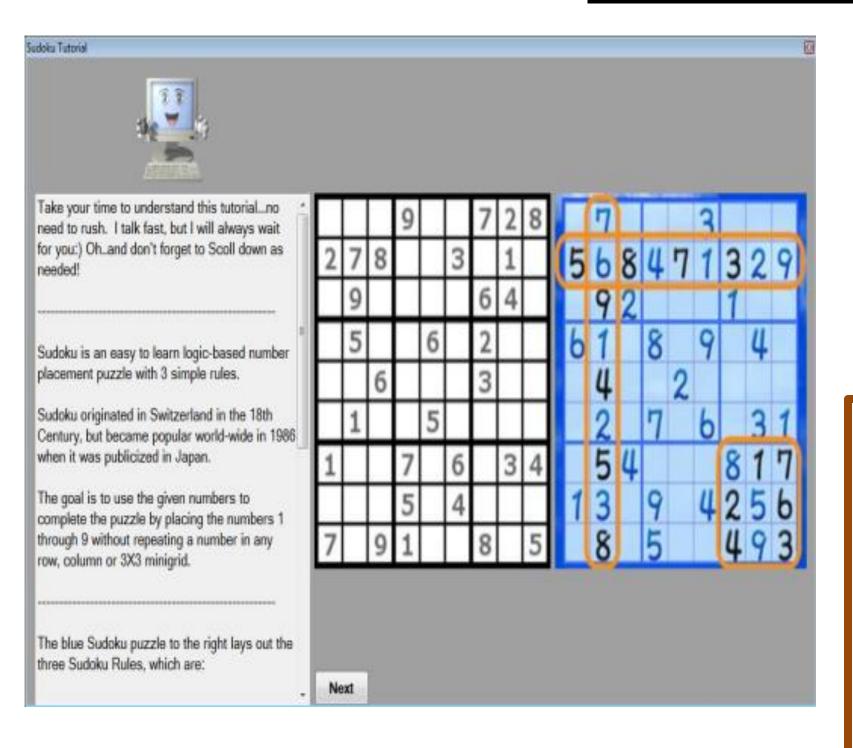
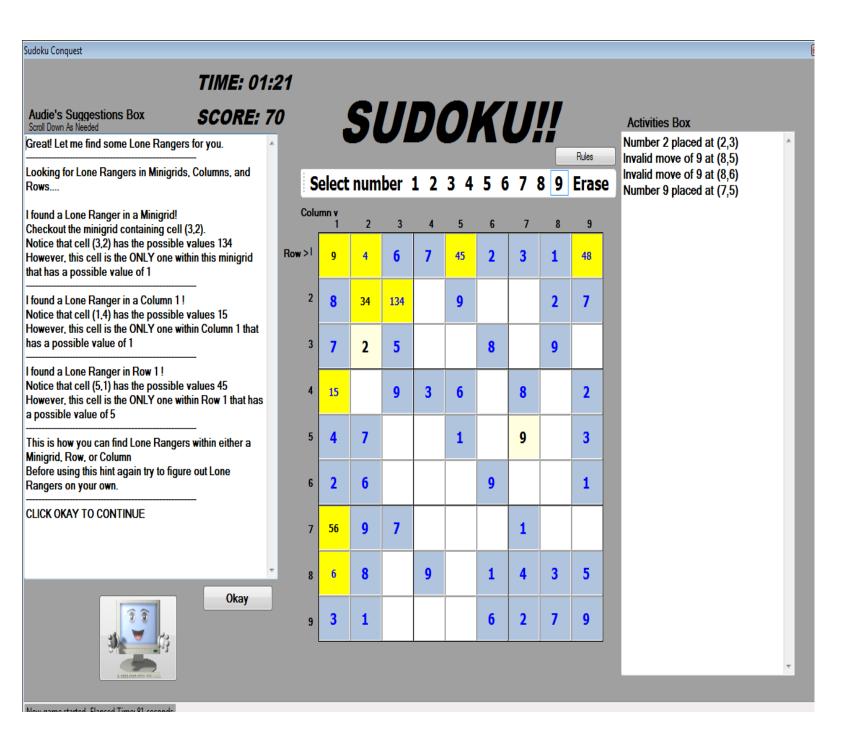
The Interaction Behavior of Agents' Emotional Support and Competency on Learner Outcomes and Perceptions

Heather K. Holden, Ph.D.

United States Army Research Laboratory (ARL) Simulation Training and Technology Center (STTC) Learning in Intelligent Tutoring Environments (LITE) Laboratory

Method:

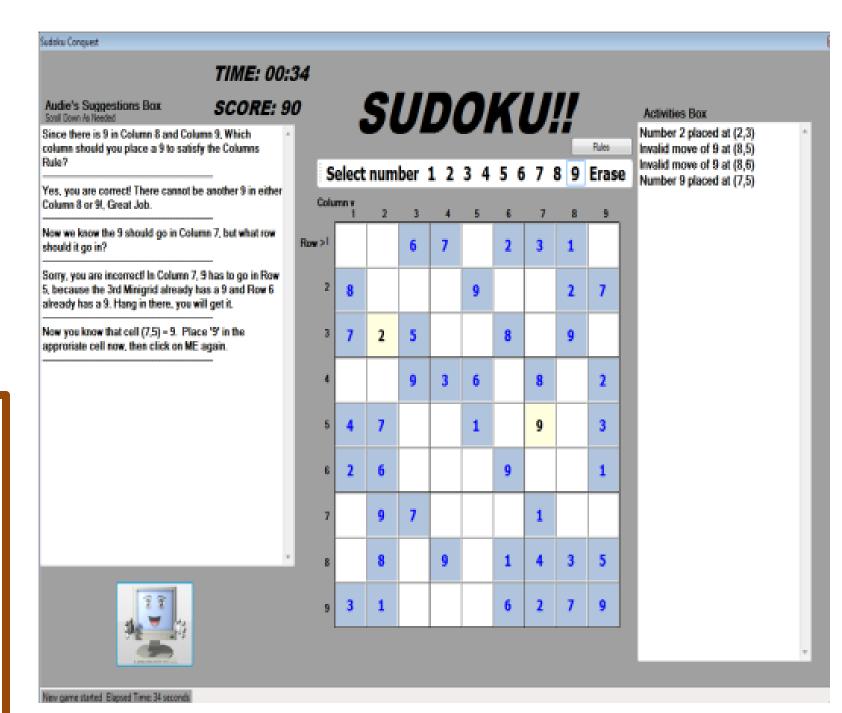

Experimental Design: An experiment based on a 2x2 mixed design manipulated two independent variables (i.e., emotional support and competency). The experiment investigated the impact of the independent variables on learners' Sudoku Self-Efficacy (SSE), Perceived Intelligence (PI) of the agent, Perceived Trust (PT) of the agent, and performance. A learning environment, custom-built with Visual Basic.NET, was developed to teach participants how to play the game Sudoku with a pedagogical agent/virtual tutor, Audie. Audie is an animated Microsoft Agent that resembles a computer. Participants were assigned to interact with one of four experimental versions of Audie:

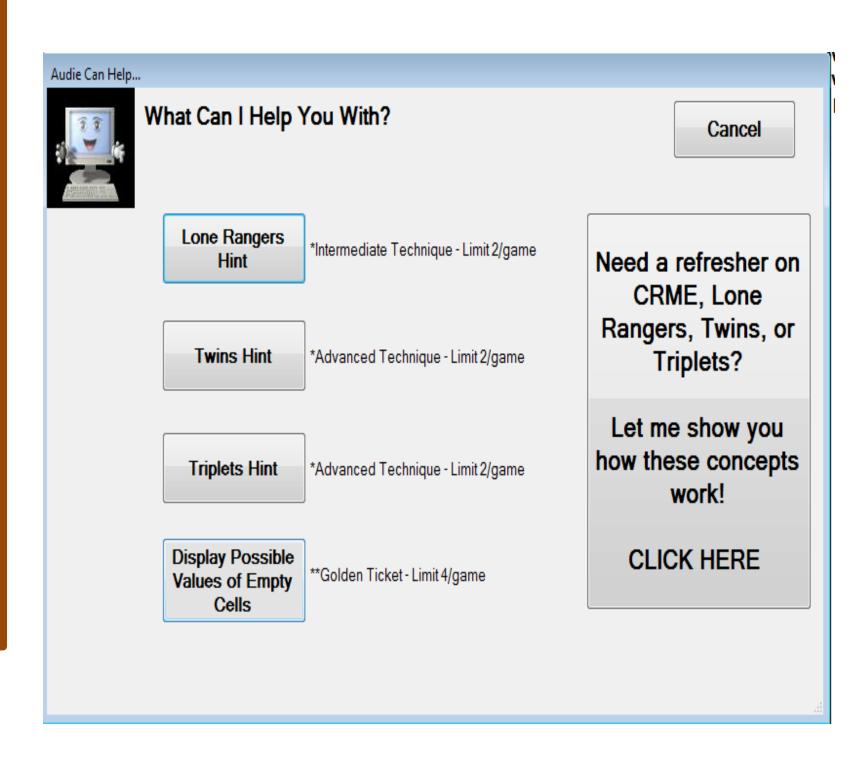

- 1. Emotionally-Supportive and Competent (ESC)
- 2. Emotionally-Supportive Only (ESO)
- 3. Competent Only (CO)
- 4. Neither Emotionally-Supportive or Competent (*NESC*)

Sample Population: The population for this study was a sample of convenience and consisted of 35 volunteers (21 males and 14 females between the ages of 19 and 63). Eighty-six percent of the participants reported having advanced computer skills, and ninety-one percent believed the computer can help them learn difficult concepts. In relation to participants' initial Sudoku experience, 31% reported no prior familiarity, 31% reported a basic level of experience, and 37% reported advanced levels of experience. Of the sample, 65% were interested in increasing their Sudoku knowledge, and 86% were motivated to participate in the study. The ESC, ESO, and NESC agent conditions each consisted of 9 participants and the CO agent condition consisted of 8 participants.

Procedure: Following the pre-experiment survey, participants entered into the learning environment (shown below). The instruction was divided into four segments: a Sudoku tutorial, an interface tutorial, game 1 (a low-level difficulty puzzle for participants with no or basic Sudoku experience or a medium-level difficulty puzzle for advanced participants), and game 2 (a hard-level difficulty puzzle for all subjects). A mid-experiment survey was given between the two games and a post-experiment survey was provided after game 2.

Experimental Learning Environment:


Hypotheses


H₁: Learners who work with an ESO virtual tutor will have higher Sudoku Self-Efficacy (SSE) in a learned task than those who work with a CO tutor. (Supported)

H₂: Learners who work with Emotionally Supportive tutor (i.e., ESO or ESC) will have a higher *Perceived Intelligence (PI)* of the tutor. (Supported)

H₃: Learners who work with an Emotionally Supportive tutor will have greater Perceived Trust (PT) in the tutor than learners who work with a CO tutor. (Not Supported)

H₄: Learners who work with an **Emotionally Supportive tutor will** demonstrate better performance from the learned task than those who work with a CO tutor. (Not Supported)

References:

- [1] Rosenberg-Kima, R., Plant, E., Baylor, A., Doeer, C.: Changing Attitudes and Performance with Computer-Generated Models. In: Proceedings of the 2007 Artificial Intelligence In Education Conference, Los Angeles, California, pp. 51-58 (2007)
- [2] Fatahi, S., Ghasem-Aghaee, N.: Design and Implementation of an Intelligent Educational Model Based on Personality and Learner's Emotion. International Journal of Computer Science and Information Society. 7 (3), 423-434 (2010) [3] Kim, Y., Baylor, A.: Pedagogical Agents as Learning Companions: The Role of Agent Competency and Type of Interaction. Educational Technology Research and Development, 54 (3), 223-243 (2006)
- [4] Bower, G. H., Forgas J. P.: Mood and Social Memory, Handbook on Affect and Social Cognition. J. P. Forgas Publishers, Lawrence Erlbaum Associates, Inc, Mahwah, NJ (2004) [5] Kim, Y., Baylor, A.: 2006. A Social-Cognitive Framework for Pedagogical Agents as Learning Companions. Educational Technology Research and Development. 54 (6), 569-596 (2006)
- [6] Kim, Y., Baylor, A.: Pedagogical Agents as Social Models to Influence Learner Attitudes. Educational Technology. 47 (1), 23-38 (2007)
- [7] Bates, J.: The Role of Emotion in Believable Agents. Communications of the ACM. 3 (7), 122-125 (1994)
- [8] Lee, J., Nass, C., Brave, S., Morisima, Y., Nakajima, H., Yamada., R.: The Case for Caring Colearners: The Effects of a Computer-Mediated Colearner Agent on Trust and Learning. Journal of Communication. 57, 183-204 (2007)
- [9] Lepper, M. R., Chabay, R. W.: Socializing the Intelligent Tutor: Bringing Empathy to Computer Tutors. In: A. Lesgold (ed.) Learning Issues for Intelligent Tutoring Systems, pp. 242-257. Springer-Verlag, New York, NY, (1987) [10] Creed, C., Beale, R.: Simulated Emotion in Affective Embodied Agents. In: Peter, C., Beale, R. (eds.) Affect and Emotion in Human-Computer Interaction. LNCS, vol 4858, pp. 163-174. Springer, Heidelberg (2008)
- [11] Creed, C. Social Emotional Relationships with Computers. In: Proceedings of the 19th British HCI Group Annual Conference, Edinburgh, UK, pp.191-193 (2005) [12] Compeau, D.R., Higgins, C.A. Computer Self-Efficacy: Development of a Measure and Initial Test. MIS Quarterly. 19(2), 189-212 (1995)