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INTRODUCTION 

Intelligent Tutoring Systems (ITS), like human instructors, make frequent decisions about what to present 
to the student.  These decisions include what courses or content to present next, as well as what type of 
After Action Review (AAR) to present to the student after each course.  Ideally, the AAR would be Adap-
tive (AAAR).  In this work, we analyze the decisions of course content and presentation.  We construct a 
student model which models the skills necessary, the effectiveness of each course at training each skill, and 
the relationship between in-scenario measures and student skill-level.  If the student model is accurate and 
represented mathematically, then decision-theory can be used by the ITS to select courses and course con-
tent.   

There are two ways to develop the mathematical model of skills, effectiveness, and transition.  A first way 
is that a Subject Matter Expert (SME) or an instructor can carefully build it, using an interface that translates 
SME intuition to model parameters.  In this work, however, we explore tools to facilitate a second option, 
that of building the model automatically from a corpus of student data.  We report on progress towards an 
enhanced version of the Newtonian Talk tutor (Zhao et al., 2015), on GIFT Cloud, using these mathematical 
modeling methods. Enhancements include the ability to select an AAR adaptively, the ability to display 
that AAR, and the ability to sequence courses in a customized order.  Each of these requires an ability to 
learn information about the training domain. To this end, we report on a data collection study which will 
produce the information necessary to build the enhanced tutor.   

DATA COLLECTION METHOD 

First, a mathematical mapping of skills and effectiveness was created from data.  In order to facilitate the 
modeling process, data was collected on 44 subjects using the GIFT-Powered NewtonianTalk tutor (Zhao 
et al., 2015).   Prior to the experiment, participants were asked to sign an informed consent form, complete 
a brief survey, and take a pretest. The survey gathered demographic information such as age, education 
level, gender, and average physics grade. The pretest consisted of 8 questions based on figures and gathered 
data on participant’s physics knowledge. An example is shown at the left of Figure 1. Once the survey and 
pretest were completed, the data collection began. 



  

Figure 1: (Left) Pre-test question within Newtonian Talk tutor. (Right) Courses within Newtonian Talk. 

During data collection, participants completed a series of physics puzzles in Newton’s Playground (an ex-
ample is shown at the right of Figure 1). This is a game that presents learners with puzzles to solve by 
strategically creating physics-based objects in a 2D virtual space in order to manipulate a ball, which pops 
a balloon.  Figure 1 shows the ball in green, the red balloon in the upper right, and a series of student-drawn 
objects in both blue and red. 

 

Figure 2:  Selection screen that includes a Tutorial and 9 Newtonian Talk Courses. 

Participants were randomly assigned a unique user ID which designated a unique path through the series of 
9 such puzzles. As part of the reported effort, we modified the GIFT software so that one particular course 
was recommended at random (shown by the green thumb on the leftmost course in the second row of Figure 
2). Subjects were instructed to simply always select the recommended course. 

At the end of the session, participants completed an 8 question posttest similar in nature to the pretest to 
gather data as a comparison point of physics knowledge to the pretest. This was followed by a short de-
briefing where they learned more about the purpose of this data collection. The data collection lasted about 



45 minutes to 1 hour, but the exact amount of time depended upon learning pace. Learners were able to 
take breaks at any time during the session. 

IMPACT ON GIFT FRAMEWORK 

 

Figure 3:  Modules affected within the GIFT framework. 

Support for the data collection entailed several modifications to the GIFT framework.  Figure 3 highlights 
the modules affected by the data collection.  The workflow through the framework is as follows: 
 

1. The student takes a pre-test to assess physics knowledge. 
2. An adaptive learning algorithm (e.g., MDP) determines the next learner course. 
3. An AAR screen shows the results of the learning algorithm. 
4. The learning algorithm also makes a recommendation the students’ next course. 
5. The student takes the next course. 
6. The process repeats (go to step 2 above) 9 times. 
7. After the 9th scenario, the learning loop ceases and the student takes a post-test. 

The contributions of this framework lie in Steps 2,3, and 4.  To support the data collection and a follow-
up effort, we made modifications to GIFT software and Newtonian Talk so that course content and AAR 
(an AAAR) was personalized to the individual. These modifications included: 
 

• The Learning Management System (LMS) was modified to store a custom construct called stu-
dent state, described further in the next section.  Related to the LMS modification, messages were 
added throughout the system so that state could be transmitted between modules. 

• The Domain Module was enhanced to include classes that represent an adaptive policy, as well 
as the logic for utilizing the adaptive policy and using the policy to return AAR information.  The 
Domain Module was also used to get/set user state in the LMS. 



• Tutor UI:  The tutor UI was tweaked to display custom AAR information. 

These modifications all represented improvements on previous work towards customizing GIFT (Hruska 
et al., 2011). In the next section, we discuss the State data structure used by both the LMS and Domain 
Module.  The modifications to the Tutor UI will be discussed later in this document. 

DATA MINING MODULE 

To model the data, we used a Partially Observable Markov Decision Process (POMDP; Smallwood & 
Sondik, 1973).  The POMDP model contains various parameters which must be identified for the specific 
domain:  State, Actions, an Observation function (measures), Transitions, and Reward.  Since Reward is 
usually assigned by a human and reflects the individual instructor’s priorities, we will not discuss it further 
in this document.  The other parameters are data mined by the AAR system, and are described below. 

State 

Definition 1 (State):  State is defined as a 𝑘𝑘-tuple of numbers, with 𝑘𝑘 representing the number of skills in 
the training domain.  For the preliminary Newtonian Talk study, we automatically extracted the course 
measures from the LMS, and we considered each measure available to the system to measure its own skill. 
In future studies, this requirement will be relaxed so that each measure does not necessarily need to measure 
one skill.  An example of a state is < 3,5 > , referring to a skill level of “3” on the first skill and “5” on the 
second.  The Newtonian Talk domain, since it had 10 measures, had 10 skills.  Symbolically, we represent 
state with the symbol 𝜃𝜃.   

Definition 1a (State Probability):  We refer to the probability of being in a state with the notation Pr().  
E.g., Pr(<1,1>) represents probability of being in state <1,1>.  We may also denote a given point in time 
when the student was in that state.  That is, 𝑃𝑃𝑃𝑃(< 1,1 >{𝑡𝑡=0}) refers to the probability that a student was in 
state <1,1> at time zero. 

Actions 

The set of Actions was identified as the set of 9 courses in the Newtonian Talk tutor.  For each course we 
associated an id, and we created variables to represent the applicability and difficulty of the course to each 
component of state.  The variable 𝑑𝑑𝑖𝑖𝑘𝑘 was used to refer to the difficulty of course 𝑖𝑖 with respect to skill 𝑘𝑘, 
and the weight 𝑤𝑤𝑖𝑖𝑘𝑘was used to refer to the applicability weight of course 𝑖𝑖 with respect to skill 𝑘𝑘. 

Observation Function 

To fit the model, we used Item Response Theory (IRT; Lord, 1980) to fit the observation parameter.  In 
Newtonian Talk, each course was either passed or failed, and we expressed the probability that a student 
would pass a course as 𝑃𝑃𝑃𝑃(𝑐𝑐𝑐𝑐𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐).   IRT models performance on items using logistic regression. 

Equation 1 (IRT):     𝑝𝑝(𝑐𝑐𝑐𝑐𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐) =  1
1+𝑒𝑒(𝑑𝑑𝑖𝑖−𝜃𝜃) 

Thus, in IRT, the probability of correct completion of a course depends on the course difficulty and the 
student state.  If the course difficulty exceeds the student state, the student is unlikely to complete the course 
correctly.  Conversely, if the student state exceeds the course difficulty, then the probability of completion 
is high.   



The AAAR framework extends the notation by vectorizing it to account for many skills.  Let 𝑘𝑘 identify a 
skill.  We modify Equation 1 so that the overall capability of the student to perform on the item, is the sum 
of the capabilities on the individual skills.  This yields:  

Equation 2:     𝑝𝑝(𝑐𝑐𝑐𝑐𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐) =  1

1+𝑒𝑒
∑ 𝑤𝑤𝑖𝑖

𝑘𝑘(𝑑𝑑𝑖𝑖
𝑘𝑘− 𝜃𝜃𝑗𝑗

𝑘𝑘)𝑘𝑘
 

Where 𝑑𝑑𝑘𝑘𝑖𝑖 , and 𝑤𝑤𝑖𝑖𝑘𝑘have been introduced above, and where 𝜃𝜃𝒋𝒋𝑘𝑘represents the skill level of student 𝑗𝑗 on skill 
𝑘𝑘.  Equation 2 differs from Equation 1 in that probability of completion is now a linear weighted combina-
tion of difficulties and skill levels.  When we want to discuss all skills of a student, we will use a vector, so 
we would represent all skills of student j with a bar to represent a vector, as in 𝜃𝜃𝚥𝚥� , or an alternative is 
boldface, 𝜽𝜽𝒋𝒋.  

 
Example 1:  Suppose a student is at level 3 for skill 1, and level 5 for skill 2.  We summarize this by saying 
𝜽𝜽 =< 3,5 >.  Suppose item 22 is at difficulty level 6 for skill 1, and 2 for skill 2.  That is, 𝑑𝑑22 =< 6,2 >.  
Plugging back into Equation 2, the student is modeled as 50% likely to get the item correct. 

Transition Function 

We would like to model students that improve as they train, following on the literature of deliberate practice 
(Ericsson et al., 1993).  In the above model, there is only one student variable for each skill 𝜃𝜃𝑗𝑗𝑘𝑘, instead we 
would like to break this out into several variables 𝜃𝜃𝑗𝑗

𝑘𝑘,𝑡𝑡 representing the skill level at skill 𝑘𝑘, by student 𝑗𝑗, at 
time 𝑐𝑐.  Our model does not use a specific time like 53.45151 seconds, but rather discretizes into time steps. 
In Newtonian Talk, 𝑐𝑐 represents the number of courses completed by the student thus far.  That is we model 
student skill after 0 courses, after 1 course, after 2 courses, etc.   

We can then model a transition function, which we denote as T, and represents the probability of student 
improvement.  The transition function takes the form: 

Expression 3:                𝑇𝑇�𝜃𝜃𝑗𝑗
𝑘𝑘,𝑡𝑡+1�𝜃𝜃𝑗𝑗

𝑘𝑘,𝑡𝑡 ,𝛼𝛼) 

This represents the probability of that student 𝑗𝑗 achieving a skill level on skill 𝑘𝑘 the next step (that is, at 
time 𝑐𝑐 + 1), given that student’s skill level at the current time step (represented by time 𝑐𝑐), and the training 
action (i.e., the course) 𝛼𝛼. 

For the current AAR model, we assume transitions are independent between skills.  This eventually will 
not need to be the case, and if transitions were not independent we would use: 

 Expression 4   𝑇𝑇�𝜃𝜃𝑗𝑗𝑡𝑡+1�𝜃𝜃𝑗𝑗𝑡𝑡 ,𝛼𝛼) 

We propose two methods to assign this probability.  The simpler method is to directly interpret transition 
probability as an artifact of item difficulty levels and student states through a rule:  the closer a course’s 
difficulty to a student’s skill level, the more likely the course is to train the student.  This corresponds to 
Vygotsky’s Zone of Proximal Development (Vygotsky, 1978).  The second is to solve for these probabili-
ties directly based on machine learning the value-assignments for all of the other variables and counting the 
number of transitions. In this study, we explore this second option. 



Goal of Data Mining Study 

The purpose of the data mining study was to learn values for all difficulty variables 𝑑𝑑, all weights 𝑤𝑤, all 
transition probabilities 𝑇𝑇�𝜃𝜃𝑗𝑗𝑡𝑡+1�𝜃𝜃𝑗𝑗𝑡𝑡 ,𝛼𝛼) for the Newtonian Talk tutor.  Variable values were learned by a 
Gibbs Sampling algorithm (Geman & Geman, 1984). Values for subject knowledge states 𝜃𝜃𝑗𝑗𝑡𝑡+1were also 
learned for the subjects of the data collection study. Knowledge of the domain variable values will allow 
for the construction of adaptive training algorithms in future studies.  The adaptive training algorithms will 
optimize course selection based on these learned variable assignments. 

PRELIMINARY RESULTS 

The data collection was completed in February 2017.  In this paper, we report on a preliminary analysis. 

Data Mining Result 

We used domain information from Newton’s Playground as well as Gibbs sampling to sample values for 
the variables discussed in the above section.  To facilitate, we defined measures and skills synonymously 
(i.e., each measure observes a single unique skill).  If a measure/skill was present in a course, the course 
was assigned a “1” for presence of that skill.  A summary of activities and puzzles is shown in Figure 4.  
Figure 4 shows which courses are available, the subjects that they intend to teach, and the activities required 
to complete them. 

 

Figure 4: Summary of activities and puzzles.  For each puzzle (rows), the related skills/measures are denoted. 

After all skills were assigned as present/not present, the course was normalized so that the sum of its ap-
plicability variables was 1.  Based on the data, skill level was assessed for each of the subjects in the data 
collection on a 1-10 scale.  Below, the assessment is shown for the first several courses of a typical student.  
Each row of the table represents assessed student state on the various skills, after the r-th course, where r is 
the row number in the leftmost column. 



Course 
# 

Gen-
eral 

Draw 
Any-
thing 

Draw 
Freeform 

Draw 
Pin 

Draw 
Pinned 

Draw 
Ramp 

Draw 
Spring 

User 
Ramp 

User 
Spring 

0 2 1 1 2 2 0 0 0 1 

1 3 1 1 3 3 0 0 0 1 

2 3 2 2 3 3 1 1 0 2 

4 3 3 2 5 4 1 1 0 2 

5 7 3 2 5 5 2 2 1 2 

6 7 4 3 6 5 2 2 2 3 

7 8 5 4 7 5 2 2 3 3 

Figure 5:  Assessed state for one of the subjects of the data collection study.  Subject skill level progressed af-
ter each course (row). 

Overall course difficulties were estimated (on a 1-10 scale) based on sampled fit to the item response equa-
tion.  Below shows the last sample taken.  In future analysis, the average of the samples will be retained.  
As an example, in Figure 6 the course “p2p1.course.xml” was assigned a difficulty level of 7 as a result of 
the Gibbs sampling learning process.   

Course ID Sampled Diffiulty 

p2p1.course.xml 
 

7 

p2p2.course.xml 6 

p2p3.course.xml 6 

p3p1.course.xml 4 

p3p2.course.xml 5 

p3p3.course.xml 4 

p4p1.course.xml 1 

p4p2.course.xml 
 

5 

p4p3.course.xml 
 

5 

tutorials.course.xml 1 

Figure 6: Assessed difficulty of various Newtonian Talk courses on a 1-10 scale. 

Transition probabilities were found as well, although these values were too numerous to list in a table.  The 
transition data was 4-dimensional:  each course, skill, and pre-course state, each post-course state was as-
signed a probability.  The table below shows the probability of attaining various skill levels for the 
p2p1.course.xml, when the student was at a skill level of 0 before the scenario.   



0 1 2 3 4 5 6 7 8 9 

71.1% 28.3% .6% 0 0 0 0 0 0 0 

Figure 7:  Transition probability for one course, from a starting skill level of zero.  Each column represents 
probability of attaining a new skill level as a result of the course.  Reference Figure 4 for the mappings be-

tween skills and actions. 

Simulated Student Result 

Using the learned model, it is possible to simulate students using desired instructional strategies.  For example, Fig-
ure 8 compares simulated student progress using an adaptive training strategy that intelligently selects NewtonianT-
alk puzzles, versus a strategy that selects random puzzles.  To generate this figure, 10,000 students were modeled by 
the POMDP produced by the data mining procedure discussed in this paper.  Each student transitioned randomly to a 
new state after each scenario, according to a distribution governed by the POMDP transition function.  The adaptive 
strategy selected the best available puzzle for that given student, whereas the random strategy selected a random 
puzzle.  Figure 8 represents average skill level attained, across all skills (see columns of Figure 4), across a 10000 
students. 

 

Figure 8:  Simulated student skill level using an adaptive training strategy versus using a random one.  The x-
axis represents number of simulated puzzles, y-axis represents student skill level on a 1-10 scale, as produced 
by the model. 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

In this paper we have reported on a data collection study. The study modified the Newtonian Talk branch 
of GIFT to sequence courses, to store results in the LMS, and to interpret information information about 
the courses using data mining techniques.  A preliminary analysis of the data is described in this paper. 
With the data collection complete, there are several future directions which will all take place over the next 
year. 

1. Refine and enhance the analysis of the variables described in this study. 

2. Use the resulting variable values to parameterize an adaptive training algorithm, and use this algo-
rithm to sequence subjects in Newtonian Talk for a future study, thus proving the efficacy of the 
GIFT framework on adaptive training. 
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3. Use student assessments to present an After Action Review.  The mockups below show examples 
of what this After Action Review will look like for future experiments. 

 

Figure 9: Different AARs are pictured for different users, based on experiences and data mined policy. 
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