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INTRODUCTION 

The wheel-spinning phenomenon in the current paper refers to students’ unproductive failure within a com-
puter-based learning environment using Intelligent Tutoring Systems (ITSs). Beck and Gong (2013) found 
that students often spend a considerable amount of time practicing a skill in ITSs without making progress. 
This phenomenon is coined wheel spinning because students’ learning pattern is like a car stuck in the mud. 
The wheel-spinning phenomenon has been observed universally on many ITSs (Beck & Gong, 2015). When 
wheel spinning, students often become frustrated and demotivated to learn (Cen, Koedinger, & Junker, 
2007; Baker, Gowda, & Corbett, 2011). Therefore, several studies explored building an effective and reli-
able wheel-spinning detector to detect the moment of wheel spinning. Beck and Gong (2015) suggested a 
generic model using logistic regression to predict wheel spinning with three aspects: student’s performance 
on the skill, the seriousness of the learner, and general factors of the learning material such as skill difficulty. 
Matsuda, Chandrasekaran, and Stamper (2016) built a more simplified wheel-spinning predictor as a com-
bination of the probability of mastery based on Bayesian knowledge tracing, and a neural-network model.  

In the current paper, we investigate the wheel-spinning phenomena in the context of adaptive online 
courseware where many ITSs are embedded into the online courseware. Students are provided with multi-
media instruction, including paragraph text instruction, images, videos, and traditional formative assess-
ments such as multiple choice and fill-in-the-blank questions. ITSs are embedded in the courseware as a 
type of formative assessment as well.  In this rich learning environment, we aim to predict the moment of 
wheel spinning so that the system can provide proactive scaffolding to maintain students’ motivation and 
engagement.  

The goal of the current paper is to contribute to the Generalized Intelligent Framework for Tutoring (GIFT) 
framework by investigating the wheel-spinning phenomena on the adaptive online course platform with 
many ITSs on which wheel spinning will happen. We discuss the unique nature of the wheel-spinning in 
this environment and our current progress. The current work is part of our on-going project where we de-
velop evidence-based learning-engineering methods to build adaptive online courseware, called PASTEL 
(Pragmatic methods to develop Adaptive and Scalable Technologies for next generation E-Learning).  

The existing models for wheel-spinning detection have some limitations. First, existing models have low 
recall rates around 0.25-0.50, suggesting that these models are weak and can only detect less than half of 
actual wheel-spinning cases. Since not catching a moment of wheel spinning would impact students’ moti-
vation, we need to develop a model that has a high sensitivity to wheel spinning.  

Second, most of the existing models are aimed to detect a moment of wheel spinning, instead of predicting 
students who are likely to get stuck. Matsuda et al. (2016) applied a neural-network model to predict wheel 
spinning at an early stage of learning. However, its prediction power is approximately 0.25, which is still 
insufficient for practical use. The primary purpose of catching wheel spinning is to maintain students’ mo-
tivation for learning, it is crucial to predict the moment of wheel spinning in advance. With the early pre-
diction, we can provide students with proactive scaffolding that keep those students from experiencing 
wheel spinning.  



Third, existing wheel-spinning detectors/predictors explain wheel spinning on individual skills (the skill-
level model), indicating the likelihood of a student to fail to obtain mastery on a particular skill. Historically 
speaking, this trend has been held because problems on ITSs are broken down into a fine-grained skill set, 
often called a knowledge component (KC) model (Koedinger, Corbett, & Perfetti, 2012). Taking skills as 
a unit of analysis works well for a “standalone” ITS (including ITS with “units”). As mentioned above, we 
target the adaptive online courseware as the platform for wheel-spinning prediction. During our initial trial 
for creating an instance of adaptive online courseware (called CyberBook) with in-service teachers as cur-
riculum consultants, we asked in-service teachers to tag each ITS with the most essential skill that students 
will learn by solving problems on a corresponding ITS. We observed that in-service teachers often tagged 
an ITS with a skill that does not appear in any steps on the ITS (as opposed to selecting one of the steps on 
an ITS as the most essential step hence the most essential skill). For example, an ITS that teaches how to 
compute the slope of a given linear equation involves steps such as subtracting and dividing terms, but no 
single step is about “computing the slope.” On CyberBook, when a student gets stuck (i.e., wheel spins) on 
a particular ITS, the system provides the student with proactive scaffolding by showing a link to the related 
instruction paragraph. A naïve research question therefore is: Should wheel spinning be predicted on steps 
within an ITS (hence triggers the proactive scaffolding) or on the ITS as a whole? Given our observations 
from in-service teachers tagging ITSs with a skill, we hypothesized that the ITS as a whole should be the 
unit of analysis for wheel-spinning prediction.  

The goal of the current study is to develop a wheel-spinning predictor, which can distinguish students who 
have a high possibility to wheel-spin as quickly as possible, at the problem level. The specific research 
questions are as follows:  

1. How accurately can we predict wheel-spinning at the problem level?  
2. How early can we detect wheel-spinning at the problem level? 

To build a wheel-spinning prediction model that can find wheel-spinning cases with high accuracy and 
speed, we propose to use four general factors, students’ performance, hint usage, the sum of response time, 
and difficulty of each problem type. These factors are generally available on most ITSs and are known to 
be effective in predicting students’ academic performance. We have previously built a wheel-spinning pre-
dictor at the step-level (Park & Matsuda, under review). In the current paper, to understand whether the 
problem-level prediction is any better than step-level prediction, we apply logistic regression and an en-
semble modeling to predict wheel-spinning cases at the problem-level.  

DATA PREPROCESSING 

We used an existing dataset from DataShop, entitled ‘Cog Model Discovery Experiment Spring 2010’ in 
the ‘Geometry Cognitive Model Discovery Closing-the-Loop study’ project. There were 49 skills forming 
45,597 observations done by 123 students in the ‘KTracedSkills’ model in this data. This dataset contained 
5,279 student-skill pairs. The DataShop data uses fine-grained skills that are decomposed by Learning Fac-
tor Analysis. In order to predict wheel-spinning at the problem level, we needed to create ‘problem type’ 
as a different dimension of measuring wheel-spinning. We used a text-mining technology named SMART 
to create ‘problem type’. SMART is an AI technology that can compute the similarity among words within 
the text and extract a keyword. We input hint message of each intelligent tutor and set an arbitrary k number; 
k=25, 50, 75, 100. After SMART generates problem types, those problem type models were validated with 
the DataShop knowledge component model. Table 1 shows the result of comparing SMART generated 
problem type models. 

 



Table 1. Comparison of SMART generated problem type models 

Model name Problem 
types 

Observations 
with Problem 

types 

AIC BIC RMSE    
(student 

stratified) 

RMSE          
(item   

stratified) 

SMART k=25 17 85,115 46,986.00 48,454.30 0.273130 0.271673 

SMART k=50 28 85,115 46,787.87 48,461.83 0.272680 0.271298 

SMART k=75 40 85,115 47,114.50 49,012.91 0.274457 0.272230 

SMART k=100 39 85,115 47,145.30 49,025.00 0.273595 0.272066 

KTracedSkills 49 41,756 29,096.28 31,005.13 0.333781 0.324864 

 

KTracedSkills row is the baseline when comparing other SMART generated problem type models. We 
chose to use the problem type model named ‘SMART k=50’ because this model shows the lowest root 
mean squared error (RMSE). Comparing to KTracedSkills model, ‘SMART k=50’ has bigger AIC and 
BIC, but these figures are affected by the number of observations. Considering that the number of observa-
tions of our SMART generated problem type models is more than twofold, the AIC and BIC figures make 
sense.  

We employed the ‘SMART k=50’ problem type model and did data preprocessing. There were 28 problem 
types and we created 1,889 student-problem type pairs. Mastery in this study is defined as three consecutive 
correct responses on one’s first attempt within 10 practice opportunities (Beck and Gong, 2013) on a prob-
lem level. We filtered out “indeterminate” students, who did not practice on enough opportunities, which 
was 10 opportunities in this study, for us to define their mastery (Beck & Gong, 2015). After removing 
indeterminate student-problem type pairs, this dataset came to contain 1,794 student-problem type pairs 
and 31,801 observations with 123 students. The dependent variable is whether a student shows mastery (M) 
or wheel-spinning (W) on a problem type within 10 opportunities, based on the response sequences of each 
student-problem type pair. In order to see how early we can predict wheel-spinning on a problem type, we 
made subset at each practice opportunity from the third opportunity to the ninth opportunity.  

FEATURES 

We used four features that are all general factors in any dataset of ITSs. This is because first, we want to 
show that predicting wheel-spinning at the problem level can be generalized among any ITS construct, and 
second, we want to build a more simple and scalable wheel-spinning model.  

Student’s performance on each problem type 

The first feature we used is how well a student did on a problem type. This represents a student’s ability to 
solve a certain type of problem. This is calculated as the average probabilities of correct first attempts per 
each student-problem type pair.  



Problem type difficulty 

The second feature is the difficulty of each problem type. We calculated this variable by getting the average 
correct response rate of each problem type across all students who practiced the problem type.  

Max_hint 

Hint usage is regarded as one of the important factors in explaining students’ learning (Feng, 2009; Rivers, 
2017). Thus, we used the maximum number of hint usage of students on each problem type. 

Sum_duration 

Response time is one of the key features in a wheel-spinning model (Beck and Gong, 2015). Each problem 
type has several steps, so we added step duration of constituent steps to get the response time of a student 
on each problem type. 

PREDICTION MODELS AND RESULTS 

A basic model for wheel-spinning prediction at the problem level 

With the combination of features above, we trained a logistic regression to build a basic model for wheel-
spinning prediction at the problem type level with ten-fold cross validation. The coefficients would not be 
suggested due to the limit of space. This basic model for wheel-spinning prediction shows high accuracy 
throughout practice opportunities in Table 2. The overall accuracy in percent correct is 92.75% and overall 
AUC is 0.916. Considering the accuracy of the generic wheel-spinning model in a skill level (Beck and 
Gong, 2015), which was less than 90% in percent correct and 0.9 in AUC, this basic model shows a suffi-
cient performance with even using the smaller number of features.  

Table 2. Accuracy of a basic model per practice opportunity 

 opp3 opp4 opp5 opp6 opp7 opp8 opp9 

Percent correct  0.908 0.91 0.917 0.923 0.932 0.949 0.950 

AUC 0.856 0.863 0.894 0.939 0.938 0.949 0.975 

 

We not only need to see the accuracy of this model but also precision and recall rates in order to have an 
insight into its classification. Table 3 shows the precision and recall rate of this model at each opportunity. 
Both rates are increasing by each opportunity. However, the precision rate is 60% and recall rate is 33.65% 
on average across the third through ninth opportunity. These figures are relatively low comparing to those 
of existing wheel-spinning models (around 70% in precision rate and 25~50% in recall rate). Moreover, 
using this basic model, we cannot predict wheel-spinning on a problem type level as early as possible due 
to its weak recall rate in every practice opportunity.   

 



Table 3. Precision and Recall rates of a basic model per practice opportunity 

 opp3 opp4 opp5 opp6 opp7 opp8 opp9 

Precision 0.358 0.440 0.551 0.619 0.666 0.755 0.814 

Recall 
0.0798 0.176 0.230 0.285 0.417 0.612 0.554 

The upgraded model for wheel-spinning prediction at the problem level using gradi-
ent boosted decision tree model  

We found that the basic model has some limitations in terms of its precision and recall rates. Thus, other 
data mining techniques were explored to find a better prediction model. Especially, we focused on getting 
a higher recall rate in the early phases so that we can predict wheel-spinning on a problem level as quickly 
as possible. We discovered that the gradient boosted decision tree model using the same combination of 
features shows much better performance in accuracy, precision, and recall rate. Gradient boosted trees is 
an ensemble of multiple tree models to create a powerful prediction model for classification. This algorithm 
generates a series of trees where trees are made by correcting poor predicted examples of the previous trees 
in the series. We trained this model with a ten-fold cross validation by each practice opportunity. The overall 
accuracy of the upgraded model is 96.90% and 0.97 in AUC. Table 4 shows that this model shows higher 
accuracy throughout opportunities.  

Table 4. Accuracy of the upgraded model per practice opportunity 

 opp3 opp4 opp5 opp6 opp7 opp8 opp9 

Percent correct 0.953 0.955 0.961 0.972 0.974 0.985 0.981 

AUC 0.942 0.96 0.974 0.985 0.987 0.991 0.997 

 

This model also has a much higher performance on both precision and recall rates than those of our basic 
model. Overall, the precision rate is 87% and recall rate is 75% across the third through ninth opportunity. 
These figures are showing that this upgraded model has greater wheel-spinning prediction power than other 
existing models. Applying this model, we can predict wheel-spinning on a problem type on students’ fifth 
opportunity with 65% accuracy and over 80% accuracy on the sixth opportunity.  

Table 5. Precision and Recall rates of the upgraded model per practice opportunity 

 opp3 opp4 opp5 opp6 opp7 opp8 opp9 

Precision 0.792 0.834 0.867 0.843 0.840 0.958 0.963 

Recall  0.616 0.606 0.651 0.829 0.865 0.864 0.813 



Figure 1. Precision and Recall rate of two models 

 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

The goal of the current study is to seek the way in which we can predict wheel-spinning at the problem 
level (i.e., an individual ITS as opposed to a step in an ITS) with high accuracy, prediction power, and 
speed. We have some important findings in this work. First, we found that the four general variables (i.e., 
students’ performance, hint usage, the sum of response time, and difficulty of each problem type) that are 
available for most ITSs can sufficiently build a prediction model for wheel spinning at the problem level. 
Our basic model with four general variables shows similar performance with existing models in its accuracy 
(average percent correct is 0.93 and overall AUC is 0.92). Its recall rate (0.34) is higher than that of the 
other wheel-spinning prediction model (Matsuda, Chandrasekaran, and Stamper, 2016).  

Second, we explored other machine learning techniques to improve the accuracy of wheel-spinning predic-
tion. Our upgraded model with gradient boosted decision tree algorithm shows enhanced precision and 
recall rate with an average recall rate of 0.75. A pragmatic merit of this upgraded model is its speed—the 
recall rate on the sixth practice opportunity is around 0.83. This would expand our chance to promote stu-
dents’ efficient learning in ITSs by keeping them from wheel spinning in advance.  

As for the contribution to the Generalized Intelligent Framework for Tutoring (GIFT), the current study 
demonstrated a generic technique to predict students’ unproductive failure (wheel spinning) on an ITS em-
bedded into adaptive online courseware. The adaptive online courseware with embedded intelligent tutors 
has a tremendous potential for future online learning hence investigating fundamental techniques such as 
the wheel-spinning prediction plays an important role. We also demonstrated an importance of building the 
wheel-spinning predictor at the different level of granularity of the skill model.  

For future study, one intriguing topic would be to find what we should do once we predict wheel-spinning 
cases. What would be an effective intervention for those who are predicted to wheel spin on a problem? 
Another suggestion is to explore other machine learning techniques to improve the current wheel-spinning 
prediction model. This study used logistic regression and gradient boosted decision tree. Our upgraded 
model using gradient boosted decision tree shows significant improvement in predicting wheel-spinning, 
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however, a drawback of using this technique is that it is hard to interpret the model itself. Finally, it would 
also be an interesting idea to extend the research regarding why students show unproductive failure in 
learning by using ITSs.  
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