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= Training scenarios are resource-intensive to create
» Authoring tools require specialized knowledge

* Training scenarios are often not reusable

" Finite set of training scenarios available to learners

" Training scenarios are often one-size-fits-all
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Research program objective: Devise
generalized, data-driven scenario generation
models that dynamically adapt training events
to achieve target learning objectives in
simulation-based virtual training environments.
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=  Character-centric interactive narrative planning

(Cavazza, Charles & Mead 2002; Si, Marsella & Pynadath, 2006;
McCoy et al. 2014)

= Story-centric interactive narrative planning

 Search-based drama management (Weyhrauch 1997; Nelson &
Mateas, 2005)

 STRIPS-style planning (Riedl & Young, 2010; Porteous, 2017)

* Reactive planning (Mateas & Stern 2005; Barber & Kudenko 2007)
 Case-based reasoning (Fairclough 2004; Ontanon & Zhu, 2011)
 Decision-theoretic models (Mott & Lester, 2006)
 |nformation retrieval (Swanson & Gordon, 2012)



Research Context: o
RL-Based Interactive Narrative 'g:temmecg%

= Modular RL-based interactive
narrative (Rowe, Mott, & Lester,

2014; Rowe & Lester, 2015) Reinforcement [ Q-Network ﬁ

= Representation optimization in =y £
modular RL-based interactive Adapration / \ e e )
narrative (Wang, Rowe, Mott, & e e
Lester, 2016) Joer R L e e L] ovemme
= Multi-objective reinforcement li\ ,il e
learning (Sawyer, Rowe, & Lester, Pataset
2017)
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= Deep RL-based interactive

narrative personalization =l
(Wang, et al., 20173, b, 2018) + Policz Evaluats)n
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Reinforcement Learning )

= Problem: Devise
software agent that
learns how to behave in
order to maximize
numerical reward

= No external supervision

= Delayed rewards

[
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Deep Neural Network

= Family of machine learning
techniques for modeling
hierarchical representations
of data
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Output Layer

= Used for multi-level feature
learning and pattern
classification

= Deep neural networks
e Multi-layer perceptrons

object models

e Recurrent neural networks

e Convolutional neural https://catalystsecure.com/blog/2017/07/deep-
networks learning-in-e-discovery-moving-past-the-hype/
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= Derive scenario generation policy Output Layer .-
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Interactive Narrative Personalization with Deep Reinforcement Learning (1JCAI-2017)
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= Large amount of data is ideal for deep RL

= Generate synthetic data for training deep RL-based scenario
generation models using simulated learners

= Leverage multi-dimensional design framework for simulated
learners (Rowe et al., 2017)
* Representational granularity
e Computational framework
* Model complexity
* Learning process
* Model validity

= Configure a range of simulated learners to investigate how to tailor
run-time scenario generation
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Virtual Battlespace 3 e,
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= Popular simulation platform
for small-unit training

= Developed by Bohemia
Interactive Simulations

= |ntegrated with GIFT

= Provides developer tools for
scenario/mission editing

= |nitial Task Domain:
Call for Fire Training

23



Call for Fire Training oo,
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= |nfantry calls for indirect fire
from supporting artillery:

* Forward Observer(FO)
identifies target

* FO signals artillery battery
(AB)

e AB fires at target location

* FO sends targeting
adjustments (repeated)

* FO ends firing mission

= Realized in VBS3 using
SimCentric VBSFires Add-on
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Stochastic multi-armed bandit problem (agrawal & Goyal, 2012)
* Given a slot machine with N arms
* At each time step, one of the N arms is pulled

* Each arm, when played, yields a random real-valued reward
according to a fixed unknown distribution [0, 1]

 The random rewards are i.i.d. and independent of other arms
* Reward is observed immediately after pulling an arm



Scenario Adaptation Library

Specify initial conditions of

Call for Fire task: F
* Weather: Clear, Cloudy, Raining
* Time of day: Day, Dusk, Night

e Type of target: Stationary,
Moving

Conditions affect difficulty of e

i
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CFF task

Each combination of
conditions is an arm of the
MAB (18 possible scenarios)
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Simulated Learner

Competency Score: Simulated
learner’s prior knowledge is
represented on the range [0,1]

Difficulty Level: Scenarios are
assigned a difficulty [0,1] based
on combined initial conditions

Reward: Generated stochastically
based on scenario difficulty and
learner competency
e Binary indicator of effectiveness
of training scenario for learner

e Sampled according to binomial
distribution

[
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Scenario
Difficulty

Simulated
Learner

Binary
Reward




Simulation Setup i
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= An 18-armed bandit was constructed to cover all possible
combinations of initial conditions

= Two simulations were run with different populations of
simulated learners
* High competency learners (M=.8, SD =.1)
* Low competency learners (M=.2, SD =.1)

= For each simulation 50,000 trials were run with a different
randomly generated learner for each trial

= UCB1 algorithm was used to determine which arm to pull (i.e.
manage exploitation/exploration)



Expected Reward

094

092

090

088

086

084

o082

080

High Competency Learner(.8)

rain+night+move
cloud+night+move
clear+night+move
rain+dusk+move
cloud+dusk+move

T T
20000 30000
Number of Trials

10000

T
40000

T
50000

Expected Reward

o080

078

076

=)
~
N

o
~
~N

070

068

066

Low Competency Learner(.2)

1

1

| —

— dear+day+still
cloud+day+still
rain+day+still
clear+dusk+still
cloud+dusk+still

10000 20000 30000 40000
Number of Trials

T
50000



IR AT A

I
- = = 2t 4 ‘
] Tt e ) —— S T I ] 3 T e SR

SCENARIO GENERATION DEMO

VBS3 Call for Fire
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= Approach provides ranking of scenarios based on population
of users

= Leverage data from human learners to induce and validate
simulated learner models

= Plan to investigate methods for incorporating multiple
objectives into the reward function

= |nvestigate alternative algorithmic techniques to improve
efficiency (fewer trials)



Conclusions i
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= Automated scenario generation will play a central role in
simulation-based training.

= Deep RL shows significant promise for data-driven automated
scenario generation.

= We are investigating deep RL-based scenario generation for
Call for Fire training in the VBS3 simulation environment.

= Preliminary results with multi-armed bandits provide an initial
demonstration of data-driven scenario generation that
produces a ranked ordering of generated training scenarios.
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= Expand scenario adaptation library to capture a broader range
of transformations to exemplar training scenarios.

= Expand formulation of automated scenario generation
beyond initial scenario conditions and explore deep RL
techniques.

= |nvestigate richer simulated learner models to serve as a
bootstrapping mechanism for scenario generation.

= |nvestigate multi-objective rewards to account for tradeoffs
between learning objectives during scenario generation.
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