

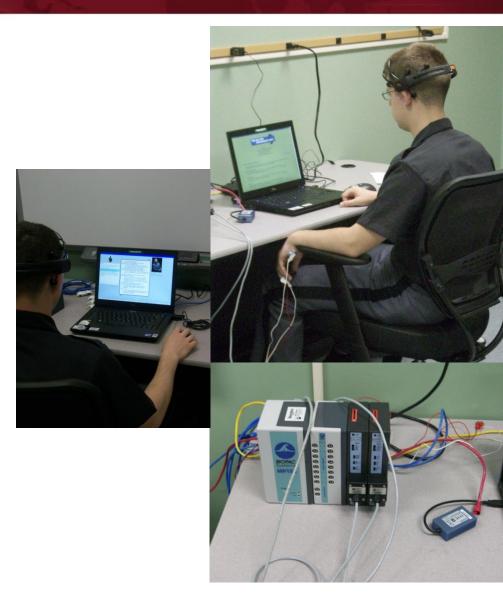
U.S. Army Research, Development and Engineering Command

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Benjamin Goldberg
Intelligent Technologies Researcher
Learning in Intelligent Tutoring Environment (LITE) Laboratory
Human Research & Engineering Directorate

21 June 2012

Dr. Robert Sottilare; Dr. Heather Holden; Mr. Keith Brawner; Mr. Benjamin Goldberg



OVERVIEW

- Objectives
 - Aim
- Background
 - Engagement/Arousal and Learning
- Methodology
 - Apparatus
 - Hypotheses
 - Analysis Approach
- Results
- Conclusions
- Future Work

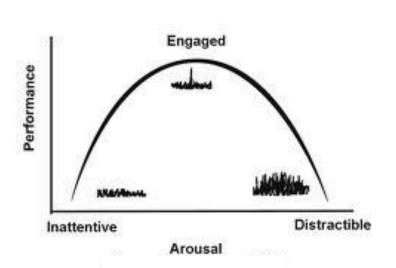
OBJECTIVES

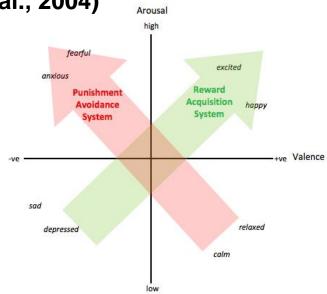
Aim

- Examine the effect <u>Clarity of Task Execution</u> and <u>Flow-of-Interaction</u> has on <u>Engagement</u> within a computer-based training environment
- Monitor states with Electroencephalogram (EEG)
 - Assess the efficacy of a low-cost EEG sensor in monitoring trainee <u>Engagement</u> and <u>Arousal</u> during Computer-Based Training (CBT)

BACKGROUND: ENGAGEMENT

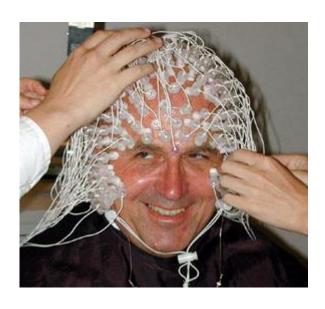
- Task Engagement: Extent to which trainees are willing and able to take on a learning task (Rotgans & Schmidt, 2011)
 - Defined as "Effortful striving towards task goals" (Matthews et al., 2002)
 - 3 Psychological Dimensions (Fairclough et al., 2009)
 - Mental Effort
 - Motivation
 - Affective Changes
 - Linked with Information gathering and periods of sustained attentional focus (Berka et al., 2007; Dorneich et al., 2004)
 - Disengagement and fatigue negatively impact training performance (Small et al., 1996)
 - Lack of engagement decreases learning (Baker et al., 2004)





BACKGROUND: AROUSAL

- Arousal: Refers to indices of a trainee being sleepy/calm in one extreme and excited in the other (Calvo & D'Mello, 2010)
 - Performance is a function of arousal with an inverted-U shape (i.e., poor performance when arousal is too high or low) (Yerkes & Dodson, 1908; Malmo, 1962)
 - Correlated with retention in learning periods (Levonian, 1972)
 - Low arousal associated with rapid forgetting (Kleinsmith & Kaplan, 1963) and low learning gains (Craig et al., 2004)



BACKGROUND: MEASURING STATES THROUGH PHYSIOLOGY ARL

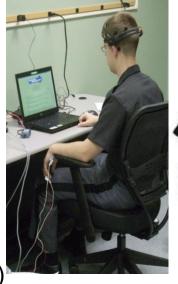
Engagement: Cognitive State

- Electroencephalogram (EEG): Brain Activity
 - Physiological variable of electrical activity along the scalp, and has been found to correlate with *attention, memory, engagement*, and *perception* (Russell et al., 2005; Fabiani et al., 2000)
 - Commercial EEG systems have been used to track and model user attention in real-time (Peters et al., 2009; Coyne et al., 2010)

METHODOLOGY: EXPERIMENTAL DESIGN

- Particpants
 - 73 Cadets from USMA at West Point (19 Cadets with both Emotiv and BIOPAC)
- Counter-Balanced Within Subject Design (IV's)
 - Clarity of Task Execution (Well-Defined vs. III-Defined)
 - <u>Well-Defined</u> task follows a clear set of procedures for achieving desired objectives
 - <u>III-Defined</u> tasks are associated with having ambiguous and vague objectives and comprise multiple approaches to achieve success
 - Flow-of-Interaction: Presence or Absence of Character Interruptions
- Procedure (Scenario Conditions Presented in Random Order Across Participants)
 - Introductory Conversation →
 - Rest → Scenario1 → Survey →
 - Rest → Scenario2 → Survey →
 - Rest → Scenario3 → Survey

METHODOLOGY: APPARATUS DEPENDENT MEASURES

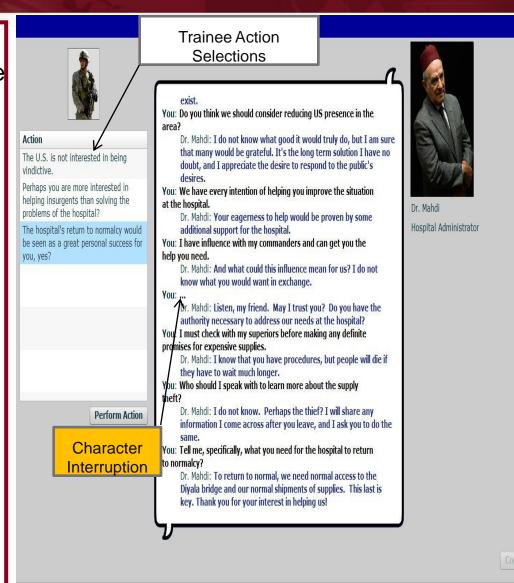


Emotiv EPOC Neuro-Headset

- 14-Channel Electroencephalogram (EEG) headset
- Proprietary metrics used for purpose of maintaining low cost (Three Detection States):
 - Engagement
 - Short-Term Excitement
 - Long-Term Excitement

Self-Report Measures

- Self-Assessment Manikin (SAM)
- Independent Television Commission –
 Sense of Presence Inventory (ITC-SOPI)
 - Engagement Specific Index



METHODOLOGY: APPARATUS ARL

Cultural Meeting Trainer (CMT)

- Web-based flash system prototype applied for cross-cultural interaction training
- Specifically designed for training cross-cultural norms and customs associated with phases of negotiation
- CMT is based on the U.S. Army's Bilateral Negotiations Trainer (Bi-Lat)
 - An immersive virtual environment that allows practice and execution of face-to-face negotiations with virtual humans that include cultural models (e.g., Iraqi Culture) (Kim et al., 2009)

(a) Internet | Protected Mode: Off

METHODOLOGY: APPARATUS

"We can't reveal exactly what the EPOC reads for commercial reasons, however I can tell you that we looked at the entire spectrum from each sensor and mapped patterns of behaviour related to each emotion..."

--Emotiv Rep on Email Response

- The tool looks for distinct brainwave characteristics that are universal in nature and do not require signature-building or individual baselining
 - Engagement: characterized by increases in beta and attenuated alpha waves, which are both well-known types of EEG wave-forms
 - Excitement: associated with positive feelings of arousal, and are characterized by physiological responses including pupil dilation, eye widening, and increases in heart rate and muscle tension

(Information pulled from Emotiv Affectiv Suite User Guide)

METHODOLOGY: HYPOTHESES

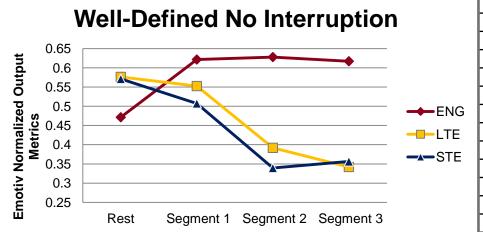
Exploratory Hypotheses

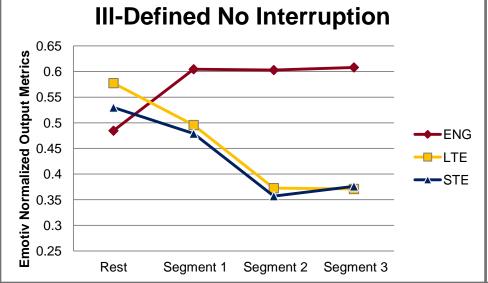
- H₁: All Emotiv metrics (ECG, GSR, and Emotiv) will produce reliably different outputs between well-defined and ill-defined task objectives
- H₂: An interruption in expected Flow-of-Interaction will produce a noticeable response in Emotiv metrics reliably across participants
- H₃: All Emotiv metrics will produce reliably different outputs within scenarios when comparing rest to task execution
 - H_{3.1}: The Emotiv Engagement metric will be reliably higher when comparing task execution to rest

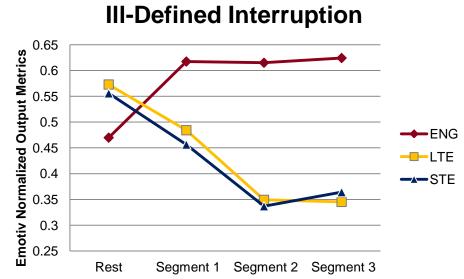
METHODOLOGY: APPROACH TO ANALYSIS ARL

- Post-Processing of Emotiv Data
 - Across all three outputs (STE, LTE, and ENG), averages were calculated within specified time windows for each rest phase and scenario condition
 - Scenario divided into 3 time segments based on length of execution
 - Single mean for each rest phase
- 4x3 Factorial Design with Repeated Measures

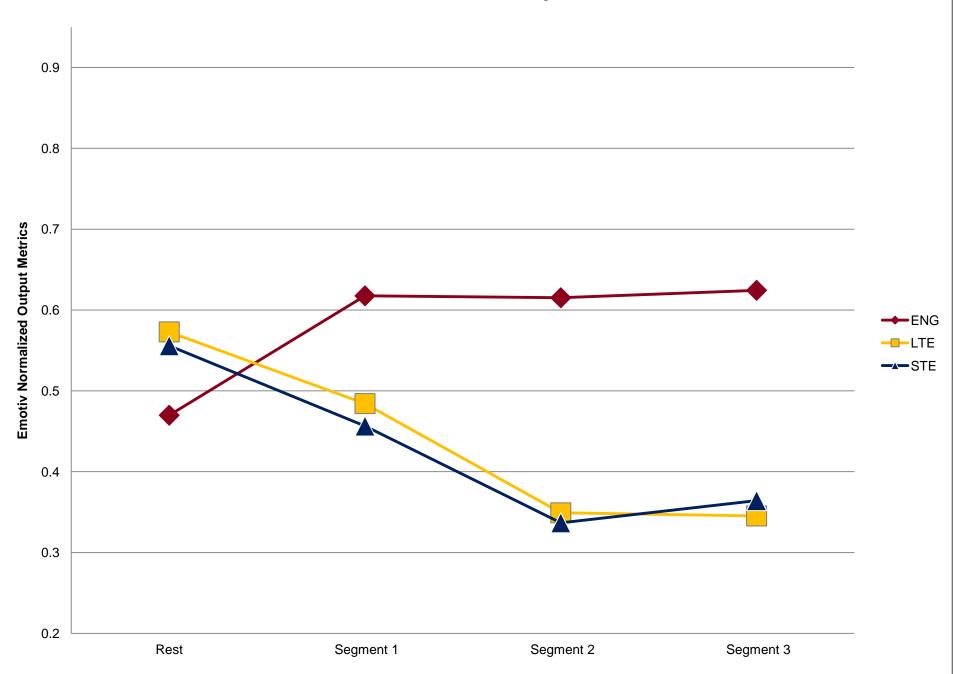
	Scenario Condition					
Time Window	WDNI	IDNI	IDI			
Rest	WDNI Rest	IDNI Rest	IDI Rest			
Segment 1	WDNI_1	IDNI_1	IDI_1			
Segment 2	WDNI_2	IDNI_2	IDI_2			
Segment 3	WDNI_3	IDNI_3	IDI_3			



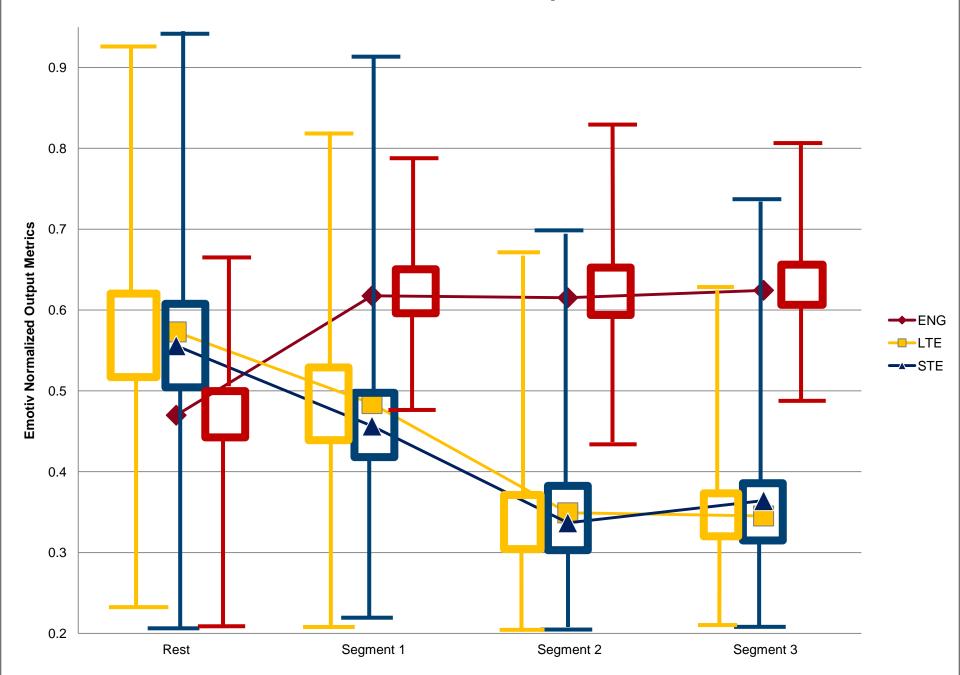

RESULTS: EMOTIV ANALYSIS

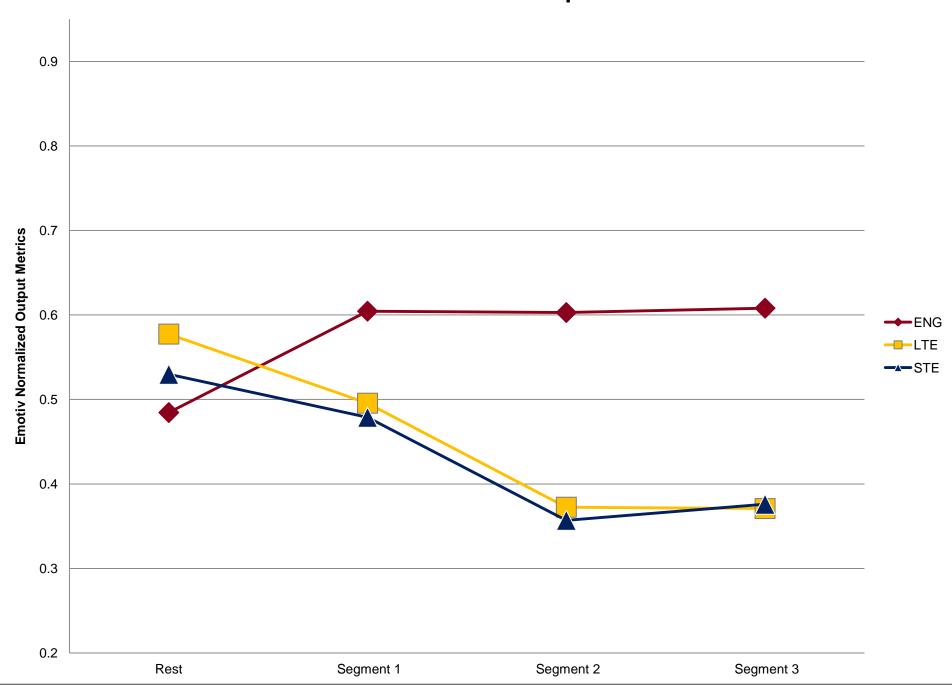


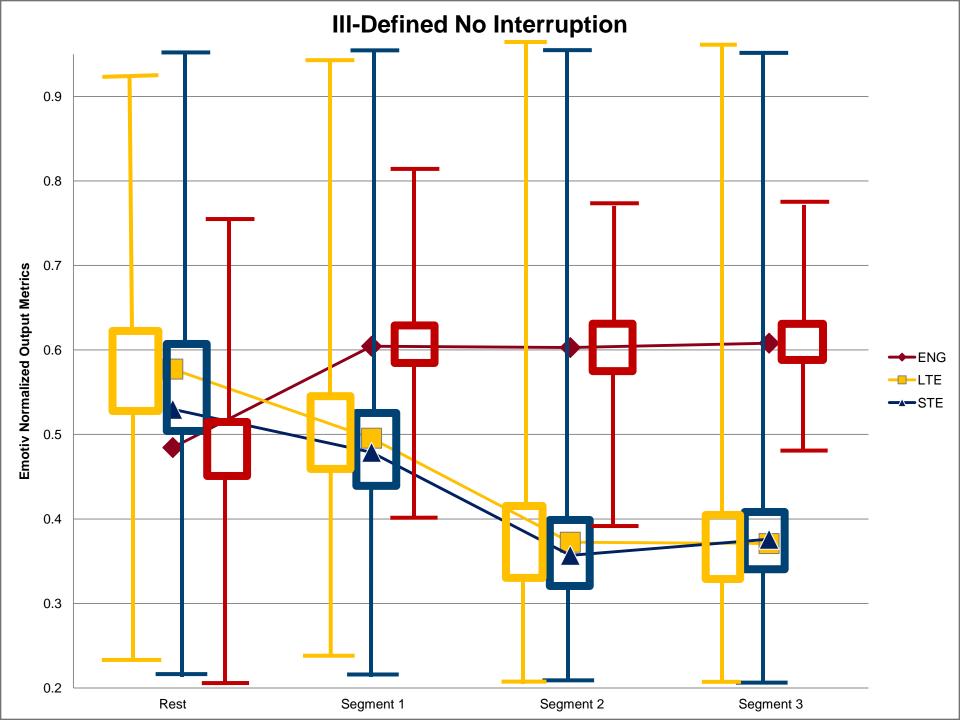
- Repeated-Measure ANOVA conducted within each scenario condition
 - Windowed time-segments are found to be significantly different across all Emotiv metrics in each scenario condition:



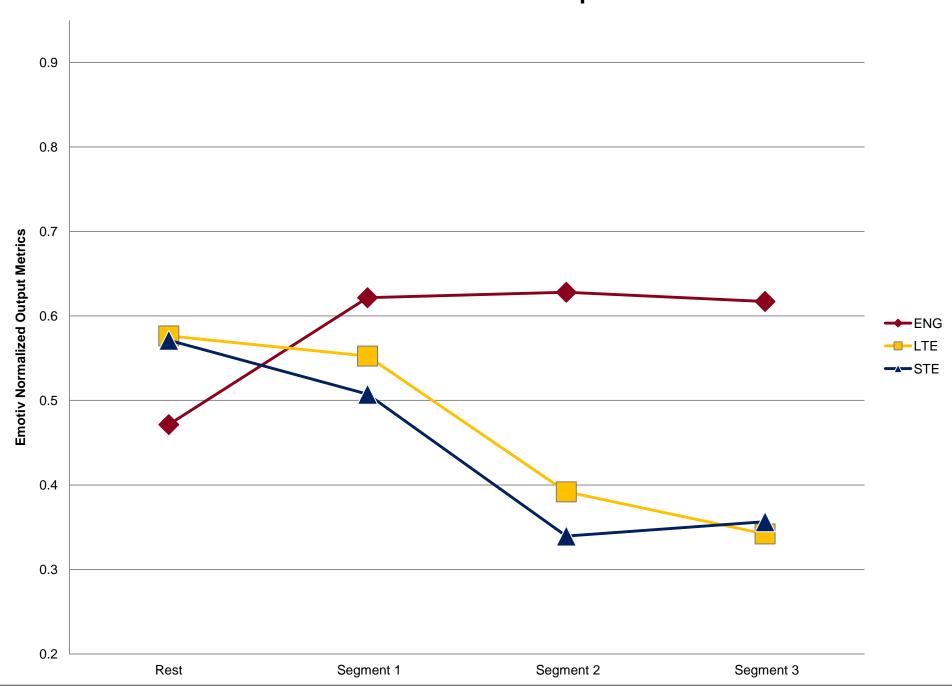
		n	F	df	p-value
WDNI					
	Short-Term Excitement (STE)	73	83.060	(1, 72)	<.001
	Long-Term Excitement (LTE)	73	94.307	(1, 72)	<.001
	Engagement (ENG)	73	68.571	(1, 72)	<.001
IDNI					
	Short-Term Excitement (STE)	73	59.512	(1, 72)	<.001
	Long-Term Excitement (LTE)	73	92.201	(1, 72)	<.001
	Engagement (ENG)	73	53.543	(1, 72)	<.001
IDI					
	Short-Term Excitement (STE)	73	58.868	(1, 72)	<.001
	Long-Term Excitement (LTE)	73	94.639	(1, 72)	<.001
	Engagement (ENG)	73	78.387	(1, 72)	<.001

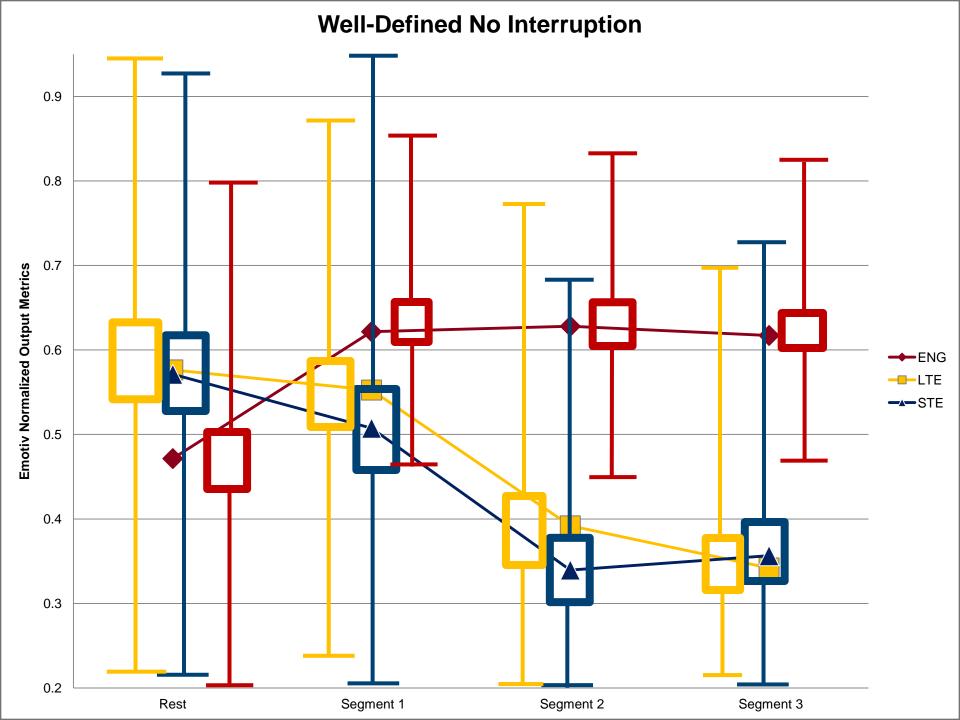



III-Defined Interruption

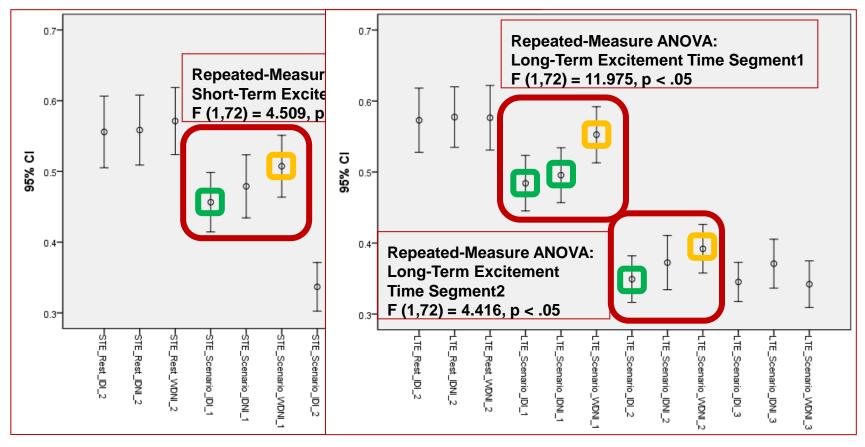


III-Defined Interruption



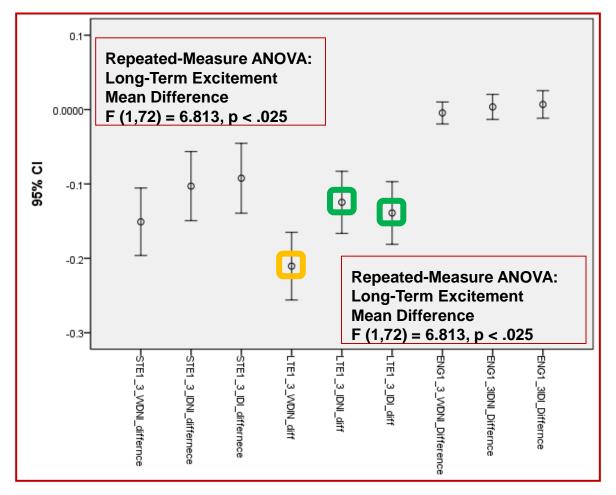

III-Defined No Interruption

Well-Defined No Interruption



EMOTIV ANALYSIS

Repeated-Measure ANOVA comparing same time segments across conditions



EMOTIV ANALYSIS

 Repeated-Measure ANOVA on mean-difference variable calculated between Time Segment 3 and Time Segment 1

DISCUSSION: EMOTIV

- Emotiv can reliably differentiate physiology between rest and active states (H₃) in the CMT training environment
- Once scenario interaction begins, engagement stabilizes and holds over time while both excitement metrics significantly decrease between Time Segment1 and Time Segment2
 - Inverse relationship is supported by previous research investigating stress and control of performance (Matthews, Davies, Westerman, & Stammers, 2000)
 - Through modes of 'Compensatory Control', an individual processing information compensates for any threats to performance through active control and effort (Hockey, 1986)
- Output values for STE and LTE declined considerably faster in IDNI and IDI when compared to WDNI
 - Ill-defined tasks require more control of active attention and effort due to lack of clarity in task execution

CONCLUSIONS

- Study supports further research in determining Emotiv's utility as a lowcost solution to modeling cognitive state for desktop training applications
 - Additional research is required to:
 - Determine what Emotiv metrics are truly reporting
 - Further test Emotiv's ability for detecting shifts specific to task engagement
- An interruption in the Flow-of-Interaction had no noticeable effect on engagement and arousal within a static web-based training environment
 - Assess the effect varying methods of task tailoring has on engagement and arousal across multiple computer-based platforms

REFERENCES

- 1. Appelhans, B. M., & Luecken, L. J. (2006). Heart rate variability as an index of regulated emotional responding. *Review of general psychology, 10*(3), 229.
- 2. Baker, R. S., Corbett, A. T., & Koedinger, K. R. (2004). *Detecting student misuse of intelligent tutoring systems*. Paper presented at the 7th International Conference on Intelligent Tutoring Systems, Brazil.
- 3. Berka, C., Levendowski, D. J., Lumicao, M. N., Yau, A., Davis, G., Zivkovic, V. T., . . . Craven, P. L. (2007). EEG Correlates of Task Engagement and Mental Workload in Vigilance, Learning, and Memory Tasks. *Aviation Space and Environmental Medicine,* 78(5), B231-B244.
- 4. Brawner, K. W., & Goldberg, B. (2012). *Real-Time Monitoring of ECG and GSR Signals during Computer-Based Training.* Paper presented at the International Conference on Intelligent Tutoring Systems, Crete, Greece.
- 5. Calvo, R. A., & D'Mello, S. (2010). Affect Detection: An Interdisciplinary Review of Models, Methods, and Their Applications. *IEEE Transactions on Affective Computing*, 1(1), 18-37.
- 6. Coyne, J. T., Sibley, C., Cole, A., Gibson, G., Baldwin, C. L., Roberts, D., & Barrow, J. (2010). Adaptive training in an Unmanned Aerial Vehicle: Examination of several candidate real-time metrics. In W.Karwowski & G. Salvendy (Eds.), *Applied Human Factors and Ergonomics*. Boca Raton, Fla: Taylor & Francis.
- 7. Craig, S. D., Graesser, A. C., Sullins, J., & Gholson, B. (2004). Affect and learning: An exploratory look into the role of affect in learning with AutoTutor. *Journal of Educational Media*, 29(3), 241-250.
- 8. Dorneich, M., Whitlow, S., Ververs, P. M., Carciofini, J., & Creaser, J. (2004). *Closing the loop of an adaptive system with cognitive state.*Paper presented at the International Conference of the Human Factors and Ergonomics Society (HFES).
- 9. Fabiani, M., Gratton, G., & Coles, M. G. (2000). Event-related Brain Potentials. In J. T. Cacioppo, L. G. Tassinary & G. G. Berntson (Eds.), Handbook of Psychophysiology (pp. 53-84). Cambridge, MA: Cambridge University Press,.
- 10. Fairclough, S. H., Ewing, K., & Roberts, J. (2009). *Measuring task engagement as an input to physiological computing.* Paper presented at the International Conference on Affective Computing and Intelligent Interaction, Amsterdam, Netherlands.
- Goldberg, B., & Brawner, K. W. (2012). Efficacy of Measuring Engagement during Computer-Based Training with Low-Cost
 Electroencephalogram (EEG) Sensor Outputs. Paper presented at the International Conference of the Human Factors and
 Ergonomics Society (HFES), Boston, MA.

REFERENCES

- 12. Hockey, G. R. J. (1986). A state control theory of adaptation to stress and individual differences in stress management. In G. R. J. Hockey, A. W. K. Gaillard & M. G. H. Coles (Eds.), *Energetics and Human Information Processing*. Dordrecht: Martinus Nijhoff.
- 13. Kim, J., Hill, R. W., Durlach, P. J., Lane, H. C., Forbell, E., Core, M., . . . Hart, J. (2009). BiLAT: A Game-Based Environment for Practicing Negotiation in a Cultural Context. *International Journal of Artificial Intelligence in Education, 19*, 289-308.
- 14. Malmo, R. (1962). Activation Experimental foundations of clinical psychology (pp. 386-422). New York: Basic Books.
- 15. Matthews, G., Campbell, S. E., Falconer, S., Joyner, L. A., Huggins, J., Gilliland, K., . . . Warm, J. S. (2002). Fundamental dimensions of subjective state in performance settings: Task engagement, distress, and worry. *Emotion*, 2(4), 315.
- 16. Matthews, G., Davies, D. R., Westerman, S. J., & Stammers, R. B. (2000). Stress, Arousal, and Performance *Human Performance: Cognition, Stress, and Individual Differences*. Philadelphia, PA: Psychology Press.
- 17. Nakasone, A., Prendinger, H., & Ishizuka, M. (2005). *Emotion recognition from electromyography and skin conductance.* Paper presented at the 5th International Workshop on Biosignal Interpretation.
- 18. Peters, C., Asteriadis, S., & Rebolledo-Mendez, G. (2009). *Modelling user attention for human-agent interaction*. Paper presented at the WIAMIS 2009 International Workshop on Image Analysis for Multimedia Interactive Services, London.
- 19. Rotgans, J. I., & Schmidt, H. G. (2011). Cognitive engagement in the problem-based learning classroom. *Advances in health sciences education*, *16*(4), 465-479.
- 20. Russell, C. A., Wilson, G. F., Rizki, M. M., Webb, T. S., & Gustafson, S. C. (2005). *Comparing classifiers for real-time estimation of cognitive workload.* Paper presented at the Foundations of Augmented Cognition, Las Vegas, NV.
- 21. Yerkes, R. M., & Dodson, J. D. (1908). The relation of strength of stimulus to rapidity of habit-formation. *Journal of comparative neurology and psychology*, *18*(5), 459-482.

