

U.S. Army Research, Development and Engineering Command

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Enhancing Performance through Pedagogy and Feedback: Domain Considerations for Intelligent Tutoring Systems (ITSs)

Benjamin Goldberg, Dr. Heather Holden, Keith Brawner, & Dr. Robert Sottilare

Push for Accelerated/ Self-Directed Learning

What needs to be in place?

- Technology Focused (computers/laptops/smartphones/tablets)
- Sound Instructional Design
- Mechanisms for Feedback
- Capability to Compensate for Individual Differences

• Goal

- Maintain a "readiness to learn" state by adapting training experiences to meet needs of the trainee
- Emulate human tutors for achieving performance comparable to Bloom (1984).
- What are 'needs' defined as:
 - Performance/Competency Deficiencies
 - Negative Cognitive/Affective States
 - Boredom, Frustration, Confusion, Fatigue, etc...

- ITS Research has reported significant learning gains over long-established one-to-many instructional methods
 - Best platforms reporting 1.0 Sigma increase in performance when compared to conventional techniques
 - Virtual Sand Table ITS (Wisher et al, 2001)
 - ANDES Physics Tutor (VanLehn et al, 2005)
 - PUMP Algebra Tutor (Koedinger et al, 1997)

Limited to well-defined domains where performance is easily measured

- New efforts are measuring and adapting training experiences based on diagnosed cognitive and affective states
 - Calvo & D'Mello, 2010 ; McQuiggan, Lee & Lester, 2007; D'Mello, Taylor & Graesser, 2007

RDEGOM

- Define Training Experiences around objectives within the domain definition framework
 - Will drive scenario selection and adaptations as trainee progresses from novice to expert
 - Pedagogy and Feedback are dependent to the scenario context
- What must be addressed:
 - Curriculum

DEGON

- Instructional Strategy
- Measures of Performance
- Pedagogical Adaptations/Interventions
- Student Modeling

Considerations for Enhancing Adaptive Capabilities

Establish Framework for Domain Definition

- 1. Well vs. Ill- Defined
- 2. Level of Task Complexity
 - Task Dependent
 - Difficulty
 - » Easy vs. Hard
 - Opposition
 - Task Independent
 - Environmental factors
 - » Weather
 - » Terrain
 - » Visibility
 - Neutral Forces
 - » Civilians
 - » Refugees
 - » Victims

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Identify instructional and feedback implementation strategies that have an impact on learning outcomes

Requires Empirical Evaluations

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Achieved through Modularity

Modular Architecture applied as testbed for evaluating adaptive tutoring approaches across multiple domains

Methodology derived from:

Hanks, S., Pollack, M.E. and Cohen, P.R. (1993). Benchmarks, Test Beds, Controlled Experimentation, and the Design of Agent Architectures. Al Magazine Volume 14 Number 4.

RDECOM

Generalized Intelligent Framework for Tutoring (GIFT)

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

RDECOM

- Comprised of generalized pedagogy and feedback interventions
 - Necessary to maintain

DEGON

- Based on Performance, Traits, and States
- Inextricably linked to the Domain Module
 - Must be able to support all intervention requests made by the pedagogical model

- Four Primary Messages
 - Performance Assessment Request
 - Whether to make an Intervention
 - The Recommended Type of Intervention
 - Domain-Specific
 - Hint, Prompt, Remediation, Environmental Cues, etc.
 - Domain-Independent
 - Motivational Encouragement, Metacognitive Prompt
 - Next Scenario/Content to be Presented
 - Modify Pace/Complexity/Difficulty
 - Introduce new elements to current scenario

Future Work

- Integrate GIFT with Training Platforms
 - VBS2
 - VMedic

- Evaluate and Compare modeling/adaptation approaches within individual training support packages (TSPs) through GIFT's Modular Architecture
 - Investigate across multiple domains
- Expand GIFT to support Small Team and Mobile Platform Training

- Decisions on how to adapt training experiences in computer-based platforms follow few standards
- Establishing framework for domain definition is a starting point to determine appropriate strategies
 - Based on Task Definition (well vs. ill defined) and Task Complexity
- Requires empirical evaluations
 - GIFT's Modularity supports this approach

References

- Bloom, B. S. (1984). The 2 sigma problem: The search for methods of group instruction as effective as one-to-one tutoring. *Educational Researcher*, 13(6), 4-16.
- Calvo, R. A., & D'Mello, S. (2010). Affect Detection: An Interdisciplinary Review of Models, Methods, and Their Applications. *IEEE Transactions on Affective Computing*, 1(1), 18-37.
- D'Mello, S. K., Taylor, R., & Graesser, A. C. (2007). Monitoring Affective Trajectories during Complex Learning. In D. S. McNamara & J. G. Trafton (Eds.), *Proceedings of the 29th Annual Cognitive Science Society* (pp. 203-208). Austin, TX: Cognitive Science Society.
- Hanks, S., Pollack, M.E., & Cohen, P.R. (1993). Benchmarks, Test Beds, Controlled Experimentation, and the Design of Agent Architectures. *Al Magazine*, 14(4).
- Koedinger, K. R., Anderson, J. R., Hadley, W. H., & Mark, M. (1997). Intelligent tutoring goes to school in the big city. *International Journal of Artificial Intelligence in Education*, 8, 30-43.
- McQuiggan, S., Lee, S., & Lester, J. (2007). Early prediction of student frustration. In A.C. Paiva, R. Prada, & R.W. Picard (Eds.), *Proceedings of the 2nd international conference on Affective Computing and Intelligent Interaction (ACII '07)* (pp. 698-709). Berlin, Heidelberg: Springer-Verlag.
- VanLehn, K., Lynch, C., Schulze, K., Shapiro, J.A., Taylor, L., Treacy, D.,...Wintersgill, M.C. (2005). The Andes physics tutoring system: Five years of evaluations. In G. McCalla & C. K. Looi (Eds.), *Artificial Intelligence in Education* (pp. 678-685). Amsterdam: IOS Press.
- Wisher, R. A., Macpherson, D. H., Abramson, L. J., Thorton, D. M., & Dees, J. J. (2001). The Virtual Sand Table: Intelligent Tutoring for Field Artillery Training: U.S. Army Research Institute for the Behavioral and Social Sciences.

Questions

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.