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INTRODUCTION 

Simulation-based training is an important tool for preparing learners to perform a broad range of complex 
tasks and skills. A key functionality of simulation-based training environments is delivering scenarios that 
drive learning interactions that approximate real-world situations. However, simulation-based training 
scenarios are typically resource-intensive to create. Some simulation environments provide authoring tools 
that enable new training scenarios to be manually created by subject matter experts, but these tools often 
require a high degree of specialized knowledge to be utilized effectively. Authored scenarios often cannot 
be reused in other training environments, and the knowledge associated with particular authoring tools has 
limited transferability. Further, learners are usually limited to training with a finite set of training scenarios 
provided by the system's designers. If learners have mastered the learning objectives associated with the 
available set of training scenarios, there is marginal benefit provided by further training with the simulation. 
Finally, training simulation scenarios are often delivered following a one-size-fits-all approach: they have 
limited capacity to dynamically respond to the broad range of individual differences in knowledge or 
behavior that are typical among learners. 

Automated scenario generation offers considerable promise for addressing the needs of simulation-based 
training. By utilizing automated scenario generation techniques, simulation environments can account for 
individual differences in how learners respond to different types of scenario events.  Further, they can create 
effective variations on training scenarios without requiring every scenario to be manually authored or 
managed by human experts. By leveraging generative techniques from interactive narrative technologies, 
we can dynamically create training scenarios that are configured to address instructors' learning objectives 
and tailored to the cognitive and behavioral characteristics of individual students (Riedl & Bulitko, 2012; 
Wang et al., 2017).  

Recent advances in machine learning, including artificial neural networks (in general) and deep learning 
(in particular), have spurred growing interest in data-driven approaches to interactive narrative generation. 
For example, deep reinforcement learning (deep RL) has begun to show significant promise for 
personalizing events in narrative-centered learning environments (Wang et al., 2017). However, there are 
many open questions regarding how we can most effectively leverage machine learning in order to 
automatically generate training scenarios that are tailored to instructors’ and trainees’ learning objectives. 
To begin to address these questions, we are launching a new collaborative effort between North Carolina 
State University, Intelligent Automation, Inc., and the U.S. Army Research Laboratory to investigate the 
design and development of a deep RL framework for automated scenario generation in GIFT. To serve as 
a testbed environment, we are generating training scenarios for Virtual Battlespace 3 (VBS3), a widely used 
simulation platform for small unit training within the Army, with an initial focus on Call for Fire (CFF) 
training. 

In this paper, we provide an overview of the deep RL framework for automatic scenario generation. We 
describe how to formalize automatic scenario generation as a deep RL task. We discuss several key 
components of the framework, including the scenario adaptation library, simulated learners, and a deep 
neural network model of multi-objective rewards. We describe the VBS3 training simulation that we are 
utilizing as an initial testbed environment. Next, we describe preliminary findings from a proof-of-concept 



implementation of a reinforcement learning-based scenario generator that centers on generating initial 
scenario conditions for CFF training using multi-armed bandits (i.e., a stochastic scheduling technique that 
is related to deep RL).  

AUTOMATED SCENARIO GENERATION WITH DEEP REINFORCEMENT LEARNING 

We approach the task of automated scenario generation from the perspective of interactive narrative 
technologies. Automated scenario generation and interactive narrative generation share several key 
characteristics. First, in both automated scenario generation and interactive narrative generation, users are 
active participants in virtual worlds that dynamically respond to users' actions. Second, both automated 
scenario generation and interactive narrative generation center on generating sequences of events that 
achieve author-specified objectives to produce scenarios that are effective and engaging. Third, both 
automated scenario generation and interactive narrative generation produce scenarios that are realized in 
immersive simulation environments.  

We formulate automated scenario generation as an instance of data-driven interactive narrative generation 
using deep RL (Wang et al., 2017). Deep RL is a computational framework that integrates two 
complementary families of machine learning techniques: reinforcement learning methods for training 
models for sequential decision-making under uncertainty, and deep neural networks for pattern recognition 
and representation learning with big data. Reinforcement learning is the task of a software agent inducing 
a control policy for selecting actions in an uncertain environment with delayed rewards (Sutton & Barto, 
1998). Deep neural networks combine weighted summations of non-linear functions to extract and model 
multi-layer hierarchical representations of data using supervised, semi-supervised, and unsupervised 
machine learning techniques (Goodfellow, Bengio, & Courville, 2016). By integrating reinforcement 
learning and deep neural networks, deep RL provides a formalized framework for sequential decision-
making in complex environments.  

Deep reinforcement learning provides a natural computational framework for formalizing dynamic scenario 
generation: the generator is tasked with making a series of decisions about how specific scenario events 
should unfold at runtime to optimize student performance on a pre-specified set of learning objectives. 
Dynamic scenario generation can be modeled as a sequential decision-making task in which a scenario 
generator introduces successive adaptations to scenario events over discrete time steps. A time step 
represents the time point when an adaptable event, such as the introduction of an obstacle or elimination of 
a resource, is triggered in the scenario. Using this formalization, deep RL can be utilized to dynamically 
generate adaptive “child” training scenarios from a canonical (i.e., “parent”) scenario that explicitly 
optimizes for both author-specified objectives and trainee learning outcomes. By inducing multi-objective 
reward models for controlling run-time decisions about training scenario events, we intend to enable authors 
to specify learning objectives that generate personalized training scenarios in immersive simulation 
environments integrated with GIFT. 

The deep RL framework for automated scenario generation consists of several key components: (1) a deep 
Q-Network model for controlling run-time scenario adaptation decisions that optimize multiple scenario 
objectives, (2) a scenario adaptation library that specifies possible transformations of “parent” scenarios to 
generate “child” scenarios, and (3) a simulated learner framework for generating synthetic data to train an 
initial version of the scenario generator. In addition, the framework requires a software infrastructure for 
integrating automated scenario generation functionalities with GIFT’s modular software architecture. 

Deep reinforcement learning leverages a Q-Network, a type of deep neural network, to model the estimated 
Q values of state-action pairs gathered from past observations of student interactions with a scenario during 
reinforcement learning. Q-networks encode the expected benefits of specific scenario adaptations in terms 



of a “reward function,” an explicit mathematical expression of optimization criteria that guide automated 
scenario generation. In the original work on deep reinforcement learning for Atari game playing, the Q-
network was organized as a convolutional neural network, which is a natural choice for processing image 
data from 2D games. For automated scenario generation, we will investigate deep architectures that utilize 
long-short term memory networks (LSTMs), a type of recurrent neural network, for modeling sequential 
data as typically expected in simulation scenarios. LSTMs are specifically designed for processing 
sequences of temporal data. LSTMs have achieved high predictive performance in many sequence labeling 
tasks, often outperforming standard recurrent neural networks by using a longer-term memory than standard 
RNNs, preserving short-term lag capabilities, and effectively addressing the vanishing gradient problem. 
We anticipate that utilizing LSTMs will enable reinforcement learning-based scenario generators to extract 
complex nonlinear interaction patterns between observed events and scenario adaptation decisions. LSTMs 
will be utilized to implement multi-objective deep Q-networks for automated scenario generation, as well 
as to implement machine learning-based simulated students to generate synthetic training data in future 
work. 

Multi-objective reward functions will enable the automated scenario generator to consider tradeoffs 
between competing authorial goals, learning objectives, and learner engagement. This builds upon prior 
research by the NCSU team on multi-objective RL for interactive narrative generation (Sawyer, Rowe, & 
Lester, 2017), and it involves incorporating a vector-based representation of reward in the output layer of a 
deep Q-network, where vector indices correspond to different reward sources. A multi-objective Q-
Network is induced at training time, and it yields a run-time scenario adaptation model after the course 
author has specified relative preferences among competing reward sources at course creation-time. 

State representations for driving deep RL-based scenario generation decisions will consist of several 
complementary sources of information. First, state vectors will include domain-independent features 
encoding learner knowledge, traits, and performance characteristics. A key requirement for automated 
scenario generation is devising generalized assessment rules that can be applied to a broad range of 
generated scenarios within a given task domain; it would be prohibitive for a system designer to devise 
custom assessment logic for every automatically generated scenario. Second, state vectors will include 
several features that summarize the history of past scenario adaptation decisions performed by the scenario 
generator. Third, state vectors will include a one-hot encoding of the category of scenario adaptation 
decision under consideration in order to leverage modularity and maintain tractability of the reinforcement 
learning task. These state features are consistent with the Adaptive Tutoring Learning Effect Chain, and 
they are consistent with our project’s vision for investigating how scenario generation functionalities should 
most effectively be integrated with the Pedagogical and Domain Modules of GIFT.  

Scenario Adaptation Library 

A key component of the deep RL-based scenario generation framework is devising a scenario adaptation 
library, which enumerates the range of possible transformations to a “parent” scenario that can be applied 
to generate “child” scenarios. By investigating different combinations of prospective scenario adaptations, 
the deep RL framework can generate a vast range of possible training scenarios that can be deployed with 
simulated or human learners, evaluated for their effectiveness in terms of trainee learning outcomes, and 
utilized to refine the scenario adaptation model for adaptive personalized scenario generation.   

Integrating deep RL-based scenario generation into GIFT is a key aspect of the project. A key interest is 
exploring potential extensions to GIFT that support domain-independent specifications of scenario 
adaptations—these would be specified with GIFT’s Pedagogical Module—in line with project objectives 
of generalizability of deep RL-based scenario generation. We envision a generalized taxonomy of scenario 
adaptations that includes several hierarchical domain-independent categories, including (1) inserting or 
removing obstacles; (2) constraining or increasing resources; (3) reconfiguring key objects; (4) adding, 



modifying, or removing sub-tasks; and (5) providing or removing embedded scaffolding. These categories 
will characterize a range of candidate adaptations that can be applied to a parent scenario in order to generate 
a set of “child” scenarios. These domain-independent scenario adaptations could be instantiated within 
GIFT’s Domain Module, which will configure and launch scenario events at runtime via a GIFT gateway 
to be realized in the simulation-based virtual training environment. 

Simulated Learners 

In order to train deep reinforcement learning-based models of dynamic scenario generation, we will utilize 
synthetic training data produced by simulated students created for each of the virtual training environments. 
The design of simulated students is informed by related work in artificial intelligence in education (McCalla 
& Champaign, 2013) and spoken dialog systems (Schatzmann, Weilhammer, Stuttle, & Young, 2006). We 
investigate how simulation parameters related to model granularity and model complexity influence 
synthetic data generation for deep reinforcement learning-based scenario generation (Rowe et al., 2017). 

Dynamic Scenario Generation User Experience 

The user experience of automated adaptive scenario generation functionalities in GIFT is likely to be 
different based on whether the user is a course designer, a student, or a software developer. For a pre-
integrated training environment, a course designer will select the training objectives that he is targeting in 
the GIFT Course Creator, and he can specify constraints on specific scenario adaptations that he would like 
to avoid in the generated run-time scenario. As long as the deep RL-trained scenario generator can produce 
a scenario that is consistent with the objectives and constraints provided by the author, the course will 
validate and it can be tested with live students. For a student, automated scenario generation will be 
invisible, and training events will be tailored based on the student’s individual traits, knowledge, and 
performance in the simulation environment. 

For a software developer seeking to integrate a new domain or training application, she will need to (1) 
have a deep knowledge of the “parent” scenarios supported by the training environment, (2) create a 
specification of possible “child” scenario adaptations that can be realized in the training environment, (3) 
develop a gateway module that mediates communication between scenario generation functionalities in 
GIFT and the training application, (4) have access to training data for inducing deep reinforcement learning-
based scenario generation models if existing domain-independent models cannot be reused, and (5) 
integrate trained scenario generation models into run-time GIFT courses. Given these resources, a software 
developer will be able to use deep reinforcement learning-based scenario generation functionalities to create 
a new scenario generator for a novel domain or simulation environment. 

GIFT Integration 

Integrating deep RL-based scenario generation into GIFT is a key objective of the project, and supporting 
automated scenario generation has several implications for the GIFT architecture, authoring tools, and 
software. For example, supporting automated scenario generation in GIFT will likely involve extensions to 
the GIFT Course Creator to enable instructors to identify relevant learning objectives that should guide the 
generation of relevant training scenarios. Further, devising tools for ranking and visualizing automatically 
generated training scenarios will be essential for instructors to configure scenario generation functionalities 
for use in training courses that they create. Devising generalized assessment logic that can operate across 
multiple scenarios, and be specified in GIFT DKF files, will be critical for ensuring that course creators do 
not need to hand-specify custom assessment rules for every generated scenario. Finally, the project seeks 
to investigate support for domain-independent specifications of scenario adaptations—these would be 
specified by GIFT's Pedagogical Module—in line with project objectives of generalizability of deep RL-



based scenario generation. This generalized taxonomy of scenario adaptations will include hierarchical 
domain-independent categories, such as (1) inserting or removing obstacles; (2) constraining or increasing 
resources; (3) reconfiguring key objects; (4) adding, modifying, or removing sub-tasks; and (5) providing 
or removing embedded scaffolding. These categories characterize a scenario adaptation library that defines 
the space of possible generatable scenarios in a manner that holds potential for portability and reuse. 

 
Figure 1. Screenshot of Virtual Battlespace 3 simulation environment. 

VIRTUAL BATTLESPACE 3 TESTBED ENVIRONMENT 

The selection of testbed simulation-based virtual training environments is guided by two key requirements. 
First, the simulation environment should either be open-source, or include APIs or tools for generating 
novel training scenarios, as well as models for specifying adaptations to scenarios at run-time. By enabling 
close integration between GIFT and the simulation-based training environment, it is possible to engage in 
rapid iteration cycles for designing, developing, and testing directions for dynamic scenario generation. 
Second, the selection of the simulation-based virtual training environment testbeds should prioritize 
environments that support scenario generation that enable the scenario generator to produce thousands (or 
more) of “child” scenarios from a single “parent” scenario. To fully exercise the deep RL framework’s 
generative capabilities (i.e., its ability to broadly explore a given scenario space) and fully stress test its 
computational capabilities, testbeds should include a broad range of event types, actors, and trainee 
interactions. 

The primary testbed simulation environment for the first phase of this project will be Virtual Battlespace 3 
(VBS3). Built by Bohemia Interactive Simulations, VBS3 is the Army’s most widely used simulation 
platform for small unit training (Figure 1). Designed as a flexible simulation tool for tactics training and 
mission rehearsal, VBS3 provides realistic physics, high-fidelity 3D graphics, expansive geo-specific 
terrains, and a large content library of 3D digital assets. VBS3 can be used for a broad range of training 
purposes, including training for cordon and search of specific structures, breaching obstacles, defense of 



territory with machine gun and mortars, and clearing highways of IEDs. VBS3 also includes features that 
enable dynamic modifications to training scenarios, as well as features for observation of the environment 
by instructors, and an After Action Review playback capability.  

Although it is a closed-source training simulation, VBS3 provides several developer tools that can facilitate 
research on automated scenario generation, including a real-time scenario editor, an offline mission editor, 
tools for importing new 3D assets, and flexible terrain creation functionalities. VBS3 is used widely in the 
U.S. Army, and it is integrated with GIFT 2017-1 through a previously developed gateway module. Further, 
our work with VBS3 will build upon prior research by IAI to devise low-cost assessment frameworks for 
intelligent tutoring systems through feedback from subject matter experts. 

During the first year of the project, we will focus on automated scenario generation in the task domain of 
Call for Fire training. The CFF task domain in VBS3 will encompass scenarios in which an infantry soldier 
requests indirect fire from supporting artillery (e.g., unmanned aircraft) on an identified target. The steps 
of this task include identifying the target, waiting for the artillery to move into position, calling for artillery 
fire using an established communication protocol, adjusting artillery fire, and providing a damage 
assessment. “Child” scenarios in the Call for Fire task domain will modify the type, visibility, and 
movement of the target; augment surrounding terrain and vegetation; change the weather and time-of-day; 
impact radio communications with artillery operators; augment the type of artillery fire (e.g., smoke, 
explosive); and influence the accuracy and damage of the artillery fire. 

PRELIMINARY FINDINGS ON AUTOMATED GENERATION OF INITIAL SCENARIO 
CONDITIONS 

As a starting point, we developed a prototype system using a multi-armed bandit (MAB) computational 
formalism, consisting of several components of the proposed deep RL pipeline. The MAB implementation 
utilizes initial versions of a scenario adaptation library, a simulated learner, and a reward function.  

A multi-armed bandit is a class of sequential decision problem in which a set of resources must be allocated 
between competing choices. MABs are related to reinforcement learning, but they do not account for 
stochastic effects of sequential decisions on environment states. In an MAB, each choice, or arm, has a 
defined reward unknown to the system, thus requiring it to explore different choices to learn which of the 
choices provides optimal expected reward over a finite series of trials. Typically, bandit algorithms are 
designed to minimize regret, which is the difference between the reward accumulated by the system and 
the reward the system would have received if it had pulled the optimal arm at every trial. Depending on a 
variety of factors such as the type of rewards (stochastic, non-stochastic) or the type of regret being 
minimized (instantaneous or cumulative), different algorithms have been shown to obtain near optimal 
solutions (Vermorel, 2005). Variants of MABs have been shown to be an effective solution for a variety of 
tasks such as sequencing learning activities (Liu, 2014) and playing real-time strategy games (Ontanón, 
2017). 

The first step in formalizing scenario generation as a MAB is defining a scenario adaptation library for the 
Call for Fires task. As MABs do not have a concept of state, and thus do not capture changes in the 
simulation environment, we focus our scenario adaptation library on initial conditions of Call for Fires 
scenarios. In this prototype we focus on 3 categories of initial conditions: weather, time of day, and target 
mobility. These categories were chosen because of they affect the difficulty of a Call for Fires scenario, and 
they can also be realized in the VBS3 environment  We defined three possible values for weather (clear, 
cloudy, rain), three possible values for time of day (day, dusk, night), and two possible values for target 
mobility (still, moving).  This corresponds to 18 possible scenarios that could be generated and evaluated 
by the MAB. 



Next, to provide data to train the system we created a set simulated learners. Each simulated learner consists 
of a competency score from 0 to 1, representing their ability for a Call for Fire task. To generate rewards 
for each scenario, we crafted a reward function that takes into account both the difficulty of the scenario 
and the skill level of the student. Difficulty levels were authored for each type and value of initial condition, 
with values being averaged to determine the difficulty of each generated scenario.  The difficulty level was 
then combined with the learner’s competency score to generate the probability that the learner would 
increase their competency level from creating the exercise. A 0 or 1 reward was then generated for the trial 
by sampling from a Bernoulli distribution that was parameterized using the combination of scenario 
difficulty and learner competency level.  

We ran MAB simulations for two populations of simulated learners. For the first simulation, a learner was 
selected for each trial from a Gaussian distribution centered around a “low” competency score (M = .2, SD 
=.1). For the second simulation, learners were selected from a distribution centered around a high 
competency score (M = .8, SD = .1). For each simulation, we ran 50,000 trials of an 18-armed bandit using 
the UCB1 algorithm to manage exploitation/exploration of the arms.  Figure 2 shows the average rewards 
of the top-5 arms (i.e., generated scenarios) for both types of simulated learners. We observe that after some 
shuffling, each arm begins to stabilize around the “true” reward for that given scenario. For the Low 
Competency learner group, the scenarios recommended are all “easier” scenarios with non-moving targets 
and high visibility, which is to be expected given that our reward formulation does not expect low-
competency learners to benefit significantly from difficult scenarios. Similarly, the High Competency 
learner group favors more difficult scenarios featuring moving targets and poor weather/visibility. 

 
Figure 2. Average rewards over MAB trials for top-5 generated CFF scenarios for high- and  

low-competency simulated learners. 

This prototype highlights key design considerations for deep RL-based scenario generation, but it also has 
several limitations.  First, since MABs have no concept of state, they are not necessarily the ideal formalism 
for generating and evaluating dynamic, adaptive training scenarios required by more complex CFF tasks; 
MABs are well suited for generating the initial conditions of simple training scenarios but not sequential 
events. In future iterations, we will utilize reinforcement learning techniques that account for sequential 
decisions in order to address this additional source of complexity in scenario generation.    

A second limitation is that our current simulated learner and reward models only consider one competency 



and reward source. As we move forward, the system will need to consider multiple learning objectives and 
trade-offs between them. Additionally synthesized data will eventually need to be replaced or validated 
with data from real human learners. 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

Automated scenario generation is likely to serve a key role in the future of simulation-based training 
because of its significant potential to reduce the cost of creating novel scenarios and expand access to high-
quality simulation-based training. Data-driven approaches to automated scenario generation hold promise 
for enhancing trainee learning experiences by leveraging recent advances in both machine learning and 
interactive narrative technologies. We have presented an overview of a deep RL framework for data-driven 
automated scenario generation, which formalizes the task in terms of sequential adaptations to a canonical 
“parent” scenario in order to generate “child” scenarios that can be evaluated with simulated or human 
learners to assess learning outcomes. Automated assessments of trainee learning outcomes drive the 
generator to iteratively refine its scenario generation policies and tailor scenario generation to individual 
learners and instructor training objectives. During the initial stages of the project, we are investigating deep 
RL-based scenario generation in the context of CFF training using the VBS3 simulation environment. To 
serve as an initial proof-of-concept for data-driven automated scenario generation, we conducted a 
preliminary investigation of multi-armed bandit techniques for generating initial conditions of CFF training 
scenarios. Preliminary results indicate that multi-armed bandits, combined with a simple simulated learner 
model and scenario adaptation library, can produce a ranked ordering of automatically generated training 
scenarios that are tailored to learners’ individual differences.  

In future work, we plan to significantly expand the scenario adaptation library to capture a broader range 
of possible transformations to “parent” training scenarios, including sequential adaptations that can be 
performed dynamically over the course of a scenario. This will allow us to expand our formulation of 
automated scenario generation beyond initial scenario conditions and begin exploring deep RL techniques. 
Further, we plan to investigate richer simulated learner models that can serve as a bootstrapping mechanism 
for automated scenario generation, as well as multi-objective rewards to enable scenario generation that 
accounts for complex tradeoffs between complementary and competing learning objectives. Finally, we 
plan to investigate manual, semi-automated, and automated techniques for realizing generated scenarios in 
VBS3, enabling human learners to interact with adaptive training scenarios that have been generated using 
deep RL. 
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