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INTRODUCTION 

The Army is working toward enhancements in soldier training systems using synthetic training 

environments (STEs) and mission rehearsal capabilities. This capability will augment live 

training on the range and in many cases will be self-guided, meaning that the trainee will not 

require a tutor or instructor to administer the training. The STE enables single user training and 

training of teams in small local groups and across operational networks involving large groups. 

Adapting the training scenarios to the capabilities and training needs of individual trainees is a 

proven way to enhance individual training effectiveness.  

In distributed training evolutions, proper adaptation of the training scenarios takes on an even 

more important role, as such exercises involve many trainees at various stages of their training 

maturity and skill. Problems arise when less experienced, or lower-skilled, trainees are exposed 

to training scenarios that are too advanced, or complex, for their level of experience. This can 

easily happen if the STE does not consider the capabilities and limitations of the individual 

trainees. Such unprepared trainees are more likely to fail their training mission and thereby 

reduce the benefits of training, further exacerbating frustration in the trainee. In addition, the 

failure may jeopardize the success of other trainees who depended on a reasonably successful 

outcome of a mission task element in the scenario. Failure of a single trainee to accomplish 

his/her mission may result in a chain reaction of adverse events in the training evolution that may 

reduce the value of the training exercise or increase cost. Conversely, trainees exposed to mis-

sions that are not sufficiently challenging may experience boredom, or even apathy, resulting in a 

negative training benefit. Adaptive scenario administration is needed in STEs to avoid such 

breakdowns and to enhance individual training effectiveness.  

There are many STEs and tools available such as VBS 3 (Virtual Battle Space 3). These tools 

often allow the creation and storing of scenarios that contain the starting conditions of a training 

module but the scenarios themselves are usually administered on a brute-force lesson plan. The 

structure of the simulation tools actually encourage such lesson based administration as it is very 

easy to create and save static scenarios. What is needed, however, is a mechanism to continually 

adapt the scenarios to match them to student abilities at their respective stages in the training 

program. Additionally, students need rich feedback on their performance and guidance on ways 

to modify behaviors to increase performance, if it is not at or above expectation.  

In our work, we have created an adaptive training framework from three separate systems, (1). 

the Generalized Intelligent Framework for Tutoring (GIFT), (2) the VBS 3 simulation frame-

work, and (3) the Cognitive Assessment Tool Set (CATS) workload quantification library. We 

developed a  



generic method to incorporate the GIFT performance grading scheme into VBS 3. This allows 

for on-the-fly configuration of adaptive VBS 3 training scenarios. Additionally, through CATS, 

this script can take into consideration the workload exhibited by the trainee and adapt the scenar-

io to avoid over or underload conditions. This adaptive training framework is governed by 

student performance, workload, and task difficulty. Performance and workload were incorpo-

rated as aggregated scores. Workload is assessed using the CATS workload library that is 

attached to GIFT. Both performance and workload drive the selection of upcoming training 

scenarios by modulating task difficulty such that the trainee is challenged at an optimum level. A 

script in VBS 3 uses a decision tree on the basis of performance (below, at, above expectation) to 

manipulate the level of task difficulty to maximize training effectiveness.  

In the current development cycle, we will perform a human factors study to assess the efficacy of 

adaptive training using two distinct adaptation schemes, one based on performance only, and one 

based on a combination of performance and workload. The results of the study will be used to 

determine if workload-adaptive training scenarios are more effective than training scenarios that 

only consider performance. 

BACKGROUND 

The value of adaptive training and its positive effect on training effectiveness has been well 

documented. The idea is of course not new (Lintern G. & Gopher D., 1978). The underlying 

principle is based on two hypotheses, (1) the learning of a complex task is best accomplished 

using less difficult versions of the task and increasing levels of difficulty until the whole task can 

be mastered, (2) learning of a task is better when transition from one level of difficulty to the 

next is guided by the performance of the student rather than brute-force administration of a rigid 

training regimen. 

In one-on-one training settings, expert instructors use this principle almost instinctively to keep 

students motivated throughout the building of critical skills. For example, flight instructors may 

teach the difficult skill of auto-rotating a helicopter using increasing levels of difficulty by 

gradually increasing the complexity of the maneuver. In the example of autorotation, adaptation 

is not only representative of good training didactics, it is essential for survival of both the in-

structor and the student, as poor performance can lead to mechanical damage to an expensive 

helicopter, such as through over speeding the rotor system, or it could lead to a fatal crash such 

as allowing the rotor RPM to drop below an allowable minimum or initiating the landing flare 

too late. Control of this task requires manipulation of four inter-dependent controls (collective, 

lateral cyclic, longitudinal cyclic, and tail rotor pedals) as well as at least four inter-dependent 

performance parameters (airspeed, flight path, rotor RPM, aircraft attitude). To an uninitiated 

person, this maneuver is extremely scary and cognitive workload will be very high. It makes no 

sense to scare a student on each and every repetition of that maneuver as this will only increase 

the possibility that the student will never master it and be unable to use it as a needed emergency 

skill. 

Expert instructors will ease their students into autorotations through adaptive training principles 

by giving the student only one control axis at a time (e.g. the collective) or through adjustment of 

the flight path (straight in path instead of curved). As the student gains confidence in his/her 



ability to master this skill at a given difficulty level, performance will improve and workload will 

go down. As is typical in the acquisition of many critically important skills, the decrease in 

workload is highly indicative of autonomous mastery. In the early stages, students may be able to 

master the skill at an acceptable technical level but only with the highest levels of cognitive 

workload expenditure. This is usually sufficient for passing a checkride or to graduate with a 

certificate but it is hardly a proper level of training for critical skills in warfighters. Instructors 

and instructional systems owe it to the warfighter to train them to a higher standard. High levels 

of cognitive demand causes significant draw on limited attentional resources (see Figure 1) 

which adversely affects the performance of perception, memory, decision making, and response 

execution. Trainees who master the skill to a point of automaticity will expend less cognitive 

workload and thus retain more attention resource capacity. This will afford them to devote those 

resources to mission critical task elements, which is essential in the projection of military power 

and for the self-protection of the warfighter.  

 

Figure 1. Wickens Information Processing Model (Wickens C. D., 1992, 2008) 

In our research, we are working on building the adaptive expertise that good instructors apply 

almost instinctively into automated Synthetic Training Environments (STEs).  

Even as far back as the Seventies, adaptive training was conceived of as a closed-loop controller 

system (Lintern G. & Gopher D., 1978). Such a system depends on measurement of task perfor-

mance. Unfortunately, automatically generating performance measures is not always easy and in 

many training tasks has eluded us to this day. Additionally, the most optimal way to make the 

training scenario adaptive is not always easily evident. Much research has been devoted to the 

question of how to make training tasks adaptive. Part-whole training is an adaptation scheme 

where essential subtasks are learned as building blocks to enable mastery of the whole task. Part 



Task (PT) training was found to lead to significantly faster convergence of a tactical skill in a 

video game when compared to Full Task (FT) training (Mané, Adams, & Donchin, 1989). An 

interesting observation of their work is that the part tasks were not fully representative as frac-

tions of the whole task but when learned in sequence lead to better performance than if the full 

task is learned at once. An additional observation is that the PT training took longer than FT 

training. However, the skill transfer rates from the PT were 100% and the overall performance of 

demonstrating the full task was much better. Thus, while PT may not yield net time savings, the 

fact that better performance is achieved may mean that less remedial training will be needed. 

Mane and Wickens (Mane A. & Wickens C., 1986) studied the effects of task difficulty and 

workload on training. They noted that training systems should adapt to maintain high levels of 

workload as otherwise, trainees will learn short-term resource preserving strategies that are 

counterproductive toward mastering of the long-term skill. Rigid (i.e. non-adaptive) training 

methods allow such maladaptive resource preservation strategies to take hold. In our work, we 

use real-time measures of cognitive workload to quickly close that short-term loophole for the 

trainee by adjusting training difficulty to maintain high levels of workload while at the same time 

preventing overload or defeat of the student through scenarios that are too difficult (e.g. autorota-

tions).  

Gerjets et al. (Gerjets, Walter, Rosenstiel, Bogdan, & Zander, 2014) describe the relationship 

between cognitive load theory (CLT) and training outcomes through optimal loading of working 

memory load (WML). The main challenge is a continuous classification of cognitive workload to 

allow adaptation of the training scenario to modulate WML. They describe methods such as 

subjective probes or secondary tasks measures. Both methods of workload estimation are disrup-

tive and hinder training effectiveness. They used EEG as a means to estimate workload with 

some success. The use of EEG signals for classification of workload is well represented in the 

literature, two additional examples of which are presented here. Wilson and Russell (Wilson & 

Russell, 2003) attempted to classify workload using a combination of sensors, including six 

channels of brain electrical activity, eye, heart, and respiration measures. Those authors were 

able to achieve classification accuracies around 82%. However, their tasks consisted of only two 

variants of the same test. Additionally, the high number of sensors used to collect the data, is 

sub-optimal for many scenarios including in flight measurements. Matthews et al (Matthews et 

al., 2008) used a wireless EEG sensor helmet to classify workload in real-time. Those authors 

achieve classification accuracies on an average of 80.5%. In well over a decade of workload 

estimation research at the University of Iowa Operator Performance Laboratory (OPL), we have 

come to the conclusion that the technical readiness level and diagnostic capabilities of EEG 

based workload probes is very low and unsuitable for a real-world training environment outside a 

highly controlled laboratory.  

A much simpler sensor montage is possible through a three-lead electrocardiogram (ECG). At 

OPL, we have used discrete deterministic nonlinear models of the full ECG waveform to obtain 

reliable and highly diagnostic real-time measure of cognitive workload. It is important to note 

that our method of ECG based workload estimation is NOT a heart rate based method or a time-

series based analysis. Rather, we continually transform the entire ECG signal into an embedded 

phase space and classify workload on the basis of the dynamic representation of the heart though 

an ergodicity map of the electrical heart signal. We start with the realization that the heart is a 



chaotic system that is under control of the nervous system. Chaotic systems are often not well 

represented via the normal scalar time series. Instead, the dynamics of the system are obfuscated 

in the single dimension whereas they become apparent when a transform of the data is made. 

This transform moves the data from the single dimensional scalar space into a multi-dimensional 

embedded phase space (Richter & Schreiber, 1998). In our method, the ECG time series data is 

transformed into phase space using the CATS software tool (OPL, 2014). This step established 

the Ergodicity Transition Matrices (ETMs) (Engler & Schnell, 2013) that represented the dynam-

ics of the ECG signal in phase space for the different workload conditions. To generate a real-

time workload estimation, we can either use the ETMs directly through lookup of model ETMs 

using nearest neighbor classifiers or through models of statistical transitions within the ETM 

called the Transition Probability Variance (TPV). TPV calculates the variance of the probabili-

ties of transition from one cell to another different cell of the course-grained ETM. The TPV 

therefore captures the variability in the dynamics of the ECG signal as the trainee undergoes 

different levels of cognitive loading. TPV varies inversely to the degree of workload with higher 

TPV numbers seen under low workload conditions and low TPV numbers seen under high 

workload conditions. The benefit of the direct ETM based discrete classifier is its very high 

accuracy level (near 100%). The downside of this method is that model ETMs need to be estab-

lished for each participant and each desired level of workload. The TPV method is less accurate 

(around 85-90% classification accuracy) but it does not require a model. The TPV method 

provides a continuous measure of workload no more than three heartbeats after the ECG system 

has been turned on. The TPV system has excellent cross-person and cross-task validity and is 

easily deployed in complex real-world environments (Schnell T et al., 2017; Schnell T., Hoke J., 

& Romeas T., 2017; Schnell T., Reichlen C., & C., 2017). 

Another trainee specific dimension that may be applied in the context of adaptive training 

systems is that of trainee affect and engagement. As with performance based adaptation, expert 

instructors generate a motivating and interesting training experience and they have the ability to 

detect affectual cues from the trainee such as frustration, fear, boredom, or anger. Effective 

instructors can interpret affectual cues as levers that affect learning. The affective domain of 

training provides a framework for instruction that includes student awareness, response, value 

perception, organization, and integration (FAA, 2008). A trainee has to be aware of the material 

being taught. It is the responsibility of the instructor or instructional system to raise the aware-

ness level in the trainee through immersive and interesting content. The student responds through 

active participation, decides on the value of the training, organizes the training into his/her belief 

system, and finally, internalizes it. Motivation and enthusiasm are important enabling compo-

nents of the affect domain.  

Ocumpaugh et al. (Ocumpaugh et al., 2017) provide a thorough review of the role of emotions in 

training. A quantitative understanding of affect dynamics allows not only for an understanding of 

a learner’s current affective state but also enables prediction of future affective states. Oc-

umpaugh et al. leverage data of the trainee’s affect dynamics toward making better adaptive 

training transitions. A proposed approach for incorporating affective state assessment into the 

GIFT training system draws from the observed model of affect dynamics (Error! Reference 

source not found.) presented by D’Mello and Graesser (D’Mello & Graesser, 2012). 



 

Figure 2. D'Mello & Graesser Model of Affect Dynamics 

We identify the following states and definitions from the referenced work 

 

 s1 – Engagement/Flow: A state of engagement with a task such that concentration is in-

tense, attention is focused, and involvement is complete. This is of course a desired state 

in a training system. 

 s2 – Confusion: A state experienced while encountering the “cognitive disequilibrium” 

that occurs when confronted with obstacles to goals, interruptions of organized action se-

quences, impasses, contradictions, anomalous events, dissonance, incongruities, unex-

pected feedback, uncertainty, deviations from norms, and novelty. In the context of a 

training system, this is a “productive” form of confusion as the resolution of the impasse 

provides a sense of accomplishment.  

 s3 – Frustration: A state experienced while encountering the “hopeless confusion” that 

occurs when an impasse cannot be resolved, the learner gets stuck, there is no available 

plan, and important goals are blocked 

 s4 – Boredom: A state experienced when a learner disengages from the learning process 

 

The model depicts six primary state transitions, but the design focuses on four (4) transitions that 

have pedagogical implications to an adaptive training system 

 

 s1  s2: Caused when an impasse is detected and the learner engages is effortful problem 

solving 

 s2  s1: Caused when an impasse is resolved. Additional positive affective states, such as 

delight, may occur as a result of achieving goals or receiving positive feedback 

 s2  s3: Caused when an impasse cannot be resolved, the learner is stuck, or important 

goals are blocked  



 s3  s4: Caused when persistent frustration prompts the learner to disengage from the 

learning process 

 

While it is not documented in this model, a direct s1  s4 transition may also occur if the learner 

is under-tasked, or when concentration or attention is broken. Proposed training adaptations are 

presented in two specific contexts: affective state alone and affective state coupled with physio-

logical workload. If the trainee is in a prolonged state of equilibrium, scenario complexity should 

be increased to trigger the s1  s2 transition and cause the learner to engage in effortful problem 

solving. Sustained equilibrium should be managed to prevent an s1  s4 transition. The s2  s1 

transition back into equilibrium does not require immediate intervention, as it indicates problem 

solving has been applied to successfully achieve a goal or resolve an impasse. However, the 

transition should trigger the system to monitor for a prolonged state of equilibrium. The s2  s3 

transition into frustration does not require an immediate intervention; however, it should trigger 

the system to monitor for a prolonged state of frustration. Sustained frustration should be man-

aged by reducing scenario complexity to prevent the s3  s4 transition. If the s3  s4 transition 

occurs, the scenario complexity should be reduced to present the learner with a more simplified 

problem, but the complexity of the problem must also increase the learner’s interest in re-

engaging with the training session. If an s1  s4 transition occurs, the scenario complexity 

should be increased to present the learner with a more complex problem that also increases the 

learner’s interest in re-engaging with the training session. 

Physiological workload assessment techniques can reinforce, or modify, the adaptations based 

solely on affective state. For brevity, the differences to the list above are included here. Stable or 

decreasing workload reinforces the adaptation that increases scenario complexity and triggers the 

s1  s2 transition during a prolonged state of equilibrium. A decreasing workload trend should 

immediately trigger the adaptation to prevent an s1  s4 transition. Workload provides an added 

dimension to the s2  s3 transition into frustration. The transition to frustration, paired with a 

stable or moderate increase in workload, does not require an immediate intervention, but should 

trigger the system to monitor for prolonged frustration. The s2  s3 transition accompanied with 

a dramatic increase in workload should result in a reduction in scenario complexity to prevent a 

rapid s3  s4 transition. Ideally, the coupling of affective and physiological state should allow for 

early detection and prevent the s3  s4 transition from occurring. 

STUDY: PHYSIOLOGICAL BASED ADAPTIVE TRAINING 

This paper describes a study that we are preparing to conduct over the next few months. Unfor-

tunately, we cannot present any results art this time. However, we feel that there is value in 

conveying our test plan to the scientific community.  

 

The present study is intended to assess the value of adaptive training systems that use measures 

of subject workload. We intend to test the hypothesis that adaptation using performance and 

workload (P+WL) will lead to better training outcomes than adaptations using performance only 

(P). Stated as a testable hypothesis EH1:  

 H0: performance only based adaptive training score = performance with workload adaptive 

training score 



 H1: performance only based adaptive training score < performance with workload adaptive 

training score 

 

In this experiment, both groups (A and B) will receive task training using their respective P+WL 

or P only adaption scheme. The effectiveness of that training will then be assessed in a graded 

capstone checkride. Throughout the training, we will periodically administer subjective workload 

probes to allow us an independent validation of the accuracy of the OPL workload algorithm.  

 

Each subject will wear a NeXus 4 channel wireless ECG system that collects raw data used by 

the UPCAT system to assess workload of the participants. Performance metrics from within the 

virtual environment along with workload are used to adapt the scenario. Figure 3 shows the 

system architecture used to collect and assess subjects’ performance and workload. All audio and 

video from the HMI, as well as audio and video of the subject is recorded and synchronized. 

Figure 4 shows the system architecture used to collect and synchronize audio and video data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  UPCAT System Architecture 
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Figure 4. System Architecture for Video and Workload Data Capture 

Each participant will complete a GIFT based training course in accordance with the group assigned adaption 

scheme (P+WL), (P). Within this course, each participant will complete a number of tasks. With the exception 

of the non-adaptive introduction (warmup), each task has three levels of difficulty (i.e. Easy, Medium and 

Hard). Participants will return approximately 14 days after their initial course to complete the capstone 

checkride. This general GIFT course flow can be seen in  

Figure 5. 
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Figure 5.  Training Course Flow 

 

Each participant will first attempt each task at the medium difficulty level. Participant perfor-

mance and workload are assessed throughout the training task and summarized for the adaptation 

decision at the end of each attempt. For each separate level of difficulty, participant outcomes are 

classified into one of three groups based on their performance score (green bubbles) as being 

below expectation, at expectation, or above expectation. The transition to the ensuing task level 

follows the decision tree shown in Figure 6 and Figure 7 for (P) and (P_+WL) groups, respec-

tively. These adaptation decision trees were adapted from (Mark et al., 2018).-Figure 4 

.

 

Figure 6. Adaptation Flow for Performance Only 

Adaptation (P) 

 

Figure 7. Adaptation Flow for Performance with 

Workload Adaptation (P+WL) 

The capstone checkride consists of one ever increasingly difficult task that encompasses all task 

elements from all previous part tasks. Participants continue through this increasingly difficult 

capstone checkride until they fall below performance thresholds. The point in the checkride 

where they fail is the dependent measure of training effectiveness with a later failure being better 

than an early one. We chose this method of testing to avoid ceiling or floor effects where many 

or all participants pass or fail a checkride of a selected level of difficulty. 

Throughout the experimental GIFT driving course we evaluate four conditions. They include the 

GIFT Corridor Boundary, OPL Workload, Maintain Speed, and Collision Avoidance. GIFT 

evaluates both Corridor Boundary and Workload Classifier conditions while VBS 3 evaluates 

Maintain Speed and Collision Avoidance conditions. VBS 3 maintains a state variable for each 

Corridor Boundary, Workload Classifier and Maintain Speed conditions. Each GIFT condition 

has three state transition strategies: one for each of the below, at or above expectation evalua-

tions (increasing, decreasing and maintaining for workload), in accordance with the flow graphs 

shown in Figure 6 and Figure 7. 

We added six new Environmental Control Enums; one for each condition at each evaluation 

which are used in GIFT state transition strategies. Using the sendCommand() function from 

GIFT’s VBS 3 Plugin Interface we are able to send any valid VBS 3 script command. For 



example, assume that the subject has trouble with tracking the vehicle in the middle of the driving 

lane. Therefore, the Corridor Boundary condition will evaluate to a value of below expectation. 

GIFT executes its corridor boundary from anything to below expectation state transition strategy 

which sends the VBS 3 command ["BELOW”] call setCorridorState, and the Corridor boundary 

state variable maintained by VBS 3 is updated to BELOW. The same happens for all evaluations 

and accompanying state transition strategies for both the Corridor Boundary and Workload 

Classifier conditions. 

Currently we have hard-coded the commands through the use of the Environmental Control 

Enum. This is restrictive as VBS 3 allows for thousands of commands. We experimented with 

the sendCommand() function, and were able to send multiple commands separated by a semi-

colon with a single call to sendCommand(). We believe the ability to create custom commands 

within the state transition strategies instead of the restrictive hard coded example we are using to 

be an appropriate addition to GIFT. We could add a single CUSTOM_COMMAND enum to the 

list of GIFT Environmental Control Enums. The command(s) could then be written into, and 

read from, the course .dkf file when GIFT calls the state transition strategy implementing that 

command. 

As mentioned before, both Maintain Speed and Collision Avoidance Conditions are handled by 

VBS 3. Both are called inside of an event handler attached to the subject object which fires every 

time the subject object moves. The event handler includes a timer that only calls the evaluation 

functions for both conditions for every evaluation interval (currently every 1 second while the 

vehicle is moving). For both the Corridor Boundary and Maintain Speed conditions, VBS 3 

maintains a timer for each of the below, at or above expectation evaluations. At every evaluation 

interval, VBS 3 checks the current state of the two conditions and adds the elapsed time from the 

previous evaluation to its corresponding timer. The final evaluation for each of the Corridor 

Boundary and Maintain Speed conditions is assigned based on what percentage of the total time 

was spent in each state based on Table 1 (note that actual logic accounts for ranges and not set 

values). 

Below/Total At/Total Above/Total Evaluation 

0% 0% 100% ABOVE 

0% 25% 75% ABOVE 

0% 50% 50% ABOVE 

0% 75% 25% AT 

0% 100% 0% AT 

25% 0% 75% ABOVE 

25% 25% 50% AT 

25% 50% 25% AT 

25% 75% 0% AT 

50% 0% 50% AT 

50% 25% 25% BELOW 

50% 50% 0% BELOW 

75% 0% 25% BELOW 

75% 25% 0% BELOW 

100% 0% 0% BELOW 

 



Table 1. Evaluation Assignment for Corridor Boundary and Maintain Speed Conditions 

Maintain Speed condition is graded through the use of a target speed and a speed window. If the 

subject is outside the speed window, they are evaluated to below expectation. If the subject is 

inside the center one-third of the speed window, then they are evaluated to above expectation. If 

the subject is between inner one-third and outside of the speed window, then they are evaluated to 

at expectation. Let the target speed be 35 km/h, and the speed window be 6km/h. If the subject’s 

speed is more than 41 km/h or less than 29 km/h, then they are outside the speed window and are 

evaluated to below expectation. If the subject’s speed is between 37 and 41 km/h or between 29 

and 33 km/h, then they are evaluated to above expectation. If the subject’s speed is between 33 

and 37 km/h, then they are evaluated to at expectation. 

Collision Avoidance is graded through the use of upper and lower bounds. If, at the end of an 

attempt, the subject has had fewer collisions than the lower bound they are evaluated to above 

expectation. If the subject has had more collisions than the upper bound, then they are evaluated 

to below expectation. Anything in between receives an evaluation of at expectation. 

The performance evaluation used for adaptation is an aggregate of these three condition evalua-

tions. Each task weights the evaluation of the three conditions differently, and some are not even 

used at all for some tasks. Let Task one be driving in reduced visibility, where the subject is 

evaluated on maintaining speed and corridor boundary while driving through a sandstorm. It is 

important to maintain their speed, but it is more important to stay on the road. So a fair weighting 

of the singular evaluations to determine the aggregate performance evaluation could be set to 

Equation 1. The aggregate performance and workload evaluations are then used to decide on the 

scenario adaptation based on the adaptation trees from Figure 6 and Figure 7. 

𝑎𝑔𝑔𝑃𝑒𝑟 = 0.40 × 𝑠𝑝𝑒𝑒𝑑𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 + 0.60 × 𝑐𝑜𝑟𝑟𝑖𝑑𝑜𝑟𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 

Equation 1. Aggregate Performance Grade for Task 1 

The aforementioned evaluation and adaptation logic is controlled by various scripts and event 

handlers. VBS 3 init.sqf script (called at the start of the scenario) compiles multiple scripts that 

set-up the global variables; the VBS 3 waypoints, create the files used for data collection; task, 

time, grading and GIFT message related functions; event handlers; and scripts that set-up the 

evaluation of conditions. The scenario adaptations needed for each level of difficulty for each 

task are also contained within their own scripts. 

The current GIFT Corridor Boundary condition did not allow an evaluation of above expectation, 

and we were concerned about fairness in the evaluations of the two groups (A & B). For exam-

ple: the ability of subjects from group A to reach an evaluation of above expectation and an 

adaptation of up 1 level compared to subjects from group B’s ability to reach the same adaptation 

through an evaluation of at expectation with a decreasing workload as shown in the adaptation 

trees in  Figure 6 and Figure 7. We saw a potential for a biased evaluation and made changes to 

allow GIFT’s Corridor Boundary condition to evaluate to above expectation. 

It works in much the same way as the Maintain Speed condition. If the subject is outside the 

corridor, they are evaluated to below expectation just as before. The change we made affected 



the way the subject is graded while inside the corridor. If the subject is inside the center one-half 

of the corridor, then they are evaluated to above expectation. If the subject is between inner one-

half and outside the corridor, then they are evaluated to at expectation. Let the corridor be 10 

meters wide. If the subject is more than 5 feet away from the center of the corridor, then they are 

outside the corridor and are evaluated to below expectation. If the subject is less than 2.5 meters 

from the center of the corridor, then they are evaluated to above expectation. If the subject is less 

than 5 meters but more than 2.5 meters away from the center of the corridor, then they are 

evaluated to at expectation. 

For purposes of our study, we write all data related to decision making with respect to the 

evaluation of the different conditions, aggregate scoring and adaptations throughout the course to 

.csv files. Each data point is timestamped with the system time (the exact time and date accord-

ing to the computer the subject is using). 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

We invested considerable effort in the establishment of an architecture that tightly integrates the 

capabilities of the GIFT framework with VBS 3 as a representative of an Army Synthetic Train-

ing Environment (STE). This architecture provides a robust control interaction capability be-

tween the two systems. Additionally, this architecture includes tight integration of a continuous 

workload assessment system (CATS) using a deterministic nonlinear workload classifier that 

analyses the ECG waveform in embedded phase space. This apparatus is capable of assessing 

learner state in real-time, in this case using a driving task, and applying performance and work-

load assessments to automatically configure scenario transitions for adaptive training.  

Additionally, we invested significant effort integrating an existing GIFT learner affect classifier 

library (Ocumpaugh et al., 2017) into this framework. This classifier uses a Kinect sensor to 

track features on the learner’s face to classify states of emotion. Even though we spent a tremen-

dous amount of effort in an attempt to integrate this library, we were, to date, not yet able to gain 

a reliable classification from it. Therefore, in the upcoming validation study using this apparatus, 

we decided not to use learner affect as a state variable to invoke scenario transitions. If we 

manage to get the affect state library to work, we will collect data from its affect state classifier 

for separate and off-line analysis. 
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