times a year. As GIFT 

transitions from the research lab to real-world use, these tools will be subject to new authorial demands 

and scalability challenges, which makes it a valuable test case for understanding how ITS technologies 

mature and scale. 

In this paper, we describe our experiences and lessons learned from using GIFT to create an 

approximately 2-hour adaptive hypermedia-based training course for counterinsurgency (COIN) and 

stability operations. The course builds upon the UrbanSim Primer, which presents a range of multimedia 

training materials providing direct instruction on doctrinal concepts of COIN that accompanies the 

UrbanSim simulation-based training environment. The course serves as a showcase of recent 

enhancements to GIFT's Engine for Management of Adaptive Pedagogy (EMAP) that support adaptive 

assessment and remediation. Specifically, remediation features in GIFT are based on Chi's ICAP 

framework (2009). ICAP describes several modes of student engagement with learning materials, 

including passive, active, constructive, and interactive modes. The ICAP framework predicts that the 

interactive mode (e.g., peer dialogue) is more effective for learning than the constructive mode (e.g., 

writing an explanation), the constructive mode is more effective than the active mode (e.g., reading and 

highlighting a passage), and the active mode is more effective than the passive mode (e.g., reading a 
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passage without doing anything else). But, there are tradeoffs between these pedagogical strategies, such 

as instructional time required and cognitive load imposed. We are utilizing the COIN hypermedia-based 

training course to gather data on student responses to passive, active, and constructive remediation 

activities, which is part of a broader research program on utilizing reinforcement learning to automatically 

induce intelligent tutoring policies for instructional remediation in GIFT. 

Our course is notable in its scope: it utilizes nearly 40 adaptive course flow objects, more than 150 media 

objects, online videos, pre-post surveys, embedded assessments, adaptive feedback messages, glossaries, 

and other features of GIFT. Further, we are preparing the course for deployment to hundreds of users 

through a crowdsourcing study with Amazon Mechanical Turk, which requires preparation for remote 

deployment to dozens of concurrent users in a fashion that integrates seamlessly with tools and workflows 

from commercial crowdsourcing providers. We describe how this course was created with the GIFT 

Course Creator and associated ICAP-inspired functionalities; we describe methods for implementing key 

ITS features such as immediate feedback and scaffolding in hypermedia-based training with GIFT; and 

we describe challenges, solutions, and opportunities we have encountered from our experiences creating 

the course. Our findings point toward future directions for enhancing GIFT's capacity to reduce the 

authorial cost of creating ITSs and transitioning toward wider scale use. 

RESEARCH CONTEXT 

Tutorial planning, a critical component of adaptive training, controls how scaffolding and instructional 

interventions are structured and delivered to learners. Devising computational models that scaffold 

effectively, i.e., determining when to scaffold, what type of scaffolding to deliver, and how scaffolding 

should be realized, is a critical challenge for the field of ITSs. Recent years have seen growing interest in 

data-driven approaches to tutorial planning (Rowe & Lester, 2015; Williams et al., 2016; Zhou, Wang, 

Lynch, & Chi, 2017). In particular, reinforcement learning techniques have shown promise for 

automatically inducing tutorial policies that optimize student learning outcomes and do not require 

pedagogical policies to be manually programmed or demonstrated by expert tutors. These techniques are 

complementary to advances in ITS authoring, including authoring tools implemented in GIFT, to address 

challenges inherent in constructing adaptive training materials.   

Reinforcement learning is a category of machine learning that centers on devising software agents that 

perform actions in a stochastic environment to optimize some concept of numerical reward (Sutton & 

Barto, 1998). In reinforcement learning, the agent induces a control policy by iteratively performing 

actions and observing their effects on the environment and accumulated rewards. Tutorial planning can be 

formalized as a reinforcement learning task by conceptualizing the tutor as the agent: the tutor seeks to 

enact pedagogical decisions (i.e., actions) that will affect its environment (i.e., the trainee and his/her 

learning environment) in order to optimize student learning outcomes (i.e., rewards). In our case, the 

pedagogical decisions are choosing between ICAP-inspired remediation activities, and the tutorial 

planner’s objective is to optimize student learning in an adaptive hypermedia-based training course for 

COIN. 

To investigate a reinforcement learning framework for ICAP-inspired remediation in GIFT, we plan to 

obtain a large dataset consisting of trainee responses to different types of instructional remediation 

activities as well as pre-post learning outcomes. The purpose of the dataset is to serve as a training corpus 

for inducing and evaluating reinforcement learning policies for tutorial planning (Rowe & Lester; Wang 

et al., 2017). Reinforcement learning techniques are data-intensive, so in order to collect sufficient data, 

we have devised a training course that is designed to meet three objectives: (1) the course contains 

numerous opportunities for learners to receive instructional remediation, which will serve as the training 
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data for reinforcement learning; (2) the course is deployable through online crowdsourcing platforms, 

which will facilitate broad distribution to many learners efficiently; and (3) the course enacts an 

exploratory (i.e., random) remediation policy in order to broadly sample the space of possible pedagogical 

decisions. To meet these objectives, we developed an adaptive hypermedia-based training course in GIFT 

that builds upon materials from the UrbanSim Primer. 

UrbanSim Primer 

The UrbanSim Primer is a hypermedia-based learning environment that was developed by the USC 

Institute for Creative Technologies to provide direct instruction on COIN doctrine and principles. Major 

topics include the importance of population support, processes for intelligence gathering, and issues in 

successful COIN operations. 

The UrbanSim Primer’s training 

materials are divided across 

seven lessons that interleave 

hyperlinked video, audio, text, 

and diagrams delivered using 

Adobe Flash.  

In our project, we focus on a 

subset of training materials from 

UrbanSim Primer Lessons 1-4. 

We have extracted video, audio, 

and text content from the 

UrbanSim Primer, and we have 

reconfigured these materials for 

web-based presentation using 

GIFT. Specifically, GIFT 

enables the delivery of 

UrbanSim Primer materials via 

web browsers, it enables 

interleaved training materials 

that include embedded 

assessments and instructional remediation, and it supports automatic logging of learner actions within the 

training   course.  

An Implemented Adaptive 

Hypermedia-Based Training 

Course for COIN 

We have designed an adaptive hypermedia-based training course based on the UrbanSim Primer using a 

branch of GIFT Cloud that supports recent enhancements to the GIFT EMAP to support ICAP-based 

instructional remediation functionalities. The course builds upon the doctrinal lessons presented in the 

UrbanSim Primer and includes a series of short videos, instructional texts, quiz questions, remedial 

content, and glossaries related to the fundamental principles of COIN and stability operations. Trainee 

experiences with the COIN training course proceed as follows.  

The course begins with a general message that welcomes students to the training course. Following this 

introduction, participants complete a demographic questionnaire that asks them about their age, years of 

Figure 1: Screenshot of UrbanSim Primer training video 

presented in GIFT. 
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education, and familiarity with COIN topics and concepts, followed by a goal orientation questionnaire 

that measures students’ task-based and intrinsic motivation to learn (Elliot & Murayama, 2008). Next, 

students complete a 12-item pretest that measures prior knowledge of COIN principles and doctrine.   

After completing the pre-training surveys, participants begin the adaptive hypermedia portion of the 

course, which is organized into four chapters: (1) Introduction to COIN Operations; (2) Planning COIN 

Operations; (3) COIN Analysis Tools; and (4) COIN and Human Intelligence. Each chapter contains a 

series of narrated videos and text-based content that cover lesson topics such as “Identifying the center of 

gravity in COIN operations”, “Defining intelligence preparation for the battlefield”, and “Understanding 

lines of effort in COIN operations.” Each lesson is implemented as a series of adaptive course flow 

objects within the GIFT course.  

After each video from the UrbanSim Primer, participants complete a brief multiple-choice quiz. Quiz 

questions consist of single concept and multi-concept review items that align with the course’s learning 

objectives. Single concept review questions require learners to recall and apply concepts presented within 

the lesson. Multi-concept review questions require learners to demonstrate a deeper understanding of 

course material by integrating concepts from multiple lessons. The course uses a micro-sequencing 

adaptive training approach (Durlach & Spain, 2014) to “gate” progress according to learners’ 

demonstrated level of mastery. Learners who correctly answer a quiz question are allowed to advance to 

the next question or lesson, whereas learners who incorrectly answer a question receive ICAP-inspired 

supplemental remediation.  

When a learner receives supplemental remediation following a missed question, GIFT prompts the learner 

to either: (1) passively re-read the narrated content that was just presented in the lesson video; (2) re-read 

the video content and actively highlight the portion of text that is most relevant to the quiz question that 

was missed; or (3) re-read the text and constructively summarize content related to the quiz question. The 

active and remediation prompts also include expert highlighting/summaries that students can use to self-

evaluate the accuracy of their responses. The course also includes a “no remediation” prompt that only 

provides students with minimal feedback before being asked to re-answer the quiz question. The course 

uses a random assignment policy at the item level to determine whether students receive passive, active, 

constructive, or no remediation after each incorrect item response. Students continue to receive 

supplemental remediation until they demonstrate concept mastery (i.e., correctly answer the quiz 

question). 

In addition to the ICAP-inspired remediation prompts, the training course also monitors how long 

students engage with the video-based lessons and provides prompts to those participants who advance 

through the videos too quickly or too slowly. For example, participants who click past a video before it 

ends receive the following message, “It appears that you clicked past the video before enough time 

elapsed for it to play in entirety. Please do not rush through the training materials, or else you may not 

achieve the course learning objectives.”  Conversely, participants who spend too much time dwelling on 

the video (defined as more than 5 minutes on a video page) will receive the following message, “It 

appears that you spent an unusually long amount of time on this video. Please attempt to complete the 

training materials at an efficient pace.” The maximum video length is approximately 1.5 minutes.  

Upon finishing the final lesson, participants complete a series of post-training surveys. These include a 

multiple-choice posttest to measure retention of foundational COIN concepts and a short questionnaire to 

collect opinions about the training experience. After completing these activities, participants receive a 

debriefing message and are thanked for their participation. In addition, participants who access the course 

through an online crowdsourcing platform (e.g., Mechanical Turk) receive a unique code that they can 



 

 

Proceedings of the 6th Annual GIFT Users Symposium (GIFTSym6) 

 

233 

 

provide to the crowdsourcing vendor to receive payment for participation. The code is randomly 

generated by a customized survey implemented as the final course object in the training course. 

In order to collect data on learner interactions with ICAP-inspired remediation activities, we plan to 

conduct a human subjects study with a sample of 300-500 participants recruited through Amazon 

Mechanical Turk. A short description of the study will be posted on the Mechanical Turk website. 

Individuals interested in completing the training course will first complete an electronic informed consent 

before being hyperlinked to the published training course hosted on the cloud-based version of GIFT. 

Once in the course, participants will proceed through the course activities described above. At the end of 

the training course, participants will receive a unique 7-digit code that they must enter into the 

Mechanical Turk site to receive payment for their participation. Using the data gathered from the 

Mechanical Turk study, we will begin to investigate data-driven models of tutorial planning using 

reinforcement learning techniques.  

DESIGNING AN ADAPTIVE HYPERMEDIA-BASED TRAINING 

COURSE IN GIFT 

To develop an adaptive hypermedia-based training course that can be delivered through the web, we made 

extensive use of the GIFT Course Creator. The GIFT Course Creator is a web-based GUI authoring tool 

that enables instructional developers to construct training workflows that encode sequences of online 

learning activities using a drag-and-drop interface. The Course Creator enables instructional developers to 

specify fixed course flows, which are course-object sequences that unfold the same way for every learner, 

as well as adaptive course flows, which utilize the GIFT EMAP to drive macro-adaptive pedagogical 

decisions about content sequencing based on student performance. A key component of our work on the 

adaptive hypermedia-based COIN training course is utilization of an enhanced version of EMAP that 

supports ICAP-inspired remediation functionalities. Specifically, the course includes 39 adaptive course 

flow objects, each linked to a range of supporting media files including videos, text passages, feedback 

statements, ICAP-inspired remediation prompts, and quiz questions that align with course concepts. In 

this section, we briefly describe how these adaptive courseflow objects are configured to provide direct 

instruction, embedded assessment, immediate feedback, and adaptive remediation on COIN concepts.  

In GIFT, adaptive courseflow objects are deeply grounded in Component Display Theory (Merrill, Reiser, 

Ranney & Trafton, 1992). Component Display Theory describes a process for learning the rules of a 

domain, examining relevant examples, testing recall of knowledge, and engaging in guided practice. 

These four types of learning activities delineate quadrants in an adaptive courseflow object: Rules, 

Examples, Recall, and Practice. During a typical interaction with an adaptive courseflow object, the 

learner begins by viewing multimedia training materials associated with a set of target domain concepts; 

this is the learner’s experience of the Rules Quadrant. After viewing these materials, the learner 

transitions to the Examples Quadrant in which she views additional training materials that illustrate 

examples of the target concepts. Afterward, the learner transitions to the Recall Quadrant, where her 

understanding of the target concepts is assessed through a series of quiz questions. After successfully 

completing the quiz, the learner optionally transitions to the Practice Quadrant, where she interacts with 

an external training simulation to apply her relevant knowledge in a hands-on manner. In our course, we 

do not currently make use of the Practice Quadrant.  

In the ICAP-enhanced version of the GIFT EMAP, the four quadrants are augmented with an additional 

fifth quadrant: Remediation. The Remediation Quadrant houses logic and training materials for presenting 

instructional feedback and ICAP-inspired remediation to learners with below-threshold performance in 

the Recall Quadrant. In other words, when learners miss too many embedded quiz questions, they receive 
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immediate feedback and remediation. The Remediation Quadrant is populated with multimedia training 

materials that are distinct from those presented in the Rules and Example Quadrants. Remediation 

materials can be conceptualized in terms of three categories: (1) Constructive-response remediation, 

(2) Active-response remediation, and (3) Passive-response remediation.1 Constructive- and active-

response remediation materials are created using built-in GIFT authoring templates, whereas passive 

remediation materials can be constructed with a range on supported media types, including videos, text 

passages, web pages, and slide decks. In the case of our course, all remediation materials are text based, 

and we specifically utilize text-based local web pages to implement Passive-response remediation. At 

present, the presentation of these three different types of remediation is performed according to a uniform 

random policy. This control policy will be replaced with an adaptive policy induced using reinforcement 

learning following the completion of the Mechanical Turk study, subsequent data analysis and model 

creation.  

In our course, we utilize adaptive courseflow objects to provide immediate feedback and remediation 

after each quiz question. We devise a unique adaptive courseflow object for each embedded quiz item in 

the course. Each adaptive courseflow object contains a Recall Quadrant with a single question, as well as 

a Remediation Quadrant with four associated media files: a passive-response remediation intervention, an 

active-response remediation intervention, a constructive-response remediation intervention, and a non-

remediation intervention. Each of these remediation media files contains a feedback statement about the 

quiz question that the learner must have missed prior to receiving the remediation. Because our course 

presents multiple embedded quiz questions after each video from the UrbanSim Primer, a subset of 

adaptive courseflow objects contain links to YouTube videos in their Example Quadrants. However, not 

all adaptive courseflow objects contain these videos, or contain Example Quadrant media files at all. In 

these cases, we repurpose the Example Quadrant to present a local webpage containing positive feedback 

about the quiz question that the student just answered; when a learner transitions to a new adaptive 

courseflow object, she must have just answered a quiz question correctly, so we provide positive 

feedback. The Rule Quadrant of each adaptive courseflow object is generally not used in our course, 

except to present transition text in a handful of locations. For an illustration of all of the materials and 

media files associated with each adaptive courseflow object in our course, please see Figure 2. 

Adaptive	
Courseflow	
Object

Video

YouTube	Video

Quiz	Question
Feedback	
Statement

Local	HTML	File

No	Remediation

Local	HTML	File

Passive	
Remediation

Local	HTML	File

Active	
Remediation

Highlight		
Passage

Constructive	
Remediation

Summarize	
Passage	

 

Figure 2. Overview of training materials associated with a single adaptive courseflow object.  

                                                      

1 The fourth category of ICAP, interactive-response remediation, is not currently supported by the GIFT 

EMAP. 
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BEST PRACTICES AND LESSONS LEARNED 

As noted above, the course is relatively large in comparison to many GIFT courses that have been created 

to date. The course includes approximately 40 adaptive course flow objects, more than 150 media objects, 

several pre-post surveys, numerous embedded assessments, adaptive feedback messages, glossaries, and 

other features of GIFT.  

As we developed the course, we found that designing a large training course in GIFT required significant 

preparation and planning. A key practice that we utilized was to develop a course prototype outside of 

GIFT prior to constructing the training course inside of GIFT. In our case, we developed a rough course 

prototype in PowerPoint, which served two functions: (1) It provided the team with an easily editable 

instructional design map of the training course, including an overview of the course flow for each chapter 

and subsequent lessons, and (2) It allowed the team to quickly edit and refine the training content, 

embedded assessments, and remediation content before implementing the full user-ready version in GIFT. 

We also found that the prototype served as a useful reference for authoring remediation prompts. For each 

lesson, we created a series of slides that showed the quiz question that aligned with the lesson, transcripts 

of the narrated text from the video, text for the passive remediation prompts, text and suggested 

highlighting for the active remediation prompts, and content for the constructive remediation prompts. 

Organizing all of this information in a format that could be rapidly generated, easily edited, shared 

between collaborators, and which did not require perfect precision in specifying courseflows played a 

vital role in the early stages of authoring the adaptive training course.  

A second lesson we learned was that during course development and revision, there were several 

occasions in which we needed to revise course content (e.g., quiz questions and prompts) to improve the 

clarity of the training materials. These changes were based on upon user feedback from pilot testing of the 

course. We found it helpful to keep track of these revisions in the PowerPoint prototype of the course, 

which allowed the project team to easily track changes made to the course over the development cycles.   

A third lesson we learned was that it is important to implement a naming and organization convention for 

the media files used in the course. As a best practice, we used an object + lesson naming scheme (e.g., 

Remediation 2-3 Constructive; Remediation 2-3 Active, etc.) to provide structure and consistency among 

all of our training assets. This organizational scheme was particularly useful in managing the feedback 

statements, passive remediation files, and no-remediation files associated with each adaptive courseflow 

object. This allowed us to quickly review which objects were included in each course object’s 

Remediation Quadrant. It also helped us manage the large number of training assets saved in the course’s 

media folder. As previously noted, our course includes over 150 content files. During the authoring 

process, there were many occasions in which we needed to either preview or edit passive and/or non-

remediation files associated with the course. In the current implementation of GIFT, the only way to 

preview and update these files is by accessing the file through the media content organizer, which lists all 

of a courses’ media objects (see Figure 3). Using a pre-established naming convention allowed us to 

quickly locate and replace old course objects when we needed to make changes to the training course, 

which occurred several times during the iterative course development and refinement process.  



 

 

Proceedings of the 6th Annual GIFT Users Symposium (GIFTSym6) 

 

236 

 

 

Figure 3. Training Assets in the media folder of GIFT’s Course Creator. 

A fourth lesson is the importance of developing a large hypermedia course such as this one in an iterative 

fashion. As a best practice, we developed the course one chapter at a time and conducted internal pilot 

testing between development cycles to ensure the course workflow and remediation materials were being 

implemented properly. During our pilot testing sessions, we examined extreme, correct, and incorrect 

responses to the quiz questions to ensure the course logic was correct, and we examined whether the 

remediation prompts were being executed correctly in order to tune course parameters and functionality. 

In addition to reviewing the behavior of these system level features, we also used testing as an 

opportunity to make any changes to the visual design of the course, such as making changes to font sizes 

and line spacing in our remediation prompts and messages prior to developing the rest of the course’s 

media objects; a change in the presentation style of one feedback message could potentially propagate to 

more than a hundred additional files if an author is not careful about phased development.  

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

Adaptive training systems show considerable promise for enhancing student learning across a range of 

domains. Recent advances in ITS authoring tools, as well as data-driven tutorial planning, are showing 

significant progress toward reducing the effort required to create personalized learning experiences. 

Reinforcement learning is a natural formalism for automatically inducing tutorial planning models to 

drive pedagogical decisions about instructional feedback and remediation. In order to utilize 

reinforcement learning techniques for data-driven tutorial planning, we have constructed an adaptive 

hypermedia-based training course in GIFT that is based on the UrbanSim Primer to teach foundational 

principles and doctrine on COIN operations. We utilize ICAP-inspired enhancements to GIFT’s EMAP to 

provide immediate feedback and remediation during the adaptive training course. Based on our 

experience creating the course, we have identified several best practices and lessons learned for adaptive 

course creation in GIFT. These include the importance of external prototyping, carefully tracking course 

revisions, devising consistent file-naming schemes, and emphasizing iterative design and development 

throughout course creation.  
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As a next step, we will deploy the adaptive training course in a human subject study using the Amazon 

Mechanical Turk crowdsourcing platform in order to collect a training corpus for investigating 

reinforcement learning-based tutorial planning. Following the study, we will utilize the dataset to induce 

control policies for adaptively personalizing remediation and feedback decisions to individual learners. In 

the future, we plan for these models to be incorporated back into the run-time adaptive training course and 

evaluated with a new cohort of learners in order to evaluate the effectiveness of reinforcement learning 

techniques for data-driven tutorial planning in GIFT.  

There are several promising avenues for future enhancements to GIFT. One recommendation is to include 

advanced previewing capabilities within the GIFT Course Creator. In particular, adding features that 

allow authors to preview adaptive course flow objects, and in particular, Remediation Quadrant materials, 

would be highly valuable. Currently, course authors can access and edit the content of the constructive 

and active remediation prompts, but they cannot preview how these prompts appear at run-time when they 

are presented by GIFT. The same previewing functionality would be useful for passive remediation 

content as well, such as local web pages, particularly if they could be previewed directly from adaptive 

courseflow objects in the Course Creator. 

Enhancements related to viewing and managing large numbers of media files would also be helpful to 

course creators. Including a feature that allows course authors to quickly view all of the media file labels 

attached to an adaptive courseflow object would significantly facilitate authoring for large courses. 

Currently, authors have to open each adaptive courseflow object and individually click on each quadrant 

to see which media files are linked to each quadrant. Including a feature that could quickly export or 

summarize this information at a high level would eliminate this process and would be a valuable tool for 

evaluating and refining the training course.  
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Effects of feedback framing and regulatory focus are task-

dependent 
 

Ashley H. Oiknine1,2, Kimberly A. Pollard3, Peter Khooshabeh2,3, Antony D. Passaro3, Benjamin T. Files3 

DCS Corporation1, U.C. Santa Barbara2, US Army Research Laboratory West3 

INTRODUCTION 

The Problem 

Training paradigms often depend on performance feedback to enhance motivation, increase engagement, 

and improve performance. However, the effects of feedback on task performance are mixed (Hattie & 

Timperley, 2007; Kluger & DeNisi, 1996). These mixed results may be explained by how individuals 

differ in their reactions to specific types of feedback, but this variability is often difficult to predict. 

Furthermore, task properties may influence feedback effectiveness. Feedback intervention theory, (FIT; 

Alder, 2007; Kluger & DeNisi, 1996) states that feedback interventions regulate behavior by changing the 

focus of attention to a particular discrepancy between performance and standards. Individual differences 

in goal orientations (i.e., trait regulatory focus) influence attentional focus, as well as intrinsic goals or 

standards, and therefore likely impact whether and to what extent feedback influences future 

performance. More study is needed investigating the effectiveness of feedback within the context of 

individual differences and their interactions with tasks and domains to inform learner models and better 

implement individually optimized instructional strategies. 

Relevance to GIFT 

The design of GIFT incorporates users’ individual traits to deliver tailored training. One of GIFT’s major 

design principles includes the delivery of individually tailored instructional interventions using 

empirically based generic instructional strategies (Wang-Costello, Goldberg, Tarr, Contron, & Jiang, 

2013). GIFT contains mechanisms to select appropriate feedback for given training tasks. Further refining 

a model which incorporates task properties and individual responses to feedback would improve GIFT’s 

ability to provide more tailored and effective training. What we present is (1) a particular trait to consider 

and (2) the implications that task properties may have in determining effective feedback. 

In the present work, we looked at the interaction of task affordances and trait regulatory focus as possible 

predictors of feedback effectiveness to inform GIFT’s existing models. Results can be incorporated into 

learner models but may also require domain module information for proper implementation. 

Regulatory Focus and Regulatory Fit 

Regulatory focus is a goal orientation construct (Higgins, 1998; Higgins et al., 2001) that contains two 

distinct motivational orientations that describe an individual’s propensity to approach gains or avoid 

losses:  promotion focus and prevention focus. Highly promotion-focused individuals have a tendency to 

pay more attention to opportunities for gain and are motivated by intrinsic ideals as compared to highly 

prevention-focused persons whose motivations are rooted in extrinsic obligation and avoidance of loss 

(Higgins, 1998; Van‐Dijk & Kluger, 2004). These propensities may have implications for responses to 

strategic affordances in tasks, such as eagerness/approach strategies and vigilance/avoidance strategies 
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(Higgins et al., 2001). Promotion and prevention scores are largely independent of each other 

(Summerville & Roese, 2008), and can be obtained from questionnaires such as the Regulatory Focus 

Questionnaire (Higgins et al., 2001). 

Regulatory fit theory (Higgins, 2000) predicts that when an individual’s regulatory focus is matched with 

the nature of a goal, object, or reward structure framing (i.e. point-gains for promotion and point-losses 

for prevention), a more motivated and engaged state is elicited as compared to when they do not align. 

According to this theory, matching a highly promotion-focused individual with feedback framed in terms 

of gains should yield a more motivated and engaged learner as compared to a highly prevention-focused 

individual and vice versa. In addition, the nature of the task itself and its strategic affordances should also 

influence regulatory fit. To investigate whether regulatory fit theory may be useful to incorporate in 

learner models, we examined the effects of regulatory focus, feedback framing, and task affordances 

within the context of two inhibitory control go/no-go tasks that varied in the timing and number of trials. 

Inhibitory Control 

Inhibitory control involves the ability to override or halt an otherwise automated response, especially 

when that automated response is wrong or inappropriate. The ability to suppress inappropriate responses 

is essential for healthy living and functioning. Deficiencies in inhibitory control contribute to the risk of 

engaging in maladaptive behaviors such as alcohol abuse (Kamarajan et al., 2004), poor sleep hygiene 

(Todd & Mullan, 2014), drug use (Fillmore & Rush, 2002), and over-eating (Houben, 2011). Individuals 

with a deficiency in inhibitory control experience difficulties with decision making (Shenoy & Yu, 2011), 

executive function and working memory (Carlson, Moses, & Claxton, 2004). Some work has shown that 

inhibitory control can be improved with training (Berkman, Kahn, & Merchant, 2014). For example, one 

week of inhibitory control training significantly reduced civilian casualties in a simulated hostage 

situation (Biggs, Cain, & Mitroff, 2015). Inhibitory control can be trained using a go/no-go task, in which 

participants are asked to press a button in response to a “go” stimulus and withhold a response to a “no-

go” stimulus. The simplicity of go/no-go paradigms makes them an excellent testbed for examining the 

effects of individual traits, feedback framing, and task strategic affordances. The flexibility of go/no-go 

paradigms allows the same basic task to be performed using different strategic affordances, which may be 

encouraged via subtle changes of stimulus timing. 

Current Research 

We tested the effectiveness of regulatory fit as a means of increasing performance on an inhibitory control 

training task in two experiments using different trial timelines. Based on previous literature that supports 

regulatory fit’s ability to elicit a more motivated state, we predicted in both cases that the training would 

be more effective when the feedback framing matched the trainee’s regulatory focus and the task’s 

strategic affordances. Both experiments showed effects of regulatory focus, but the effects were different 

in the two experiments. In Experiment 1, the more prevention-focused the individual, the better they 

learned under the loss-framed feedback condition. In Experiment 2, the more promotion-focused the 

individual, the worse they learned under a points-free feedback condition. The differences may have 

resulted from different task affordances in the two experiments: a vigilant strategy (loss-avoiding) in 

Experiment 1 vs. an eager strategy (gains-seeking) in Experiment 2. Overall, these results highlight the 

relevance of regulatory focus for learner models, the complexity of regulatory fit (i.e., 3-way rather than 

2-way fit), and how influential a small change in a task can be, if it changes the task’s strategic 

affordances. 
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METHODS 

Two similar experiments were run, differing in their number of participants and the timing and number of 

trials in the training task. Experiment 1 included 103 participants. Data from 10 of those participants were 

excluded based on pre-specified performance criteria, leaving 93 participants. Experiment 2 included 33 

participants, of which 3 were excluded based on the same criteria, leaving 30 participants. Experiment 2 

had fewer participants, because it was designed as a small-scale pilot for a future planned experiment. The 

voluntary, fully informed written consent of participants in this research was obtained as required by Title 

32, Part 219 of the CFR and Army Regulation 70-25. All human subjects testing was approved by the 

Institutional Review Board of the United States Army Research Laboratory. 

After completing an online pre-screener, participants were tested for normal visual acuity and color vision 

and completed a battery of questionnaires including the RFQ. After completing the questionnaires, 

participants completed the training task. In both experiments, the training task was a speeded go/no-go 

task with a computer-rendered character holding a gun as the go stimulus and the same character wearing 

different clothes and not holding a gun as the no-go stimulus. Go stimuli were four times as frequent as 

no-go stimuli. In both experiments, stimuli were visible for 400 ms and were presented at a randomized 

location on the screen. Participants had a limited time to press a response button in response to a go 

stimulus. In Experiment 1, participants were required to respond within 500 ms of image onset, whereas 

in Experiment 2, participants were required to respond within 1 s. After this deadline, feedback (see 

below) was displayed for 500 ms. In Experiment 1, the next trial began 500 ms after the end of the 

feedback, but in Experiment 2 the next trial began between 1 and 2 seconds later (uniform distribution). 

Training in Experiment 1 consisted of 30 blocks of 30 trials each, lasting 20-30 minutes total. In 

Experiment 2, training consisted of 20 blocks of 30 trials each; because the trials were longer, training 

lasted 20-30 minutes. 

After the training task, participants completed questionnaires about the training task. Next, participants 

completed the transfer task. The transfer task was a desktop simulation of being a passenger/spotter in a 

vehicle patrol of a middle-eastern-themed town with intermittent fog. As the vehicle proceeded, images 

would pop into the environment. The task was to classify those images as threats or non-threats, and to 

press a corresponding response button within 1 s of image onset. Two of the images were the go and no-

go images from the training task. The other two were a table either with (threat) or without (non-threat) a 

table cloth obscuring the view under the table. In total, there were 200 images. Periodically, a diffuse fog 

would obscure the view to make the task more difficult. There were 5 periods of fog and 5 periods of no-

fog, each averaging 1-minute in duration, and the transfer task took 10 minutes total. Finally, the 

participants completed another set of questionnaires. 

The main independent variable of both studies was the framing of feedback in the training task. 

Participants were randomly assigned to point-gain-based feedback, point-loss-based feedback, or an 

informative control. In both the point gain and loss conditions, go trials were worth 30-60 points, with 

faster responses receiving more points and no-go trials were worth 180 points. In the gain condition, 

participants began with no points, and points were presented as gains. In the loss condition, participants 

began with the maximum points possible for a block, and points were presented as losses. For example, 

an average response time on a go trial in the gain condition would earn +45 points, but in the loss 

condition it would lose 15 points. These scoring systems are mathematically identical, but differ only in 

their framing. The control feedback showed a green check or red x to indicate correctness, and in the case 

of a response on a go trial, it also indicated response time. 
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Many outcome variables were measured; here we focus on two of them to illustrate the different 

outcomes of the two experiments. These outcomes are change in correct rejection (i.e. successfully not 

responding on no-go trials) rate over the course of training (i.e. the first 3 blocks vs the last 3 blocks), and 

accuracy in responding to the character stimuli out of fog in the transfer task. Both of these quantities are 

typically expressed as proportions, but for analysis they were analyzed as the logarithm of odds ratios (i.e. 

logit-transformed) in order to better meet the assumptions of linear modelling. Data from both 

experiments were combined and analyzed using a linear model with predictors of prevention strength, 

promotion strength, feedback condition (dummy coded), and experiment (1 or 2). The model included 

interaction terms for each strength with condition and experiment, condition with experiment, and the 

three-way interactions of strength, condition and experiment. Coefficients are reported with uncorrected 

95% confidence intervals, and p-values are reported both uncorrected and corrected for multiple 

comparisons using false discovery rate (FDR). 

RESULTS 

Regression coefficient estimates with 95% confidence intervals appear in Table 1. There were no 

statistically significant effects of promotion strength on change in the logit correct rejection rate; 

however, there were effects and interactions involving prevention score, loss framing, and the experiment 

(1 or 2). The experiment term interacted with the effect of prevention strength, B = 1.15 [0.21, 2.10] 

 

Figure 1. Change in logit correct rejection rate in control, loss and gain conditions across Experiments 1 & 2. 

Circles show individual participant results. Solid lines show expected values, and dashed lines show 95% 

confidence regions of the expected values. 
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T(105) = 2.42, p = .017 (p = .065 FDR), the loss condition B = 10.86 [1.7, 20.02] T(105) = 2.35, p = .021 

(p = .070 FDR), and their interaction, B=-2.10 [-3.78, -0.41], T(105)=-2.47, p = .015 (p = .064 FDR). 

These interactions are visualized with slice plots (Figure 1) showing how expected change in the logit 

correct rejection rate varies with prevention strength under the three conditions and in the two 

experiments when promotion strength is held constant at the sample average. 

In the analysis of logit accuracy on the transfer task (Figure 2), the experiment factor interacted with 

promotion strength, B = -1.37 [-2.12, -0.63], T(105) = -3.66, p < .001 (p = .007 FDR), the interactions of 

promotion strength with loss framing, B = 1.52 [0.43, 2.62], T(105) = 2.76, p = .007 (p = .043 FDR), and 

promotion strength with gain framing, B = 1.81 [0.72, 2.90], T(105) = 3.28, p = .001 (p = .014 FDR). 

These reflect a negative effect of promotion strength on performance in the control condition in 

Experiment 2 that was not apparent in Experiment 1; moreover, this negative effect is counter-acted in 

both the gain and the loss conditions by effects in the opposite direction of the coefficient on the control 

condition.  

Table 1. Regression coefficients and statistics 

 
 B 95% CI tStat p FD

R Change in logit correct rejection rate 

(Intercept) 1.57 

     prev. -

0.50 

-0.96 -

0.04 

-2.16 .03

3 

.091 

pro. -

0.11 

-0.63 0.41 -0.43 .66

9 

.711 

loss -

6.72 

-

10.84 

-

2.60 

-3.23 .00

2 

.014 

 

Figure 2. Logit accuracy on the trained stimulus with no fog in control, loss and gain conditions across 

Experiments 1 & 2. Circles show individual participant results. Solid lines show expected values, and dashed 

lines show 95% confidence regions of the expected values. 
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gain -

2.63 

-6.08 0.82 -1.51 .13

4 

.239 

Exp. 2 1.09 -4.36 6.54 0.40 .69

2 

.713 

prev:loss 1.41 0.72 2.10 4.06 .00

0 

.003 

pro.:loss 0.68 -0.23 1.59 1.47 .14

3 

.244 

prev.:gain 0.64 -0.05 1.34 1.83 .07

0 

.158 

Continues       

 

Table 1 Continued      

 

B 95% CI tStat p FD

R Change in logit correct rejection rate 

pro.:gain 0.28 -0.48 1.04 0.74 .46

4 

.563 

prev:Exp. 2 1.15 0.21 2.10 2.42 .01

7 

.065 

pro.:Exp. 2 -

1.17 

-2.56 0.21 -1.68 .09

6 

.188 

loss:Exp. 2 10.8

6 

1.70 20.0

2 

2.35 .02

1 

.070 

gain:Exp. 2 -

3.05 

-

11.78 

5.67 -0.69 .48

9 

.574 

prev.:loss:Ex

p. 2 

-

2.10 

-3.78 -

0.41 

-2.47 .01

5 

.064 

pro.:loss:Exp. 

2 

-

1.10 

-3.14 0.93 -1.07 .28

6 

.405 

prev.:gain:Ex

p. 2 

-

1.09 

-2.40 0.21 -1.66 .10

0 

.188 

pro.:gain:Exp

. 2 

1.46 -0.57 3.49 1.42 .15

7 

.255 

Logit accuracy for trained stimuli out of fog 

(Intercept) 1.04 

     prev. -

0.13 

-0.38 0.12 -1.03 .30

4 

.414 

pro. 0.09 -0.19 0.37 0.65 .51

8 

.587 

loss -

1.48 

-3.70 0.74 -1.32 .18

9 

.279 

gain -

0.81 

-2.66 1.05 -0.86 .39

1 

.492 

Exp. 2 3.16 0.23 6.10 2.14 .03

5 

.091 

prev:loss 0.41 0.04 0.78 2.21 .02

9 

.090 

pro.:loss 0.05 -0.44 0.54 0.20 .84

3 

.843 

prev.:gain 0.39 0.02 0.76 2.07 .04

1 

.099 

pro.:gain -

0.12 

-0.53 0.29 -0.60 .55

2 

.606 

prev:Exp. 2 0.70 0.19 1.21 2.73 .00

8 

.043 

pro.:Exp. 2 -

1.37 

-2.12 -

0.63 

-3.66 .00

0 

.007 

loss:Exp. 2 -

4.15 

-9.08 0.77 -1.67 .09

7 

.188 

gain:Exp. 2 -

6.20 

-

10.89 

-

1.51 

-2.62 .01

0 

.049 

prev.:loss:Ex

p. 2 

-

0.63 

-1.54 0.27 -1.39 .16

9 

.261 

pro.:loss:Exp. 

2 

1.52 0.43 2.62 2.76 .00

7 

.043 

prev.:gain:Ex

p. 2 

-

0.36 

-1.06 0.35 -1.01 .31

7 

.414 

pro.:gain:Exp

. 2 

1.81 0.72 2.90 3.28 .00

1 

.014 

DISCUSSION 

Although both experiments demonstrated effects of regulatory fit between participant regulatory focus 

and feedback framing, the effects were different. This suggests that regulatory focus could usefully be 

incorporated into individual learner models, but that these models might also need to be task-dependent. 

The differences between our two experimental training tasks were in the timing and number of the trials. 
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The different regulatory fit relationships may result from the different strategic affordances these timing 

differences offer. In Experiment 1, responses were required to be fast (< 500 ms), and there was no 

variability in the inter-trial-interval. These factors together may have encouraged a strategy in which 

responding was essentially automatic unless it was canceled by some inhibitory process. In other words, 

success on this version of the task may have relied upon the participant adopting a vigilant strategy of 

avoiding false alarms on no-go trials. In Experiment 2, the slower pace and the unpredictability of 

stimulus onset might have reduced the automaticity of the go response, so rather than focusing on 

avoiding errors, participants might have focused on quickly reacting to stimuli and therefore relied on an 

eager/approach strategy. With only 30 participants, this interpretation should be considered tentative until 

more data is collected. Taken together, these experiments are consistent with the effect of feedback 

framing on performance depending on a three-way interaction among individual regulatory focus, 

feedback framing, and the strategic affordance of the task in question. 

The three-way interaction has practical consequences, in that it would lead to recommending different 

point-based feedback interventions based not only on an individual’s regulatory focus but also on the 

nuances of the task.  For example, framing feedback in terms of loss of points appears beneficial for 

training prevention-focused individuals, but only if the task itself has a prevention-like (e.g., vigilant) 

strategy. Applying loss-based feedback for prevention-focused individuals in other tasks may not be 

helpful. In the case of Experiment 2 (eager/approach task strategy), we found that the more promotion-

focused an individual, the worse they did in the absence of point-based feedback. Either gain-framed or 

loss-framed points feedback eliminated this performance decrement. This unexpected result may have 

come about due to the extra and more variable timing in the second experiment. There may have been just 

enough time to allow the promotion-oriented participants to interpret either form of point-based feedback 

as indicative of achievement. This highlights the potential complexity of regulatory fit theory and of its 

application in practice. 

Overall, our findings point toward the need to include regulatory focus as a trait in individual learner 

models (see also Reinerman-Jones, Lameier, Biddle, & Boyce, 2017), as a potential source of adaptation 

(Goldberg et al., 2012) in training frameworks. More work is needed to develop an ontology of tasks and 

their strategic affordances in order to better predict the interaction effects of regulatory focus with 

different kinds of feedback, and the resulting effects on learner performance. Stronger predictive models 

could be incorporated into GIFT to support optimal feedback framing selection in different task domains.    

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

This work examined the effects of regulatory focus and feedback framing on performance in two go/no-

go training tasks that differed in the timing and number of trials. Three major conclusions stem from this 

work. 

1) Regulatory focus is an important individual trait worth including in learner models for improving 

training outcomes. 

Regulatory focus describes an individual’s goal orientation. It is an individual trait tied to reward-based 

behavioral motivation, and thus is expected to influence how different individuals respond to reward-

based training interventions and feedback. Our work revealed significant effects of regulatory focus on 

how individual trainees responded to feedback framing in a go/no-go paradigm. Trainees’ prevention 

focus or promotion focus, under different feedback conditions and different strategic affordances, 

predicted performance improvements or decrements. Regulatory focus is simple to measure with a short 

questionnaire and can be included in learner models. These may be used by learner modules to determine 
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states and thus help pedagogical agents select appropriate feedback framing options to maximize 

performance.  

2) Regarding regulatory fit theory, a 3-way model of regulatory focus x feedback-framing x task strategic 

affordances may be more predictive of training outcomes than the traditional 2-way model of regulatory 

focus x feedback-framing. 

The timing differences in our go/no-go paradigms yielded outwardly similar tasks that nonetheless 

differed in their strategic affordances. The first experiment’s task encouraged a vigilant (i.e., error-

avoiding) strategy by creating a rhythmic, pre-potent response to go stimuli that required inhibitory 

control to prevent that response in no-go trials. The second experiment’s task encouraged a more eager 

(i.e., achievement-seeking) strategy by rewarding rapid response to go stimuli that were less predictable 

in their onset. By exploring the relationship between regulatory focus and feedback framing on two 

strategically different tasks, we uncovered evidence of a 3-way regulatory fit effect. The mechanisms 

underlying this effect remain to be examined in future work. Measurements of motivation, attention, or 

other affective or physiological states may shed light on what mediates the 3-way regulatory fit effect. 

3) Small differences in training tasks, such as the timing differences in our study, may substantially affect 

the way that human variability dimensions interact with feedback framing and other personalized training 

interventions.  

The scientific literature shows mixed results for a variety of training interventions, including various 

points-based reward schemes used for gamifying training tasks (Hamari, Koivisto, & Sarsa, 2014; Hanus 

& Fox, 2015; Seaborn & Fels, 2015) One possible explanation for this variability is that superficially 

similar tasks may in fact encourage different strategies, and the most effective feedback framing may 

depend on the strategy that the task is encouraging trainees to use. In our study, a subtle difference in 

timing was enough to yield tasks that relied more or less on vigilant vs. eager strategies, even though both 

were go/no-go tasks with the same visual stimuli and same points-based feedback. This highlights a need 

to think clearly about what strategies a given training task may afford. It may be beneficial to develop an 

ontology of strategic affordances of candidate tasks and consult this when designing training interventions 

that rely on regulatory fit or, by extension, fit with other individual trainee traits or states. Strategic 

affordance may be a useful variable to include in domain modules in intelligent tutoring systems like 

GIFT.  
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Expanding Domain Modeling in GIFT: 2018 Update 
 

Robert A. Sottilare, Ph.D. 

US Army Research Laboratory – Human Research & Engineering Directorate (ARL-HRED) 

Learning in Intelligent Tutoring Environments (LITE) Lab 

Center for Adaptive Instructional Sciences (CAIS) 

INTRODUCTION 

Building upon last year’s domain modeling update (Sottilare, 2017), the purpose of this paper is to 

educate users of the Generalized Intelligent Framework for Tutoring (GIFT; Sottilare, Brawner, 

Goldberg, & Holden, 2012; Sottilare, Brawner, Sinatra, & Johnston, 2017) about new and emerging 

capabilities to represent a broader variety of task domains in Intelligent Tutoring Systems (ITSs) in 

support of adaptive instruction. Adaptive instruction delivers content, offers feedback, and intervenes 

with learners based on tailored strategies and tactics with the goal of optimizing learning, performance, 

retention, and transfer of skills for both individual learners and teams.  

GIFT is a tutoring architecture that has evolved over the last six years with three primary goals: 1) reduce 

the time and skill required to author ITSs, 2) automate best practices of instruction in the policy, 

strategies, and tactics of tutoring, and 3) provide a testbed to assess the effectiveness of adaptive 

instructional tools and methods with respect to learning, performance, retention, and transfer of skills.  

Another overarching goal for GIFT has been to adapt ITSs to provide instruction in militarily-relevant 

training and educational domains.  For training domains, this means psychomotor tasks that involve both 

physical and cognitive aspects. 

Currently, most ITSs are focused on cognitive task domains (e.g., problem solving and decision making) 

in academic topics that primarily include software programming, physics, and mathematics.  While there 

are many military task domains that involve cognitive skill development (e.g., military planning processes 

and assessment of battlespace strategies and tactics), many more involve interdependent team processes 

(e.g., building clearing) and psychomotor skills (e.g., marksmanship).  It is for this reason that we desire 

to extend current capabilities in GIFT to support content delivery, assessment, and remediation processes 

for more complex team and psychomotor tasks while simultaneously enhancing the effectiveness of 

individual instruction in cognitive and affective domains. In 2015, Sottilare, Sinatra, Boyce, & Graesser 

documented domain modeling goals, challenges and approaches to providing adaptive instruction in 

various domains.  The following section describes some of the challenges to expanding domain modeling 

beyond cognitive tasks and beyond the current model of desktop training.    

The following sections examine areas of enhanced, new or emerging capabilities in support of expanding 

GIFT to a wider variety of task domains.    

TUTORING MARKSMANSHIP 

While this was reported in last year’s update (Sottilare, 2017), it is worth noting that there remains growth 

potential in the marksmanship task domain.  Although, GIFT has now been integrated with PEO STRI’s 

Engagement Skills Trainer (EST) to demonstrate interaction of the learner, there is more to be done to 

fully demonstrate GIFT as a psychomotor task tutor.  The current implementation provides training with 

stationary targets, assessment of the learner’s performance, and remediation of any detected errors by the 

tutor with respect to the Army marksmanship principles.   Ideally, future versions of GIFT will also allow 
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the integration of new weapons (e.g., different rifles and pistols) and their associated expert models.  We 

project that many of the sensors needed to acquire weapon cant and aim points could remain the same 

depending on the size of the weapon and certainly the breathing harness would not change with a change 

in weapons. 

To ease the process for developing ITSs for psychomotor task domains, we have invested in an agent-

based approach to guide authoring of psychomotor tasks (see paper #2 in this year’s GIFTSym by Brown, 

Goldberg, Bell, & Kelsey, 2018).  This approach includes automated acquisition of sensor data and uses 

this data with reinforcement learning to develop expert models for psychomotor tasks.  

TUTORING MEDICAL TASKS 

Previously, we reported that GIFT had been used to provide tailored training of military tasks using 

desktop applications (e.g., Virtual Battlespace and Virtual Medic). The degree of transfer of skills from 

training to operations was limited in these environments since the training primarily exercised cognitive 

functions.  So in 2016, Sottilare, Hackett, Pike & LaViola examined how commercial sensor technologies 

might be adapted to work with GIFT and support tailored computer-guided instruction in the 

psychomotor domain for a military medical training task, specifically hemorrhage control. While this 

concept was well-thought out, the implementation has been hampered by changes in technology, 

specifically the turnover of commercial smart glasses in the market. 

Recently, Julian (2018) applied GIFT to the task of basic robotic surgical skills.  The purpose is to help 

train physicians on both the cognitive and basic knowledge of skills needed to use the most commonly 

known robotic surgical system, the da Vinci.  Two skills were taught in the GIFT-based course: camera 

control and interrupted suturing.  Again, the focus of the instruction was primarily cognitive (knowledge 

components) and GIFT’s ability to support physical measures during practice were limited.  Ideally, some 

type of board or mannequin might be used in combination with sensors to detect the delicate control 

required for this type of robot-assisted surgery and we are evaluating how this might be accomplished 

across a variety of tasks.  One approach could be embedded training where GIFT is used to stimulate a 

system (e.g., da Vinci) and the interface used by the learner is the same one used during the actual work 

task.  This type of approach would reduce any negative training introduced by poor attempts to replicate 

the interface. 

Another potential medical domain application of GIFT is being developed at Columbia University and the 

Morgan Stanley Children’s Hospital in New York.  The pediatric physicians on staff at the hospital are 

exploring the use of GIFT to train pediatric residents.  The ARL adaptive training team provided a short 

course on authoring using GIFT in January 2018 and the staff is assembling content for their first course.  

The intent is to use GIFT to augment the instruction of pediatric residents in a self-regulated (computer-

regulated) learning environment.   

On the research side of GIFT domain applications, we are engaged in the development of an experimental 

protocol to investigate accelerated learning models in GIFT for medical military and civilian training 

(Sottilare & DeFalco, 2018).  Data collection has already begun and will involve several user groups from 

United States Military Academy, Columbia University, University of Wisconsin, and Amazon 

Mechanical Turk (MTurk).  
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TUTORING PSYCHOMOTOR TASKS WITH TACTICAL BREATHING  

Last year, we reported information about an experimental approach involving psychomotor tasks and 

tactical breathing (Kim, Dancy, Goldberg, & Sottilare, 2017). Tactical breathing is a specific breath-

control technique used by individuals to perform a precision action required for a psychomotor task in a 

stressful environment (Neumann & Thomas, 2009; Neumann & Thomas, 2011).  The focus of this 

research is to examine the relationship between cognitive (e.g., attentional resources) and physiological 

(e.g., breathing) factors during the execution a psychomotor task (i.e., golf putting). It is not well 

understood that how the corresponding mechanisms of attentional control interact with the physiological 

factors as the learner progresses to the learning stage. An experimental protocol has been drafted and the 

experimental apparatus is being developed to support the measurement of critical factors during task 

performance.  Data collection is scheduled for the Fall of 2018.   

TUTORING IN THE WILD (LIVE, AUGMENTED OR MIXED REALITY)  

An important aspect of the value of ITSs is associated with their accessibility or ability to go where 

learners go.  Often referred to as mobile learning, instruction delivered to portable computing devices 

(e.g., laptops computers, smartphones or tablet computers) and managed remotely by either human or 

artificially-intelligent tutors, we are advocating an expanded capability that could be delivered to learners 

in either live, augmented, or mixed reality environments.  We consider this an important design feature 

for ITSs so that they can support learning as an augmentation in a variety of environments where military 

personnel might be assigned.  To this end, we continue to examine opportunities to link GIFT through 

interfaces that can expand learner experience and knowledge.   

As reported last year, we are continuing to evaluate the application of various hardware platforms (e.g., 

smartglasses, mobile devices).  A large part of our domain application effort this year has been dedicated 

to providing a proof of concept for land navigation training to USMA.  This concept provides learners a 

means of planning their routes (Virtual BattleSpace) and executing their routes (live environment 

augmented with a phone-based mobile application (Figure 1). 

 

Figure 1. GIFT Mobile Application for Land Navigation Training 
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Moving we anticipate more eyes on the tutoring in the wild problem space.  Last year, the North Atlantic 

Treaty Organization (NATO) approved a research task group (RTG) to examine existing and emerging 

augmentation technologies to enhance human performance in both instructional (training and educational) 

domains as well as work/operational domains.  The broad scope of this RTG includes the use of ITSs to 

deliver and manage instruction as well as support mission essential tasks as a job aid.  In addition to the 

US, this group has garnered interest from eight NATO countries which implies its importance. 

TUTORING TEAM DOMAINS: TEAMWORK AND TASKWORK 

One way of extending domain-independence in GIFT to the modeling of teams is to separate domain-

independent teamwork behaviors from task-specific, domain-dependent behaviors. Salas (2015) 

distinguishes teamwork, interactions between team members, from taskwork, behaviors demonstrated in 

executing the task.  An examination of teamwork activities (e.g., coaching or conflict management) via a 

meta-analysis of the team training and performance literature led to the identification of several behavior 

markers for high performing teams (Sottilare, et al, 2017).  Next steps are to seek methods to 

unobtrusively acquire these behavioral markers in order to identify team states and subsequently assign 

the ITS to manage them. 

 

Currently, there are no tools or methods available in the public baseline for modeling or tutoring teams in 

GIFT.  We are continuing to develop a model of team tutoring in which we will incrementally provide 

team instruction through GIFT without human intervention.  While the specific approach is not yet set in 

stone, it might look something like this: 

 

 Configure GIFT to identify hierarchical concepts or learning objectives associated with team 

taskwork (GIFT can already do this) 

 Configure GIFT authoring tools to support the development of team models and associated 

measures 

 Configure GIFT authoring tools to support the development of sub-team and multiple individual 

models and associated measures, roles, and responsibilities 

 Configure GIFT authoring tools to support the development of a team strategy engine based on 

teamwork (domain independent) best practices. 
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The 2018 Research Psychologist’s Guide to GIFT 
 

Anne M. Sinatra1,  

US Army Research Laboratory1 

INTRODUCTION (DON’T PANIC) 

When approaching making a sequel, whether it is a movie, book, or even a research paper, one of the 

goals is to recapture the elements that people enjoyed about the original, while building on it to provide a 

wholly new experience. A long time ago (4 years), in a galaxy not so far away, I wrote the first version of 

“The Research Psychologist’s Guide to GIFT” (Sinatra, 2014). I started my guide with two important 

words: “Don’t Panic”. I also was sure to start my 2016 sequel to the guide (Sinatra, 2016), and the current 

paper with the same words. These words serve as a reminder that while the Generalized Intelligent 

Framework for Tutoring (GIFT) can seem overwhelming at times, it is a very powerful tool for a research 

psychologist, and there are guides such as this and previous ones that will help you so that you do not 

become overwhelmed. The words also reference the fictitious Hitchhiker’s Guide to the Galaxy (Adams, 

1979), which had those two words on the cover and sold more copies than any other similar text (due to 

be reassuring, and slightly cheaper).  

The current work does not necessarily replace the previous two guides, but it builds on and updates them, 

as any good sequel should. GIFT ultimately is a research-based project, and as part of that model the 

software has been continuously updated. In the current guide, there will be explanations of the software 

overall, as well as changes that have occurred in GIFT 2017-1, GIFT Cloud, and the upcoming GIFT 

2018-1. 

WHAT IS THE GENERALIZED INTELLIGENT FRAMEWORK FOR 

TUTORING? 

GIFT is a domain-independent framework for creating intelligent tutoring systems (ITSs) (Sottilare, 

Brawner, Sinatra & Johnston, 2017). In an ITS, the domain is traditionally highly coupled with the tutor 

itself. GIFT provides the tools and foundation such that an instructor, researcher, or subject matter expert 

can bring materials that he or she already has and use it to create new ITSs. If there is overlap between 

previously created courses or surveys they can be reused in the new course, and the materials (such as 

PowerPoints or PDFs) can be easily changed out for other existing or created materials. GIFT has been 

designed primarily for use in creating ITSs, however, its other goals include providing functionality to 

conduct research, and to be used as a testbed.    

Research that is conducted with GIFT can take two forms: experiments specifically focused on the 

applications of intelligent tutoring, which can utilize remediation, and more traditional linear experiments. 

A general overview of different types of experimentation with GIFT is also available (Sinatra, 2017). The 

current paper will focus on the latter of these two types of experiments, the traditional linear psychology 

experiments that do not utilize ITS remediation. One of the strongest features of GIFT is the ability to put 

a number of materials of different types (e.g., PowerPoints, PDFs, html, images, and surveys) together in 

a consistent and fluid sequence that does not require intervention from an experimenter to move on from 

one file type to the next.  This reduces the number of research assistants that are needed to run a study, 

reduces the possibility of human error, and allows for multiple participants to easily be simultaneously 

run in the experiment. 
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GIFT provides the tools to create a “course” or sequence items that are displayed in a specified order. To 

create an experiment with multiple conditions, the original course can be created, and copied. The 

appropriate changes can then be made to the relevant materials in each of the additional conditions. Once 

a participant arrives they can be setup on a computer that is running the necessary condition. Or if the 

study is being done online, they can be provided with a link that is specific to the experimental condition 

that they were assigned. GIFT provides tools to create the flow of the experiment, hosts/generates online 

links for cloud based studies, and provides ways for experimenters to extract their data from the 

experimental sessions. 

There are two different versions of GIFT: desktop based and cloud based. The functionality of these two 

versions of GIFT is very similar, but there are considerations that should occur when deciding between 

which version of GIFT to use. In the current paper the differences between them will be briefly discussed, 

but previous Research Psychologist’s Guide papers (Sinatra, 2014; Sinatra, 2016) focused primarily on 

the desktop based versions. For the purposes of the current paper, the focus will be primarily on the Cloud 

based implementation of GIFT, and how it can be utilized for experiments. 

CREATING AN EXPERIMENT WITH GIFT 

An experimenter can author a GIFT course that consists of the different components that he or she wants 

to present to the participants.  As noted above, in order to create multiple conditions, multiple versions of 

the same course can be created with the appropriate manipulation of interest included in each of them. 

GIFT Authoring Tools 

The GIFT Authoring Tools are used to create GIFT courses, and have an easy to use drag and drop 

interface. The Authoring Tools have gone through many iterations and developments through the years, 

and the interface has been updated significantly since the previous Research Psychologist’s Guide paper 

(Sinatra, 2016).  The current version of the GIFT authoring tools is shown in Figure 1. The left side of the 

screen has course objects that can be added to the course, and the right side of the screen is a timeline that 

shows the flow of the GIFT course that is authored. The example in Figure 1 is a subset of one of the 

conditions of a previous experiment (Sinatra, Sims, Sottilare, 2014). The sequence of items displayed are, 

introductory text, a survey, information text, an interactive PowerPoint, an information text, a survey, 

introductory text, a survey, and finally information text. The course continues on and would be visible if 

the screen was scrolled by the experimenter. Each of these items will be automatically presented the 

participant in sequence without the need for intervention by a research assistant. In the case of 

PowerPoint, GIFT connects to the instance of PowerPoint that is on the participant computer and 

opens/closes it as appropriate. 
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Figure 1. The current version of the GIFT authoring tools. 

The structure of the course is created by the experimenter, and can be rearranged as needed. There are a 

number of “public” courses that are available by default with each new GIFT account. On the main tile 

login screen of GIFT, instead of clicking to run the course, you can click on “Edit Course” which will 

open it in the course authoring tool. As demonstrated in Figure 1, the courses may say “Read-Only”, but 

they can still be opened in the authoring tool and the components, order and configurations can be 

viewed. If you would like to make changes to these courses you can do so by copying them on the course 

tile page, and making edits to the copy. These courses are a great place to start in order to get comfortable 

with how GIFT is set up. 

Course Objects 

In order to begin authoring a new course, the experimenter can access the Course Authoring Tool from 

the top menu, and then can drag an item from the left side of the screen onto the timeline on the right side. 

Each individual item (e.g., “Information as Text”) can then be selected, and configured. The configuration 

window for each item will appear on the far right side of the screen when a course object from the 

timeline is selected.   

Many of the course objects are straight forward and self-explanatory. For instance, “information as text” 

allows the experimenter to provide information (such as instructions) that will simply be presented to the 

participant. A web address, PDF, or local web page can also be used during the course.  

An important distinction is made between the Slide Show object and the PowerPoint object. If you have 

already existing materials in PowerPoint that you would like to use, or you would like to create your 

informative material with PowerPoint’s interface, you can then use what you created in your GIFT 

course. The Slide Show object should be used when there is no interaction between the participant and the 

PowerPoint course itself, and there is no multimedia present in it. The Slide Show object makes 

individual images of each slide that you upload, and converts it into an easy to navigate slideshow. In 

order to use it, the original file that is uploaded should be in .pps form (PowerPoint 2003 show form).  

One of the advantages of using the Slide Show is that it does not need to open and close the actual 

PowerPoint program, which means that in the cloud this will run extremely smoothly and not require a 

connection to be made between the participant’s computer and GIFT. If it is necessary to interact with 

PowerPoint using macros, Visual Basic for Applications or even to include multimedia such as sounds or 

videos, then a PowerPoint object needs to be used. In this case, when the individual runs the course in the 
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cloud it will require downloading and installing a brief java webstart application to connect the 

PowerPoint software on the computer to GIFT. This can take time and requires that the participant go an 

extra step. Additionally, it not only requires that the participant have PowerPoint on their computer, but 

that it is a version that GIFT is compatible with. Therefore, unless the PowerPoint is interactive, or 

adaption needs to occur during it, the preferred item to use is the Slide Show. 

As a note, with the Slide Show item there are navigational arrows at the top of the slides. One button will 

be to go back a slide (this option can be taken away if the course author wants it to be), to go forward a 

slide, and to complete the entire Slide Show. It may be helpful to provide instructions to the participants 

to let them know the difference between the arrow that goes forward a slide, and the one that completes 

the show so that they do not accidentally exit out of the show. 

In the case of both objects, they will require a .pps (2003 PowerPoint show) file, but GIFT will handle 

them differently. This PowerPoint file is created by selecting “Save As” and scrolling to ‘PowerPoint 

1997 – 2003 Show (*.pps)” in the “Save as type” selection. If a different type of file is used, it will not be 

able to be uploaded. Additionally, if macros are to be used for a PowerPoint object, the correct version to 

save is “PowerPoint Macro Enabled Show (*.ppsm)”.  PowerPoint objects will require a GIFT compatible 

version of PowerPoint to be installed on the computer that is being used for participation. The Slide Show 

Object does not require that PowerPoint be on the computer that is being used. A quick reference table of 

when it is most advantageous to use each object is displayed in Table 1. 

Table 1. Comparison Chart for when to use PowerPoint Objects vs. Slide Show Objects 

Requirement PowerPoint Object Slide Show Object 

PowerPoint with or without images and no interactions  X 

Videos or Audio in the PowerPoint Presentation X  

Visual Basic for Applications or Macros is used X  

Online presentation of materials on participant’s own 

computer 

 X 

Assessment or time spent on slides is needed X  

 

Survey Authoring  

The survey authoring system is a very important tool to a research psychologist. Since the previous 

version of this guide the survey has system has undergone significant changes and improvements. 

Usability was the number one focus of the changes, and many of the extraneous details such as setting up 

survey contexts were removed. However, an important distinction must be made between the Survey/Test 

object, and the Question Bank object. Additionally, within the Survey/Test object there are three options 

that can be selected for use when creating a survey. It is important to understand what the functions are of 

each type of survey to ensure the correct one is authored. Figure 2 provides a display of the three types of 

options provided when an experimenter pushes “Create New” on the Survey/Test window pane. 
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Figure 2. A screenshot of the three types of surveys. 

In the case of a demographics survey, in which learner information will be recorded but not be used 

actively during the experiment the proper selection to use would be “Collect Learner Information”. If the 

intention was to assess the learner knowledge in the form of a score on a specific series of questions, then 

the option to select is “assess learner knowledge”. In this case the information will be actively graded 

during the course, and can be used to make selections about what materials are presented. The survey 

author also has the ability to note what is considered a novice, journeyman and expert for the specific 

survey. Figure 3 provides a screenshot example of the “Assess Learner Knowledge” option. Note that the 

slider at the top of the screen can be used to adjust the percentages correct that are required to be 

classified in each category. 

 

Figure 3. Screenshot of Assess Learner Knowledge Survey type. 

Questions are added using the buttons on the bottom of the screen. After question text is added scoring 

and correct answers can be added by clicking on the “Scoring Mode” button on the top of the screen, 
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which will add some additional features to the interface. The correct answer can be provided by putting a 

number point value such as 1 for correct and 0 for incorrect next to the options for each question. 

The Question Bank object is similar to a survey, but draws on a larger set of questions that have been 

authored within the course. If an experimenter wants to provide a randomized selection of questions that 

are associated with specific concepts, he or she may choose to use the question bank. It is also necessary 

to define course concepts by clicking on the “Course Properties” tab on the main Course Authoring Tool 

page (this tab can be seen on the left side of the screen in Figure 1).  The issue that may be run into when 

using a question bank in an experiment, is that unless the same number of questions that are authored is 

selected as the number of questions given, you cannot be sure of what questions will be provided to the 

participants. Therefore, this functionality is more advantageous for actual team tutors, or experiments in 

which the questions themselves are being varied. Table 2 provides a quick guide to when to use the 

Survey/Test Object as opposed to the Question Bank Object. The question bank is also utilized within an 

adaptive courseflow object, which his beyond the scope of the current paper. 

Table 2. Comparison Chart for when to use Survey/Test Object vs. Question Bank Object 

Requirement Survey/Test Object Question Bank 

Object 

Present questions in a random order   X 

Present questions that are associated with   concepts  X 

Collecting demographics information X  

Using a questionnaire or measure that requires a specific 

order of presentation 

X  

Not all generated questions are required to be answered  X 

Using an assessment that requires all questions to be 

answered and to be shown in a specific order 

X  

Questions will be reused in Adaptive Course Flow object  X 

 

Creating a “Tag” or name for each question is extremely important, as otherwise it will output simply 

with a number associated with when the question was authored. The place to create the tag is visible on 

the right side of the screen in Figure 3. Without a tag, it is very difficult to figure out which question 

response is which. Therefore, when authoring the question be sure to put a short word in the “Tag” box 

that will let you know what it means so that you can go back later and look at the survey data easily. 

EXPERIMENTAL PROCESS 

A very important decision that will need to be made is whether the experiment will be run on the cloud or 

locally on a computer. The way that data is extracted and saved will be different depending on the 

approach that is used. In the previous guide (Sinatra, 2016) an in-depth explanation is provided about how 

to use “Experiment Mode” on the local computer. If you wish to use “Experiment Mode” and create 
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experiment specific user IDs, please refer to the previous paper. For the current paper, the approach of 

“Publishing Courses” and the difference between desktop vs. cloud mode will be discussed. 

Publish Course and Participant Management 

Once you are happy with the course that you created you will click on “Public Course” at the top of the 

screen. You will then select the “Publish Course” button on the left side of the screen. This will bring up a 

screen that allows you to publish the course as an experiment, and add a specific course name and 

description. At the bottom of this screen you will select the course that you wish to publish. If you have 

three experimental conditions then you will do this three times, each with a different published course 

name that will make sense to you the experimenter, and your research assistants. See Figure 4 for a 

screenshot of the “Publish Course” screen. 

 

Figure 4. Screenshot of the Publish Course screen 

Once you “publish” a course it makes a copy of the course at the current moment in time. Any changes 

you make to the original course after this point will not populate into the previously published instance of 

the course. If you need to make a change you will need to publish the course again, using a different 
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course name. It will be important to make sure that you save any collected participant data, as it will not 

transfer over to your new published course. 

Once you create your course you will get a notice that says “Experiment Created!” and has the URL that 

you can provide to the participants to access it. If you are using the cloud version of GIFT, this will be a 

cloud.gifttutoring.org URL. If you are using the desktop version, it will be a local URL that can be pasted 

into the web browser to bring up the course on your computer without needed the participant to log in to a 

GIFT account. 

Since publishing your course does not require a GIFT account or login, you will need to be sure to clearly 

provide a participant number to each participant. You will also need to author a survey item at the 

beginning of your experiment that requires the participant number to be entered. This is extremely 

important, as it is the only way that you will be able to match up the participant with their specific data. 

Extracting Data and Building Reports 

Each experiment or published course that you have created can be found and accessed on the “Publish 

Courses” screen. Active experiments are in green, and paused experiments are in red. Once you have 

clicked on your current experiment, it will provide you with the URL, number of attempts and last 

attempt time. The interface to interact with your published course/experiment can be seen in Figure 5. The 

information below refers to the cloud version of GIFT, however, the process is very similar on the 

desktop version of GIFT and uses the same tools. 

 

 

Figure 5. Published Course interface 

Further, it has the options of “Pause”, “Export Raw Data” and “Pause and Build Report”.  Each of these 

are very important functions. “Pause” allows you to temporarily stop collection of data; you might do this 

if you have collected data from the maximum number of participants that you need. “Export Raw Data” 
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allows you to download the full GIFT log for each participant so that you can later extract it on the 

desktop version of GIFT. This function is most helpful if you used real-time assessment in a training 

application like PowerPoint. It is likely that for a straightforward experiment it will not be used. The most 

important option is “Pause and Build a Report”. This allows you to extract data from the participant logs. 

If you have simply are interested in the input that participants gave in surveys, then you will select 

“Survey responses”. In most cases it will be helpful to also click “Merge each participant’s events into a 

single row”. This will arrange it so that each participant is on a different line in the output spreadsheet, 

and that the question names are on the top of each column. Once you click create report, it will provide a 

report for you to download, which can then be opened in Excel to be saved as a spreadsheet, and 

subsequently SPSS if desired. At this point it is very important that you tagged each question with a name 

so that you can see which responses belonged to each question for later grading or coding. See Figure 6 

for a screenshot of the “Build Report” screen with survey responses selected. 

 

Figure 6. Build a Report Screenshot 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

The current paper provides a guide for research psychologists who would like to use GIFT to conduct 

traditional psychology experiments. Many changes have occurred over the years in GIFT, and one area 

that works, but is not perfected is participant management and the extraction/organization of data after 

conducting an experiment. Future research and development in GIFT can include updating the data 

extraction tools to provide more information to researchers, and clearer options. Additionally, while the 

current implementation of published courses allows for a question to be asked that can gather the 

participant number, it does not automatically link a number to the session that is visible to the 

experimenter. It would be helpful to have an alternate method of logging in that did not require creating a 
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new online GIFT account.  It would also be helpful to export surveys and questions in a manner that 

would allow researchers to match up the output questions with the responses that were provided by 

participants. This is particularly useful in cases when an experimenter may have forgotten to put a tag on 

the individual question and are unable to figure out what question was being responded to by the 

participant. 

Even though there are still a number of improvements that could make GIFT more useful as a tool for 

conducting research, it has made great strides over the years. The authoring tool and survey system user 

interfaces have been greatly improved since the original version of this guide was created, and there are 

many more tools and features that are available to researchers. It is expected that GIFT will continue to 

develop and become an even more powerful tool for research psychologists and others to leverage to 

conduct experiments. 
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Using the Generalized Intelligent Framework for Tutoring 

(GIFT) to Support Adaptations in Challenge Levels for 

Collaborative Problem Solving in Digital and Virtual Reality 

Team Training Environments 
 

Chris Meyer1, Zach Heylmun1, Mike Kalaf1, & Lucy Woodman1 

Synaptic Sparks1 

INTRODUCTION 

Team training practices have evolved in parallel with advancements in technology, most notably as 

advancements in computer technology allowed for the low-cost creation of immersive and realistic 

environments in which participants can train together in. Environments created with rich immersion, 

compelling stories, believable characters, and the ability to adapt scenarios to participants’ levels of skill 

are prevalent throughout many industries, of note, the Military and Entertainment industries, and have 

allowed industries to begin training both individuals and teams in new and effective ways.  

 

It is the Military and Entertainment industries that Synaptic Sparks, Inc. assists with bridging, and 

through a recent partnership with a local hi-tech escape room company has created a prototype research 

framework utilizing the Army Research Laboratory’s Generalized Intelligent Framework for Tutoring 

(GIFT) software suite with technologically-advanced escape rooms. Each research effort, GIFT and the 

hi-tech escape rooms, stand alone in their respective disciplines. GIFT allows for unprecedented 

Intelligent Tutoring System (ITS) design, integration with external applications and sensors, and provides 

experimental frameworks with which to test Team Models and Adaptive Instructional Systems. And, the 

other party provides the only existing software framework compatible with military simulation paradigms 

and software interfaces into and out of an adaptable, virtual reality environment that currently tests both 

individuals and teams throughout their scenarios.  

 

Together with these agencies, SSI is continuing to research and develop an integrated framework that uses 

the intelligent tutoring, adaptive learning, and experimental metrics aspects of the GIFT software suite to 

experiment and test with active players participating inside of adaptable difficulty scenarios. Grades of 

scenario-level and individual puzzle-level of challenges serve as the adaptable content implementations 

within the escape rooms and are resulting in experiment data usable for further research into how best to 

challenge groups and individuals as they progress through high tech training simulations and games. 

 

INITIAL SCENARIO DESIGN AND GAME THEORY 

GIFT requires fundamental constructs in order to be used in conjunction with a to-be-created team 

training system, namely a Learner (or Learners), Training Content, Adaptive/Remedial Content, a 

Training Goal, Sensors, Software/Instructor Controls (whether automated or not), and an objective 

Measure of Training Success. 

 

These fundamental requirements are not necessarily defined only by current GIFT documentation, but a 

combination of Intelligent Tutoring System requirements, entertainment industry standards for group 

activities, current and/or upcoming military training readiness standards, and Synaptic Sparks partners’ 

engineering knowledge. 



 

270 

 

 

When designing a team training scenario, retail and entertainment environments must follow a rigorous 

set of scenario design and game theory practices in order to create a positive customer experience.  These 

goals are not unlike training goals, though the end result of satisfied customers is replaced by stringent 

sets of desired training outcomes in serious gaming domains. 

 

The following general rules of game theory are adhered to by the design team to set the stage for a 

software suite such as GIFT to perform adequately (represented visually below in Figure 1): 

 Entry criteria are established for the customers/learners 

 Goals and evaluations are established (possibly unknown to learner) 

 Individual and shared means of accomplishing goals are provided to/discovered by learners 

 Systems of discovery, inputs, processes, and teamwork are iteratively repeated to satisfy learning 

goals 

 Assessments are either performed throughout or at the conclusion of scenarios 

 Conclusions and debriefing (after action reviews) are performed to fully enforce training goals 

 

Figure 36 – Escape Room (Team Training) Use-Case Flowchart 

With these similarities between retail entertainment scenarios in a hi-tech, focused, results-oriented 

environment and serious training environments established, Synaptic Sparks moved to include the GIFT 

software suite into adaptive challenge determinations based on both individual and team performance 

throughout a scenario’s operational time limits. 
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GAMES VS. PUZZLES (VIDEO GAMES VS. SERIOUS GAMES): 

INDIVIDUAL, SMALL TEAM, AND LARGE TEAM PERFORMANCE 

With overarching User Stories (and Training Goals) for scenarios defined by a partner company, the 

Synaptic Sparks team then began to analyze similarities between GIFT monitoring and assessment 

capabilities and software analytics, difficulty settings, and operator interactions present within the hi-tech 

escape rooms. 

Of first note was the module nature of GIFT training content when compared to escape room (training 

scenario) puzzles.  Unlike traditional games, the hi-tech escape room puzzles maintained key similarities 

with training content, visually represented in Figure 2 below, namely: 

 Victory conditions were not always a 1 or a 0 

 Time bounds were nearly always a factor for success 

 Individuals could assist or hinder team performance depending on their actions 

 Team performance is more than a sum of the parts of individual performance 

 Populations of teams exhibited standard deviations of performance (80% of all future 

performance is within bounds based on past team performance with a data set of significant 

enough size) 

 Discovery of puzzle rules and goals, no matter the proficiency of the learner, is more important to 

the training and learning process when considering success and knowledge retention than being 

told the rules and simply executing them given limited training time and first-time exposure to a 

challenge 

 

Figure 37 - Games Vs. Puzzles: A Visual Representation of Potential Negative Learning Vs. Critical Thinking 

Development, Concerning Real-Life Tasks 
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Elements of Social Utility – Encouraging Team Performance and Monitoring Success 

When taking into account the similarity of effective training content to correctly-designed puzzles in a hi-

tech training scenario, Synaptic Sparks personnel then analyzed customer data to best-define what social 

utility elements GIFT may be able to use as it evolves to intelligent tutoring adaptations for teams as 

opposed to individuals. 

To generalize and as represented in Figure 3 below, when SSI observed roughly 5,000 participants in 

groups of up to 6 individuals per team, the perceived Social Utility of the team experience was most-

relevant to customer satisfaction and team performance, and also learning retention. 

 

Figure 38 - A Conceptual Diagram of Social Utility for Training Content 

During all escape room scenarios, Synaptic Sparks was given license to add software “hooks” into the 

escape room experience, and direct all metrics to a GIFT software suite monitoring station via methods 

explained, in-part, in the following section. 

The analytics resulting from the metrics analysis gave new insight into individual, team, and overall 

performance for groups, and how GIFT can be used to adapt puzzle (and therefore training) content to 

better serve participants. 

UTILIZING THE GIFT SOFTWARE SUITE TO ENHANCE CONTENT 

ADAPTATION WITHIN A TEAM TRAINING SCENARIO 

Synaptic Sparks identified some existing feedback loops between GIFT and the escape room software to 

create low-cost, high-value experiments.  SSI created: 

 A GIFT-Monitored Statistic Set Consisting of Elapsed Time Based on Puzzle Start and 

Completion Time to Adapt Early/Late Puzzle Exposure to Team Performance 
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 A Failsafe “Easy Mode” Monitoring System to Skip Puzzles for “Overwhelmed” Participants 

 Messaging Between Escape Room Manager and Subcomponents, and GIFT (Figure 5) 

 

 

Figure 39 - Metrics Visualization for Estimated Vs. Actual Team Performance Monitored by GIFT 

These systems allowed the escape room’s software to utilize, as the private company sees fit, GIFT 

recommendations on content adaption concerning two main elements of the experience; namely the time 

at which a new puzzle is given to a team, and the difficulty level of a puzzle selected from Easy, Medium, 

or Hard levels. 

Communications between scenarios and the GIFT software suite were established through message 

broadcasts, broadly defined and represented in Figure 5 below. 

The results of these experiments are still being compiled, but a fully autonomous system that can adapt to 

any team performance is expected by the end of 2Q 2018. 
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Figure 40 - A Sample Messaging Scheme between Puzzles in Hi-Tech Escape Room Sub-System and GIFT 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

Currently, the SSI team is performing the same level of integrations as described above for an even more 

modernized, fully-digital escape room experience in Virtual Reality.  While scenarios described above are 

currently being adapted for various military training scenarios that have a “real world” environment with 

which GIFT can interact, the new Virtual Reality project is limited only by the art asset content and 

training knowledge of Subject Matter Experts. 

With GIFT operating alongside the hi-tech escape room scenario manager, adaptive content can be served 

and adapted not only to individuals, but teams as they collaborate together in a proprietary virtual 

environment. 

While the SSI team consists primarily of experienced engineers, this new experimental platform is 

provided to the ARL GIFT team researchers to further evolve and experiment with as research 

representatives see fit. 
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Basic Robotic Course 
 

Danielle Julian 

University of Central Florida 

INTRODUCTION 

The prevalence of robot-assisted laparoscopic surgery (RALS) within both military and civilian hospitals 

has been steadily increasing in recent years, reaching a total of over 2 million cases worldwide to date 

(www.intuitivesurgical.com), generating a need for effective training of the unique skills and 

technological knowledge required to perform such technologically advanced procedures.  Of particular 

importance is the initial learning curve associated with acquisition of these skills by inexperienced 

surgeons, which has numerous implications, particularly in terms of patient safety (Hopper, Jamison, & 

Lewis, 2007).  The acquisition of purely cognitive skills has been studied extensively, revealing learning 

curves that typically involve three distinct stages of skill development: a cognitive stage, an associative 

stage, and an autonomous stage during which expertise is achieved (Anderson et al., 1997).  

The purpose of this intelligent tutoring system (ITS) is to help train physicians both the cognitive and 

basic knowledge of skills needed to use the most commonly known robotic surgical system, the da Vinci. 

This system could be used to bridge the training gap between online cognitive training materials and 

hands-on psychomotor skills training with simulators and robots. The ITS could provide novice and 

intermediate robotic surgeons with intelligent guidance in an easily accessible system to train the 

cognitive process and procedural steps behind fundamental robotic surgery skills. 

The tutor will include cognitive material covering an introduction to surgical robotics, introduction into 

the da Vinci Surgical System, basics on camera control, and interrupted suturing. This ITS will be 

developed using the gift framework of tools and provided as a web-based course. The content for the 

system was collected from multiple practicing robotic surgeons who performed each tutored task using a 

simulator and explaining their actions, reasoning, and potential mistakes as they performed each exercise. 

This information was captured as video, instruction sets, and flow charts, which were reviewed for 

accuracy by surgeons and then used as training content within the GIFT framework. GIFT houses several 

modules of RALS content that interact with each other to tailor content to learners attributes and provide 

the content via a Computer-Bases Tutoring System (CBTS). 

RELATED RESEARCH 

Individualized training has been shown to be highly effective (e.g., one on one instruction) because it 

allows trainees to receive expert feedback, targeting the skills most in need of acquisition or remediation.  

However, this form of training is costly in terms of expert time, and therefore limited.  This issue has been 

addressed within the education and military domains through the use of ITSs, which consist of advanced 

training software that mimics a human tutor by adapting instructional content and feedback to an 

individual student.  An ITS capable of supporting acquisition of the cognitive, perceptual, and 

psychomotor skills associated with RALS could greatly reduce the associated learning curve and improve 

patient safety. 

Beyond a one-day individualized training, RALS surgeons typically overcome the learning curve in an 

experiential way. Surgical trainees may encounter their first surgical experience on an inanimate training 

model, excised tissue, or an actual procedure with a mentor. While this method helps to improve 

performance with increased experience, these procedures usually take more time to complete and are 
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associated with a greater number or errors, which may be life threatening to the patient. More recently, 

Virtual Reality (VR) surgical simulators have been introduced to help alleviate this issue. VR simulation 

was first introduced to surgical education in the late 1980s (Satava, 1993). Since implementation, VR 

simulators have been established as a valuable training tool for the acquisition of basic surgical skills, 

allowing a trainee to safely overcome the learning curve associated with new techniques while providing 

independent and repetitive exposure in a safe and cost-efficient environment (Chou & Handa, 2006). The 

application of VR simulators in surgery has proven to be essential with the development and 

implementation of new technology and complex devices. However, these trainers can be expensive and 

are typically not portable which cause issues for practicing surgeons.  

ITS’s have been shown to be particularly valuable for teaching complex cognitive tasks such as trouble 

shooting, problem solving, and resolving critical situations.  As a human tutor does, an ITS continually 

monitors and assesses the individual student's actions, infers the student's state of knowledge, and decides 

on the next instructional event to maximize the student's learning based on an embedded student model, 

expert model, and domain model (Perez et al., in press).  As highlighted by a recent meta-analysis (Kulik 

& Fletcher, 2016), research and development within the domain of ITS’s has demonstrated the technical 

feasibility and relative effectiveness of computer-based adaptive instruction as compared to classroom 

and small group instruction.  ITS development has been applied across multiple domains, including 

within military applications such as ship handling and tactical decision-making.  Furthermore, previous 

development efforts have demonstrated the ability to effectively apply generic ITS components such as 

authoring tools to specific military domains (Stottler, Fu, Ramachandran, & Jackson, 2001; Sottilare & 

Holden, 2013). Offering a portable, customized, repeatable tutoring system for RALS would be highly 

beneficial. 

Medical ITS’s 

Most of the literature on medical ITS use a pedagogically approach to train knowledge-based medicine 

(Crowley et al., 2007) and more recently aid in imaging recognition. One of the earliest medical ITS’s, 

GUIDON, trained medical students about infectious diseases like meningitis and bacteremia. The 

objectives were to identify likely causative organisms given a patient’s history, medical records, and 

laboratory results (Clancey, 1988). It used an interactive mixed-initiative method of dialogue where either 

the student or the system could be in control of how the discussion played out (Clancey, 1988; Crowley et 

al., 2007).  Another tutor, MR Tutor, is a case-based tutoring system. This system focuses on training case 

similarities across patient instances. This system uses a library of radiologic images where the tutor uses 

statistical indices to find similarities across the collection (Sharples et al., 2000).   

More recently there have been several tutors developed to train on specific diseases, including diabetes’s 

and stomach disease (Almurshidi & Naser, 2017; Almurshidi & Naser, 2017b).  Almurshidi and Naser’s 

latest tutor aims to train medical students about multiple stomach diseases. This tutor allows the learner to 

navigate through the domains of concepts with knowledge checks within. If the student scores a 75% or 

higher, they may move to the next level of difficulty, if not, they return to repeat the same set of 

exercises/content review. This method or recall and rehearsal provide repeat exposure to students that 

have yet to master the knowledge or skills.   

The RALS domain represents a complex task environment involving cognitive, perceptual, and 

psychomotor skill components; which could greatly benefit from real-time assessment and adaptive 

instruction capabilities.  Integration of ITS components into a RALS based course could support a 

reduction in both self-guided and instructor-led training, as well as a reduction in the initial learning curve 

observed in the first cases completed by novice surgeons, directly benefiting patient outcomes.  In 

addition, there is a need for effective and standardized curricula and testing devices for training robotic 



 

279 

 

surgeons, providing a more standardized form of guidance to all students and all learning facilities.  In 

addition to initial acquisition training, such a curriculum could be applied to the refresher training 

learning curve that occurs after periods of nonuse.   

ITS DESIGN AND STRUCTURE 

The original design of the Robotic Suturing ITS was aimed to train surgeons the cognitive, procedural, 

and psychomotor skills associated with two basic robotic tasks (i.e., suturing and camera control). 

However, the development of such a tutor is outside the scope of this project. This tutor is now structure 

to provide the following: 

1. Introductory information on surgical robots 

2. Technical details on the da Vinci surgical system 

3. Basic camera control knowledge 

4. Limited basics on suturing with the da Vinci system.  

This iteration of the system uses a mastery learning technique to ensure the learner has satisfactory recall 

and can apply perquisite knowledge before proceeding to the next concept to be covered.  

Opening Assessments 

Before the course begins, the learners will be asked to complete a demographic survey. This survey is 

used to collect information about the learners, their specialty, and experience level. This iteration of the 

system used the demographic survey to collect information only and is a non-actionable questionnaire. As 

other iterations are developed, the demographic questionnaire may be used as an actionable survey that 

could in return affect the flow of the course content. For example, if the learner has selected 

otolaryngologist (i.e., Ear, Nose, and Throat surgeon) as their specialty the course environment can take 

action and change to provide material for this specialty. In this case, ENT surgery requires little suturing 

and more energy application, so the suturing content will not be as imperative to this student as others. 

Due to the ambiguous training associated with surgical robotic programs, the course will then provide a 

mandatory actionable knowledge assessment (Figure 1). This assessment is used to measure the learner’s 

prior knowledge on the course objectives. At least one question from each course concept is covered in 

this assessment.  
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Figure 1. Knowledge Assessment Survey Sample 

Course Material  

As mentioned previously, the da Vinci system now provides a piece of technology that most practicing 

surgeons will not have any experience with. Before training the skillset to overcome this learning curve, 

the learners should be familiar with robotic surgery in general. The course starts with basic text 

explaining the difference between traditional minimally invasive surgery (MIS) and RALS. This portion 

will be a short mandatory object of the course. The learner will then be presented with a basic overview 

and history review of the introduction of robotic surgery and how the da Vinci system was brought to 

fruition. Because the history of surgical robotics is extensive, a conversation tree was selected to help 

train this material and maintain learner engagement. The conversation tree used looping pathways. The 

student selects which early robotic system they would like to learn about, then must select another off of 

the list, eventually moving their way to the end of the tree (Figure 2).  
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Figure 2. Conversation Tree sample. 

The main attributes of the learner were based on knowledge checks. If the learner’s knowledge were 

classified as “Novice”, the content was more engaging and showed diagrams/pictures. If the learners were 

classified as “Experts” the course adapted to show more concise textual content. Student’s knowledge 

was the main attribute driving the course flow and content. Figure 3 shows the course layout and flow.  

 

Figure 3. Course Flow  

If the student does not do well on knowledge checks via a short questionnaire selected from a larger 

course question bank, then the student is provided with a more extensive version of the particular 

concepts content.  
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The next learning objective is aimed to train basic technical knowledge needed to use the actual da Vinci 

Surgical System. The answers collected from the knowledge assessment will drive the content for this 

section of the course as well. If the student scores poorly in the introduction assessment they will be 

provided with a detailed, but more engaging (e.g., video overview) content delivery.  Consequently, if 

they learner does well on the opening assessment the tutor will provide traditional textual content as 

review content. After the initial mandatory content, the learners will be provided with a short 

questionnaire to gage their knowledge, leading back to the original or differing training material if they 

scored poorly or moving them to the next concept if they scored well. This adaptive course flow helps to 

provide tailored content specific to the learners existing and acquired knowledge.  

To break up some of the textual content a slide show covers the basics of the next objective, Camera 

Control. The slide show provides images and text to help maintain learner engagement and provides basic 

technical information regarding the scope for the da Vinci system. The adaptive course flow for this 

concept mirrors the flow for the basic robotics and da Vinci Surgical System concepts. The camera 

control adaptive course flow and the suturing content will need further development in order to achieve 

training psychomotor skills. Figure 4 shows an example of the course content for Camera Control.  

 

Figure 4. Example of Camera Control content. 

Before the tutor moves into attempting to train the psychomotor suturing skill set, a simulated video will 

play for all students. This video shows a simulated vaginal cuff closure completed robotically (with a 

robotic surgical simulator). This is a common robotic assisted procedure. This procedure was chosen as 

course material because it requires camera movement and control and requires the surgeon to complete a 

cuff closure using an interrupted stitch. This stitch is common, but difficult for novice robotic surgeons. A 

video was selected to provide the learner with an all-encompassing example of what the tutor is aiming to 

help train. That is, the video shows why a technical overview of the system is imperative, the importance 

of camera control, and how an adequate interrupted suture in complete.  

DISCUSSION AND RECOMMENDATIONS  

GIFT as the authoring tool for developing the cognitive concepts associated with robotic surgery was user 

friendly. The drag and drop concept was beneficial for course flow planning and content development. 

However, future iterations of the robotic tutor (including more psychomotor training) will be difficult for 

a developer with little programming experience or limited GIFT experience. For challenging content the 

developer must be well versed with this authoring tool.  Choosing such a complex topic to train is 

difficult within this system (and potentially others) because of the psychomotor, procedural, and variance 

of surgical specialties. For example, suturing for a general robotic surgeon will differ from suturing for a 

gynecological surgeon.  
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There are several aspects of GIFT that weren’t clearly defined during my experience. For example, the 

question bank concept. After creating the tutor, I know understand that the question bank in used within 

the adaptive course flow concept, but why would the question bank be its own concept? As I am sure this 

has a used within authoring, it was unclear during this development. Creating a more extensive user guide 

on how to use, when to use, and why to use each concept would be highly beneficial.  

Developing a more simplistic, or just one portion of this course, is ideal for novice GIFT users. The 

authoring tool offered multiple media outlets, supports a substantial amount of content, but a novice user 

may not know how to integrate any “bells and whistles.” The robotic tutoring system could have 

benefited from including highlighting clues during assessments or interaction within a video. GIFT may 

be capable of such features but was not easily defined on how to implement these high level capabilities.  

While the initial scope of the project was aimed to provide step-by-step instruction for completing an 

interrupted suture, this was unmet during the scope of this project for two reasons. Reason number one, in 

order to train a psychomotor and procedural skill set, the developer will need additional time working 

with GIFT and may require an additional developer with differing credentials. Reason number two, the 

content for the suturing aspect of the course must be created using surgical imagery or “do’s and don’ts” 

of robotic suturing to provide appropriate content.  
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THEME VII:  

ANALYTICS AND 

EFFECTIVENESS MEASURES 
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Cross-cultural Communication in a Cadet Population 
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INTRODUCTION 

Authoring adaptive training can present challenges because instructors, unit leaders, and other non-

technical users need to understand and control adaptation in order to accept and make use of a training 

system such as GIFT. Therefore, adaptation should be presented in a manner that parallels the way these 

end users think about instruction (Wray, Folsom-Kovarik, Woods, & Jones, 2015). This work enabled 

future improvements in authoring for adaptation by adding several constructs inside GIFT. First, patterns 

added a new construct for defining learner behaviors and analytics that can drive adaptation. Second, 

misconceptions added information to GIFT concepts in the Learner Module about reasons that individuals 

might be performing Below Expectation. Third, mid-lesson reports tested a specific type of adaptive 

intervention that prompts learner reflection during training, with reduced authoring via reusable prompts. 

A randomized controlled trial was conducted to evaluate the training effectiveness of GIFT when driving 

adaptive feedback in a newly integrated tool for perceptual and cognitive skills relevant to cross-cultural 

communication. The combination of GIFT plus the skill training was evaluated by a population of 74 

West Point Cadets. A preliminary analysis supported the value of the patterns to identify different classes 

of learner experience and, in future, to let non-technical personnel define what high-level behaviors and 

groups of observations would help GIFT respond to these. The analysis also suggested new domain-

general misconceptions that might be able to inform adaptation. The evaluation showed an improvement 

between pre-test and post-test scores across all users. The discovery of new patterns and misconceptions 

highlights opportunities for instructors or unit leaders to gather evidence about how training is 

progressing in GIFT and, with future incorporation into the GIFT authoring suite, to quickly add new 

adaptive interventions that make training more effective.  

Cross-cultural Communication and Perceptual-cognitive Skill Training 

The proof of concept was demonstrated in a cross-cultural communication training domain. The laptop-

based training consisted of four narrative scenarios that challenged learners to make decisions based on 

perceptual cues such as facial expressions in an environment with simulated characters. The existing 

training contained delayed feedback in the form of after-action review and the ability to optionally replay 

each scenario and try different choices. GIFT was used to add adaptive feedback to the existing training 

system – mid-lesson reports (see below) that were triggered by misconceptions GIFT inferred based on 

learner interactions. The mid-lesson reports overlaid immediate feedback onto the existing training 

system via the onscreen GIFT Tutor User Interface (TUI). Combining GIFT with existing training 

demonstrated how GIFT integration gives the potential to make a system more adaptive to learner needs 

by adding the tools of patterns, misconceptions, and mid-lesson reports. 

We briefly describe the training content for cross-cultural communication. The scenarios and subject-

matter tests in this experiment were structured around a simplified version of the Good Stranger approach 

to cross-cultural communication (Klein, Moon, & Hoffman, 2006). This approach is intended to work 

independently of a specific culture. It trains learners to perceive, understand, and work within any foreign 

or unfamiliar culture. The training has previously been used with success in a military setting (Hubal, van 

Lent, Marinier, Kawatsu, & Bechtel, 2015). 
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The simplified content for this experiment targeted four learning objectives:  

 Initiate and engage in encounters that support the mission and build rapport 

 Practice perspective-taking to make sense of encounters 

 De-escalate conflicts and repair relationships 

 Balance tact and tactics to achieve long-term goals in a safe manner. 

Each learning objective offered opportunities during the scenarios and tests for learners to choose either 

Good Stranger behavior or behavior associated with misconceptions that were selected to be general and 

possible to express in any of the four learning objectives (see below). 

Patterns 

Patterns and misconceptions have the potential to add to the authoring experience in GIFT. Patterns 

enhance the language for expressing constraints on learner performance in the GIFT Domain Knowledge 

File (DKF). Patterns describe a library of reusable conditions and groups of conditions that non-technical 

personnel can draw on to relate domain-specific observations without requiring engineering skill to create 

new conditions in source code. For example, different adaptive feedback could be delivered when 

domain-specific conditions occur repeatedly, or close together.  

A key characteristic of patterns is that they operate not on domain messages, but on conditions. Patterns 

let end users describe how conditions should relate to each other. So, any conditions that have already 

been defined by writing and compiling source code can then become part of a pattern that end users 

control via a future, user-friendly authoring tool. The research has previously defined an initial list of 

observable patterns that relate multiple performance observations together in ways instructors are likely to 

use (Folsom-Kovarik & Boyce, 2017). Examples include doing tasks in order or out of order, doing 

actions too often or too few times, and taking too long or too little time to do an action (a pattern that 

generalizes the GIFT slide-underdwell condition to check the timing for any pair of conditions). 

This experiment led to discovery of several patterns that may be of value to instructors, which are 

described in the Discussion section. In advance of the experiment, the following patterns were defined: 

 Hesitation: change any answer two or more times before submitting 

 Hurrying: submit any answer within five seconds of a choice presentation 

 Improving: exhibit Good Stranger behavior twice with no intervening mistake. This 

pattern enabled a positive mid-lesson report, rather than silence, when learners did well. 

Misconceptions 

Misconceptions enhance the GIFT learner model with additional information about estimates of mastery. 

Misconceptions can express not just lack of mastery but specific reasons that may underlie any incorrect 

or unwanted behavior that GIFT observes. By defining patterns that indicate misconceptions and adaptive 

feedback specific to certain misconceptions, it is possible to control in detail the feedback that GIFT adds 

to teaching and training. 
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Four misconceptions were defined for this experiment: 

 Cautious: the learner is overly deferential or sacrifices a key goal 

 Authoritarian: the learner is overly concerned with being respected or obeyed 

 Mission-focused: the learner achieves a near-term mission at a high cost to relationships 

 Rules-focused: the learner follows rules too inflexibly 

The misconceptions were designed to test the reusability of the misconception idea. The same 

misconceptions could be expressed in all learning objectives through different learner choices or 

behaviors for this experiment. As a result, the GIFT pedagogical module only had to understand a single 

set of rules about misconceptions across scenarios. The default pedagogical module was enhanced to 

evaluate all misconceptions as they were inferred by conditions and patterns. For generality, the 

misconceptions were assigned two-dimensional values defining their importance and urgency. As a result, 

the enhanced pedagogical module could use domain-general rules to address the most important or urgent 

misconceptions first. It did not need to know about the domain-specific contents of the four 

misconceptions. 

The reusability of these specific misconception definitions was initially limited to the cultural 

communication domain. In future work, it may also be possible to create misconceptions that are domain-

general. Two methods might allow domain-general misconceptions. First, the domain-general 

misconceptions might tie to a specific instructional model and thus let GIFT infer undesirable facts about 

ways of learning. An example might be a misconception that it is better to avoid poor outcomes during 

training, when instead the specific instructional model benefits from presenting poor outcomes that 

challenge the learner. Second, domain-general misconceptions could be reclassified as characteristics of 

the learner rather than any concept. Then the GIFT learner module would update learner states and traits, 

rather than readiness or concept mastery. This would give additional input to existing constructs which 

GIFT typically infers through surveys, such as learner grit or mastery orientation versus performance 

orientation. 

Mid-lesson Reports 

With knowledge of specific misconceptions as inferred from behavior patterns, GIFT could recommend 

immediate feedback that enhanced the delayed feedback already in the training. Again, reusability and 

generality of the approach was key. Immediate feedback was designed in the form of mid-lesson 

reporting. This is a form of adaptation that does not rely on information about the scenario and could be 

reused in any scenario during the experiment. 

Examples of immediate feedback that mid-lesson reporting added to GIFT feedback (DeFalco, 2017; 

Goldberg, Sottilare, Brawner, & Holden, 2012) include relating good or poor performance examples to 

underlying reasons for performance and providing appropriate reflective prompts (Swan, 1983). Mid-

lesson reports were hypothesized to improve learning outcomes by combining immediate feedback with 

student-directed learning and reflection. Through reflection, the learner observes the state resulting from 

actions and uses information from those observations to guide decisions about which actions to perform 

and how. To encourage reflection required including feedback on observed actions that linked the actions 

to target competency (Shute, 2008). This was accomplished with report messages that simply and 

immediately stated a possible misconception when GIFT inferred it. The report thus could be reused 

across scenarios, because the learners would fill in specifics from their knowledge of the action they just 
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performed. Similar to an open learner model, the mid-lesson report would help to directly link learner 

choices to the computer’s inference and prompt reflection on whether the inference was correct. 

Three mid-lesson reports could appear for each misconception. After the third report, the wording 

repeated again starting from the first message. The wording of each report message was similar, with the 

name of the misconception differing and colored red on screen for visual differentiation. Nine positive 

mid-lesson reports were also available to GIFT. The mid-lesson reports let GIFT choose to challenge 

specific misconceptions, encourage reflection, and improve training. The design of their wording and 

delivery made them applicable for GIFT to deliver at any point during any scenario, for this experiment. 

METHODOLOGY 

The training was evaluated with a population of West Point Cadets. The authors owe a great deal of 

thanks to West Point faculty, staff, and Cadets for supporting and enabling this study. The population 

consisted of N = 74 Cadets of all years. N was determined by a power analysis targeting moderate effect 

size. Cadets were randomly assigned to one of two conditions, experimental or control. Each condition 

had 37 Cadets assigned, although one Cadet in the experimental condition either ended early or lost data 

due to technical failure (after the training scenarios and before the post-test and final survey). Cadets in 

the two conditions did not significantly differ in their performance on a subject-matter pre-test. 

Study participation took 55 minutes or less per participant. The study proceeded as follows: 

1. Participants read and signed an informed consent. 

2. An investigator instructed the participants on the use of the training system. 

3. Participants completed a demographic questionnaire and subject matter pre-test in GIFT. 

4. Participants interacted with the training scenarios in order. They were allowed to review 

and replay each scenario if desired, but could not return to a scenario once completed. 

5. Participants completed a subject matter post-test (with items identical to the pre-test for 

simpler balancing) and a technology acceptance survey. 

The two experimental conditions differed during step 4 only. In both experimental and control conditions, 

the scenario content and summary feedback was the same. However, in the experimental condition, GIFT 

overlaid mid-lesson reporting along with the content. The mid-lesson reporting appeared in the form of 

tailored text messages in the GIFT TUI on the left side of the screen (presented as text only, with no 

character or speech). GIFT tailored the mid-lesson report messages based on choices participants made 

during each scenario and across scenarios. In the control condition, the TUI was always left blank. 

Situational Judgment Tests 

The study instrument this paper describes in detail is the pre-test and post-test. These tests were created 

for this study and were identical in presentation before and after the training. Each test consisted of ten 

written situational judgment test (Motowidlo & Beier, 2010) items with four to six options for each item. 

Participants were asked to apply their knowledge of the subject matter by stating how likely they are to 

try each option in the situation described. Participants could answer each option with an integer between 

one and six, similar to a Likert scale with excluded middle. 
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Each test item related to one or more learning objectives in the cross-cultural communication subject 

matter. Five test items were written as examples of near transfer, closely reflecting circumstances 

depicted in the training scenarios. Five test items were written to test far transfer. The far-transfer test 

items applied the same principles in new circumstances that the participants had not experienced during 

training. The far transfer test items were hypothesized to be valid because they were based on additional 

training scenarios developed by the same SMEs that were not shown to participants during the study. 

Each option within a test item expressed either Good Stranger behavior or behavior associated with a 

specific misconception. Participants rated each option separately and were not required to choose one 

option or to rate one option higher than others. As a result, the pre-test and post-test yielded a large 

amount of data about participant skill equivalent to approximately 50 Likert items. To the extent that the 

options loaded on separate factors in the hypothesized five-dimensional skill application model, each 

dimension of that model (misconception or correct behavior) was represented on the test by between 

seven and ten Likert items. Seven Likert items are suggested to adequately measure most constructs 

(Willits, Theodori, & Luloff, 2016). 

An example test item was Question 4, which produced an interestingly mixed outcome. The outcome is 

discussed in detail in the Results section. The text of this example test item was as follows: 

4. A group of local contractors are compromising security to save time. You talked to them once about it 

but they have not changed their ways. (LO = balance tact and tactics / near transfer) 

a. ______ threaten to accuse them of helping the enemy (Rules-focused) 

b. ______ increase patrols to backfill the compromised security (Mission-focused) 

c. ______ fake an attack demonstrating how compromised the security is (Authoritarian) 

d. ______ wait and follow up if something happens (Cautious) 

e. ______ call higher command (Good Stranger) 

Additional measures captured included demographic information, cognitive load after each test and 

training scenario, and a final questionnaire about the training system as a whole. This paper covers initial 

analysis of the situational judgment tests only, while a more comprehensive analysis is still ongoing. The 

additional analysis will include detectable differences based on demographics if any, self-efficacy, user 

acceptance of the technology and training, relationship between patterns and ability to predict post-test 

performance, inferred misconceptions in relationship to test performance, choices made and content seen 

in relationship to differences in learning, and interventions presented in relationship to learning. 

RESULTS AND DISCUSSION 

The study found the following initial results. First, the system supported learning. Second, patterns 

differentiated learners. Third, inferred misconceptions aligned with ground truth as determined by the 

pretest and post-test. Fourth, the research suggested improvements to make this approach more general 

and more effective. 
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Training Effectiveness 

Pre-test and post-test responses on the subject matter test were compared and evaluated for evidence of 

improvement. Participants learned and improved significantly on three of the five near-transfer test items. 

One test item was subject to a severe ceiling effect. The remaining test item, question 4 above, was 

chosen for an in-depth analysis of patterns in learner experience as described below. Figure 1 shows the 

outcomes of the near-transfer test items. 

Learning outcomes in Figure 1 were measured by 

the differences in scores earned on pre-test and 

post-test administrations of a subject matter test. 

The initial analysis assigns scores to test answers 

based on the rank of the Good Stranger choice as 

compared to other choices within the same test 

item. Ratings in a form such as Likert data and the 

answers to these test options are not scalar and 

therefore cannot be averaged or subjected to t-tests 

(Jamieson, 2004). They also cannot be compared 

across participants. Therefore, comparing answer 

rank is a more valid way to make test scores 

comparable and subject them to statistical tests for significance. In a test item with five options, each 

participant might rank the Good Stranger option first (more likely than any other) through fifth (less likely 

than any other). As a result, the possible ranks are comparable as real numbers between 1 and 5 inclusive, 

with lower numbers indicating a better score. A significant decrease in the rank score between pre-test 

and post-test indicates that learning occurred. 

Wilcoxon rank tests were applied to the test items in Figure 1. The score improvement between pre-test 

and post-test was statistically significant for three of the five items (marked with asterisks). The error bars 

in Figure 2 indicate 95% confidence intervals. In no case do the error bars contain the extreme values 

(5 and 1). However, test item 5 suffered from a ceiling effect. Most participants (93%) were already rating 

the correct answer first in the pre-test, before any training. Fortunately, none of the other nine test items 

placed a majority of learners at ceiling on the pre-test. 

Unlike the near-transfer questions, with the five far-transfer questions learners did not show significant 

improvement from pre-test to post-test. The mid-lesson reporting intervention was expected to support far 

transfer by making the underlying structure of the material explicit (defining the Good Stranger and the 

specific expected misconceptions). Further analysis is needed to determine what portion of participants 

received or viewed which mid-lesson reporting interventions. It is hypothesized that even in the 

experimental condition, participants may not have received all or enough mid-lesson reports to support 

effective far transfer. This can be determined with further analysis by correlating test outcomes with the 

specific interventions that were delivered. 

Finally, test item 4 provided an interesting result which led us to examine that item further. Test item 4 

may have revealed an instance of ineffective training because learners did worse on the post-test more 

often than they did better. This trend did not reach statistical significance but it did maintain that direction 

even after excluding the large number of learners (35%) who were already at ceiling on the pre-test. 

A benefit of the patterns being added to GIFT is that instructors or researchers can use them to relate 

observations into meaningful groups and draw inferences from them. An example is finding and dealing 

with ineffective training after a system has been published. 

 

Figure 1: After training, the correct answer was 

ranked higher (closer to one) in 3 of 5 items. 
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Using Patterns to Detect Ineffective Training 

Training can be ineffective, even if initially validated, for a number of reasons. Real-world reasons might 

include (1) changes in learning context that make the training less impactful or (2) changes in tactics, 

techniques, and procedures that make the training obsolete. Here we discuss an application of patterns to 

analyze learner experience in Scenario 1, which is directly aligned with the pre-test and post-test item 4. 

All training scenarios used in the experiment were created by Army subject matter experts and were 

previously used in training experiments with Soldiers. However, an unexpected difference in training 

arose because of these scenarios’ presentation outside the context of other training material. Specifically, 

Scenario 1 offers no action choices that do not result in some negative message. Either the learner’s action 

will compromise unit safety or reduce trust with the local counterparts. The doctrinal answer is choosing 

to sacrifice trust to maintain security – call higher command to intervene in this case. The learner should 

“balance tact and tactics,” and should choose to accept sacrificing tact under the circumstances.  

The design of the first scenario is intended to introduce the idea that in a situational judgement test there 

may be a tradeoff of competing values. The choice of where to strike the balance measures which value is 

a higher priority, and there may be no way to simultaneously achieve all good outcomes. This idea was 

alluded to in the test instructions which stated: “Choices you make in this study may include limited 

options where there is no wholly right answer. Try to choose the best available option.” However, the fact 

that no answer would avoid all negative outcomes was not made explicit during Scenario 1. As a result, 

many participants may have drawn an incorrect conclusion when they received negative feedback during 

the scenario. They assumed that if their first choice resulted in negative feedback, then their second guess 

must have been the correct one. If learners did not replay the scenario and attempt another choice, then 

their assumption was not challenged and created a misconception that was reflected in the post-test. 

GIFT can detect patterns of behavior that suggest how different learners confronted this scenario. 

Examples of patterns that appeared in a post hoc analysis included completing the scenario and simply 

moving on without questioning. However, a relatively high percentage of learners instead changed their 

answer before submitting it, paged backward to review content both before and after submitting, read 

more of the after-action review content, and replayed the entire scenario. These patterns suggest different 

ways of confronting the challenging content that can be detected with patterns that pick out specific 

relations between multiple domain messages. 

GIFT can also help to address training that becomes ineffective and help instructors make it effective 

again using the ability to easily author tutoring overlays in response to domain patterns. With patterns, an 

instructor or other non-technical author could author a new pattern that describes reading this scenario 

without replaying or without sufficient replaying. The pattern could trigger an overlay message that 

makes the tradeoff more explicit to learners. The overlay might help explain a subjective decision or 

might simply encourage trying other options to see what happens. In this way, a need for change in the 

existing content is addressed by the future pattern and overlay authoring in GIFT. 

Table 1: Example paths through Scenario 1 can be expressed with patterns of order, timing, and repetition. 

Example Path 

1 Cautious option, replay, mission-focused option, replay, Good Stranger option, stop 

2 Cautious option, review, replay, same cautious option, review, replay, same cautious option 
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3 Mission-focused option, review, review, stop 

4 Mission-focused option, stop 

 

Table 1 describes a sampling of learner experiences during the choice point of Scenario 1. The number of 

unique paths through the single choice point, out of 74 participants, was 57. This is higher than 

anticipated because there was more diversity than expected in how learners engaged with the training 

system. New patterns should be added and tested to group these paths into meaningful categories. Table 1 

suggests some possible patterns that appeared in the data and could be added to those defined in the 

introduction. 

Example 1 describes a learner who is almost ideal in making the most of training. Whether purposefully 

exploring all options or simply persisting in order to get a better result, this learner plays through the 

entire first scenario three times, trying three different options. On the post-test, this learner was not 

confused by tradeoffs in the scenario about the correct answer, and ranked the correct answer highest.  

Example 2 seems to describe a learner in a state of non-productive frustration or wheel spinning (Beck & 

Gong, 2013). When faced with negative feedback, this learner replays the scenario but tries the same 

option again. As if to amplify the frustration with the available options and the unwillingness to explore 

another path, the learner tries the same sequence a third time before quitting. Unlike the participants who 

tried three different options, this learner appears to need a hint to try something new.  

Example 3 is the most common pattern observed in the first scenario. The learner attempts an answer, 

receives negative feedback, and then takes some action to learn more – but not effective action. The act of 

reviewing the material in this example may indicate an attempt to learn from the mistake, but the learning 

is not completely effective if no alternative is tried. Subject to further analysis, this pattern may be 

associated with worse performance on the post-test because the learner may form a belief about what the 

right choice was, but does not test it. 

Example 4 seems quite abrupt in ending the scenario. Further analysis will determine if this pattern also 

includes shorter time spent reading. The failure to take advantage of the after-action review may indicate 

disengagement. Perhaps a more extreme example is another learner who changed the answer several 

times before submitting it, suggesting uncertainty, and even so ended the scenario immediately. 

Since there were more paths through a single choice point than expected, and since they seem to be 

grouped into patterns such as those cited and others, future research should be conducted to create further 

patterns and test how they help GIFT infer facts about learners.  

Inferring Misconceptions and Learner Characteristics 

GIFT inferred misconceptions with an updated learner model structure that matched each concept with 

multiple misconceptions that list specific reasons a learner might be expected to be below expectations on 

that concept. Standard domain conditions were created to translate performance in the training scenarios 

to evidence of misconceptions. Presence of misconceptions enabled the pedagogical module to present 

targeted mid-lesson review interventions. 

The accuracy of misconceptions in the learner model was measured by comparing misconception 

estimates against pre-test and post-test scores. In this initial report, only Scenario 1 and the matched test 

item 4 were analyzed. A full analysis of all scenarios and test items will be reported separately and will be 
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able to include findings of change over time and statistical significance in the results. Note that 

experimental and control conditions did not differ in the method of inferring misconceptions, so the 

analysis includes the full population of learners.  

Logs for the experiment were reviewed to determine the first misconception, if any, that GIFT detected 

for each learner during Scenario 1. This misconception was compared against the learner’s pre-test 

answer to test item 4 only. If the option corresponding to this misconception was the highest ranked 

option on the pre-test, then GIFT was considered to have correctly identified a misconception the learner 

did have in mind before starting Scenario 1. The overall accuracy of the first misconception GIFT 

detected was 52.9%. This accuracy is higher than random chance for a five-way classification task.  

Next, the experiment logs were again examined to determine the inferred misconception that GIFT 

estimated for each learner at the end of Scenario 1. The inferred value was compared to the learner’s post-

test answer for test item 4 only. If the learner’s answer gave top rank to an option reflecting the same 

misconception as GIFT predicted, then GIFT was considered to have correctly predicted the learner’s 

state after Scenario 1. The overall accuracy on this test was 56.5%, which is again higher than random 

chance for a five-way classification task. 

There were several limitations in this analysis which should be addressed by further analysis of the same 

data. First, only one pre-test item and one post-test item were considered. A method should be created to 

combine the results of all test items for each learner, in order to create a better picture of ground truth 

about their misconceptions. Second, the analysis does not account for learning that takes place after 

Scenario 1. Presumably GIFT had formed different, possibly improved estimates of learner 

misconceptions by the end of all the training scenarios, which should be collected and compared to find 

change over time. Third, the analysis only considered misconceptions detected during Scenario 1 and 

Scenario 1 actually did not contain an opportunity for the learners to display a rules-focused 

misconception. As a result, prediction accuracy was zero for all learners who really did have a rules-

focused misconception in mind. Therefore a full-scale analysis may find increased accuracy by removing 

this handicap. 

In summary, GIFT could detect misconceptions related to a specific concept. As was discovered in 

analysis after the experiment, it may also be possible to detect learner characteristics. Some of these 

characteristics already appear in the default GIFT learner model. They represent an opportunity for GIFT 

to update the modeling of these characteristics. These include (1) persistence or grit, (2) performance 

orientation versus mastery orientation, and (3) external locus of control versus internal locus of control. In 

addition, some characteristics suggested by the data are new and could be added to an enhanced learner 

model. These include (1) spinning wheels, (2) frustration or disengagement, and (3) curiosity or 

willingness to explore. Further research is needed to confirm that these possible traits and states are 

actually present in learners and are detectable by behavior patterns as they seem to be. If they are, then 

GIFT could have a new capability to detect domain-general “misconceptions” or facts about how people 

learn and use the facts to change an adaptive training experience. 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

In conclusion, the present experiment demonstrated an integration of research into GIFT authoring with 

an actual training system and typical users. The research capabilities demonstrated were patterns that help 

tell the difference between individual learners based on fine-grained behavior, misconceptions that make 

the GIFT learner model more precise about why any learner might be below expectation, and mid-lesson 

reports that give a reusable tool for addressing misconceptions with reflective prompts. 
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The research suggests several directions for future research. First, additional research is needed to close 

the loop on mid-lesson reporting and improve the interventions to make them more effective. With future 

work to incorporate patterns and misconceptions into the GIFT authoring suite, it would then be possible 

for an instructor to define mid-lesson reports in response immediately on recognizing that training is not 

proceeding as expected. This quick response to fix ineffective training is made possible by authoring 

patterns and misconceptions that let GIFT capture and interpret observations in a manner similar to how 

instructors and end users think about training. 

In addition, valuable future research could build on the success of patterns and misconceptions here in 

order to create an instructor-facing learning analytics capability. Analytics are a burgeoning field in 

adaptive training and can use the fine-grained data in GIFT to give insight into how learners are using 

training and what training is more or less effective. Incorporation into GIFT would also help provide 

instructors and unit leaders with tools to focus their training effort in real time. 

Finally, in the immediate term the research will be extended to additional training domains in order to 

ensure the generality of patterns and misconceptions for describing training in ways that instructors want 

to understand. A candidate domain might be a VBS room-clearing scenario which is already created and 

has collected some data pertaining to learner movement in a simulated space. This kind of extension will 

provide an excellent opportunity to show how patterns and misconceptions let human instructors or SMEs 

intuitively label complex behavior in a manner that is very challenging to machine learning algorithms. 

With these additional advances, the present research will add to the end-user author-ability of increasingly 

sophisticated and effective adaptive training in GIFT. 
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INTRODUCTION  

The Generalized Intelligent Framework for Tutoring (GIFT) was constructed in order to make it easier to 

create intelligent tutoring systems (ITSs), develop a shared set of authoring tools to do so, and to enable 

research in ITS (e.g., Sottilare, Goldberg, Brawner, & Holden, 2012).  ITS research takes many forms; as 

an example, some of this research is intended to support existing training simulations (e.g., Brawner, 

Holden, Goldberg, & Sottilare, 2011).  Further, some of this research is in the manners in which to model 

a learner (Brawner & Goldberg, 2012; Goldberg, Sottilare, Brawner, & Holden, 2011). Some of these 

models of the learner are not solely based on interactions that they have within the environment, but also 

upon sensors (e.g., Brawner, 2017; Brawner, Sottilare, & Gonzalez, 2012).  Such sensors can either be 

based in software, analyzing information such as system interactions and clicks, or hardware (e.g., 

DeFalco et al., 2017), with sensors which sense physical items such as posture or gaze. 

With computer-based or simulation-based training, sensors are somewhat optional; the learner can 

interact with the system, take actions, make progress, learn, and perform other activities without the 

explicit need for monitoring.  Certain domains, such as psychomotor training or medical skill training, 

however, require the use of a sensor to monitor and identify the learner’s performance.  Particularly, using 

sensors can benefit to assessment of the learner (e.g., Goldberg, Amburn, Ragusa, & Chen, 2017), 

providing a source of information to the rest of the system so that the learner with adaptive instructions 

and feedback.   

Integrating and synchronizing data from heterogeneous sources of sensors can be somewhat complicated 

and challenging, especially in a psychomotor domain, since sensors can have their own sampling 

behaviors and data stream formats.  For example, the experimenter utilizing sensor data would need to 

connect with the various data streams of various sensors during the data collection from an experiment 

with human participants.  Synchronizing the different sources into a time series and analyzing them would 

be complicated.  It is, thus, necessary to investigate a general and reliable approach to better exploit the 

sensor data as a series of data points indexed in a time order by synchronizing all the heterogeneous 

sources of sensors.   

The goal of this paper is to provide what is the general approach to exploit heterogeneous sources of 

sensor data in various domains including cognitive and psychomotor domains.  We choose to use and 

explore the GIFT capability since it provides a generalized framework for a computer guided adaptive 

instruction, and there are many pre-existing efforts which integrate sensors with GIFT.  These sensor 

streams were able to provide rich learning analytics (Brawner, 2017; Brawner & Gonzalez, 2016; 

DeFalco et al., 2017).  We examine the current capability and provide directions to extend the capability 

in order to better assess the learner performance in the diverse domain. We also examine the process to 

integrate new sensors with GIFT, and provide suggestions for improved systematic process of integration.   

To pursue the aforementioned goal, in this paper, we first review and summarize the current process of 

integrating sensors with GIFT, and identify the technical needs to synchronize multiple sensors for 



 

300 

 

improved learning analytics.  In addition, we report a use case from our exploratory study.  We have 

created a study environment in GIFT, where a psychomotor skill can be assessed by sensors by extending 

an adaptive training on rifle marksmanship (Goldberg, Amburn, Ragusa, & Chen, 2017).  A golf putting 

was selected as a psychomotor training task because it is physical and precision-required performance like 

rile marksmanship.  It is argued that breathing techniques would affect the precision-required 

performance of rile marksmanship (e.g., Grossman & Christensen, 2008), and it is also suggested that a 

slow breathing skill can help individuals to improve accuracy on their performance in other tasks (e.g., 

Goldberg, Amburn, Ragusa, & Chen, 2017; Kim, Dancy, Goldberg, & Sottilare, 2017). 

SENSORS INTEGRATED WITH GIFT 

Several commercial and custom-built sensors have been integrated with GIFT to support learner 

assessments that include learner engagement, arousal, motivation, knowledge, anxiety, and engaged 

concentration.  These learner states are defined in Table 1.  It is reasonable to think that they can 

influence learning, as prior research has shown effects.  

Table 1.  Learner states tracked in GIFT. 

Learner States Definition References 

Engagement 

“refers to the degree of attention, curiosity, interest, 

optimism, and passion that students show when they 

are learning or being taught, which extends to the 

level of motivation they have to learn and progress in 

their education” 

(The Glossary of 

Education Reform, 

2016) 

Arousal 

“a major aspect of many learning theories and is 

closely related to other concepts such as anxiety, 

attention, agitation, stress, and motivation. One 

finding with respect to arousal is the Yerkes-Dodson 

law which predicts an inverted U-shaped function 

between arousal and performance” 

(Clark, n.d.) 

Motivation 
“an internal drive that activates behavior and gives 

it direction” 
(Rakus, 2011) 

Knowledge 

“a familiarity, awareness, or understanding of 

someone or something, such as facts, information, 

descriptions, or skills, which is acquired through 

experience or education by perceiving, discovering, 

or learning” 

(Knowledge is a 

familiarity, n.d.) 

Anxiety 

“a feeling of worry, nervousness, or unease, 

typically about an imminent event or something with 

an uncertain outcome” (Anxiety [Def. 1], n.d.) 

“anxiety impacts a student's working memory, 

making it difficult to learn and retain information” 

(Minahan, 2012) 

 

(Minahan, 2012) 
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Engaged 

concentration 

“a state of engagement with a task such that 

concentration is intense, attention is focused, and 

involvement is complete” 

(Baker, D'Mello, 

Rodrigo, & Graesser, 

2010) 

 

To support the assessment of the learner states listed in Table 1, we have developed interfaces for a series 

of commercial and customized sensors for use during GIFT instruction and developmental testing.  A 

table of sensors integrated in GIFT are listed in Table 2, along with their descriptions, inputs, derived 

measures and a picture of the sensor hardware or surrogate.  

Table 2.  Sensors integrated with GIFT.    

Sensor Description & Inputs Derived Measures Picture 

Zephyr 

Bioharness 

ECG, respiration, 

estimated core body 

temperature, 

accelerometer, time, and 

location 

Heart rate (HR), breathing 

rate, heart rate variability, HR 

confidence, estimated core 

body temperature, impact, 

activity, caloric burn, posture, 

% HR max, % HR at 

anaerobic threshold (AT), 

accelerometer, training loads 

and intensities, jump, bounds, 

leaps, explosiveness, peak 

force, peak acceleration, GPS  

 

Emotive 

EmoCompos

er 

(Alshbatat, 

Vial, 

Premaratne, 

& Tran, 

2014) 

As part of the Emotiv 

Software Development 

Kit (SDK), the 

EmoComposer is a 

testing tool for 

developers building 

EPOC headset 

applications 

The derived measures are 

unique to each application 

developed 

 

Emotiv Epoc  

EEG Headset 

(Lang, 2012) 

Brain control interface 

with 14 channels of EEG 

data 

Instantaneous excitement, long 

term excitement, engagement/ 

boredom, frustration, and 

meditation  
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ARL 

Expertise       

Surrogate 

Allows tester to vary 

expertise or domain 

competency 

This surrogate is used 

for testing in place of 

any other measure of 

expertise (e.g., 

assessment/test). 

Expertise or domain 

competency 

 

Microsoft 

Kinect 

Allows users to act as 

the controller and    

interact with simulation 

elements using a 

combination of body 

movement and spoken 

commands 

IR Depth Sensor 

measures the distance of 

each pixel of an object 

from camera plane 

Emotional states (facial 

markers); engagement 

(posture); arousal (acceleration 

measures) 

  

 

Microsoft 

Band 2 

Optical heart rate   

sensor; 

accelerometer/gyro;; 

GPS; ambient light 

sensor; skin temperature 

sensor; UV sensor; 

capacitive sensor; 

galvanic skin response; 

microphone, barometer 

Heart rate, steps, location, 

galvanic skin response (GSR) 

Resistance and GSR 

conductance  

ARL 

Motivation 

Surrogate 

Sensor 

Allows tester to vary the 

motivation level of a 

user 

This surrogate is used 

for testing in place of 

any other measure of 

motivation (e.g., survey 

instrument). 

Motivation level 

 

 

ARL Mouse 

Temperature 

& Humidity 

Sensor 

Temperature and 

humidity of a user’s 

hand 

Arousal, stress 
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ARL Mouse 

Temperature 

& Humidity 

Surrogate 

Sensor 

Allows tester to vary 

temperature and 

humidity of a user’s 

hand 

This surrogate is used 

for testing in place of the 

actual mouse   

temperature and 

humidity sensor 

Arousal, stress 

 

 

Inertial Labs 

3D 

Orientation  

Sensor 

(OS3D) 

Changes to velocity 

(acceleration) and 

disturbances to magnetic 

fields 

Real-time heading, pitch and 

roll orientation information 

 

Affectiva Q 

Sensor 

Electro-dermal Activity 

(EDA), Temperature, 

Acceleration (3D) 

Arousal, stress 

 

ARL Self 

Assessment 

Sensor 

Allows tester to vary a 

user’s self-assessment 

This surrogate is used 

for testing in place of 

any other self-

assessment methods 

Self-assessment of 

performance 

 

ARL Sine 

Wave Sensor 

Allows tester to vary any 

user’s attributes as sine 

waves 

This surrogate is used 

for testing in place of 

any other methods to 

vary learner attributes 

sinusoidally 

Sinusoidal representation of 

learner attributes (e.g., 

engagement) 
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USC Virtual 

Human 

Toolkit 

Multisense 

(Scherer et 

al., 2012) 

A perception framework 

that enables multiple 

sensing and 

understanding modules 

to interoperate 

simultaneously, 

broadcasting data 

through the Perception 

Markup Language; 

includes the Generalized 

Adaptive View-based 

Appearance Model 

(GAVAM), Constrained 

Local Model (CLM) and 

Flexible Action and 

Articulated Skeleton 

Toolkit (FAAST) 

GAVAM – head tracking 

CLM – face tracking FAAST - 

middleware to facilitate 

integration of full-body control 

with games and VR 

applications 

 

 

LESSONS LEARNED FROM INTEGRATING SENSORS WITH GIFT 

Besides the various sensors integration with GIFT shown in Table 2, it was identified that there is a 

challenge to expand the instructional domains.  One goal for the design of GIFT is to expand the number 

and type of instructional domains in which it can support tutoring of both individual learners and teams 

(e.g., Brawner, Sinatra, & Gilbert, 2018; Sottilare et al., 2017), and tutoring of psychomotor tasks beyond 

the desktop environment (e.g., Sottilare, Hackett, Pike, & LaViola, 2017).  We have been extensively 

involved in developing strategies (Sottilare & LaViola, 2015) and concepts for psychomotor tasks like 

marksmanship (Goldberg, Amburn, Brawner, & Westphal, 2014), land navigation (LaViola Jr. et al., 

2015), and hemorrhage control (Sottilare, Hackett, Pike, & LaViola, 2017).  Designing tutoring for the 

psychomotor domain has also influenced the selection and use of sensors to support assessment during 

instruction. For example, the land navigation task has necessitated the use of mobile devices (e.g., 

smartphones) and associated sensors to support assessment.  We have also examined pressure sensors and 

designed how they might be used to assess the use of pressure bandages and tourniquets during combat 

casualty care to determine blood flow from wounds.  As we more fully develop these concepts, we will 

also develop interfaces for the associated sensors and make them available in the GIFT baseline.  In this 

section, we report the lessons learned from the use of sensors and sensor data analytics in a psychomotor 

task training.  

An Example for Using a Smartphone Sensor with GIFT  

Integrating sensors with a system can be somewhat straightforward; it is suggested for the developer to 

simply follow the template for code, processing, and configuration.  Any of the processing which has 

been authored for any of the sensors may be able to be reused for any of the other sensors with authored 

configurations.  The “sine wave sensor” can be used to test out any individual item (connection, 

configuration, processing, etc.).  Step 1 is to “make a sensor connection using one of the numerous 

interfaces”, Step 2 is to “configure it with the configuration tool, probably just copy whichever sensor you 

used previously”. For example, integrating the Android phone’s accelerometer and gyroscope sensor into 

GIFT consists of a few basic steps.  We, first, developed an Android app that can access the phone’s 
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sensor data and that can relay the data stream to the GIFT desktop.  The streamed sensor data from the 

app are formatted as JSON, with timestamped UDP (User Datagram Protocol) packets to an IP address 

that is configurable from the app.  Once the Android application was operational, GIFT could be modified 

to handle the incoming UDP packets.  GIFT defines an abstract class which generically represents 

communication with a sensor.   

An additional implementation of this class (AbstractSensor) was created to receive data from the 

Android phone’s sensors. The class is named AndroidPhoneSensor and overrides 

AbstractSensor’s methods: start, stop, and test.  The internal implementation of 

AndroidPhoneSensor starts a new thread when the start method is called. This thread 

continuously listens for the UDP packets from the Android device. When a packet is received, it parses it 

and places each of the six data measurements from the packet (three dimensions of accelerometer data 

and three dimensions of gyroscope data) into a SensorData Java object which is then sent to the 

Sensor Module’s existing pipeline for processing by GIFT. Once the SensorData object has been sent 

to GIFT, the thread listens for another packet.  

For implementations in the future, it may be beneficial to create an abstract implementation of 

AbstractSensor which receives JSON data via UDP and defers interpreting the JSON to drivers of 

the class. This would make the majority of the code written within AndroidPhoneSensor to be 

reusable and help separate common boilerplate code from the code which is specialized to a specific 

sensor.   

 

Fig 1a. The GIFT study environment for a psychomotor task: Initiating the BioHarness sensor through the 

Bluetooth connection. 
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Fig 1b. The GIFT study environment for a psychomotor task: Visualizing accelerometer sensor data in GIFT, 

and the three axes in a smartphone accelerometer sensor. 

Sensor Data Exploitation 

After the sensor integration with GIFT, it is important to consider how to extract the features of the 

learner performance and behavior from sensor data obtained from sensors.  Extracting and processing 

such data is called analytics. Particularly, when one considers the context of education and learning with a 

large amount of data, it is called learning analytics (LA) and educational data mining (EDM) (Baker & 

Siemens, 2014).   

Previously, to assess the cognitive and affective states of the learner, researchers have tried to incorporate 

appropriate sensors into an ITS (e.g., D'Mello et al., 2005).  In this line of research, the traditional method 

to exploit such sensor data for intelligent tutoring is largely dependent on the offline post-processing of 

the data rather than a real-time model of data analytics (Brawner, 2017) – i.e., taking measurements in a 

classroom, storing and moving to the offline environment, performing data analytics, and generating a 

model for the next set of classroom learners. The traditional method is not real-time, which seems to be 

hard to address varying learning environments. It would be, thus, necessary to advance learning analytics 

(i.e., an improved real-time assessment model), but it would create another set of problems in the ITS 

operation since the sensor data could be infinite, outside of control, and strictly constrained by time 

(Brawner, 2017).   

Similar to the affective data exploitation (Brawner, 2017), and the learner logging data processing from a 

tutor interaction (Baker & Siemens, 2014), sensor data in psychomotor tasks may require us to develop a 

methodology for efficient data processing and analysis for knowledge discovery, and to compare the 

sensor data with a theory-based model. A psychomotor task is usually characterized by coordinating 

cognitive, physical, and physiological variables in executing actions. Thus, sensors are focused on 

measuring the coordination of the learner features, which can be used to understand the learner according 

to the features. The physiological data, such as the heart and respiratory rate can be measured using a 

bioharness strap (e.g., Goldberg, Amburn, Ragusa, & Chen, 2017).  Also, acceleration data can be 

collected and analyzed to identify motions and movements (e.g., Fehlmann et al., 2017; Shamoun-

Baranes et al., 2012).   

As shown in Fig. 1, we have created a study environment in GIFT where two heterogeneous sensors are 

combined to measure the learner features.  In a pilot testing of the study environment, a participant is to 

be instructed to learn the breath control skill through a GIFT course, and then to perform a series of golf 

putting tasks: (a) 5 putting trials under a regular breathing, and (b) 5 putting trials under a tactical 
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breathing condition.  Fig. 2 shows plots of the collected sensor data with the time frame from 2:30 to 

5:30, which is under a regular breathing with 5 putting trials.   

 

Fig 2.  An example of the sensor data.  

 

The Learner Assessment 

The current GIFT capability does not fully support the combined sensor data analytics in real time. We 

report that we have conducted an offline sensor data analytics.  We approach learning analytics of the two 

heterogeneous sensor data from the bioharness strap (e.g., respiratory rate as breath per minute) and the 

Android phone accelerometer (e.g., the tri-axial values).   

We have explored the extended cognitive modeling approach that is based on the ACT-R architecture 

(Anderson, 2007), and extended to account for a physiological system, called ACT-R/Φ (Dancy, Ritter, & 

Gunzelmann, 2015). A version of the physio-cognitive model has been implemented (Dancy & Kim, 

accepted; Kim, Dancy, & Sottilare, submitted), and explored to predict physiological variables (heart and 

respiratory rates).   

Previously, a cognitive model has been used to track knowledge of the learner and to conduct 

performance assessment in an ITS (Anderson, Boyle, Corbett, & Lewis, 1990; Corbett & Anderson, 

1995). This work, however, has been limited to the cognitive task domain in a desktop learning 

environment. We start to utilize the physio-cognitive model to track the learner knowledge and to predict 

the learner performance in an attempt to achieve a (near) real-time sensor data analytics in a psychomotor 

task training.  

The leaner models, that can be cognitive (e.g., Anderson, Boyle, Corbett, & Lewis, 1990) or (and) 

physiological (Dancy & Kim, accepted) based models, can be used for assessing the learner as well.  

Based on the assessment process, we can provide more reasonable adaptive strategies for training. For 

example, in a tactical breathing practice, the learner would practice with a 4-4-4-4 cycle of breathing (4 s 

for breathe-in, 4 s for hold, 4 s for breathe-out, and 4 s for hold).  However, the lung capacity or the tidal 

volume would be different by individuals (e.g., by gender, by age, etc.).  A precise and correct learner 

model can be essential to determine whether a training regimen would be cognitively and physiologically 

plausible.  These aspects of learning can be analyzed through the sensor data exploitation to support 

improved learning. 

Along with the physiological responses, we also explored the sensor data of acceleration.  The raw 

acceleration data is tri-axial, and shows variable changes in values in terms of the xyz axes. The raw data 

can be processed to recognize movements and motions. That is, acceleration data can be static that is 
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dependent on gravity, and it can be also converted to the dynamic feature of performance as well—e.g., 

the vectorial dynamic body acceleration can be computed using the dynamic components of the signal to 

assess the activity level of the individual with three axes all together (  ) (Fehlmann et al., 

2017).   

To further exploit the sensor data of acceleration, it may be helpful to transform the complex signals to 

another domain. The key idea is to decompose a complex signal in the time domain to the frequency 

domain through Fourier transform.  To identify oscillations in the dynamic body acceleration for each 

axis, it has been reported that it is possible to compute power spectrum densities (PSDs) and their 

associated frequencies using Fourier analysis so that we can figure out at which frequency the signal 

varies the most, indicating a large movement (Fehlmann et al., 2017).  Based on this approach, behavior 

of animals has been investigated to identify six broad states of motions and movements including 

walking, standing, running, resting (sitting or lying), grooming, and foraging. This technique can be 

useful to conduct data processing of heterogeneous sensor data collected in a time series manner (e.g., 

GPS and acceleration sensor data). With regard to the aforementioned psychomotor related sensor data, a 

machine learning technique (e.g., random forest) can be used to classify a psychomotor task with the 

leaner data such as sitting, walking, backswing, hitting the golf ball, etc. The sensor data is also worth 

exploring to predict the learner behavior by validating the model.  Brawner (2017) explored machine 

learning algorithms to address the real-time analytics with cognitive-affective sensor data, highlighting 

the best real-time model with the learner features is based on offline experimental data validation with a 

machine learning technique.   

DISCUSSION AND CONCLUSIONS 

We briefed the use of sensors with GIFT, specifically in the psychomotor task domain.  In general, 

integrating sensors can be relatively considered as a simple process, but interpreting sensor data from 

multiple sources in a time series manner would be complex and challenging. 

Sensor Data in the Psychomotor Domain 

In our study environment, the learner’s behavior and performance (i.e., golf putting trials with the breath 

control skill) can be decomposed to physical, physiological, and cognitive components. On the onset of 

the tactical breathing course in GIFT, the sensor data collected from a smartphone is sampled and is 

relayed to the GIFT desktop. The acceleration data shown in Fig. 2 is complex. It shows changes in 

values within a specific time window and by a series of certain physical motions and movements.  A 

further analysis based on a machine learning technique is needed to reliably cluster and classify changes 

in the tri-axial values of acceleration, and to identify postures and movements, and to implement a model 

(e.g., a backstroke, hit, follow-through).     

We recorded the participant’s activities (i.e., when the participant starts to perform a slow breathing and a 

putting trial) by using the Bookmark functionality in GIFT.  The Bookmark function affords a record-

keeping by an experimenter (or a data collector)—i.e., the timestamped annotations in terms of the 

participant’s actions. The annotated data can be later matched to the sensor data, and then the data can be 

labeled by postures and movements. 

As an offline analysis of sensor data, we tested a couple of R packages.  We found it useful for data 

analytics and the learner performance assessment. Now the question is how to adopt the approved 

operational procedures of offline analysis, which attempts to strengthen the GIFT capability. With the 

pilot testing data, we computed the acceleration raw data to obtain different aspects of the data (e.g., static 
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and dynamic acceleration, vectorial dynamic body acceleration, power spectrum density of acceleration 

signals).  The acceleration data can be mainly categorized into two aspects—static and dynamic. The 

static acceleration is dependent on gravity, describing postures, and the dynamic acceleration describes 

dynamic body movements (Fehlmann et al., 2017).  Besides the acceleration data from a smartphone, the 

GPS data can be also explored to investigate movements and motions—e.g., Behavioral Change Point 

Analysis (Gurarie, Andrews, & Laidre, 2009).   

The sensor data regarding the physiological component can be interpreted to identify the breath control 

skill during the physical performance. In the pilot testing, we collected data from the Bioharness that 

transmits data through Bluetooth. The participant did wear the Bioharness with the chest strap during the 

performance. It is observed that the respiration rate (breath per min) looks increasing within the specified 

time window. We delved into what theory can describe our sensor data. We chose to use a computational 

model in a cognitive architecture because it can support learning and skill development processes of 

humans (e.g., Anderson, 2007). Particularly, we implement a physio-cognitive model (Dancy & Kim, 

accepted; Kim, Dancy, & Sottilare, submitted), which can be used to account for cognitive learning 

theories (Kim, Ritter, & Koubek, 2013) with physiological features of the learner.  The physio-cognitive 

model supports plausibility of human learning behavior since it is based on a cognitive architecture, ACT-

R (Anderson, 2007).  That is, the physio-cognitive computational model can support creating a tailored 

training scenario that can meet cognitive and physiological constraints of humans (e.g., the varying tidal 

volume of men and women).   

The sensor data is usually of a form of oscillations in a time series manner. For efficiency of calculation, 

the sensor data in the time domain) can be transformed to the frequency domain through Fourier 

transformation, spectral analysis. This approach has a potential to extend and improve our understanding 

of the learner behavior (e.g., Fehlmann et al., 2017; Xu & Reitter, 2017). Supposed that an intelligent 

tutoring system with multiple sensors and with multiple individuals as a team.  The aforementioned 

method, an understanding of power spectrum density of the signals, can be applied to a team performance 

analytics, e.g., team communication and team collaboration through a dialogue.  There is a study about 

dialogue behavior and effectiveness of conversations, arguing that the spectral analysis can be successful 

to measure communicative effectiveness (e.g., a successful task collaboration) by considering the 

alignment of certain linguistic markers, lexical items, or syntactic rules between interlocutors correlates 

with task success (Xu & Reitter, 2017).   

Sensors and Standardization 

Recently, we have been involved in developing proposals for standardizing data messaging and 

interactions between components of adaptive instructional systems (AISs) as part of an IEEE 

standardization study group.  Both sensors for data acquisition and algorithms for state classification may 

be influenced by the defined functions and information shared between AIS common components.  As the 

types of tasks supported by GIFT expand and as standards take hold in the AIS community, we envision 

GIFT and its sensor options being updated to optimize models of the learner as a basis for adaptive 

instruction, which can provide the starting point for standardization (Sottilare & Brawner, in press). 

Multiple Sensors and Multiple Learners as a Team 

A major design change challenge will also influence the type of sensors and their use in GIFT. With the 

expansion in GIFT capabilities from individual learner tasks to team tasks, we predict a need for a multi-

sensor architecture to track the behaviors of multiple team members in support of team taskwork 

assessments.  Sensors will be needed to disambiguate individual learner data (e.g., position, location, 
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communication) from others on the team to provide individual, subgroup, and group feedback.  This is 

required to provide a model of how individual actions roll up to the attainment of team goals. 

Methods of assessment will become more complex as we move from desktop applications to live, 

augmented, and mixed reality applications.  Complexity will also rise as we move from individual to team 

instructional constructs.  The groundwork laid to support individual task domains will largely be reused to 

support team instruction, but additional team models will be required and team assessments will require 

logic to understand how individual behaviors and roles influence progress toward team goals.  Sensors 

will continue to play a part in team assessments, but can be provided and extended in the same manner 

that individual models are extended to team models (Brawner, Sinatra, & Gilbert, 2018). 

We are planning spiral development for team model development for adaptive instruction.  Initially, we 

will construct team models that focus only on team measures to simplify the assessment problem.  

Sensors will be needed to assess whether team objectives have been met.  We believe this initial approach 

will be accomplished with little change to the GIFT architecture as it is today, but more hierarchical 

modeling of teams in the future spiral phases of development will require methods to link individual 

learner models and individual roles and responsibilities to team models and objectives.  This will require 

some fundamental additions to the current GIFT architecture.  Sensors will be required to disambiguate 

data from individual learners who may be operating in close proximity in live training environments.  

Standardizing approaches for different types of team tasks may lead us to more simplified approaches to 

sensor integration for team tasks.   
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Developing Standards for Adaptive Instructional Systems:  

2018 Update 
 

Robert A. Sottilare, Ph.D. 

US Army Research Laboratory – Human Research & Engineering Directorate (ARL-HRED) 

Learning in Intelligent Tutoring Environments (LITE) Lab 

Center for Adaptive Instructional Sciences (CAIS) 

INTRODUCTION 

At a learner modeling expert workshop held at the University of Memphis in 2012, Robson and Barr 

discussed the potential of lowering the barriers to adopting intelligent tutoring systems (ITSs) through 

standardization and subsequently wrote a chapter about market needs and standards for learner modeling 

(Robson & Barr, 2013).  Fast forward five years and the University of Memphis and US Army Research 

Laboratory brought together a group of ITS stakeholders from the IEEE standards association, industry, 

government, and academia in November 2017 to discuss potential standards across ITSs and other 

intelligent media that we labeled adaptive instructional systems (AISs).  Sottilare & Brawner (2018) 

define AISs as: computer-based systems that guide learning experiences by tailoring instruction and 

recommendations based on the goals, needs, and preferences of each learner in the context of domain 

learning objectives.   

Based on the stakeholder meeting in November 2017, the IEEE Learning Technologies Standards 

Committee established a 6 month AIS standards study group.  An essential role of this study group is to 

engage AIS stakeholders to understand the marketplace needs and identify opportunities to reduce 

barriers to adoption through standardization.  As part of their activity, the AIS study group established 

four workshops to engage stakeholders: 

 First AIS Standards Workshop – 7-8 March 2018, Orlando, Florida 

 AIS Standards Workshop at the Generalized Intelligent Framework for Tutoring (GIFT) Users 

Symposium – 11 May 2018, Orlando, Florida 

 AIS Standards Workshop at the Intelligent Tutoring Systems Conference – 12 June 2018, 

Montreal, Canada 

 AIS Standards Workshop at the Artificial Intelligence in Education Conference – 30 June 2018 

 

The purpose of this paper is to highlight some of the ideas and opportunities for standards identified 

through the development and conduct of these workshops. 

POTENTIAL AIS STANDARDS 

This section identifies some of the ideas put forth as opportunities for standards and discusses their merit 

with respect to the following criteria: 

 the idea solves a specific problem identified by AIS developers and/or users 
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 the idea reduces the time and skill required to develop AISs 

 the idea promotes opportunities for interoperability and reuse without negative impact on 

intellectual property 

 the ideas promotes opportunities for new AIS markets or collaboration opportunities 

Common AIS Conceptual Model 

Robson, Sottilare & Barr (2018) identified the need for an AIS conceptual model including definitions, 

common components, and functions.  They states that “a hierarchical common understanding of the 

composition of AISs would be useful in communicating ideas in lectures, presentations, and technical 

papers as well as system specifications”.  While this proposal will stir some debate, it seems that a 

common conceptual model of AISs is low hanging fruit that could be implemented quickly as a standard.  

The likely results of this proposal being a reduction in development time and expanded opportunities for 

collaboration based on a greater common understanding of AIS design.   

AIS Component Interoperability and Reuse 

Three workshop papers have suggested standards opportunities based on component interoperability 

(Sottilare & Brawner, 2018a; Brawner & Sottilare, 2018; Sottilare & Brawner, 2018b).  The basis for this 

proposal is the fact that the literature is fairly consistent in identifying four common components or 

models within ITSs: domain, learner, instructional (or pedagogical), and user interface.  While the 

functions contained within these components can vary widely among ITSs, the data they exchange and act 

upon are fairly consistent.  Domain models generally provide assessments of the learner’s progress 

toward learning objectives to the learner model.  In addition to learner performance, the learner model 

contains a large number of learner states (e.g., affect, engagement, interest, and preferences).  The 

instructional model receives information about the learner’s states and uses this to recommend next steps 

in the instruction.  A user interface model collects information about the learner that can be used to 

ascertain their current and future states.  A standard set of messages could be easily implemented and 

allow for the swap of one component for another more appropriate or effective component without 

redesigning the AIS. 

Another aspect of component interoperability is AIS compliance with external “standards” like the 

experience application program interface (xAPI) which generates statements of achievement based on 

formal and informal education and training experiences (Sottilare, Long & Goldberg, 2017) or the 

learning tools interoperability (LTI) standard which enables data exchanges with courses in learning 

management systems (LMSs) like edX, Canvas, and Blackboard to support adaptive massive online open 

courses (MOOCs; Aleven etal, 2018).  Durlach (2018) has suggested that adoption of standards like 

National Information Exchange Model (NIEM) could also facilitate interoperability.  More work is 

needed to identify potential use cases and existing standards in which we wish AISs to interoperate with.    

Learner Modeling Standards 

Robson & Barr (2013) mention a previous effort to develop IEEE standards to enable learners to build a 

personal learner model, to enable developers to provide more personalized instruction, to provide 

standard sources of data to researchers, to enhance the learner-centric design of instructional systems, and 

to provide architectural guidance for instruction system designers.  However, they also note that this 
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noble effort never resulted in a standard.  For this reason, Robson & Barr (2013) have suggested that 

learner information be standardized, but not the learner model itself or any other model within ITSs. 

Several workshop papers have proposed learner modeling standards.  Baker & Coleman (2018) have 

recommended that a yet-to-be-specified set of behavioral models be standardized to represent learner 

engaged and disengaged behaviors.  Biswas & Rajendran (2018) have suggested a three-tiered learner 

model to represent metacognitive process, cognitive strategies, and cognitive skills.  Rus (2018) and 

Tackett et al (2018) note the need to standardize the representation of a learner’s knowledge (prior, 

current, and predicted). 

Another idea discussed during recent AIS standards workshops and meetings has centered on learner 

records which contain a set of common features that could form the basis of a default learner model.  

Learner record features could include demographic data, historical records of experience and 

achievement, and a longer term model of domain competency along with associated models of skill 

decay.  Standard learner record fields would allow systems other than the originating system to read in 

and interpret learner data in support of new instructional experiences (Robson, Sottilare, & Barr, 2018).   

Domain Modeling Standards 

Much fewer stakeholders have put forward ideas for standardizing domain models and their associated 

content, but “it is content and domain modeling that most subject matter experts think about when they 

create curricula and learning environments” (Hu, Graesser, & Cai, 2018).  We believe this points to the 

need for a methodology to structure domains models and content as a framework in which old domain 

knowledge and content can be swapped out to the system for old, less effective content.  They also 

recommend that domain models and content be aligned with the developers mental model of the process 

and be sufficiently specified so as to be functional and effective.  McCoy (2018) also suggests a 

structured domain model based upon hierarchical relationships. 

Validation Standards 

The idea of validation standards was extracted from Robson, Sottilare, & Barr (2018).  “Once standards 

have been adopted for common conceptual models, component interoperability, and learner record 

features, we will not only want to validate AIS compliance to those standards but will also want to test 

their effectiveness, their fit for purpose, and their compatibility with other learning systems. Support for 

other standards, such as the experience API (xAPI) must be considered, and authors of AISs may desire to 

evaluate the effectiveness of their systems as a whole or in part to understand how their product stacks up 

against marketplace expectations for performance and learning effectiveness”.  

Examples of this type of testbed or quality function can be found widely.  In the 1990’s compliance 

testbeds were established to support interoperability testing for both IEEE 1278 Distributed Interactive 

Simulation (DIS) standard and IEEE 1516 High Level Architecture (HLA) standard to allow participants 

in large scale distributed simulation training exercises and experiments to gauge their readiness to be 

compliant with the standard, interoperable with other federates, and compatible with the simulation 

information required to be exchanged between federates.   

Early in its development, US ARL adopted a testbed function for GIFT to support experimental 

evaluation of its components to determine whether they met validation criteria.  Our experience with 

GIFT may serve as a model for how we might approach validation, and therefore serve as a guide to 

normative language in a broader series of standards that address the quality of AISs and their 

compatibility with other learning systems.   
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NEXT STEPS 

The next steps are to complete the approved workshops and begin to share a work program for our 

potential IEEE working group.  A project authorization request (PAR) has been formulated and submitted 

to the IEEE Learning Technologies Standards Committee.  According to IEEE, “a PAR is a legal 

document and the means by which a working group assigns copyright to and indemnification from IEEE. 

Every PAR that is submitted must have a Sponsor to oversee the project. A PAR is a document that states 

the reason for the project and what it intends to do”.  The specific PAR for AIS standards is P2247.1 and 

the PAR and our request to establish an AIS Working Group are up for approval with an expected 

decision in July 2018. 
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Learning Technology Standards - the New Awakening  
 

Dr. Robby Robson, Eduworks Corporation    

Avron Barr, IEEE Learning Technology Standards Committee 

INTRODUCTION 

Standardization has been a lynchpin of industrialization. It is hard to imagine railroads, automobiles, 

electric grids, or the Internet without standards for rail gauges, oil viscosity, voltages, internet protocols, 

and thousands of other things. Organizations such as the International Organization for Standardization 

(ISO) and IEEE Standards Association (IEEE-SA) have published thousands of standards ranging from 

highly technical standards that define the inputs and outputs of systems to process and quality standards 

designed to ensure that goods are produced in a repeatable, auditable fashion. 

Yet, within any given discipline or area, the rate and quantity of standardization is often cyclic. The field 

of learning technology is no different and is currently in the middle of a surge.  The years 2017 and 2018 

have seen the establishment of new standardization efforts in the areas of competencies, credentials, 

virtual reality, eBooks, data privacy, learning pathways, and adaptive instructional systems (AIS). This 

paper examines the forces that have led to this surge, suggests that learning portability is the new 

problem that is the driving force behind this new awakening, and discusses this in the context of efforts 

launched by the US Army Research Laboratory GIFT project (Sottilare et. al., 2012; Sottilare et al, 2017) 

to develop standards for AIS. 

Disclaimer: The views expressed in this paper, including characterizations of standards and standards 

development organizations, are those of the authors and should not be interpreted as representing the 

views of any organization.  

INTEROPERABILITY STANDARDS 

The standards addressed by this paper are interoperability standards. Interoperability standards permit 

multiple systems or services to work together even if they were designed and manufactured by different 

vendors – potentially from in different countries and who speak and code in different languages.  

As measured by adoption and incorporation into products, interoperability standards typically succeed 

because they solve a market-relevant problem, usually a problem related to supply chains, the cost of 

production, or market expansion. It is an instructive exercise to think of familiar standards and then to 

identify the problems they solved and the impact they have had.  Standards for weights and measures, for 

example, solved the problem of parts being produced separately and still fitting the devices that used 

them. This capability was a pre-requisite for the industrial revolution. The Domain Name System (DNS), 

as another example, enabled users to refer to servers by names they could remember rather than by 

meaningless strings of numbers. This convenience was vital to the early growth of the Internet.  

Disruptive innovations and technical breakthroughs often lead to new interoperability problems and hence 

to surges in standardization. Disruptions include new inventions (the steam engine or personal computer), 

new processes (the assembly line), or new business conditions (the Software-as-a-Service business 

model).  Once these have played out in the market, however, there is often a reduction in the number of 

high value interoperability problems that must be addressed, so one expects a corresponding reduction in 

standards activity. This explains the cyclic nature of standards activities mentioned in the introduction and 

suggests that increases in standardization are often triggered by innovations.  Identifying and 
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understanding these innovations can help standards development organizations (SDOs) determine which 

proposed standards are most likely to have an impact.  

Conceptual Interoperability Standards 

In software, most interoperability standards address data formats, communications protocols, and system 

requirements, but there is another type of interoperability that might be termed conceptual 

interoperability. Conceptual interoperability includes shared vocabularies, system architectures, 

frameworks, and reference models that help producers and consumers communicate effectively.  A well-

known example is the Open Systems Interconnection (OSI) model developed as the ISO 35.100 series of 

standards in the 1970s (Wikipedia, 2018). OSI defines the network layers (physical, data link, network, 

transport, session, presentation, and application) that are used in product manuals, purchasing 

requirements, engineering courses, and many other places. 

As illustrated by OSI, conceptual interoperability standards can stimulate markets. However, for this to 

occur, there must be a market in place and that market must be experiencing a communication problem. 

The learning technology field, in contrast, has tended to create conceptual interoperability standards well 

in advance of the development of markets for the systems they conceptualize. Such standards, while 

useful for research and academic purposes, rarely have a significant effect on products, consumers, or 

end-users. 

LEARNING TECHNOLOGY STANDARDS (1997 – 2009) 

In the view of the authors, the innovation that spurred the development of the first wave of learning 

technology standards was the web and publicly available web browsers. This led to online and web-based 

courses and to what is now called “eLearning.” The fundamental interoperability problem that plagued 

the early eLearning market was content portability.  At first, the functionality of content depended on 

the features and functionality of the specific system that delivered it, usually some type of learning 

management systems (LMS). This market issue had significant economic impact: Organizational 

consumers were locked into their LMS, and there could be no general eLearning authoring tools or mass-

market content distribution, since instructional designers and developers had to develop content for a one 

LMS at a time. 

A wave of standards emerged from c. 1997 – 2009 that separated content from its delivery mechanism. 

These included: 

 Aviation Industry CBT Committee (AICC) set of Computer Managed Instruction (CMI) 

standards;  

 IMS Global Learning Consortium (IMS) Content Packaging and Question and Test 

Interoperability (QTI) – which was derived from a specification called Question Markup 

Language (QML) contributed by Questionmark (Questionmark, 1997) – and Common Cartridge 

standards;  

 The IEEE Learning Technology Standards Committee (LTSC) standards for Learning Object 

Metadata and “Content Object Communication” (derived from the AICC CMI standard) and 
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 The Shareable Content Object Reference Model (SCORM) published by the Advanced 

Distributed Learning (ADL) Initiative, which adopted standards from both the IMS and the IEEE 

LTSC to define a procurement requirement for LMSs and content that ensured interoperability.3  

These standards catalyzed the growth of a multi-billion-dollar industry (Reuters, 2017) that includes LMS 

vendors; a variety of eLearning authoring tools (ranging from “rapid eLearning tools” to products such as 

Authorware™ and Learning Content Management Systems (LCMS)); and both mass-market publishers 

and bespoke eLearning development companies. The SDOs listed above created many other eLearning 

standards as well – including standards for competency definitions, learner profiles, architectures, 

learning systems design, digital rights management – but none of these achieved the same level of 

adoption as basic content portability, presumably because none of these addressed a pressing market need. 

THE NEXT WAVE: ENABLING A SUPPLY CHAIN (2010 – 2016) 

The LMS was invented at the time when the prevailing model of the web was as a content delivery 

system.  As the web evolved to a networking tool characterized by social media and eCommerce, learning 

technology standardization activities related to content portability predictably subsided and work started 

to focus on specific eLearning supply chain problems. The most active development during this period 

came from the IMS Global Learning Consortium, which describes itself as serving a “community of 

educational institutions, suppliers, and government organizations” (IMS Global Learning Consortium, 

2018a). From a standards perspective, this constitutes an eLearning supply chain that runs from academic 

publishers to educational institutions to students via LMSs and associated technologies.  IMS Global 

standards released between 2010 and 2016 included (IMS Global Learning Consortium, 2018b): 

 Standards for the accessibility of content by learners with have special needs or are in 

problematic environments (such as in poorly lit environments or on noisy airplanes), many of 

which were based on prior work of the accessibility community (IMS Global Learning 

Consortium, 2012); 

 Updates to its Common Cartridge and Question and Test Interoperability standard; and 

 A Learning Tools Interoperability standard that originally focused on plugging tools into an LMS 

but via several updates has been generalized to enable sharing content, user management services, 

and “launch” messages among tools;  

These standards address important problems in the learning delivery ecosystems maintained by 

institutions and the supply chain that supports them. They improve interoperability and make the sharing 

of data, services, and tools within each ecosystem more efficient. However, they do not address any 

problems that are fundamentally different from those addressed by the first wave of content portability 

standards. 

Another significant pre-2017 standards release was the ADL’s Experience API (xAPI) (ADL Initiative, 

2018). First released in 2013, xAPI focuses on reporting and sharing the outcomes of learner activities. 

Developed and branded as “tin can” by Rustici Software, xAPI was incorporated into Rustici’s SCORM 

engine and SCORM Cloud. This led to immediate adoption, but largely as a substitute for the reporting 

mechanisms in SCORM. The ADL’s initial vision of xAPI may have included innovations such as 

                                                      

3  SCORM achieved an unprecedented level of global adoption, in part because one vendor, Rustici Software, 

provided services that allowed all LMS vendors to implement SCORM consistently and cost effectively. 
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integration into the Internet of Things (IoT) and supporting a new wave of learning analytics, but as 

applied, it primarily overcame constraints imposed by SCORM in the corporate (and military) eLearning 

supply chain.  

Other Standards Activities 

IMS Global and the ADL were not the only organizations developing learning technology standards and 

specifications during this period. The IEEE LTSC lay largely dormant but released a Resource 

Aggregation Model for Learning Education and Training (RAMLET) standard that defines a conceptual 

model for expressing aggregations of digital learning resources as ontologies and applies this to a variety 

of other standards, ranging from IMS Content Packaging to the Metadata Encoding and Transmission 

Standard (METS) (Library of Congress, 2018).  ISO/IEC JTC1 SC36, also known as ITLET 

(“Information Technology for Learning Education and Training”), has published 39 standards documents, 

including many in the period in question. These range from adoption and adaptations of IEEE LTSC and 

IMS Global standards to standards that address e-portfolios, learning analytics, competency, virtual 

experiments, collaborative workplaces, and requirements for e-textbooks.  

ITLET standards and RAMLET are primarily conceptual interoperability standards. They consist of 

abstract frameworks and reference models that identify components of systems architectures and data 

models but do not define concrete Application Programming Interfaces (APIs) or data formats. They may, 

of course, prove useful in the future – for example, a new generation of intelligent agents may 

successfully reason about real-world phenomena using the ontologies defined by RAMLET. Nonetheless, 

the IEEE or ITLET standards developed prior to 2016 appear to have had little impact on learning 

technology products. The base RAMLET conceptual model, for example, had a total of 166 fulltext views 

from IEEE Xplore as of April 2018, whereas the IEEE Learning Object Metadata data model – released 

the same year – had almost ten times as many (1640) such views, despite being freely and easily available 

in multiple places on the web (IEEE Xplore, 2018a and 2018b).  

CHANGE FACTORS 

Until very recently, almost all learning technology standards that achieved adoption in the marketplace 

focused on concrete interoperability problems associated with the models of eLearning that were 

established in the early days of the web. These models have undergone refinement and evolution but not 

revolution, which has often frustrated researchers and technologists (including the authors). From the very 

start, these innovators envisioned the web as a means to radically transform education and training from a 

didactic endeavor dominated by classroom lectures into something completely new that is personalized, 

immersive, intelligent, and far more effective. For example, in 1999, Robson wrote (Robson, 1999): 

“Once the content of WWW (sic) pages can interact with other types of records, it is possible to design 

systems in which content and even the functionality of the interface adapts to the record and preferences 

of the user and can be easily edited by an instructor or author. Communication could be managed in new 

and interesting ways not widely used in the university classroom. Authentic scenarios, role playing, 

virtual realities … all of these could support and could interact with other parts of the on-line learning 

environment.”  

Many of the research community’s hopes and visions were reflected in conceptual standards or in 

standards that codified a specialized technical approach. Retrospectively, these had very little chance of 

being adopted for a variety of reasons, ranging from their lack of real-world market relevance to their 

overly complex nature that made them impractical to implement. More recently, however, there has been 

a new awakening, characterized by greatly increased interest and collaboration across multiple relevant 
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industry and government sectors and by a focus on a new set of standards that do not involve content 

portability. In the view of the authors, the root cause of this awakening lies in the several disruptions that 

are outlined in this section. 

Power to the People! 

Over the past decade, social media, online video (YouTube), and increases in possibilities for real-time 

networking and communication gave rise to MOOCs and other technologies that incorporated 

connectivism and social constructivist theories of learning (Siemens, 2014), but the ability of learners to 

network with each other did not fundamentally change the nature of learning content or learning 

technology. The maturation of eCommerce and the spread of online courses did, however, trigger changes 

that are having a profound long-term effect on the education and training marketplace. What was once a 

world of disconnected, institution-bound opportunities from which a learner could select at most one at 

any given time has gradually become a supermarket that offers multiple concurrent choices. This 

development has created a consumer market that is shifting buying power and power over the curriculum 

from institutions to individuals.  

Content portability standards benefit institutions by increasing the efficiency of their supply chains, but 

they do not prevent institutions from locking learners into their LMS, HR, or registrar system. 

Individuals, on the other hand, have a vested interest in ensuring that they can seamlessly move from one 

system to another – and receive the outcomes and credentials they seek – regardless of which systems 

they use or from whom they obtain their education or training. This is creating a demand for sharing data 

about learner preferences, backgrounds, traits, and achievements across learning systems and across 

institutional and content provider boundaries – a demand that will only grow with increasing global 

availability of online opportunities, the “gig economy,” and labor market pressures to facilitate frequent 

re-training and career changes.   

Power to the Technology! 

The demand to share new types of data does not only come from market shifts. It is also being amplified 

by technology drivers, creating a perfect storm of change agents. 

 Cloud-based Web Apps: The first technology driver is the shift from desktop applications to 

cloud-delivered web applications. Learning activities are increasingly delivered as web apps 

running on cloud servers. In this model, content is once again tied to delivery systems, but the 

web browser has become a standardized and ubiquitous player that works for any cloud-based 

activity, so content portability is no longer a market problem. At the same time, enterprise cloud 

applications typically communicate with each other as “services” that exchange relevant data 

behind the scenes. The relevant data are those that enable learners to transition seamlessly among 

learning activities and that enable the learning activities to adapt to the learner. 

 The Data Storm: The second technology driver is the expansion of learning platforms to include 

mobile phones, tablets, and virtual/augmented reality devices and the instrumentation of learners 

with devices that measure their location, movements, biometrics, and instant-by-instant actions. 

These platforms and devices drastically increase the variety, velocity, and volume of data that is 

produced by and required by learning systems, a phenomenon that is closely coupled with the 

third technological driver, which is the emergence of artificial intelligence (AI).  

 Artificial Intelligence: AI is being applied to education and training in many forms, including 

machine learning, educational data mining/learning analytics, and natural language processing. 
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The combination of AI with the increasing availability of location, motion, visual, biometric, and 

other real-time data – not just from a single learner but from all learners in a learning ecosystem – 

makes it feasible to develop adaptive instructional systems (AIS) that are active participants in the 

learning experience. These systems are already posing questions that standards are suited to 

address, ranging from data and protocol interoperability to questions of privacy, data protection, 

and the transparency of AI systems’ reasoning (Rozenfeld, 2017).  

THE STANDARDS RESPONSE 

The learning technology standards community is responding to these forces for change: 

 The IEEE LTSC is now running several standards activities that have active participation from 

dozens of companies. The last time that this happened was over 15 years ago, during the early 

days of the AICC, IEEE LTSC, IMS Global, and ITLET.  

 An IEEE Standards Association activity associated with learning technology – the Industry 

Connections Industry Consortium on Learning Engineering (ICICLE, 2018) – was launched in 

January of 2018. Its premise is that a cadre of specifically-trained professional engineers will be 

required to design and support future learning environments. ICICLE had 259 participants, 65 

organizations/entities, and nine active special interest groups as of 23 April 2018, less than four 

months later.  

 The IMS Global Learning consortium took over the Open Badge Alliance from the Mozilla 

Foundation on January 1, 2017 (Badge Alliance, 2017) and is also involved in standards for the 

exchange of competencies, academic standards, and learning pathways.; 

 The Learning Resource Metadata Initiative (DCMI, 2018) and the Credential Engine (Credential 

Engine, 2018) are focusing efforts on Schema.org, which is an effort supported by the Google, 

Yahoo, and Yandex search engines;  

 An ongoing joint effort started in 2017 is focusing on standards for competencies and credentials. 

This effort involves multiple standards development groups that represent HR, medical education, 

corporate training, and formal education;  

 Standardization efforts in the eBook-for-education arena are taking place within the IEEE LTSC, 

ISO/IEC JTC1 SC36, and IMS Global in conjunction with the W3C Publishing Business group 

that was formed by the merger of the International Digital Publishing Forum (IDPF) with the 

W3C.  

 The US Army Research Laboratory, which has been the home to many activities in Intelligent 

Tutoring Systems, has launched the Center for Adaptive Instructional Science and is working 

within the IEEE LTSC to explore related standards. (ARL, 2018) 

Many of the above initiatives involve the standardized exchange of data about individual learners. These 

data range from granular activity reporting to data about learner competencies, preferences, traits, goals, 

and credentials (including formal credentials and micro-credentials represented by badges). These data 

are essential for AISs and for AI applications and are important for recruiting, staffing, talent 

management, and many other activities that intersect strongly with learning technology.  Data standards in 

these fields are being embraced by public-private partnerships (U.S. Chamber of Commerce, 2018), 

lending added impetus and visibility to the standardization efforts listed above. 
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THE NEW PROBLEM: LEARNING PORTABILITY 

The driving force behind many of these standards is the requirements that the learning experienced by an 

individual be portable across education, training, HR, staffing, talent management, career guidance, 

college admissions, and similar systems. In addition, AIS need previously generated learning data to 

make adaptations, and AI algorithms need to be trained on sufficiently large collections of such data from 

target populations. All these requirements involve what might best be termed learning portability, which 

extends to the portability of data generated by new learning platforms, e.g. eBooks, VR/AR, advanced 

forms of simulations, serious games, and AIS. The standards being developed for these platforms are less 

concerned with the ability to move content across them as with the ability for these platforms to exchange 

learner data using standardized data services.  

PLUS ÇA CHANGE, PLUS C'EST LA MÊME CHOSE 

Many learning portability standards projects are continuations of projects started long ago, some before 

2000.  These include standards ranging from competency and credentialing standards to standards for 

agent interoperability. The difference is that earlier standardization attempts were conceptual or focused 

on point solutions developed by small groups or single organizations. At their core, they addressed 

pedagogical problems rather than business and market problems. This relegated learning technology 

standards to a sleepy corner of the fast-moving world of digital information and communication 

technology (ICT). 

In one respect, things are now different. The forces for change outlined earlier have brought learning 

technology interoperability into greater alignment with other ICT issues, while changes in business 

models and in the power relationship between individuals and institutions are disrupting all education and 

training market segments on multiple fronts.  This combination has awoken the industry to the value and 

need for a new set of learning technology standards, just as the requirement for content portability did 

during the last wave of standardization. Nonetheless, there is still a propensity for the learning technology 

standards community to believe that its mission is to radically improve learning. It may turn out that this 

works out well as pedagogical problems converge with market problems, but without injecting a keen 

awareness of the need for market, business, and technological relevance into the standards development 

process, it is also likely that many standards will be produced that experience low adoption rates. 

WHAT THIS MEANS FOR AIS 

The context of this paper is an effort being led by the Army Research Laboratory and the GIFT project, to 

explore standards for AIS. In this context it is important to observe that intelligent tutoring systems (ITS) 

and other AIS have until recently been self-contained systems designed for desktop use. ITS were 

developed in response to Bloom’s work on the effectiveness of various modes of instruction that 

concluded that one-on-one tutoring could realize a two-sigma increase in learning effectiveness over 

classroom instruction (Boom, 1984) Modeling this form of instruction requires computational power and 

user interactions that until recently could only be realized using specialized software running on dedicated 

devices, mostly on desktop computers. These monolithic systems, including GIFT and commercial 

systems such as Knewton and Carnegie Learning’s tutors, have been small players in the learning 

technology marketplace (Robson & Barr, 2013) and are not part of the eLearning supply chains addressed 

by standards.  

In addition, the general problem of content portability for AIS seems too complex for standards.  

Attempts to standardize representations for adaptive content, which arguably include the more complex 
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portions of SCORM’s simple sequencing and standards such as IMS Learning Design (IMS Global 

Learning Consortium, 2013), have proved to be problematic and have not been adopted – and these 

efforts only scratch the surface of what it would truly mean to have plug-and-play representations of the 

learning experience delivered by a sophisticated AIS. The problem is that AIS are not about content at all 

but instead are about guiding a learner through a set of experiences in a personalized manner, which 

differs radically from the traditional “web as a delivery system” model that is reflected in most content 

portability standards. 

The new problem of learning portability, in contrast to content portability, is more aligned with AIS. 

From the perspective of the learner, the knowledge or skills or credentials gained from an AIS are no 

different than those obtained from any other system. From the perspective of an AIS, domains and data on 

a learner’s state should be independent of the algorithms it uses. Moreover, as ITSs such as GIFT move to 

the cloud, they become more capable of exchanging and consuming data of the type associated with the 

new wave of learning technology standards through standardized APIs. It is therefore reasonable to 

expect that judiciously developed and adapted learning portability standards can bring AIS into the 

mainstream of learning technology ecosystems. As a benefit, the will reduce the cost of developing and 

deploying AIS while providing their proprietary AI algorithms with the data they need to perform better 

and better adaptations and to improve their effectiveness as learning systems. 
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