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ABSTRACT 

This paper focuses on aspects of domain modeling for 

Intelligent Tutoring Systems (ITSs), adaptive training 

tools to support one-to-one computer-based instruction. 

Domain modeling represents knowledge for a particular 

task or concept and includes:  domain content (a library 

of scenarios or problem sets); an expert or ideal student 

model with measures of success; and a library of tactics 

or actions (e.g., questions, assessments, prompts, and 

pumps) which can be taken by the tutor to engage or 

motivate the learner and optimize learning.  Today, 

ITSs support well-defined domains in mathematics, 

physics, and software programming.  Since the military 

often operates in complex, dynamic, and ill-defined 

domains, it is necessary to expand the scope of domain 

modeling.  We examined domain knowledge 

representation across a variety of dimensions:  task 

domains, complexity, definition, and physical 

interaction modes in order to understand instructional 

options and drive adaptive training decisions. 
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1. INTRODUCTION 

ITSs have been applied in well-defined, cognitive 

domains which include mathematics, physics, 

chemistry, and software programming languages.  The 

future holds more challenging domains for ITSs which 

include military instruction.  We envision the use of 

ITSs to drive and adapt military instruction in existing 

military simulations (see Figure 1).   

 

 
Figure 1: Military Construction Equipment Training 

 

Military instruction is in many cases more challenging 

due to the large degrees of freedom encounter by 

learners during training.  For example, learners in 

serious games have a large number of options with 

respect to actions available.  This raises the complexity 

of these training and education environments compared 

to more process-oriented domains.  Another level of 

complexity is encountered in modeling teams of 

learners as most military tasks also involve 

collaborative roles. 

To dissect this problem of domain complexity in 

adaptive instruction, we should address how ITSs 

function and illustrate their decisions with respect to 

learners and training environments.  ITSs are composed 

of four typical models:  a learner or trainee model, an 

instructional or pedagogical model, a domain model, 

and a communication model (user interface). The 

domain model typically includes an expert or ideal 

student model by which the ITS measures, compares 

and contrasts the progress of the learner toward learning 

objectives.  The domain model also includes the 

training environment, the training task and all of the 

associated instructional actions (e.g., feedback, 

questions, hints, pumps, and prompts) which could 

possibly be delivered by the adaptive system for that 

particular training domain.  Adaptive training system 

agents observe changes in the learner’s states (e.g., 

workload, engagement, performance and emotions) and 

respond through interactions with the learner (e.g., 

feedback, direction, support) or changes to the training 

environment (e.g., increase or decrease problem or 

scenario challenge level to match the learner’s state or 

domain competency) as shown in Figure 2. 

  

Figure 2:  Adaptive Interaction between Learners, 

Training Environments and Tutoring Agents 
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This interaction is an essential design element in the 

Generalized Intelligent Framework for Tutoring (GIFT; 

Sottilare, 2012; Sottilare, Brawner, Goldberg, and 

Holden, 2012; Sottilare, Holden, Goldberg, and 

Brawner, 2013), an open-source architecture (tools, 

methods, ontology) for: authoring ITSs; managing 

instruction during adaptive training experiences; and 

evaluating the effect on learning, performance, 

retention, and transfer. 

 

2. DIMENSIONS OF DOMAIN MODELING 

Domain knowledge may be represented across a variety 

of dimensions: task domains (cognitive, affective, 

psychomotor, social, and hybrid domains); task 

complexity (simple, compound or multifaceted tasks); 

task definition (well-defined, ill-defined or unknown 

measures of success), and physical interaction modes 

(static, limited dynamics, enhanced dynamics, and full 

dynamics also known).  Our goal was to understand 

how to represent domains so GIFT could optimally 

select tactics (actions by the tutor) based on the optimal 

selection of strategies (plans for action grounded in 

instructional theory) and instructional context 

determined by the domain model as shown in the 

updated learning effect model (Figure 3). 

 

 
Figure 3:  Individual Learning Effect Model (Sottilare, 

Sinatra, Boyce, and Graesser, 2015) 

 

2.1. Task Domains for Adaptive Training Systems 

First, we examine representations of task domains: 

cognitive (Bloom and Krathwohl, 1956), affective 

(Krathwohl, Bloom, and Masia, 1964), psychomotor 

(Simpson, 1972), and social (Soller, 2001).  

Understanding the dimensions of these domains can 

facilitate identification of critical learning and 

performance measures and reduce the burden of 

authoring adaptive training systems. 

 

2.1.1. Modeling the Cognitive Domain 

Sometimes called the thinking domain, tasks in this 

domain stress the learner’s thinking capacity (workload 

management), problem-solving capability, decision-

making, and focus or engagement.  The determination 

of cognitive states uses learner behaviors to indicate 

increases in complex and abstract mental capabilities 

(Anderson and Krathwohl, 2001). Of significance in 

cognitive learning are attention, engagement, visual and 

spatial processing, and working memory.  

A revision of Bloom’s taxonomy (Anderson and 

Krathwohl, 2001) tracks a series of behaviors from low-

cognitive state to high as follows:  remembering- the 

learner’s ability to recall information, understanding– 

the learner’s ability to organize, compare, and interpret 

information, applying- the learner’s ability to use 

information to solve problems, analyzing- the learner’s 

ability to examine information and make inferences 

from that information, evaluation- the learner’s ability 

to use information to make optimal judgments, and 

creating- learner’s ability to build new models (e.g., 

plans) from information.   

Most of the ITSs in existence today focus on this task 

domain.  Examples include model-tracing (also called 

example tracing) tutors which use a set of steps to walk 

the learner through the process of solving a problem.  

Mathematics, physics, and software programming are 

the most common types of model-tracing tutors.  These 

domains constitute simple procedural tasks. 

Matthews (2014) notes organizations generally do a 

good job of training relatively simple skills.  However, 

a more challenging goal is to teach higher order 

cognitive skills such as decision-making and judgment. 

The military has large investments in partial-task and 

scenario-based training systems which use relatively 

fixed processes to guide the learner based primarily on 

individual and team performance measures.  A concern 

with these systems is that military personnel learn how 

to win within the constraints of the system but the effect 

on learning, retention, and transfer is not well 

understood.  Research is needed to build adaptiveness 

into these training systems and thereby optimize deep 

learning.  A goal of this research is to reduce the time to 

competency to allow time for over-training and deeper 

learning experiences which transfer more efficiently to 

the operational environment.  As the often cited paper 

on transfer of training (Baldwin & Ford, 1988) 

discusses, transfer occurs through more than repeated 

practice, rather it is providing opportunities through 

differing views and representations of content, for the 

mental abstraction which provides the cognitive 

connection needed to move from training to operational 

contexts. 

 

2.1.2. Modeling the Affective Domain 

Sometimes called the feeling domain, tasks in this 

domain are intended to develop emotional intelligence 

or skills in self-awareness and growth in attitudes, 

emotion, and feelings where the goal is to manage 

emotions in positive ways to relieve stress, 

communicate effectively, empathize with others, 

overcome challenges, and defuse conflict (Goleman, 

2006).  While listed as separate domain, affect has an 

interdependent relationship with cognition.  For 

example, cognitive readiness, the capability to maintain 

performance and mental well-being in complex, 

dynamic, unpredictable environments which may elicit 

affective responses.  Dimensions of cognitive readiness, 

according to Kluge and Burkolter (2013), include 

concepts such as risk taking behavior, emotional 



stability and coping which may be considered part of 

the affective domain.  

A revision of Bloom’s taxonomy (Anderson and 

Krathwohl, 2001) tracks a series of behaviors from low-

affective state to high as follows:  receiving- the learner 

takes in information, responding- the learner takes in 

information and responds/reacts, valuing- the learner 

attaches value to information, organizing– the learner 

sorts information and builds mental models, and 

characterizing- the learner matches mental models to 

values and beliefs ultimately influencing (e.g., 

promoting or limiting) the learner’s behavior.  

Very little training (outside of classroom-based training) 

is currently provided to exercise/grow skills in this 

important task domain and almost no adaptive training 

has been created to support this domain.  Research is 

needed to understand measures for this task domain, 

developing low-cost methods to determine the learner’s 

affective state (Carroll, Kokini, Champney, Fuchs, 

Sottilare & Goldberg, 2011), and any unique 

characteristics required in authoring affective domain 

scenarios (Sottilare, 2009). 

 

2.1.3. Modeling the Psychomotor Domain 

Sometimes called the doing or action domain, tasks in 

this domain are associated with physical tasks (e.g., 

marksmanship) or manipulation of a tangible interface 

(e.g., remotely piloting a vehicle), which may include 

physical movement, coordination, and the use of the 

motor-skills.  Development of motor-skills requires 

practice and is measured in terms of speed, precision, 

distance, procedures, or techniques during execution 

(Simpson, 1972).  Simpson’s hierarchy of psychomotor 

learning ranges from low to high: perception– the 

ability to use sensory cues to guide motor activity; set 

or readiness to act; response– early stages of learning a 

complex skill through imitation and trial and error; 

mechanism– habitual learned responses; complex overt 

response– skillful performance of complex movements; 

adaptation– well-developed skills that are modified to 

support special requirements; and origination– the 

development of new movement patterns to fit unique 

situations. 

While this domain is well represented in military 

training, research is needed to build adaptiveness into 

these training systems and thereby optimize deep 

learning.  A goal of this research is to reduce the time to 

competency to allow time for over-training and deeper 

learning experiences which transfer to the operational 

environment. 

 

2.1.4. Modeling the Social Domain 

Sometimes called the collaborative domain, tasks in this 

domain and include a set of collaborative characteristics 

or measures of learning in the social domain as defined 

by Soller (2001):  participation, social grounding- team 

members “take turns questioning, clarifying and 

rewording their peers’ comments to ensure their own 

understanding of the team’s interpretation of the 

problem and the proposed solutions”, active learning 

conversation skills - quality communication, 

performance analysis and group processing - groups 

discuss their progress, and decide what behaviors to 

continue or change (Johnson, Johnson, and Holubec, 

1990) and promotive interaction - also known as win-

win this characteristic occurs when members of a group 

perceive that they can only attain their goals if their 

team members also attain their goals.   

However, it is not as simple as adding up the 

performance of each individual team member to find the 

performance of the team.  Feedback which is 

appropriate for an individual team member may be 

inappropriate to be broadcast to the whole team.  For 

this reason, we are developing models within GIFT at 

both the individual and team level as shown in Figure 4.  

 

 

Figure 4:  Team Learning Effect Model (Sottilare, 

Sinatra, Boyce, and Graesser, 2015) 

 

2.2. Task Complexity and Adaptive Instruction 

Next, we examine representations of task complexity 

for domain modeling.  Task complexity refers to the 

level of challenge and the range of difficulty in 

understanding and performing the task.  Task 

complexity can range from simple procedural tasks to 

more complex multifaceted tasks.  Task complexity is 

important in accessing the near-term performance of the 

learner during adaptive training experiences.  Referring 

back to the Individual Learning Effect Model in Figure 

2, it is easy to see that the ITS’s instructional options 

fall primarily into two categories of tactics or actions 

based on Vygotsky’s Zone of Proximal Development 

(ZPD; 1978):  interact with the learner to assess their 

performance, provide feedback or encouragement, or 

engage them in a reflective discourse; or modify the 

problem or scenario to more closely match the 

capabilities (knowledge and skill) of the learner. 

Understanding task complexity along with learner 

capabilities is essential in supporting adaptive 

instructional decisions.  Per the ZPD (Vygotsky, 1978), 

when the learner’s level of domain competency does not 

match the complexity of the task, the learner is either 

bored when the task is too easy or anxious (stressed) 

when the task is too difficult.  If the learner is bored, 

instructional options in adaptive training systems 

include increasing the complexity of the problem or 

scenario or reducing the amount of scaffolding or 

support provided by the ITS.  If the learner is anxious, 

the instructional options are to reduce the complexity of 

the problem or scenario or increase the amount of 

scaffolding or support.  



2.3. Task Definition and Adaptive Instruction 

Variable task definition refers to how well the domains 

are understood in terms of measures of performance.  

Measures of performance are typically most effective 

when the problem space has clear boundaries / 

constraints and is well-defined.  Well-defined domains 

(e.g., mathematics) typically have one correct path to a 

successful outcome and a set of specific measures of 

success.  Ill-defined domains (e.g., leadership) may 

have multiple paths to successful outcomes, and tend to 

have less defined measures of success.  The 

representation of task definition in adaptive training 

systems is essential to understanding measures of 

success.   

Human Factors Engineering (HFE) has developed 

techniques to assist in further defining this domain. 

Work Domain Analysis (WDA) models a system in 

terms of the environmental, physical, or social 

constraints placed on a user (Naikar, 2013).  In ITSs, 

this would be the composition of the goals of the 

system, the rules which underlie those goals, and how 

those constraints are represented to the learner.  The 

second step to WDA is to break down the system in 

terms of requirements, which is specifically applicable 

to an ITS architecture (e.g., GIFT).  Called an 

abstraction-decomposition matrix, each level of 

constraints is broken down according to subsystems to 

provide as understanding of performance at every level. 

From there, a Hierarchical Task Analysis (HTA; for a 

review see Stanton, 2006) can analyze the domain and 

break it down into a series of plans which are composed 

of tasks and subtasks to help understand and develop 

success criteria.  

Today, ITSs which support well-defined task domains 

use specific measures to compare and contrast learner 

performance to an expert model or minimum standard.  

While it may not be possible to define specific measures 

for ill-defined domains, it may be possible to define 

constraints or policies which must be followed by the 

learner.  The WDA combined with the HTA can help to 

clarify those relationships and provide key concepts that 

the learning instruction must include.  A deviation from 

a successful path to an unsuccessful path results in 

initiation of action by the ITS.  

 

2.4. Physical Interaction and Adaptive Instruction 

Finally, we examine modes of dynamic interaction.  

Modeling the type and degree of physical interaction 

may impact transfer or the degree to which knowledge 

and skills developed in training are used in the 

operational environment.  Although physical interaction 

via tangible user interfaces has received a lot of interest 

both in the commercial and classroom environment, 

empirical research on the impact of learning outcomes 

is sparse.  The terms intuitive, collaboration and 

engagement are often mentioned, but the supporting 

data is missing.  However studies performed at Stanford 

University have begun to show progress on the effects 

of learning (Schneider, Jermann, Zufferey, & 

Dillenbourg, 2011; Schneider, Wallace, Blikstein, & 

Pea, 2013).   

Further supporting the role of tangible interfaces in 

learning, in a recent review on the impact of effect of 

manipulatives on learning, Pouw, van Gog, and Paas 

(2014), challenge two of the common perceptions of 

physical interaction and learning: 1. physical 

interactions, due to their richness, impose a higher 

cognitive load, and 2. transfer of learning involves a 

change from concrete representation to symbolic, 

negatively influencing learning. They respond to these 

views arguing for terms that they called embedded and 

embodied cognition.  For embedded, they claim that in 

certain situations the added richness can alleviate 

cognitive load by embedding the learning cognitive 

activity into the environment.  For embodied they argue 

that instead of changing the representation from 

concrete to symbolic, working with manipulatives 

involves the use of sensorimotor processes that draw on 

the perceptual and information rich nature of the 

interaction.  

The representation of this embodied cognition depends 

on the type of physical interaction and how it engages 

both the perceptual and motor systems of the user.  We 

have defined four levels of physical interaction in 

support of adaptive training:  static, limited kinetic, 

enhanced kinetic, and full kinetic. 

Static training environments (e.g., desktop computer 

training) allow the learner to perform primarily 

cognitive tasks (e.g., decision-making and problem 

solving).  Limited kinetic tasks allow for full gestures, 

and limited motion in a restricted area.  Movement and 

tracking of the learner from standing positions to 

kneeling, sitting or supine positions is supported so the 

range of physical tasks is broader than in static tasks. 

Limited kinetic environments support hybrid (cognitive, 

affective, psychomotor) tasks where a larger degree of 

interaction with the training environment and other 

learners is critical to learning, retention, and transfer to 

the operational environment.  Decision-making and 

problem-solving tasks may be taught easily in a limited 

kinetic mode along with tasks requiring physical 

orientation (e.g., land navigation). 

Enhanced kinetic environments support tasks where 

freedom of movement and a high degree of interaction 

with other learners are critical to learning, retention, and 

transfer to the operational environment.  Building 

clearing and other team-based tasks may be taught 

easily in an enhanced kinetic mode. 

Full dynamic mode transfers tutoring to the operational 

environments and could also be called embedded 

training or in-the-wild training.  Full dynamic mode is 

critical to support tasks where a very high degree 

freedom of movement and a high degree of interaction 

with other learners are critical to learning, retention, and 

transfer to the operational environment.  

It is anticipated that psychomotor and social tasks may 

be best taught in full dynamic mode or an environment 

more closely resembling the operational environment.  

Research has shown that retrieval of learned 



information is better when the original learning context 

is reinstated during task performance and that 

contextual dependencies also extend to perceptual-

motor behavior (Ruitenberg, De Kleine, Van der Lubbe, 

Verwey, and Abrahamse, 2012).  This supports the 

notion that a misalignment between physical dynamics 

in training tasks will slow transfer of psychomotor skills 

during operations, and that a better alignment of the 

physical aspects of training tasks with how they will be 

performed on the job will result in more efficient 

transfer of motor skills. 

 

3. IMPLICATIONS FOR PRACTICE 

The progress that has been made in domain modeling, 

along with current research needs, does not exist in 

isolation with respect to ITS development. 

Understanding that the domain model is one of four 

core ITS models along with the pedagogical, learner, 

and communication models, respectively.  It is 

important to recognize that advancing the state of the art 

within one model will have an influence on the others.  

For example, establishing measures for the cognitive 

domain will influence the data structure requirements of 

the learner model and, in turn, the physical sensors that 

might be required to populate the model.  Likewise, 

developing adaptive training for psychomotor domains 

in full dynamic mode might require a paradigm shift in 

configuring the communications module for ubiquitous, 

natural user interfaces instead of computer interfaces.  

The Generalized Intelligent Framework for Tutoring 

(GIFT; Sottilare, 2013; Sottilare, Sinatra, Boyce & 

Graesser, 2015) was designed with those 

aforementioned domain modeling challenges in mind. 

As the name suggests, GIFT was designed to be domain 

independent, and therefore generalizable to different 

domains including associated interaction modalities, 

performance environments and learner modeling data 

sources. Additionally, each of the GIFT modules 

(including Domain and Pedagogical) are separable 

within the Framework, meaning that different 

instructional approaches, or domains of instantiation 

can be implemented within the same framework.  
Specifically, the current version of GIFT handles 

domain representations inside of a Domain Module, 

configured by an object called a Domain Knowledge 

File (DKF). With this object, domains can be organized 

as a series of Tasks, Concepts, and Conditions. The 

DKF also references or -contains assessment logic for 

use with a training application, such as a virtual 

environment application. GIFT uses the DKF 

configured Domain Module in order to communicate 

changes in learner states, which may be based on 

cognitive, affective, or performance data gathered from 

the learner. The Domain Module can provide responses 

to micro-adaptive instructional strategies from the 

pedagogical engine in response to those learner state 

transitions in the form of feedback and/or training 

scenario adaptations. DKF files can be reused within 

GIFT, and new DKF files can be configured via GIFT’s 

authoring tools. 

In addition to the domain model and its ITS 

complements, a number of additional elements support 

real-world tutoring and are integral to the overall 

strategy for GIFT.  Those elements are architecture— 

the technological backbone of the ITS, authoring— the 

tools and systems that enable the creation of the ITS, 

and analysis— those processes (including 

experimentation) that serve to evaluate the effectiveness 

of training system configurations.  Creating a more 

robust domain module in support of military tasks 

potentially adds complexity to each of these elements.  

While such complexity may be expected in software 

engineering or scientific measurement, complexity is a 

significant threat to authoring.   

One of the primary goals for GIFT is to reduce the time 

and skill required to author and assesses adaptive tutors 

(Sottilare & Gilbert, 2011).  However, ITS authoring is 

an area in which persons with limited programming 

experience (e.g., instructors, subject matter experts) 

may be responsible for the creation and management of 

adaptive tutors.  Even the concept of authoring an 

adaptive tutor represents a new content creation activity, 

the current state of which is characterized by a series of 

tradeoffs between usability, depth, and flexibility 

(Murray, 2004).  Research will be needed to determine 

appropriate levels of domain model transparency and 

the appropriate level of author-control over its 

configuration.   

In an effort to address authoring complexity in GIFT, 

for example, we are developing GUI-based tools to 

semi-automate the authoring process.  These revised 

authoring tools are intended to provide usable interfaces 

to authors without the requirement to write computer 

code. Through continuous development, we intend to 

further improve the authoring experience by leveraging 

best practices in experience design to promote 

learnability. For instance, authoring templates can be 

used to increase efficiency, and the progressive 

disclosure of authoring tool functions / interfaces can 

help to promote learnability of the authoring system 

(Lightbown, 2015). Alternatively, advances in ITS 

architecture may eventually enable near full-automation 

of tutor authoring, though this effort should be viewed 

as a parallel option to, not a replacement for, user-

generated tutors.  

The intelligent tutor is a system of interconnected 

models, supported by elements that enable its 

functionality.  In practice, it is important to consider 

how advances in the domain module will impact the 

other system components, and how the demands of 

complex domains, such as military tasks, impact design 

and implementation requirements at the system-level.  

 

4. CONCLUSIONS 

Many military tasks are hybrids of task domains in that 

they include aspects of cognitive (thinking – evaluating, 

problem-solving, and decision-making), affective 

(feeling – making value judgments), psychomotor 

(doing – physical action), and/or social (collaborating – 

working in teams).  Military training differs greatly 



from traditional ITSs which are primarily problem-

based (e.g., mathematics, physics, computer 

programming) and generally vary only in complexity.  

Given much of military training is scenario-based, the 

realism of the training environment, accessibility of the 

training, the complexity of the scenario, the physical 

dynamics of the task, and the variable level of definition 

are all design considerations for adaptive training 

systems for military use.  It will be essential to match 

the attributes of the environment to the task domain by 

asking the question “what is necessary to train the task 

effectively”.  This variability in adaptive training and 

educational domains will allow for greater opportunities 

for military personnel to train at the point-of-need and 

to train more closely to how they fight.  This is 

anticipated to result in greater learning, performance, 

retention, and transfer of skills to the operational 

environment. 
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