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ABSTRACT 

Adaptive training promises more effective training by tailoring content to each individual.  Where non-
adaptive training may be just right for one segment of the student population, there will be some students 
that find it too easy while others find it too difficult.  Another, often ignored benefit of adaptive training, is 
improved training efficiency by minimizing the presentation of unnecessary material to learners.  One im-
plication of this is that intelligent, adaptive training should require less time to train a population of learners 
to a given level of proficiency than non-adaptive training. The gains in efficiency should be a function of 
several factors including learner characteristics (e.g., aptitude, reading ability, prior knowledge), learning 
methods employed by the adaptive training system, course content (e.g., difficulty and length, adaptability), 
and test characteristics (e.g., difficulty, number of items).  This paper describes the development of a pre-
dictive model for training efficiency based on those factors and how it could be integrated into the Gener-
alized Intelligent Framework for Tutoring (GIFT) architecture.  How this model supports return on invest-
ment decisions for authors is also discussed.   

INTRODUCTION 

The Generalized Intelligent Framework for Tutoring (GIFT) is an open-source, modular architecture de-
veloped to reduce the cost and skill required for authoring adaptive training and educational systems, to 
automate instructional delivery and management, and to develop and standardize tools for the evaluation 
of adaptive training and educational technologies (Sottilare, Brawner, Goldberg, & Holden, 2012a; Sot-
tilare, Goldberg, Brawner, & Holden, 2012b).  By separating the components of ITSs, GIFT seeks to reduce 
development costs by facilitating component reuse.  

Meta-analyses and reviews support the claim that intelligent tutoring systems (ITS’s) improve learning over 
typical classroom teaching, reading texts, and/or other traditional learning methods. (Dynarsky et al. 2007; 
Dodds and Fletcher 2004; Fletcher 2003; Graesser et al. 2012; Steenbergen-Hu and Cooper 2013, 2014; 
VanLehn 2011).  In fact, ITS’s have been shown to improve learning to levels comparable to Human tutors 
(VanLehn et al. 2007; VanLehn 2011; Olney et al. 2012).  

While improved training effectiveness is certainly a benefit of ITS technology, another important benefit is 
improved training efficiency over one-size-fits-all training.  The goal of an ITS is to identify the gaps in 
knowledge specific to each learner so that training can focus on filling just those gaps.  One of the problems 
of one-size-fits-all training is that to insure all trainees can comprehend the instruction, it must be developed 
for trainees with the least experience, knowledge, and aptitude.  Though less costly to develop, the material 
is presented a pace that is slow and that includes content not needed for more experienced, higher aptitude 
trainees.  An ITS would be expected to reduce the time needed to deliver training to such trainees.  

The reduction in time to train (i.e., improved acquisition rate) is an important metric because reductions in 
training time represent cost savings.  This is especially true for military trainees who are paid a salary.  
Reductions in the time needed to train those trainees save salary costs for both trainees and instructors.  For 
large-volume courses, those savings can be substantial.  



All of this highlights the need for a means to model and predict training efficiency gains (i.e., time saved) 
by ITSs generally and GIFT specifically.  Having the ability to model time saved by the use of adaptive, 
intelligent training, as compared to existing or non-adaptive training would have benefits throughout the 
lifecycle of a course.  During the design of new training, the training developer could more easily make 
decisions about the relative costs and benefits of adding adaptive features.  For example, adding extensive 
remedial training for easy-to-understand concepts may benefit such a small percent of the population of 
learners, that the net reduction in training time would be too small to make those features worth the cost of 
development.  

During training delivery, actual trainee data could be used to verify and/or improve the model.  For example, 
suppose the model assumed that learners with an aptitude above criteria A would have a 95% probability 
of understanding concept B without needing any remediation.  Learner data could then be used to validate 
or adjust that probability.  This improved model could then be used to better determine the true time-savings 
of the course when delivered by GIFT.   

During training evaluation and refinement, the disparity between predicted and observed training outcomes 
could be used to refine the training.  For example, if a segment of training proves to be more difficult than 
anticipated for a group of learners, it is possible that the training segment should be refined or redeveloped.   

An example of such a model was developed by McDonnell Douglas (1977).  This model incorporated 
predictor variables in four broad categories: course content (e.g., difficulty, length of content), instructional 
design (e.g., instructional strategies/techniques), test characteristics (e.g., difficulty, number of items), and 
trainee characteristics (e.g., aptitude, motivation).  The model predicted about 39% of the variability in 
trainee’s first-attempt lesson time for self-paced computer-based instruction.  

To understand how GIFT might begin to model and predict training time for learners, it is necessary to 
understand how training is adapted by this system. GIFT is a framework that modularizes the common 
components of intelligent tutoring systems.  These components include a learner module, an instructional 
or tutor module, a domain module, and a user interface.  One of the main motivations for creating this 
framework was to lower the cost and labor needed to create intelligent tutoring systems by facilitating re-
use of components and by simplifying the authoring process (Sottilare et al., 2012a). 

GIFT adapts training using the learning effects model. At the first point of this model, learner data informs 
the learner state in the learner module.  The learner module receives assessments from both sensors and the 
domain module. The learner state is used to determine the appropriate instructional strategy by the tutor 
module.  The instructional strategy is then interpreted by the domain module and used to determine the 
domain specific learning activities needed to instruct the learner in that domain.  The responses of the 
learner to that activity then update the learner module which starts the cycle over again.   

Developing a predictive model in GIFT is not a straightforward process given the ways that training is 
adapted to each individual.  We should note that our goal is not to predict the single path that a trainee 
would be expected to take through a specific course, but rather the probability associated with all possible 
paths through the training for a given learner.  From that we can determine the range and distribution of 
times that would be expected for that learner to complete the training.  Taking this one step further, we 
could apply this to a population of learners and predict the range and distribution of the time for that popu-
lation to complete that training.   

The development and integration of a probabilistic model for predicting time to train into the GIFT archi-
tecture is currently in the first phase of a three phase plan.  In this paper, we describe work being done in 
the first phase.  In this phase we are developing the structure of the Bayesian probabilistic model, identifying 
factors that are expected to impact training time, and mapping those to a specific course delivered by GIFT.  



In the second phase, we will integrate this model into the GIFT framework and develop the user interface 
to allow for authoring of new predictive models for other GIFT courses.  In the third phase of the work, we 
will empirically validate the predictive model in GIFT and make adjustments to try to improve it. 

METHODS 

This section describes our method for modeling adaptive training content and predicting distributions of 
completion times for both individuals and groups using the GIFT excavator trainer as an example.  This 
course is available with public version of GIFT. The training content includes text, images, video demon-
strations, and practice opportunities in a virtual simulator making it a good example of the kind of adaptive 
training that GIFT can deliver. 

An Adaptive Training Course in GIFT:  Excavator Training 

The excavator training course (Army Research Laboratory, 2015) consists of MS PowerPoint slides with 
instructional information and questions,and a 3D simulation environment for practice.  The excavator train-
ing starts with a welcoming message and a set of survey questions that obtain the learner characteristics of 
motivation, grit, and self-regulatory ability.  The GIFT tutor, then, presents the concepts of rules to control 
the excavator (i.e., Excavator, Boom, Bucket, Arm, and Swing), and corresponding examples.  Figure 1 
shows the overall structure of the excavator training contents. 

 

Figure 2.  The overall structure of the excavator training course and the adaptive courseflow of the Recall 
phase in GIFT.  

The Adaptive Course Flow object in GIFT (formerly known as the Engine for Management of Adaptive 
Pedgagoy – EMAP, e.g., Sottilare, 2014; Goldberg, 2015) supports adaptive capabilities for training based 
on the Component Display Theory (CDT, Merrill, 1983).  The CDT supports a general framework of skill 
training that progresses through two types of learning activities, each with two categories: expository (rules 
and examples) and inquisitory (recall and practice).  According to Merrill, learners should progress through 



these four quadrants in order starting with rules (presentation of general principles), then to examples 
(presentation of a specific instance), then to recall (declarative knowledge test of the trainee’s comprehen-
sion), and finally to practice (opportunity for the trainee to perform the skill).  By sorting learning activities 
into these four quadrants, adaptive training systems like GIFT can apply the CDT to any domain as long as 
content for that domain is so labeled.   

Modeling the Content of Adaptive Training 

To model the content of adaptive training, we use the Methodology for Annotated Skill Trees (MAST) skill 
trees. The “skeleton” of the skill tree breaks down entire procedures into constituent steps, tasks, and sub-
tasks. Annotations are added to the procedure model. For example, consider completing a set of questions 
in the excavator tutor that features hints and feedback. This step includes tasks for reading the introduction 
to the problems, each problem, reading hints, and reviewing feedback. Critical for adaptive training, the 
MAST procedure model represents not only the base procedure of answering each question correctly with-
out hints, but also the optional hints and feedback steps, variations, and multiple potential paths among 
questions as chosen by GIFT. Annotations within the MAST skill tree include the following additional 
information for each step, task, and subtask.  

• Information Elements: Information or knowledge needed by the trainee to perform the actions required 
by the skill tree node. These requirements are commonly called the “knowledge map” in ITS literature. 
In the example of completing a set of GIFT questions, this is the knowledge used to answer the question 
correctly. 

• Instructional Resources: Resources to teach the skills needed to perform the actions required by the 
node. In the question example, these are pointers to additional training content. 

• Skill Priorities: Ratings of the difficulty and criticality of the skills needed to perform the actions re-
quired by the node. These ratings enable training systems to prioritize skills for training and optimize 
ROI. In the question example, ratings express the criticality of answering the questions correctly to the 
overall learning goals. 

• Assessments: Methods of assessing the skills required by the node. These methods enable training sys-
tems to determine trainee ability. In the question example, assessment methods include secondary 
measures of trainee cognitive workload, motivation, or affect that may influence completion time. 

• Decision Making Models: Computational models of how the procedure steps, tasks, and subtasks are 
chosen and ordered. These models enable some of the adaptation logic to be represented in the skill 
tree. In the question example, these models encode the rules for providing hints, providing feedback, 
and selecting the next question. 

• Completion Time Data: describes a distribution of completion time based on past data or an estimate 
of completion time based on type. This data will be used to train the prediction algorithms 

We use a probabilistic model to represent the different factors and instructional strategies that impact the 
completion time of a MAST module, as well as probabilistic inference techniques to determine a distribu-
tion of a course completion time. Not only must our model represent relationships between variables and 
paths in the MAST skill tree, but it must also recognize and model the impact of time as well; many varia-
bles can change as the trainee is completing a training module. Building this model consists of two basic 
steps: developing a model that estimates the completion time for nodes in the MAST skill tree, and tempo-
rally linking these models together to enable inference of the entire module completion time. 



Figure  shows part of an example model for estimating the completion time of a node in a MAST skill tree. 
This example shows some contributing factors that could be used by PAST Time to estimate the time it 
takes for a trainee to read the text on the slide. There are also variables that estimate the time to process the 
pictures and audio on the slide, but that these have been omitted from this example for brevity.  

The model includes a Reading Time variable, which represents the time it takes for the user to read the text. 
The value of this variable is a function of the amount of text on the slide, the speed at which the trainee can 
read the text (Read Speed), and the current alertness of the trainee (Fatigued). These relationships are prob-
abilistic. For example, if a trainee normally reads at 100 words per minute, there are 100 words in the text, 
and the trainee is tired, the reading time of the trainee could be distribution uniformly from 1 to 2 minutes. 
The reading speed of the trainee is also a non-deterministic variable that depends on how much prior 
knowledge the trainee possesses about statistics about how fast the general population of trainees read. 

ut the subject, and  

Figure 2: Example model for estimating the time to read Text on a Slide node. 

One of the benefits of building a probabilistic model to represent the completion time is that not all of the 
information in the model is needed to estimate the completion time. For example, if we know how much 
prior knowledge the user has about the subject (for example, from a pre-instruction questionnaire), we can 
post that knowledge as evidence to the model that would be taken into account when estimating the com-
pletion time. If we do not possess that information, we can treat the variable as latent and use a prior distri-
bution to represent the state of the variable. For example, we can estimate that only 20% of trainees taking 
the course have prior knowledge of the subject. These prior distributions can be estimated from the literature 
review or expert knowledge, and then learned over time based on the outcomes of actual testing.  

Figure 3 shows a portion of a MAST skill tree for the excavator training GIFT course. This skill tree focuses 
on the information elements that most heavily influence the completion time. On the left, the overall course 
on Excavator is the root of the tree structure. Its children are the different topics covered by the course, 
including the Boom Movement topic. This topic features a number of slides with Pictures, Audio, and Text 
components. Individual trainees may vary in the amount of time they spend examining the Pictures, whether 
or not they listen completely to the Audio, and the amount of time taken to read the Text. Trainees may 
also choose to view optional Slides explaining concepts that they may not be familiar with, adding more 
time. If trainees fail to demonstrate sufficient knowledge in the quiz or fail to complete the simulation tasks 
appropriately, they are sent back to the beginning of the Boom Movement topic on Slide 1, adding signifi-
cant time to completion of the course. This model may be expanded to represent a maximum number of 
failures before the trainee either moves to a different topic or ends the course. 



 

Figure 3: High-level design of a MAST skill tree of a GIFT module with representations of individual instruc-
tional elements, branching content, and variables that influence completion times. 

After reviewing the Slides, the trainees are asked to practice their skills in Simulation. The MAST model 
of the simulation can be either a complex procedure describing the steps needed to complete the scenario 
and optional steps that may or may not contribute to the overall goal. The MAST simulation model may 
also be simple, representing just the type of simulation and the number of scenarios. To save modeling time 
and effort, these MAST models are constructed with only the level of detail needed to sufficiently and 
accurately predict the completion time.  

Once these probabilistic models are defined, they can be used to compute a distribution over the course 
completion time. To generate this distribution, a modeler first provides knowledge about a trainee, group 
of trainees, or a module as evidence to the model. This could be statistical information obtained from the 
trainees from a pre-course questionnaire, or data obtained from prior training. Then, given the posted evi-
dence, the user can apply standard probabilistic inference techniques (e.g., variable elimination, importance 
sampling, Metropolis-Hastings, support computation, most probable explanation (MPE), and particle fil-
tering) to generate a distribution over the completion time of the module. These specific methods are in-
cluded in the Figaro libraries. Statistical moments of this distribution (e.g., mean and variance) can be easily 
computed and presented to a module designer. 

A significant advantage of combining this probabilistic modeling with the MAST skill tree representation 
is the capability to ascribe time to individual models, and perform “what if” analysis by adding or removing 
components. For example, a node for a module requiring detailed arithmetic may take little time in and of 
itself, but it may be fatiguing, causing significant downstream effects in terms of overall training completion 
time. 



RESULTS 

Implementing the Adaptive Training Models 

The probabilistic model is being implemented using Charles River Analytics’ open source probabilistic 
programming language, Figaro™ (Pfeffer 2012), to construct and learn probabilistic models of the relation-
ships between these factors. The use of Figaro will greatly simplify the authoring of these models which 
can be complex and require a high degree of experience by users who may not be experts in probabilistic 
reasoning. 

Figure 4 shows an example Figaro program that creates the completion time model for the node slide shown 
previously in Figure . Note that the probabilities and values in this program are notional.  First, we define 
the amount of text in the node as 1000 characters. Then, we define two latent variables, one representing 
the prior knowledge of the trainee and the other representing typical reading speeds. In this case, we specify 
that a trainee has prior knowledge with 0.2 probability, and the trainee’s reading speed is normally distrib-
uted around 100 characters a second. Next, we define the actual reading speed of this trainee. In this exam-
ple, if the trainee has prior knowledge of this subject, we increase their reading speed by a value normally 
distributed around 50 characters a second. We next represent the fatigued state of the trainee (0.4 probability 
that the trainee is fatigued). Finally, we define the reading time of this node as the amount of text divided 
by the reading speed of the trainee; if the trainee is fatigued, however, we assume they can only read at 50% 
capacity. To use this model to estimate the completion time of the module, we use Figaro’s built-in im-
portance sampling algorithm to sample the model and print the distribution over the reading time variable. 
Observe that invoking an inference algorithm to estimate the completion time is a single line of code, and 
any other Figaro inference algorithm can be substituted into this program with no other changes.  

val text = Constant(1000.0) 
  val priorKnowledge = Flip(0.2) 
  val populationReadSpeed = Normal(100.0, 50.0) 
  val readSpeed = If(priorKnowledge,  
    populationReadSpeed ++ Normal(50.0, 25.0), populationReadSpeed) 
  val fatigued = Flip(0.4) 
  val readingTime = If(fatigued,  
    text / (readSpeed * Constant(0.5)), text / readSpeed)  
   
  val algorithm = Importance(10000, readingTime) 
  algorithm.start 
  println(algorithm.distribution(readingTime))   

Figure 4: Figaro program that models reading time of a Slide node. 

Figaro probabilistic programming is useful in this context for a number of reasons: We can automatically 
build a model given a specification of the MAST skill tree, the trainee model, and a set of known relation-
ships. Prediction based on the model is already coded in Figaro’s inference algorithm, so additional effort 
is not required to use the model. Figaro supports the creation of dynamic Bayesian networks that model the 
temporal processes of variables, simulating fatigue and practice effects. We can continuously learn using 
these models; the probabilistic programs are flexible enough to update relationships between variables 
based on historical or dynamic data. Figaro’s encapsulation mechanism enables easy creation of reusable 
components. Trainee models and MAST skill trees can be reused for future prediction models. It is embed-
ded in a general purpose language, Scala, which allows the creation of front end graphical interfaces that 
can edit and invoke the models created in Figaro.  



Figure 5 shows the results of running this Figaro model. The distribution of reading times has three modes. 
At about 7 seconds, individuals that have prior knowledge and are not fatigued read the slide quickly. At 
10-11 seconds are individual that have no prior knowledge and are not fatigued. At 20-21 seconds are 
individuals without prior knowledge and who are fatigued, reading slowly to absorb more information. An 
instructor may use a model like this one to examine how individual slide contents may be processed by a 
class of students, and make small changes to the presentation to increase learning efficiency.  

 

Figure 5: Probability Density of Reading Times for One Slide. 

Figure 6 shows the probability density of reading times over three slides with the student having increased 
chance of fatigue (40%, 45%, and 50%) on each successive slide. In this simulation, only a small portion 
of the students are in the fastest group, completing three slides in about 20 seconds. The bulk of the students 
range from 25-55 seconds for these three slides, with three modes in this range covering the combinatorics 
of prior knowledge and different possible fatigue states on each slide. Also, a significant portion of the 
students takes longer than 55 seconds, with a possibility of up to 76 seconds to complete. An instructor can 
use this model to examine the differential effects of fatigue, prior knowledge, and reading speeds of a het-
erogeneous group of students, and adjust the learning content or course expectations accordingly.  

 

Figure 6: Probability Density of Reading Times for Three Slides with Increasing Chance of Fatigue. 
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This modeling can reveal underlying properties of the adaptive learning content that may be counter-intui-
tive at first glance. For example, the most likely reading speed of a single slide (according to the first model) 
is about 10 seconds. For three slides, one might assume 10 * 3 = 30 seconds, but the distribution in Figure 
10 shows the mean of the predicted time about 41 seconds with significant standard deviation. Allotting 
only 10 seconds on average per slide in a course would prevent about two-thirds of students from complet-
ing all of the course content. 

The adaptive training content with significant remedial steps has a much wider variance of completion 
times. We hypothesize that retraces through previous material (e.g., reviewing the boom operation slides) 
will be performed much faster than the initial trace. Trainees may also be able to optimize their reading and 
comprehension strategies if they know how they will be tested and what the consequences for failing are. 
Therefore, later sections in an adaptive training course (e.g., excavator bucket handling after boom han-
dling) may have significantly different variable interactions than earlier sections, as trainees learn the train-
ing structure. 

DISCUSSION 

We believe that including a capability to predict training time for trainees in GIFT has several significant 
advantages for accelerated learning.  First, it facilitates return on investment (ROI) calculations by enabling 
the author to determine training time reductions resulting from the addition of adaptive features.  Second, 
it provides a means for GIFT to monitor student progress against an expected timeline.  Students who take 
much longer to complete training than expected may not be fully engaged in the training or may be having 
difficulty with the material.  These are conditions that might prompt a response by GIFT.  Finally, it can 
play a role in quality control of GIFT courses.  For example, if segments of a course take much longer than 
expected across multiple trainees, GIFT could flag those sections for review by the course author to insure 
that the material is presented clearly. 

Determining the ROI for training is not always easy.  As Fletchter and Chatham (2010) put it, how does 
one determine the benefit of a pound of training?  In some cases it may be fairly straight forward.  For 
example, one might measure the increase in revenue produced by the introduction of  new training for a 
sales staff.  While this may work for commercial businesses, the military is not a profit making organization, 
therefore one must look at other factors like cost avoidance to get a measure of ROI.   

Determining this can be quite difficult as one rarely has before and after data on the operational impact of 
training.  In rare cases it can be found. For example, Fletcher and Chatham (2010) examined the benefits 
of Top Gun training given to pilots during the Vietnam war. Because of this training, kill ratios of Navy 
pilots improved from 2.4 enemy kills per loss up to 12.5 enemy kills per loss.  The authors determined that 
the training had reduced U.S. losses by about 10-12 aircraft during the war  When they looked at the cost 
of procuring and employing that many aircraft during the war, they calculated that the training had saved 
the Navy about $132 million dollars for an ROI of about 2.5.  

Determining the ROI for adaptive vs. non-adaptive training in terms of cost avoidance measures in an op-
erational context would be very difficult.  Adaptive training is still relatively new and opportunities to do 
side-by-side comparisons with traditional non-adaptive training are virtually non-existent.  Rather than try-
ing to quantify an impact in the operational environment however, we can look at the impact in a training 
environment.  Specifically, one of the key advantages of adaptive training would be to reduce the overall 
time needed to deliver the training to a population of trainees.   

A challenge for authors of adaptive training is determining how adaptive the training should be.  While 
adding adaptive features can potentially save training time, it also increases the cost of development.  How 



does one determine, when the training is adaptive enough?  Using an ROI metric can help to answer this 
question.  On one hand is the cost of adding the adaptive feature.  On the other hand is the value of the time 
saved by that adaptive feature.  The value of that time could be calculated by looking at the total salary paid 
to the trainees over that time (e.g., 1,000 trainees/year x .5h/trainee x $35/h = $17,500/year).  So, as long 
as the cost of adding the adaptive feature was less than value of the time saved, there would be a positive 
ROI and therefore justification for adding that particular adaptive feature.   

As can be seen, our model supports this strategy for the design and development of adaptivetraining in 
GIFT by helping to predict the effect of adaptive features on the training time for a known population of 
learners. 

There are several challenges we may face as we develop this model. First, the initial MAST skill tree may 
not contain sufficient variables to predict adaptive training completion times. Our initial literature review 
and analysis have identified a potential set of most influential variables, but these variables may not be 
reflective of the completion time upon closer inspection. We will mitigate the identified risk by widening 
the scope of task models to incorporate more predictive variables if necessary.  

Second, while the model predictions may be highly accurate, there is a risk that the system will be too 
difficult or time consuming to use for some or all of the target populations of instructional designers, course 
managers, and instructional staff. We mitigate this risk by conducting a requirements analysis early in the 
effort to closely examine the needs of these user groups and design our system and interfaces to best meet 
those needs. We will apply human factors and user-centered design and understand the challenges of and 
methods for developing highly useful and usable decision-aiding tools for practitioners. 

Third, while this approach combines state of the art probabilistic approaches and identifies key variables 
from the literature and past experience, there is a potential that the initial predictions will not sufficiently 
account for the variability of trainee completion times. We plan to mitigate this risk by incorporating his-
torical data early and adjusting the analysis techniques to capture the maximum amount of variability from 
data that can be reasonably collected in the field. 

When complete, this will be the first system to predict the completion times of GIFT and to enable effective 
assessments of the ROI that is useful for key design and implementation decisions of an adaptive training 
system. It includes an innovative application of the procedure skill modelin the MAST skill tree to flexibly 
represent the adaptive training content for analysis. It is the first application using a probabilistic program-
ming language (i.e., Figaro) to predict completion times for adaptive training technologies, including both 
unobserved latent variables and temporal factors, such as trainee fatigue, boredom, or flow.  
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