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INTRODUCTION  

The Generalized Intelligent Framework for Tutoring (GIFT) was constructed in order to make it easier to 
create intelligent tutoring systems (ITSs), develop a shared set of authoring tools to do so, and to enable 
research in ITS (e.g., Sottilare, Goldberg, Brawner, & Holden, 2012).  ITS research takes many forms; as 
an example, some of this research is intended to support existing training simulations (e.g., Brawner, 
Holden, Goldberg, & Sottilare, 2011).  Further, some of this research is in the manners in which to model 
a learner (Brawner & Goldberg, 2012; Goldberg, Sottilare, Brawner, & Holden, 2011). Some of these mod-
els of the learner are not solely based on interactions that they have within the environment, but also upon 
sensors (e.g., Brawner, 2017; Brawner, Sottilare, & Gonzalez, 2012).  Such sensors can either be based in 
software, analyzing information such as system interactions and clicks, or hardware (e.g., DeFalco et al., 
2017), with sensors which sense physical items such as posture or gaze. 

With computer-based or simulation-based training, sensors are somewhat optional; the learner can interact 
with the system, take actions, make progress, learn, and perform other activities without the explicit need 
for monitoring.  Certain domains, such as psychomotor training or medical skill training, however, require 
the use of a sensor to monitor and identify the learner’s performance.  Particularly, using sensors can benefit 
to assessment of the learner (e.g., Goldberg, Amburn, Ragusa, & Chen, 2017), providing a source of infor-
mation to the rest of the system so that the learner with adaptive instructions and feedback.   

Integrating and synchronizing data from heterogeneous sources of sensors can be somewhat complicated 
and challenging, especially in a psychomotor domain, since sensors can have their own sampling behaviors 
and data stream formats.  For example, the experimenter utilizing sensor data would need to connect with 
the various data streams of various sensors during the data collection from an experiment with human par-
ticipants.  Synchronizing the different sources into a time series and analyzing them would be complicated.  
It is, thus, necessary to investigate a general and reliable approach to better exploit the sensor data as a 
series of data points indexed in a time order by synchronizing all the heterogeneous sources of sensors.   

The goal of this paper is to provide what is the general approach to exploit heterogeneous sources of sensor 
data in various domains including cognitive and psychomotor domains.  We choose to use and explore the 
GIFT capability since it provides a generalized framework for a computer guided adaptive instruction, and 
there are many pre-existing efforts which integrate sensors with GIFT.  These sensor streams were able to 
provide rich learning analytics (Brawner, 2017; Brawner & Gonzalez, 2016; DeFalco et al., 2017).  We 
examine the current capability and provide directions to extend the capability in order to better assess the 
learner performance in the diverse domain.. We also examine the process to integrate new sensors with 
GIFT, and provide suggestions for improved systematic process of integration.   



2018 GIFTSym6 
 

2 
 

To pursue the aforementioned goal, in this paper, we first review and summarize the current process of 
integrating sensors with GIFT, and identify the technical needs to synchronize multiple sensors for im-
proved learning analytics.  In addition, we report a use case from our exploratory study.  We have created 
a study environment in GIFT, where a psychomotor skill can be assessed by sensors by extending an adap-
tive training on rifle marksmanship (Goldberg, Amburn, Ragusa, & Chen, 2017).  A golf putting was se-
lected as a psychomotor training task because it is physical and precision-required performance like rile 
marksmanship.  It is argued that breathing techniques would affect the precision-required performance of 
rile marksmanship (e.g., Grossman & Christensen, 2008), and it is also suggested that a slow breathing skill 
can help individuals to improve accuracy on their performance in other tasks (e.g., Goldberg, Amburn, 
Ragusa, & Chen, 2017; Kim, Dancy, Goldberg, & Sottilare, 2017). 

SENSORS INTEGRATED WITH GIFT 

Several commercial and custom-built sensors have been integrated with GIFT to support learner assess-
ments that include learner engagement, arousal, motivation, knowledge, anxiety, and engaged concentra-
tion.  These learner states are defined in Table 1.  It is reasonable to think that they can influence learning, 
as prior research has shown effects.  

Table 1.  Learner states tracked in GIFT. 

Learner States Definition References 

Engagement 

“refers to the degree of attention, curiosity, interest, opti-
mism, and passion that students show when they 
are learning or being taught, which extends to the level of 
motivation they have to learn and progress in their educa-
tion” 

(The Glossary of 
Education Reform, 
2016) 

Arousal 

“a major aspect of many learning theories and is closely 
related to other concepts such as anxiety, attention, agita-
tion, stress, and motivation. One finding with respect to 
arousal is the Yerkes-Dodson law which predicts an in-
verted U-shaped function between arousal and perfor-
mance” 

(Clark, n.d.) 

Motivation “an internal drive that activates behavior and gives it di-
rection” (Rakus, 2011) 

Knowledge 

“a familiarity, awareness, or understanding of someone or 
something, such as facts, information, descriptions, or 
skills, which is acquired through experience or education 
by perceiving, discovering, or learning” 

(Knowledge is a 
familiarity, n.d.) 

Anxiety 

“a feeling of worry, nervousness, or unease, typically 
about an imminent event or something with an uncertain 
outcome” (Anxiety [Def. 1], n.d.) 
“anxiety impacts a student's working memory, making it 
difficult to learn and retain information” (Minahan, 
2012) 

 
(Minahan, 2012) 

Engaged concentration 
“a state of engagement with a task such that concentration 
is intense, attention is focused, and involvement is com-
plete” 

(Baker, D'Mello, 
Rodrigo, & Graesser, 
2010) 

 
To support the assessment of the learner states listed in Table 1, we have developed interfaces for a series 
of commercial and customized sensors for use during GIFT instruction and developmental testing.  A table 
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of sensors integrated in GIFT are listed in Table 2, along with their descriptions, inputs, derived measures 
and a picture of the sensor hardware or surrogate.  

Table 2.  Sensors integrated with GIFT.    

Sensor Description & Inputs Derived Measures Picture 

Zephyr Bio-
harness 

ECG, respiration, esti-
mated core body tempera-
ture, accelerometer, time, 
and location 

Heart rate (HR), breathing rate, 
heart rate variability, HR confi-
dence, estimated core body tem-
perature, impact, activity, caloric 
burn, posture, % HR max, % HR 
at anaerobic threshold (AT), ac-
celerometer, training loads and in-
tensities, jump, bounds, leaps, ex-
plosiveness, peak force, peak ac-
celeration, GPS  

 

Emotive Emo-
Composer 
(Alshbatat, 
Vial, 
Premaratne, & 
Tran, 2014) 

As part of the Emotiv Soft-
ware Development Kit 
(SDK), the EmoComposer 
is a testing tool for devel-
opers building EPOC head-
set applications 

The derived measures are unique 
to each application developed 

 

Emotiv Epoc  
EEG Headset 
(Lang, 2012) 

Brain control interface 
with 14 channels of EEG 
data 

Instantaneous excitement, long 
term excitement, engagement/ 
boredom, frustration, and medita-
tion  

 

ARL Expertise       
Surrogate 

Allows tester to vary ex-
pertise or domain compe-
tency 
This surrogate is used for 
testing in place of any 
other measure of expertise 
(e.g., assessment/test). 

Expertise or domain competency 

 

Microsoft Ki-
nect 

Allows users to act as the 
controller and    interact 
with simulation elements 
using a combination of 
body movement and spo-
ken commands 
IR Depth Sensor measures 
the distance of each pixel 
of an object from camera 
plane 

Emotional states (facial markers); 
engagement (posture); arousal 
(acceleration measures) 
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Microsoft 
Band 2 

Optical heart rate   sensor; 
accelerometer/gyro;; GPS; 
ambient light sensor; skin 
temperature sensor; UV 
sensor; capacitive sensor; 
galvanic skin response; mi-
crophone, barometer 

Heart rate, steps, location, gal-
vanic skin response (GSR) Re-
sistance and GSR conductance 

 

ARL Motiva-
tion Surrogate 
Sensor 

Allows tester to vary the 
motivation level of a user 
This surrogate is used for 
testing in place of any 
other measure of motiva-
tion (e.g., survey instru-
ment). 

Motivation level 

 

 

ARL Mouse 
Temperature 
& Humidity 
Sensor 

Temperature and humidity 
of a user’s hand Arousal, stress 

 

 
 

ARL Mouse 
Temperature 
& Humidity 
Surrogate Sen-
sor 

Allows tester to vary tem-
perature and humidity of a 
user’s hand 
This surrogate is used for 
testing in place of the ac-
tual mouse   temperature 
and humidity sensor 

Arousal, stress 

 

 

Inertial Labs 
3D Orientation  
Sensor 
(OS3D) 

Changes to velocity (accel-
eration) and disturbances 
to magnetic fields 

Real-time heading, pitch and roll 
orientation information 

 

Affectiva Q 
Sensor 

Electro-dermal Activity 
(EDA), Temperature, Ac-
celeration (3D) 

Arousal, stress 

 

ARL Self As-
sessment Sen-
sor 

Allows tester to vary a 
user’s self-assessment 
This surrogate is used for 
testing in place of any 
other self-assessment 
methods 

Self-assessment of performance 
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ARL Sine 
Wave Sensor 

Allows tester to vary any 
user’s attributes as sine 
waves 
This surrogate is used for 
testing in place of any 
other methods to vary 
learner attributes sinusoi-
dally 

Sinusoidal representation of 
learner attributes (e.g., engage-
ment) 

 

USC Virtual 
Human 
Toolkit Multi-
sense (Scherer 
et al., 2012) 

A perception framework 
that enables multiple sens-
ing and understanding 
modules to interoperate 
simultaneously, broadcast-
ing data through the Per-
ception Markup Language; 
includes the Generalized 
Adaptive View-based Ap-
pearance Model 
(GAVAM), Constrained 
Local Model (CLM) and 
Flexible Action and Artic-
ulated Skeleton Toolkit 
(FAAST) 

GAVAM – head tracking CLM – 
face tracking FAAST - middle-
ware to facilitate integration of 
full-body control with games and 
VR applications 

 

 

LESSONS LEARNED FROM INTEGRATING SENSORS WITH GIFT 

Besides the various sensors integration with GIFT shown in Table 2, it was identified that there is a chal-
lenge to expand the instructional domains.  One goal for the design of GIFT is to expand the number and 
type of instructional domains in which it can support tutoring of both individual learners and teams (e.g., 
Brawner, Sinatra, & Gilbert, 2018; Sottilare et al., 2017), and tutoring of psychomotor tasks beyond the 
desktop environment (e.g., Sottilare, Hackett, Pike, & LaViola, 2017).  We have been extensively involved 
in developing strategies (Sottilare & LaViola, 2015) and concepts for psychomotor tasks like marksmanship 
(Goldberg, Amburn, Brawner, & Westphal, 2014), land navigation (LaViola Jr. et al., 2015), and hemor-
rhage control (Sottilare, Hackett, Pike, & LaViola, 2017).  Designing tutoring for the psychomotor domain 
has also influenced the selection and use of sensors to support assessment during instruction. For example, 
the land navigation task has necessitated the use of mobile devices (e.g., smartphones) and associated sen-
sors to support assessment.  We have also examined pressure sensors and designed how they might be used 
to assess the use of pressure bandages and tourniquets during combat casualty care to determine blood flow 
from wounds.  As we more fully develop these concepts, we will also develop interfaces for the associated 
sensors and make them available in the GIFT baseline.  In this section, we report the lessons learned from 
the use of sensors and sensor data analytics in a psychomotor task training.  

An Example for Using a Smartphone Sensor with GIFT  
Integrating sensors with a system can be somewhat straightforward; it is suggested for the developer to 
simply follow the template for code, processing, and configuration.  Any of the processing which has been 
authored for any of the sensors may be able to be reused for any of the other sensors with authored config-
urations.  The “sine wave sensor” can be used to test out any individual item (connection, configuration, 
processing, etc.).  Step 1 is to “make a sensor connection using one of the numerous interfaces”, Step 2 is 
to “configure it with the configuration tool, probably just copy whichever sensor you used previously”. For 
example, integrating the Android phone’s accelerometer and gyroscope sensor into GIFT consists of a few 
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basic steps.  We, first, developed an Android app that can access the phone’s sensor data and that can relay 
the data stream to the GIFT desktop.  The streamed sensor data from the app are formatted as JSON, with 
timestamped UDP (User Datagram Protocol) packets to an IP address that is configurable from the app.  
Once the Android application was operational, GIFT could be modified to handle the incoming UDP pack-
ets.  GIFT defines an abstract class which generically represents communication with a sensor.   

An additional implementation of this class (AbstractSensor) was created to receive data from the 
Android phone’s sensors. The class is named AndroidPhoneSensor and overrides AbstractSen-
sor’s methods: start, stop, and test.  The internal implementation of AndroidPhoneSensor 
starts a new thread when the start method is called. This thread continuously listens for the UDP packets 
from the Android device. When a packet is received, it parses it and places each of the six data measure-
ments from the packet (three dimensions of accelerometer data and three dimensions of gyroscope data) 
into a SensorData Java object which is then sent to the Sensor Module’s existing pipeline for processing 
by GIFT. Once the SensorData object has been sent to GIFT, the thread listens for another packet.  

For implementations in the future, it may be beneficial to create an abstract implementation of Ab-
stractSensor which receives JSON data via UDP and defers interpreting the JSON to drivers of the 
class. This would make the majority of the code written within AndroidPhoneSensor to be reusable 
and help separate common boilerplate code from the code which is specialized to a specific sensor.   

 
 (a) Initiating the BioHarness sensor through the Bluetooth connection. 

 
(b) Visualizing accelerometer sensor data in GIFT, and the three axes in a smartphone accelerometer sensor. 

Fig 1. The GIFT study environment for a psychomotor task.  
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Sensor Data Exploitation 
After the sensor integration with GIFT, it is important to consider how to extract the features of the learner 
performance and behavior from sensor data obtained from sensors.  Extracting and processing such data is 
called analytics. Particularly, when one considers the context of education and learning with a large amount 
of data, it is called learning analytics (LA) and educational data mining (EDM) (Baker & Siemens, 2014).   

Previously, to assess the cognitive and affective states of the learner, researchers have tried to incorporate 
appropriate sensors into an ITS (e.g., D'Mello et al., 2005).  In this line of research, the traditional method 
to exploit such sensor data for intelligent tutoring is largely dependent on the offline post-processing of the 
data rather than a real-time model of data analytics (Brawner, 2017) – i.e., taking measurements in a class-
room, storing and moving to the offline environment, performing data analytics, and generating a model 
for the next set of classroom learners. The traditional method is not real-time, which seems to be hard to 
address varying learning environments. It would be, thus, necessary to advance learning analytics (i.e., an 
improved real-time assessment model), but it would create another set of problems in the ITS operation 
since the sensor data could be infinite, outside of control, and strictly constrained by time (Brawner, 2017).   

Similar to the affective data exploitation (Brawner, 2017), and the learner logging data processing from a 
tutor interaction (Baker & Siemens, 2014), sensor data in psychomotor tasks may require us to develop a 
methodology for efficient data processing and analysis for knowledge discovery, and to compare the sensor 
data with a theory-based model. A psychomotor task is usually characterized by coordinating cognitive, 
physical, and physiological variables in executing actions. Thus, sensors are focused on measuring the co-
ordination of the learner features, which can be used to understand the learner according to the features. 
The physiological data, such as the heart and respiratory rate can be measured using a bioharness strap (e.g., 
Goldberg, Amburn, Ragusa, & Chen, 2017).  Also, acceleration data can be collected and analyzed to iden-
tify motions and movements (e.g., Fehlmann et al., 2017; Shamoun-Baranes et al., 2012).   

As shown in Fig. 1, we have created a study environment in GIFT where two heterogeneous sensors are 
combined to measure the learner features.  In a pilot testing of the study environment, a participant is to be 
instructed to learn the breath control skill through a GIFT course, and then to perform a series of golf putting 
tasks: (a) 5 putting trials under a regular breathing, and (b) 5 putting trials under a tactical breathing condi-
tion.  Fig. 2 shows plots of the collected sensor data with the time frame from 2:30 to 5:30, which is under 
a regular breathing with 5 putting trials.   

 

Fig 2.  An example of the sensor data.  

 



2018 GIFTSym6 
 

8 
 

The Learner Assessment 
The current GIFT capability does not fully support the combined sensor data analytics in real time. We 
report that we have conducted an offline sensor data analytics.  We approach learning analytics of the two 
heterogeneous sensor data from the bioharness strap (e.g., respiratory rate as breath per minute) and the 
Android phone accelerometer (e.g., the tri-axial values).   

We have explored the extended cognitive modeling approach that is based on the ACT-R architecture 
(Anderson, 2007), and extended to account for a physiological system, called ACT-R/Φ (Dancy, Ritter, & 
Gunzelmann, 2015). A version of the physio-cognitive model has been implemented (Dancy & Kim, 
accepted; Kim, Dancy, & Sottilare, submitted), and explored to predict physiological variables (heart and 
respiratory rates).   

Previously, a cognitive model has been used to track knowledge of the learner and to conduct performance 
assessment in an ITS (Anderson, Boyle, Corbett, & Lewis, 1990; Corbett & Anderson, 1995). This work, 
however, has been limited to the cognitive task domain in a desktop learning environment. We start to 
utilize the physio-cognitive model to track the learner knowledge and to predict the learner performance in 
an attempt to achieve a (near) real-time sensor data analytics in a psychomotor task training.  

The leaner models, that can be cognitive (e.g., Anderson, Boyle, Corbett, & Lewis, 1990) or (and) physio-
logical (Dancy & Kim, accepted) based models, can be used for assessing the learner as well.  Based on the 
assessment process, we can provide more reasonable adaptive strategies for training. For example, in a 
tactical breathing practice, the learner would practice with a 4-4-4-4 cycle of breathing (4 s for breathe-in, 
4 s for hold, 4 s for breathe-out, and 4 s for hold).  However, the lung capacity or the tidal volume would 
be different by individuals (e.g., by gender, by age, etc.).  A precise and correct learner model can be es-
sential to determine whether a training regimen would be cognitively and physiologically plausible.  These 
aspects of learning can be analyzed through the sensor data exploitation to support improved learning. 

Along with the physiological responses, we also explored the sensor data of acceleration.  The raw accel-
eration data is tri-axial, and shows variable changes in values in terms of the xyz axes. The raw data can be 
processed to recognize movements and motions. That is, acceleration data can be static that is dependent 
on gravity, and it can be also converted to the dynamic feature of performance as well—e.g., the vectorial 
dynamic body acceleration can be computed using the dynamic components of the signal to assess the 
activity level of the individual with three axes all together (�𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 ) (Fehlmann et al., 2017).   

To further exploit the sensor data of acceleration, it may be helpful to transform the complex signals to 
another domain. The key idea is to decompose a complex signal in the time domain to the frequency domain 
through Fourier transform.  To identify oscillations in the dynamic body acceleration for each axis, it has 
been reported that it is possible to compute power spectrum densities (PSDs) and their associated frequen-
cies using Fourier analysis so that we can figure out at which frequency the signal varies the most, indicating 
a large movement (Fehlmann et al., 2017).  Based on this approach, behavior of animals has been investi-
gated to identify six broad states of motions and movements including walking, standing, running, resting 
(sitting or lying), grooming, and foraging. This technique can be useful to conduct data processing of het-
erogeneous sensor data collected in a time series manner (e.g., GPS and acceleration sensor data). With 
regard to the aforementioned psychomotor related sensor data, a machine learning technique (e.g., random 
forest) can be used to classify a psychomotor task with the leaner data such as sitting, walking, backswing, 
hitting the golf ball, etc. The sensor data is also worth exploring to predict the learner behavior by validating 
the model.  Brawner (2017) explored machine learning algorithms to address the real-time analytics with 
cognitive-affective sensor data, highlighting the best real-time model with the learner features is based on 
offline experimental data validation with a machine learning technique.   
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DISCUSSION AND CONCLUSIONS 

We briefed the use of sensors with GIFT, specifically in the psychomotor task domain.  In general, inte-
grating sensors can be relatively considered as a simple process, but interpreting sensor data from multiple 
sources in a time series manner would be complex and challenging. 

Sensor Data in the Psychomotor Domain 
In our study environment, the learner’s behavior and performance (i.e., golf putting trials with the breath 
control skill) can be decomposed to physical, physiological, and cognitive components. On the onset of the 
tactical breathing course in GIFT, the sensor data collected from a smartphone is sampled and is relayed to 
the GIFT desktop. The acceleration data shown in Fig. 2 is complex. shows changes in values within a 
specific time window and by a series of certain physical motions and movements.  A further analysis based 
on a machine learning technique is needed to reliably cluster and classify changes in the tri-axial values of 
acceleration, and to identify postures and movemnets, and to implement a model (e.g., a backstroke, hit, 
follow-through).     

We recorded the participant’s activities (i.e., when the participant starts to perform a slow breathing and a 
putting trial) by using the Bookmark functionality in GIFT.  The Bookmark function affords a record-
keeping by an experimenter (or a data collector)—i.e., the timestamped annotations in terms of the partici-
pant’s actions. The annotated data can be later matched to the sensor data, and then the data can be labeled 
by postures and movements. 

As an offline analysis of sensor data, we tested a couple of  R packages.  We found it useful for data 
analytics and the learner performance assessment. Now the question is how to adopt the approved opera-
tional procedures of offline anlaysis, which attempts to strenghen the GIFT capability. With the pilot testing 
data, we computed the acceleration raw data to obtain different aspects of the data (e.g., static and dynamic 
acceleration, vectorial dynamic body acceleration, power spectrum density of acceleration signals).  The 
acceleration data can be mainly categorized into two aspects—static and dynamic. The static acceleration 
is dependent on gravity, describing postures, and the dynamic acceleration describes dynamic body move-
ments (Fehlmann et al., 2017).  Besides the acceleration data from a smartphone, the GPS data can be also 
explored to investigate movements and motions—e.g., Behavioral Change Point Analysis (Gurarie, 
Andrews, & Laidre, 2009).   

The sensor data regarding the physiological component can be interpreted to identify the breath control 
skill during the physical performance. In the pilot testing, we collected data from the Bioharness that tran-
mits data through Bluetooth. The participant did wear the Bioharness with the chest strap during the perofor-
mance. It is observed that the respiration rate (breath per min) looks increasing within the specified time 
window. We delved into what theory can describe our sensor data. We chose to use a computational model 
in a cognitive architecture becasue it can support learning and skill development processess of humans (e.g., 
Anderson, 2007). Particularly, we implement a physio-cognitive model (Dancy & Kim, accepted; Kim, 
Dancy, & Sottilare, submitted), which can be used to account for cognitive learning theories (Kim, Ritter, 
& Koubek, 2013) with physiological features of the learner.  The physio-cognitive model supports plausi-
bility of human learning behavior since it is based on a cognitive architecture, ACT-R (Anderson, 2007).  
That is, the physio-cognitive computational model can support creating a tailored training scenario that can 
meet cognitive and physiological constraints of humans (e.g., the varying tidal volume of men and women).   

The sensor data is usually of a form of osciliations in a time series manner. For effciency of calcuation, the 
sensor data in the time domain) can be transformed to the frequency domain through Fourier transformation, 
spectral analysis. This approach has a potential to extend and improve our understanding of the learner 
behavior (e.g., Fehlmann et al., 2017; Xu & Reitter, 2017). Supposed that an intelligent tutoring system 
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with multiple sensors and with multiple individuals as a team.  The aforementioned method, an understand-
ing of power spectrum density of the signals, can be applied to a team performance analytics, e.g., team 
communication and team collaboration through a dialogue.  There is a study about dialogue behavior and 
effectiveness of conversations, arguing that the spectral analysis can be successful to measure communica-
tive effectiveness (e.g., a successful task collaboration) by considering the alignment of certain linguistic 
markers, lexical items, or syntactic rules between interlocutors correlates with task success (Xu & Reitter, 
2017).   

Sensors and Standardization 
Recently, we have been involved in developing proposals for standardizing data messaging and interactions 
between components of adaptive instructional systems (AISs) as part of an IEEE standardization study 
group.  Both sensors for data acquisition and algorithms for state classification may be influenced by the 
defined functions and information shared between AIS common components.  As the types of tasks sup-
ported by GIFT expand and as standards take hold in the AIS community, we envision GIFT and its sensor 
options being updated to optimize models of the learner as a basis for adaptive instruction, which can pro-
vide the starting point for standardization (Sottilare & Brawner, in press). 

Multiple Sensors and Multiple Learners as a Team 
A major design change challenge will also influence the type of sensors and their use in GIFT. With the 
expansion in GIFT capabilities from individual learner tasks to team tasks, we predict a need for a multi-
sensor architecture to track the behaviors of multiple team members in support of team taskwork assess-
ments.  Sensors will be needed to disambiguate individual learner data (e.g., position, location, communi-
cation) from others on the team to provide individual, subgroup, and group feedback.  This is required to 
provide a model of how individual actions roll up to the attainment of team goals. 

Methods of assessment will become more complex as we move from desktop applications to live, aug-
mented, and mixed reality applications.  Complexity will also rise as we move from individual to team 
instructional constructs.  The groundwork laid to support individual task domains will largely be reused to 
support team instruction, but additional team models will be required and team assessments will require 
logic to understand how individual behaviors and roles influence progress toward team goals.  Sensors will 
continue to play a part in team assessments, but can be provided and extended in the same manner that 
individual models are extended to team models (Brawner, Sinatra, & Gilbert, 2018). 

We are planning spiral development for team model development for adaptive instruction.  Initially, we 
will construct team models that focus only on team measures to simplify the assessment problem.  Sensors 
will be needed to assess whether team objectives have been met.  We believe this initial approach will be 
accomplished with little change to the GIFT architecture as it is today, but more hierarchical modeling of 
teams in the future spiral phases of development will require methods to link individual learner models and 
individual roles and responsibilities to team models and objectives.  This will require some fundamental 
additions to the current GIFT architecture.  Sensors will be required to disambiguate data from individual 
learners who may be operating in close proximity in live training environments.  Standardizing approaches 
for different types of team tasks may lead us to more simplified approaches to sensor integration for team 
tasks.   
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