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INTRODUCTION 

The Generalized Intelligent Framework for Training (GIFT) has the potential to increase the micro-adaptive 
individualization of many training systems by overlaying adaptive feedback to learners during training ses-
sions. For example, GIFT can augment a particular scenario in a first-person infantry simulation without 
needing to change the scenario itself, by displaying feedback messages in the tutor user interface (TUI) 
when particular learner experiences are observed. Feedback that GIFT delivers in the TUI can be as effec-
tive as feedback embedded directly in the system (Goldberg & Cannon-Bowers, 2015). 

Expected observations (such as learner inputs or actions) that should trigger a response in GIFT are typically 
defined via a domain knowledge file (DKF). Importantly, feedback that responds to domain observations 
is best tailored to individual learners’ needs when GIFT can select and deliver it on the basis of a rich 
collection of actionable information about learner experiences and characteristics. To this end, the DKF is 
enhanced with a new ontology of patterns that draw information from the relationships between single 
observations. Examples of patterns include order, timing, and repetition relations between observations.  

A powerful existing tool to author and identify patterns is the Student Information Model for Intelligent 
Learning Environments (SIMILE) (Mall & Goldberg, 2014). The present work is compatible with SIMILE 
to the extent that SIMILE generates conditions which can be processed as input. Relative to SIMILE, the 
present research adds domain-general reasoning about features extracted from the domain-specific patterns. 
Furthermore, because it is native GIFT code, the present contribution is possible to use with GIFT Cloud. 
Interpreting patterns within GIFT’s learner module and pedagogical module can increase their power to 
recognize and respond to proper performance in the training domain, learners’ skill and knowledge, and 
inferences about learners’ cognitive states and traits.  

An initial demonstration of the work is being constructed for a military cognitive-perceptual training task 
that combines social and tactical challenges within each scenario. The demonstration uses patterns to define 
expected timing and order of responses in the domain, infer the latent mental processing steps of individual 
learners, and respond to learners with immediate formative feedback. 

COGNITIVE-PERCEPTUAL TRAINING DOMAIN 

Initial experimentation is grounded in a software system for tailored training and assessment previously 
created by SoarTech under DARPA funding (Hubal, van Lent, Marinier, Kawatsu, & Bechtel, 2015) known 
as Adaptive Perceptual and Cognitive Training System (APACTS). During the present research and devel-
opment, APACTS is being modified to work with GIFT as an external training application and will be made 
available to GIFT users.  

APACTS contains challenging, realistic decision-making scenarios developed in conjunction with experi-
enced operators from Army and other training domains. The target training audience is an Army small-unit 
leader. The military battlespace where these leaders operate is characterized by uncertainty due to missing 



information, time pressure from the need to take advantage of tactical situations quickly, and high com-
plexity with many interacting factors to consider (Thunholm, 2005). At the same time, the leaders’ quick 
decisions can have far-ranging impacts on the larger U.S. mission (Malone, 1983).  

APACTS scenarios test learners’ decision-making ability in scenarios that draw on both tactical and social 
skill in the same scenario. APACTS sequences video, images, and two types of assessments: multiple-
choice decisions and a perceptual task (Figure 1) that lets learners annotate images with specific visual cues 
that occur in the scene. Feedback is delivered via an after-action review (Figure 2). Key to the present work 
is that GIFT adds tailored mid-lesson feedback to APACTS via the TUI. GIFT selects feedback by recog-
nizing and interpreting patterns in the learner performance during APACTS scenarios. The approach is 
general and may also be used to find and respond to patterns in other GIFT training tools. 

 

Figure 1. The APACTS cognitive-perceptual assessment tasks assess how learners process visual cues. 

Terminology 

For the purposes of this research, an observation is defined as a provable fact about what one learner has 
done within a learning tool. Examples of observations are the learner opened a door or the learner scored 
15 out of 20. An observation happens at a single point in time, does not have duration, and has always either 
happened or not happened. An observation does not have a likelihood, does not need to be inferred, and 
cannot be incorrect. Any uncertainty surrounding an observation is assumed to be resolved by the training 
tool where the observation originated. 

Within GIFT, individual observations are assembled into patterns via new additions to the domain module. 
Patterns are groups of observations that take on meaning in relation to each other. For example, clearing a 
room might require two observations within some period: the learner opened a particular door and then 
the learner moved to the right. The two observations might be related by ordering (one before the other) 
and by timing (one immediately after the other). Patterns may also be grouped and nested to arbitrary depth. 

While occurrences of observations and patterns are both considered incontrovertible facts in the GIFT point 
of view, inference comes into play when the DKF defines constraints on observations and patterns. The 



satisfaction or violation of these constraints lets GIFT detect learner errors (constraint violations) and infer 
what misconceptions might underlie the observed performance. Misconceptions encode predictable but in-
correct cognitive processing (Koedinger, Corbett, & Perfetti, 2012; Sleeman, Ward, Kelly, Martinak, & 
Moore, 1991). Misconceptions in GIFT extend the domain concept objects with new information that can 
help tailor feedback and provide appropriate pedagogical strategy. 

During the present work, APACTS was instrumented with a typical interop plugin that communicates 
learner performance to GIFT through the gateway module and domain module. Because of these changes, 
GIFT has visibility into observations of individual learners as they progress through APACTS. This pro-
vides a testbed for demonstration and evaluation of the new GIFT capabilities to observe patterns in learner 
performance, infer errors and misconceptions, and tailor mid-lesson feedback.  

 

Figure 2. APACTS combines tactical / social decision-making assessments and AAR feedback. 

OBSERVABLE PATTERNS 

Patterns relate multiple observations to each other in time. Formal temporal logic is well studied in the 
context of, for example, characterizing software synchronization and timing (Clarke & Emerson, 1981) or 
reasoning about plans (McDermott, 1982). Patterns of observations that are implemented in GIFT represent 
a subset of temporal logic operators defined by Allen and Ferguson (1994). The patterns chosen for imple-
mentation reflect those hypothesized to be valuable for instructors or instructional designers to describe 
learner performance in a variety of modern training tools, to include APACTS and more sophisticated open-
world simulations.  

The GIFT team has made authoring tools a strong emphasis of the adaptive training program. Existing 
research has identified lessons learned for authoring tools in GIFT explaining the importance of empower-
ing the user, which will build trust and confidence in the authoring process (Ososky, 2016). Authorability 
of patterns by nontechnical personnel is a key design consideration when choosing and defining patterns.  

When future work adds the new patterns into GIFT authoring tools, it is vital that they align with how 
instructors think about learner performance. Instructional alignment may be more valuable than complete 

Gather intelligence 
by force 

Yell at your men 
for screwing up 



expressivity of the language when it can prevent errors, reduce cost of authoring, and increase technology 
acceptance among instructors and instructional designers (Folsom-Kovarik, Wray, & Hamel, 2013). For 
this reason, limiting the patterns that an author can express may actually improve the utility of the new 
constructs more than making it possible to express many more patterns but also requiring an engineering 
or mathematical background to get the patterns right. Furthermore, even the simplified syntax used in this 
paper may be hidden from nontechnical authors by presenting a graphical interface such as the draggable 
box and line diagrams described in (Woods, Stensrud, Wray, Haley, & Jones, 2015). 

Although actions of other learners (or constructive characters) may cause observations and otherwise affect 
learners, the present work focuses on the individual learner use case. At present the GIFT patterns do not 
include a full definition of patterns that could be expected in a team environment. 

Required, Forbidden, and Optional 

The basic elements of patterns provide building blocks that instructors can assemble to describe learner 
performance in a training tool. The definitions of the basic elements in GIFT are based on constraint logic 
built for the Dynamic Tailoring System (DTS) (Wray & Woods, 2013).  

First, observations may be required, forbidden, or optional (Table 1). These generalized basic ideas are 
already present in GIFT and implemented by individual domain module conditions. They help define types 
of errors that can let GIFT differentiate the cognitive processing in this learner, such as insufficient auto-
maticity or presence of specific misconceptions, that led to the incorrect performance (Woods et al., 2015). 

Table 1. The basic building blocks of patterns are single observations. 

Notation Meaning 
A Required. GIFT must observe condition A. The learner must carry out step A. 

~A Forbidden. GIFT must not observe condition A to be true. The learner must not do A. 
A* Optional. GIFT may or may not observe condition A; it is not required or forbidden.  

 
In the absence of other constraints defined below, failure to observe a required element constitutes an error 
of omission that GIFT detects when the required element goes out of scope without being observed. The 
observation of a forbidden element constitutes an immediate error of commission. In the formal study of 
errors – for example in adverse event analysis (Donchin, Gopher, Olin, Badihi, Biesky et al., 1995) or in 
the human factors design of a system (Boyce, Sottilare, Goldberg, & Amburn, 2015) – errors of omission 
and errors of commission are typically considered to arise from different cognitive pathways and demand 
different diagnosis. An error of omission reflects a failure to carry out a required step, perhaps forgetting 
or not recognizing the need to do so. An error of commission is an incorrect action or actively doing what 
should not be done. Other error categories, such as sequence errors or context errors, are discussed below. 

Optional elements can never cause a constraint violation, but when they are observed they can cause other 
processing in conjunction with the below patterns. Required and optional elements may be observed more 
than once without causing an error. To limit the repetitions allowed, see repetitions below. 

Clusters, Dependency, and Strict Ordering 

Clusters of observations are unordered sets that group elements together for checking. Clusters may have 
any number of members and may be nested to arbitrary depth. Importantly, checking a cluster can imply 
either a logical AND or a logical OR relation between members, depending on where the cluster appears. 



This helps move away from a strict temporal logic and toward a language of patterns that should match the 
intuitions of nontechnical users for teaching and training. Examples of the difference appear in Table 2: 
compare the logical processing implied by (A B)  C as contrasted with A  (B C). 

A dependency relation between two elements (observations or groups of observations) indicates that the 
second element should not be observed before the first. For example, a learner on a patrol mission should 
not proceed outside the wire before completing a mission briefing. By contrast, a strict ordering relation 
indicates that not only must the second observation come after the first, but also the first observation be-
comes forbidden, and may no longer be repeated, after the second is observed. It is still permissible to 
observe A or B multiple times each, as long as they are not out of order. 

Both dependency relations and strict ordering relations may be chained to arbitrary length, as shown in 
Table 2. When several elements participate in a strict ordering, there is no way to exempt a member element 
from being strictly ordered (no partial ordering). 

Table 2. Clustering and ordering multiple observations. 

Notation Meaning 
(A B) Cluster. A and B are separate observations, but are checked together. They are required. 

~(A B) Both A and B are forbidden. 
(A B)* Both A and B are optional. 

  

A  B Dependency. B depends on A. The learner cannot do step B without first doing step A. 
A  B* B does not need to be observed, but if it is observed then it triggers an error of omission 

unless A is observed first. 
A*  B Equivalent to just B, because A can either happen or not happen before B is observed. 

Note that this is a change from interpretation in the SoarTech DTS. 
(A B)  C Both A and B must be observed before C may be observed. 
A  (B C) A must be observed before either of B or C may be observed. 

  

(A, B) Strict order. A and B must be observed in order. It is not allowed to do B until A is done, 
and also it is not allowed to do A after B. 

 
Note that the strict ordering (A, B) is simply equivalent to A  (B ~A). The definition of strict ordering as 
another first-order constraint becomes useful for authors when there are several elements that need to be 
ordered. For example, (A, B, C, D) is easier to encode than A  (B ~A)  (C ~A ~B)  (D ~A ~B ~C). 
Furthermore, if a graphical UI is used to author these relations, fewer nodes and edges will be required. 

Relevance and Exclusivity 

Relevance refers to the notion that required or forbidden elements (usually clusters) will not be checked 
under certain conditions when they are not instructionally relevant. Relevance is similar to the concept of 
scope in computer programming. For example, checking whether a learner clears a room correctly is (at 
first) not relevant in the context of a patrol scenario, but may become relevant if the patrol comes into 
contact with the enemy and must conduct a tactical engagement.  

Controlling the relevance of an element is not simply a matter of saving computational resources. It is also 
important instructionally. Relevance can be used to make assessment tractable in ill-defined domains (Nye, 
Boyce, & Sottilare, 2016; Woods et al., 2015). For example, if a learner on patrol enters a village elder’s 
home for tea, it would be inappropriate for GIFT to state he made an error by not clearing the room first. 



Exclusivity refers to the requirement that all unmentioned observations are considered forbidden. Exclusiv-
ity can be specified at the same level of granularity as any cluster, including a top-level luster that contains 
all others. Otherwise, if a cluster is not marked as exclusive, any unmentioned observations are considered 
optional. When a cluster is not relevant, its exclusivity constraint is not checked. 

Repetition, Pause, and Duration 

Elements may be repeated a number of times that instructors specify. For example, in a patrol scenario the 
learner might need to greet between two and four civilians in the local language. Any number of occurrences 
in the range satisfies the constraint. An exact value can also be specified. The repetition constraint does not 
rule out other observations between the repetitions or after them. 

A pause is an interval between two observations. The time starts counting every time the left-hand side of 
the constraint is satisfied. If the right-hand side becomes satisfied before the minimum specified delay, then 
the delay constraint is violated. If the maximum specified delay expires and the right-hand side is not sat-
isfied, the delay constraint is violated.  

Finally, duration describes how long it should take the learner to complete one or more observations. The 
entire cluster must be satisfied within the timespan specified by max. If the time specified by max elapses 
and the cluster is not satisfied, the constraint is violated. Like all constraints, durations may be nested, 
enabling a series of observations that have a total time for completion and duration for each individual item. 
This method is valuable when studying speed-accuracy tradeoffs (Goldhammer, 2015). 

Table 3. Patterns of repeating and timed observations. 

Notation Meaning 
A r[min..max] Repetition. Element A must be observed at least min times and at most max times. 

A r[exact] Element A must be observed exactly exact times. 
A r[2] The learner must do A twice. If the learner does A three times, no error happens. 

A r[2]  B The learner must do A twice before doing B. 
A r[2]  ~A The learner must do A twice, after which the learner may not do A again. 

  

 p[min..max] Pause. The time between these two observations must be between min and max. 
A  p[30 sec ..] B B must occur after A and also at least 30 seconds must separate them. 
A  p[.. 30 sec] B B must occur after A and also within 30 seconds after A is observed. 

  

A d[max] Duration. Element A will be relevant for up to max seconds. 
(A B) d[30 sec] The learner has 30 seconds to complete A and B. 
(~A) d[30 sec] The learner may not do A for the first 30 seconds that the constraint is relevant. 

 
In the present work, patterns that express order, repetition, and timing form the basis for infering general 
insights about learners and improving feedback tailoring. 

INTERPRETING PATTERNS AND TAILORING FEEDBACK 

The first modification in GIFT to take advantage of information from observable patterns is the idea of a 
misconception. Misconceptions modify concepts within the domain module. They give GIFT additional 
information about learner performance – not just whether a concept has been mastered or not, but also 
inferences about why a concept may not be mastered and what specific feedback may be needed. 



Misconceptions have been well studied elsewhere and evidence exists that they are valuable to providing 
tailored feedback. A few example benefits are listed. Detecting and addressing specific misconceptions can 
challenge learners’ incorrect mental models when untailored feedback would otherwise allow them to gloss 
over the differences (Swan, 1983). Feedback focusing on misconceptions is also more directive, when GIFT 
detects that such feedback is more appropriate for an early stage of learning (Moreno, 2004) than an alter-
native facilitative feedback or an exploration experience during later stages. Inferring the presence of mis-
conceptions can also support increased specificity in feedback which is appropriate when learners are more 
performance oriented (Davis, Carson, Ammeter, & Treadway, 2005). In conjunction with GIFT’s active 
and constructive feedback mechanisms, the addition of misconceptions will help to provide feedback that 
aligns with many guidelines for delivering formative feedback (Shute, 2008). 

 

Figure 3. High-level data flow for inferring misconceptions and using them to tailor feedback. 

Figure 3 depicts a high-level data flow for observing patterns of learner behavior and inferring the presence 
of misconceptions. Selected relevant classes within each GIFT module are shown with blue (bolded) lines 
indicating changes to the standard GIFT classes and messages. 

First, GIFT patterns implement new kinds of conditions (1). Like conditions, the patterns can modify the 
state of domain-specific concepts (2). Concepts are similarly modified to contain an arbitrary number of 
misconceptions, each of which is tied to its parent concept. So, it becomes possible to differentiate between 
specific ways that a learner may act or know incorrectly. The different misconceptions may require different 
levels of urgency or different modes of feedback. 

While misconceptions within the domain module are domain-specific, GIFT needs to reason about miscon-
ceptions in a domain-general manner within the learner module and pedagogical module. For this reason, 
dimension reduction in the domain module passes along only a subset of features for each detected miscon-
ception. The extracted misconception features are domain-general and include the importance, urgency, 
and certainty of each misconception. Determination of these values is task-specific (3). For example, in a 
VBS scenario the domain module might detect a pattern of learners walking around with weapon in the 



wrong ready state. In a squad tactics setting this might be an unimportant error, while the error would be 
more important if the scenario is targeting intercultural communication with civilians while on a patrol. 

Once the learner module has domain-general information about misconceptions as they are detected, stored 
in the cognitive state class (4), the pedagogical module gains new information within the learner state mes-
sage set on which to base real-time tailoring decisions. While performance assessment messages are do-
main-specific, the misconception features are generalized and thus update the learner cognitive state. Within 
the scope of the present research, a simple algorithm will be added to an existing pedagogical model (5) 
that acts on the domain-general features of misconceptions to direct instructional interventions. For exam-
ple, the initial pedagogical algorithm might indicate that some number of unimportant misconceptions may 
be addressed through AAR or reteaching, while any misconception with importance above some threshold 
must be addressed through immediate feedback. 

Finally, when the pedagogical module requests an instructional intervention, the domain module contains 
the full misconception information that is required to deliver needed feedback with high specificity (6). 

APACTS Examples 

Two examples suggest the value of leveraging 
observable patterns in GIFT. 

First, Figure 1 above depicts an example of a vis-
ual scan task in APACTS. The learner is sta-
tioned at an entry control point and must respond 
to a civilian vehicle as shown in a static image. 
Optionally, there is a time limit on the learner’s 
response.The correct response is to mark two ob-
jects in the Figure 1 image: the box on the pas-
senger side floorboard, and a pistol grip that is 
visible between the center console and the pas-
senger seat (Figure 4). However, by using a new 
observation ordering pattern, GIFT can now add 
specificity to the APACTS assessment of correct 
behavior.  

This image is designed so that the more threatening object, the pistol, is less visually salient (less noticeable) 
compared to the box, which is easier to see because it is larger and a lighter color. Since APACTS com-
municates each click the learner makes to GIFT, it is easy for GIFT to define domain-specific constraints 
that not only require clicking on both objects, but also differentiate between which object was clicked on 
first. If the learner clicks the box before the gun, that ordering may be caused by a more reactive cognitive 
processing of the scene (Schatz, Colombo, Dolletski-Lazar, Carrizales, & Taylor, 2011), and can be asso-
ciated with the inference this is a more novice learner. If the learner clicks the gun first, that observation 
provides evidence that the learner is more expert in visual scene assessment. 

As a second example, Figure 2 above depicts a typical multiple-choice assessment in APACTS (although 
overlaid with the built-in AAR feedback). Multiple-choice assessments provide an opportunity to gather 
information via observation timing patterns. With these, GIFT can make use of observations that a human 
instructor might value such as the amount of time the learner considered the question before making a 
choice. Fast choices might be associated with a more expert learner. GIFT can also make use of information 

 

Figure 4. Detail of Fig 1, highlighting threat item. 



such as whether the learner changed between choices before submitting, or simply hovered the mouse over 
one option or the other, to differentiate hesitation from other reasons for delay such as inattention. 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

In conclusion, GIFT is being enhanced with new domain-specific and domain-general representations of 
learner performance and underlying cognitive state that will make tailored feedback specific and impactful. 

The implementation status of the work described includes initial changes to the GIFT source code in a 
development branch. The changes will be made available to the GIFT community in the future, after ap-
propriate code review. APACTS software and scenarios will be published and made available. 

A demonstration is planned via a human-participants study of APACTS. The demonstration is expected to 
compare training efficacy using new, tailored feedback against the baseline of APACTS alone. In addition, 
the implementation work supporting the study may be reused as a publicly available reference or showcase 
of the new capabilities and how to use them. 

Future development work will include adding the new patterns into GIFT authoring tools. Finally, the pat-
terns will be demonstrated on a second domain besides APACTS. That work will demonstrate the generality 
of the approach and utility to enhance widely used tools such as VBS or other training systems. 

Finally, interesting directions for future funded research might include machine learning of patterns such 
as time limits that differentiate different cognitive processing pathways, helping to assess automaticity of 
skill performance. GIFT research efforts such as metacognition assessment, or active and constructive in-
terventions, should also be combined with this work in order to improve the simple tailoring algorithms. 
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