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ABSTRACT 

 

As computer-based instruction evolves to support more adaptive training, it is becoming increasingly more evident 

that such programs be designed around an individual trainee's characteristics, rather than focusing just on task 

performance. In other words, a trainee‟s state (e.g. how they learn, their affect and motivation) is an important factor 

in performance and retention. To optimize individual performance in computer-based training Intelligent Tutoring 

System (ITS) technologies (tools and methods) are combining artificial intelligence (AI) knowledge representations 

and programming techniques with the intent to deliver instructional content and support tailored to the individual 

(Conati & Manske, 2009). From a holistic perspective, such tools and methods personalize training by considering 

an individual‟s historical data, real-time behavior, and cognitive measures to predicting comprehension levels and 

affective states (i.e. frustration, boredom, excitement). This historical and real-time interpretation of the trainee is 

used for concurrent adaptation of pedagogical and feedback strategies within training content.  

 

Several ITS studies within academic settings report significant learning gains among students receiving adaptive ITS 

support when compared to students in a traditional schoolhouse environment (Koedinger, Anderson, Hadley & 

Mark, 1997; Kulik & Kulik, 1991). However, the majority of those systems supported domains with well-defined 

problems that require well-defined solutions (i.e. physics, algebra). With recent trends in virtual scenario-based 

training in the defense and medical communities, there has been a major push to simulate more ill-defined tasks that 

require critical decision-making and swift problem-solving. Primary issues associated with ill-defined scenario 

training are the lack of a suitable design framework, and determining an appropriate level of support/direction 

through pedagogy and feedback. This paper will compare ITS pedagogical design considerations between well-

defined and ill-defined tasks, identify the variables of interest that have the greatest impact on performance and skill 

acquisition, and present a high-level design architecture. 
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INTRODUCTION 

 

Pedagogy and instructional design are fundamental 

components to successful training implementation. This 

is true more than ever with the incorporation of 

computer-based training platforms that promotes and 

mediates self-directed learning. Pedagogy focuses on 

adaptive instruction that individualizes training 

experiences to the needs of a particular learner. Based 

on knowledge, competency, and state, training is 

tailored to meet skill level and feedback/interventions 

are incorporated as tutoring mechanisms to aid in 

restoring or maintaining a positive learning state. Such 

methods are being pursued by the military and medical 

communities to instantiate alternative solutions to 

expensive and resource straining live exercises. To gain 

the full benefits of such techniques, design 

considerations need to incorporate qualities of 

instructor characteristics that provide real-time 

performance assessment and feedback. Intelligent 

Tutoring Systems (ITS) are one such approach that use 

Artificial Intelligence (AI) knowledge representations 

with machine learning techniques for the purpose of 

producing concurrent performance and state (cognition 

and affect) diagnoses on the individual and team level 

(Conati & Manske, 2009). However, an issue with this 

approach is knowing when and how to adapt training 

content when an individual is classified in a negative 

“readiness to learn” state.  

 

Much of the research conducted to answer this question 

involves studying the tactics performed by human 

tutors. Tutors are found to be most effective because 

humans are able to adapt and individualize instruction 

based on the particular needs of a trainee (Lane & 

Johnson, 2008). This involves an active balance of 

participation by the trainee with guidance facilitated by 

the tutor. The driving factors for determining guidance 

are based on competency exhibited through 

performance and dynamic state variables (e.g., 

engagement, frustration, boredom, confusion, etc.) that 

fluctuate during interaction. The objective is to have a 

trainee perform as much of a task as possible while a 

tutor provides constructive feedback aimed to minimize 

frustration and confusion (Merrill, Reiser, Ranney, & 

Trafton, 1992).  

 

Though there has been empirical evidence of improved 

performance among ITSs, the results still do not meet 

or exceed the effectiveness of human tutors. This is due 

in part to a human‟s ability to read and interpret cues 

linked with affective states associated to cognitive 

performance. For selection of the most advantageous 

pedagogical strategies, the system must know how the 

interacting trainee is feeling cognitively and 

emotionally to adapt content that matches their current 

state. To produce computer-based platforms that 

exhibit the same benefits seen in one-to-one human 

instruction (Bloom, 1984), the system must be able to 

make state determinations as well as or better than that 

of a person. A large amount of experimentation has 

been conducted incorporating sensor technology that 

monitors both behavioral and physiological markers 

believed to be correlated with cognitive and affective 

states to make this a realization (D‟Mello, Taylor, & 

Graesser, 2007; Berka et al, 2007; McQuiggan, Lee, & 

Lester, 2007; Ahlstrom & Friedman-Bern, 2006). From 

a holistic perspective, such tools and methods 

personalize training by considering an individual‟s 

historical data, real-time behavior, and cognitive 

measures to predicting comprehension levels and 

affective states. This historical and real-time 

interpretation of the trainee is used for synchronized 

adaptation of pedagogical and feedback strategies 

within training content to maintain appropriate 

challenge and to curb boredom.  

 

Yet, decisions on how to adapt content based on state 

assessment follows few standards. With hundreds of 

theories on instructional design (see Marzano, 1998; 

Marzono, 2003; Bransford, Brown, & Cocking, 1999), 

there are no deemed best practices for adaptive 

instruction. This paper will highlight design 

considerations based on domain characteristics and will 

present a high-level pedagogical architecture. The 

architecture is based on empirical evidence from past 

studies in the field and theoretical perspectives on 
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instructional design geared for computer-based 

education. Appropriate instructional strategy selection 

requires analysis of a number of variables that drive 

task mechanics. Establishing a defined framework that 

assists in decomposing task components for 

instructional design can improve adaptive capabilities 

and reduce time in transitioning systems to training 

houses.  

 

Trends of ITS Implementation 

 

ITS research aims to make training environments 

adaptable to different learning needs and abilities on an 

individual level. Majority of systems control the user 

experience through interacting models that correspond 

with the elements utilized by a human tutor. This 

includes knowledge about the student (Student Model), 

instructional strategy selection rules (Pedagogical 

Model), knowledge about the domain being trained 

(Domain Model), and knowledge of how to 

successfully perform domain tasks (Expert Model) 

(Durlach & Ray, 2011). The type of data fed into these 

models is dependent on the domain and available 

sensing technology designed into the platform.  

  

Current fielded applications in academia using ITS 

technologies have shown significant learning gains over 

long-established instructional methods, with the best 

platforms producing an average increase of 1.0 

standard deviation over conventional practices 

(Anderson, Corbett, Koedinger, & Pelletier, 1995; 

VanLehn, Lynch, Schulze, Shapiro, Taylor, & Treacy, 

2005; Koedinger, Anderson, Hadley & Mark, 1997; 

Kulik, 2003). However, these successful ITS 

applications are administered within well-defined 

domains (e.g., math, physics, chemistry), which involve 

specific procedures for satisfying task objectives. In 

this context, performance is easily assessable based on 

models of expert performance. When actions 

performed delineate from successful routines, feedback 

and/or content manipulations (change of pace and/or 

difficulty) are administered to reduce errors and 

enhance training transfer. Other approaches for well-

formed domains that apply artificial intelligence and 

cognitive science for adaptation include production 

systems, case-based reasoning, Bayesian networks, 

theorem proving, and constraint satisfaction algorithms 

(Shaffer & Graesser, 2010). 

 

Because performance alone cannot accurately gauge 

overall training effectiveness, new directions are being 

taken to enhance the capabilities of ITS components. 

Incorporating mechanisms that can track affective 

states among individual trainees will improve the 

diagnostic capacity of such systems to classify 

emotional responses that may hinder learning (i.e., 

boredom, frustration, fatigue). Research efforts are 

looking at better ways to collect data on the trainee for 

accurate real-time assessment that can be used to tailor 

training to match strengths and weaknesses. This 

includes indentifying techniques that can passively 

gather information while remaining unobtrusive to the 

individual. With new data streams being fed into the 

learner model, pedagogical decision functions can 

leverage this information to understand more about the 

current state of the trainee. If such a platform can 

diagnose competence/performance, motivation, and 

emotional response, intervention selection can facilitate 

multiple options outside of feedback driven by 

performance. 

 

FRAMEWORK FOR DOMAIN DEFINITION 

 

There are a number of variables to consider when 

adapting a training experience, with domain explicates 

being a major influencing factor. Dependent on the 

process and complexity, instructional and pedagogical 

design practitioners need to decompose task actions 

into basic functional components. This is led by defined 

objectives training aims to prepare. The process to 

achieve task objectives is based on the structure of 

actions required for successful performance, as well as 

how well the initial state and goal state are specified 

(Goel, 1995). If the structure of actions follow specific 

standards and involves the same process in each 

instantiation, the task components are considered well-

defined. In the instance where procedures are 

ambiguously defined and there are no clear set actions 

for meeting goal objectives, the domain of interest is 

considered ill-defined. This is further described as 

problems that have less specific criteria for determining 

when an objective has been satisfied and all 

information required for a solution is not supplied 

(Simon, 1973). The domain definition must also take 

into account the complexity of the task being 

performed. Complexity is comprised of how difficult 

(easy/hard) the task is to conduct, the type of 

environment it‟s performed within, and the extraneous 

factors (weather, opposition, visibility, etc.) that may 

influence its outcome.  

 

Well-defined domains that score high in complexity 

often times require training of skills outside specific 

task execution. In the context of military readiness 

training, exhibiting performance standards is essential. 

However, independent of their military occupational 

specialties (MOS), Soldiers are required to demonstrate 

higher order thinking skills that exhibit the capability of 

adapting decision-making tactics in unstable 

environments where situations and conditions rapidly 
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change (US Army Training and Doctrine Command, 

2000). The United States Military Academy‟s (USMA) 

Center for Enhanced Performance identified the 

following elements as critical for performance 

improvement among warfighters:  metacognitive 

awareness, attentional control, goal-setting, stress 

management, and visualization (Zinsser, Perkins, 

Gervais, & Burbelo, 2004). Zinsser et al (2004) further 

state that establishing these competencies empower 

individual Soldiers to create efficient thinking habits; 

improve attentional resources for enhanced situational 

awareness; and provides experience for coping with 

physical, emotional, and mental responses during high-

demanding tasks. Though many MOS tasks may follow 

well-defined routines, extraneous factors can 

significantly impact the procedure or environment the 

task is being performed within. Because of this, 

personnel must be able to adapt in real-time to ensure 

objectives are reached. Training these competencies 

among all Soldiers is vital for an adaptive Force.   

 

Instilling these elements in trainees requires effective 

and efficient training paradigms. Providing training that 

achieves efficient acquisition of these elements is not 

easily administered. Defining performance criteria for 

such skills is difficult and is based on specific scenario 

interactions. Because of this ill-defined classification, 

standards need to be developed that highlight key 

strategies and adaptation approaches for design 

practitioners to enhance system support features for 

maximizing training effectiveness. With a push by the 

military for a learner-centered approach to training, 

tools and methods that promote self-directed learning 

are required (TRADOC, 2011). TRADOC further 

identifies the need for pursuing adaptive training and 

tutoring technologies and to develop standards for 

implementing these capabilities in computer-based 

platforms. Yet, a number of issues must be addressed in 

ITS design to facilitate development of the critical 

competencies associated with desired training 

outcomes.  

 

With a two dimensional approach to domain definition, 

instructional strategies can be specified based on the 

component characteristics identified within the domain 

designation. Through task analysis, procedure and 

complexity can be classified and used for formulation 

of training objectives. Based on competency and 

experience, specific training objectives are tailored on 

the individual level to promote efficient progression 

from novice to expert. As a trainee progresses through 

initial content, training objectives are adapted to 

introduce extraneous factors that will influence 

execution. Time spent on training, progression tactics 

from basic functional training to skill mastery, 

repetition and remediation techniques, and technology 

aids all play an important role in training 

implementation (Zipperer, Klein, Fitzgeral, Kinnison & 

Graham, 2003). 

 

 

DESIGN CONSIDERATIONS DEPENDENT OF 

DOMAIN 

 

Considerations for pedagogy and feedback are founded 

on empirical evidence from past studies using 

computer-based learning environments and classic 

learning theory literature. Instructional strategy 

selection and feedback implementation are the 

variables of interest, with a goal to discern those that 

have the highest impact on learning outcomes. 

Distinguishing a list of best practices based on domain 

definition is premature at this point and requires 

rigorous empirical evaluations of the following 

findings, testing their validity across multiple domains. 

This paper aims to identify the current state of 

pedagogy and feedback research in the ITS community 

and to identify the strategies that have shown 

significant improvements over traditional instruction or 

computer-based systems that lack adaptive faculties.  

 

The remainder of the section will review considerations 

instructional designers must reflect on when developing 

an ITS application. This requires sound design 

procedures that takes into account all elements 

associated with a given training event and the interface 

components used. As mentioned above, learning 

objectives are strongly tied to domain definition. Based 

on the categorized domain a given training objective 

falls within, methods for pedagogical design need to be 

identified based on the type of actions being performed. 

Following domain definition based on task procedure 

and complexity, an instructional designer should follow 

a routine process to create the training experience. Five 

rudiments have been identified that must be addressed 

in adaptive training design: 

 

 Curriculum: Specifies explicit content for 

training. This involves scenario design 

through task designation and decomposition. 

 Instructional Strategy: Highlights how content 

will be presented, the pace of training, the 

types of actions and procedures performed by 

the trainee, and scenario difficulty/complexity. 

 Performance Measures: A challenge 

associated with training is defining what is 

deemed as successful performance. Variables 

must be identified that measure performance 
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and are congruent with positive training 

transfer for the specific outcome of interest. 

 Pedagogical Interventions: Determines 

feedback and support considerations 

associated to the learning objectives and 

„readiness to learn‟ state. This includes 

manipulations of content and feedback 

interventions. 

 Student Model Data: Highlights specific data 

that is needed for cueing interventions. 

Decision functions must also be defined that 

trigger adaptive interventions (performance 

data vs. cognitive/affective state 

determinants). Data fed into model will vary 

depending on system functionalities.   

 

Each aforementioned element requires awareness 

during the design phase of an ITS application. The 

following subsections will review empirical studies of 

ITS applications within both well-defined and ill-

defined domains. The review will highlight 

instructional and feedback implementation strategies 

and their impact on learning outcomes when compared 

to control settings. This effort aims to identify 

similarities among successful empirically tested 

systems and to categorize a domain definition with 

sound techniques for administering adaptive training.  

 

Well-Defined Domains 

 

Instructional strategies of existing ITSs are based on 

human teaching, informed by learning theories, and are 

facilitated by technology (Woolf, 2009). Four strategies 

based on human instruction commonly used in ITSs are 

apprenticeship training, problem solving, tutorial 

dialogue, and collaborative learning (Woolf, 2009). 

Tutors that cater to well-defined domains can 

incorporate any combination of these strategies. ITSs 

that use apprenticeship training contain an expert model 

to track student performance, provide advice on 

demand, and support multiple avenues to solutions. 

Such tutors will scaffold instruction as needed, but will 

often stay in the background having the student be 

more responsible for their performance. This strategy is 

ideal for tasks that are best learned by doing. Sherlock 

is an apprenticeship training-based environment that 

simulated the structure/function of a complex electronic 

diagnostic board (Lesgold et al., 1992). Although 

Sherlock only provided feedback when requested by 

the learner, the scores of those who used the 

environment increased approximately 35% when 

compared to learners who received no feedback 

(Corbett, Koedinger, & Anderson, 2007).  

 

Problem-solving is another traditional ITS instructional 

strategy that uses error-handling techniques and 

production rules to navigate instruction. For example, 

the Andes physics tutor uses problem definition, 

physics rules, a solution graph, action interpreter, and a 

help system to provide procedural, conceptual, and 

example guidance (Gertner & VanLehn, 2000). This 

tutor has been shown to increase scores by one standard 

deviation (Schulze, Shelby, Treacy, Wintersgill, 

VanLehn, & Gertner, 2000) and one-third of a letter 

grade (Gertner & VanLehn, 2000).  Like most problem-

solving tutors for well-defined domains, the Andes 

tutor uses model-tracing techniques to monitor the 

students‟ progress through a problem solution. In 

model-tracing, the tutor tries to infer the process by 

which a student arrived to a solution and uses that 

inference as the basis for remediation. Model-tracing 

tutors typically contain expert (production) rules, buggy 

rules (for error handling), a model tracer, and a user 

interface (Kodagnallur, Weitz, & Rosenthal, 2005).   

 

Although model-tracing tutors have shown to increase 

student performance, their adaptation and 

accountability for individual differences is significantly 

limited. Traditional model-tracing tutors do not allow 

for new questions or multi-step lines of questioning. 

However, second/third generation model-tracing tutors 

are created to better personalize instruction. For 

example, the Pump Algebra Tutor (PAT) is a problem-

solving tutor that includes a cognitive (psychological) 

model to assess the process of cognition behind 

successful and near-successful student performance.  

PAT also uses knowledge tracing to monitor student‟s 

learning from problem to problem.  This technique 

identifies students‟ strengths and weaknesses relative to 

the cognitive model‟s production rules (Koedinger, 

Anderson, Hadley, & Mark, 1997). PAT is used within 

thousands of schools and has found to improve student 

performance on standardized test by 15-25 % 

(Koedinger & Corbett, 2006).  Ms. Lindquist, another 

model-tracing based tutor for algebra, added a „tutorial 

model‟ that provides the capability asking questions 

and thinking about the knowledge behind the next 

problem solving step. Ms. Lindquist allows for the 

ability of engaging in dialog with the learner 

(Heffernan, Koedinger, & Razzaq, 2008).  

 

Well-defined model-tracing tutors previously 

mentioned have improved their adaptability to learner 

cognition and have been shown to increase student 

performance; however, they still do not cater to natural 

interactions seen in one-to-one tutoring. Other ITSs, 

such as AutoTutor (Graesser, Chipman, Haynes, & 

Olney, 2005), incorporate natural language interfaces 

that allows spoken dialogue and adaptation. This 



Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011 

 

2011 Paper No. 11010 Page 7 of 12 

promotes collaborative inquiry learning, which has 

been shown to increase student performance and other 

learner outcomes. 

 

Ill-Defined Domains 

 

To make ITSs effective across a number of domains, 

focused feedback and scenario adaptations are required 

that assist trainees in knowledge/skill acquisition. 

Empirical studies have been conducted looking at 

varying pedagogical approaches and to view their effect 

on learning outcomes. The issue with providing real-

time feedback is identifying the mechanisms and 

decision functions that trigger an intervention, and 

designing environments that guide trainees to optimal 

interactions without limiting performance. This requires 

user models that account for the uncertainty, 

dynamicity, and multiple interpretations of how to 

execute ill-defined tasks (Lynch, Ashley, Mitrovic, 

Dimitrova, Pinkwart, & Aleven, 2010).  

 

Pedagogy within ill-defined domains takes many forms, 

each of which applies theoretical underpinnings 

believed to maximize training effectiveness. The 

underlying issue is definitive feedback often given for 

well-structured domains are difficult to provide in an 

ill-defined setting (Walker, Ogan, Aleven, & Jones, 

2008). Techniques such as model-tracing, expert 

systems, and constraint-based reasoning are not optimal 

in this context because they lack the specifications to 

support tutoring services outside of task performance 

(Bratt, 2009). Expert systems have the potential to be 

leveraged for such training, but comparing a trainee‟s 

solution against an ideal solution does not always 

provide an explanation or reasoning of how the result 

was constructed (Fournier-Viger, Nkambou, Nguifo, & 

Mayers, 2010). Depending on the nature of the task and 

the learning objectives training aims to prepare, 

specialized instructional delivery and feedback 

mechanisms must be designed to facilitate training in 

ill-specified problem spaces. 

 

The challenge is defining a solution path that caters to 

learning critical elements associated with conducting 

ill-defined tasks. Lynch, Ashley, Pinkwart, and Aleven 

(2008) proposes solution paths for ill-defined domains 

are constructed through: (1) multiple characterizations 

of a problem to specify components and constraints that 

have been undefined for selection and discrimination 

among alternatives, (2) experience for adapting to 

second and third order effects given the context of a 

specific problem space, and (3) to justify scenario 

actions taken with concepts and principles linked to 

training curriculum. The intent of this approach is to 

develop a trainee‟s knowledge and reasoning skills so 

to avoid the worst outcomes when choosing an action 

response (Bratt, 2009). Development of such skills is 

through practice, and simulation-based training 

environments offer a low-cost alternative to running 

live exercises that are often resource straining.  

 

Simulated training experiences promote the 

constructivist and experiential methodologies of 

learning by facilitating a trainee to solve multiple 

problems of varying complexity across a number of 

situations (Bratt, 2009; Raybourn, 2007). However, this 

approach requires significant instructional guidance at 

times to avoid negative transfer. To enhance the 

capabilities of simulation-based platforms used solely 

as practice environments, adaptive intelligent tutors 

have been added in systems to aid in instilling the 

critical aspects of performance, to ensure trainees avoid 

practicing mistakes or displaying misconceptions, and 

to reduce the role of the instructor (Thomas & Milligan, 

2004). A workshop held at the 9
th

 International 

Conference on Intelligent Tutoring Systems identified 

the following explicit domains as ill-defined, which 

require specialized feedback considerations: medical 

diagnosis and treatment, intercultural relations and 

negotiations, inquiry learning, ethical reasoning, 

robotics operation, and object-oriented design (Lynch 

et al, 2008). Each of these domains requires higher 

order thinking skills that enable an individual to 

perform decision-making, problem solving and goal-

conflict resolution.  

 

Five tutorial strategies commonly used for development 

of higher order thinking skills are question prompts, 

clarification, hints, examples, and redirection (Alvarez-

Xochihua, Bettati, & Cifuentes, 2010). Each strategy is 

intended to support problem-solving situations and 

promote metacognitive awareness. An ITS designed for 

training problem solving with cybersecurity personnel 

incorporated a Mixed-Initiative framework for 

providing feedback (Alvarez-Xochihua et al, 2010). 

The framework was applied to a case-based 

instructional system that allowed execution of problem 

solving techniques across a number of distinct 

scenarios. The system was designed as a re-active 

platform that responds to student requests. Based on 

state-determinations generalized from interactions prior 

to the help request, the mixed-imitative component of 

the ITS decides the format of feedback to deliver from 

the five strategies listed above. The system is currently 

being empirically evaluated to assess if the mixed-

initiative approach provides relevant feedback. 

 

Another approach to feedback implementation in ill-

defined domains is providing adaptive guidance during 

scenario interaction and during an after-action review 
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(AAR) for the purpose of promoting reflection. This 

approach was implemented in ELECT BiLat, a game-

based trainer used for teaching and practicing cultural 

awareness and negotiating skills (Lane, Core, Gomboc, 

Karnavat, & Rosenberg, 2007). The environment is 

designed around interactive narrative between the 

trainee and artificial agents that respond to the 

exchanges taken by the system user. Feedback is 

determined by an expert model. Based on the current 

state of a scenario, the expert model runs a search 

algorithm that identifies all available action selections, 

filters out actions not appropriate for meeting 

objectives, filters out actions previously performed, and 

identifies the action selections congruent with expert 

performance (Lane et al, 2007). Based on the trainee 

dialogue selection, feedback is generated providing 

either a hint, a positive remark for a good action, or 

negative feedback with a short explanation (Lane, 

Hays, Core, Gomboc, Forbell, Auerbach, & Rosenberg, 

2008). Study results comparing effectiveness of 

feedback implementation in comparison to no coaching 

showed 89% participants who received real-time 

guidance completed the scenario successfully while 

only 59% who received no feedback met training 

objectives (Lane et al, 2008).   

 

Natural dialogue-based tutoring is an additional method 

for providing real-time feedback in an ITS 

environment. Systems designed for well-defined 

domains have shown success incorporating natural 

language dialogue that tasks a trainee with articulating 

the reasoning process during scenario execution. 

AutoTutor, an ITS that teaches introductory computer 

literacy, showed an increase in performance of 0.5 

standard deviations in comparison to learners who 

received instruction from a text book (Graesser, 

Wiemer-Hastings, Wiemer-Hstings, Kreuz, & Tutoring 

Research Group, 1999). The system prompts trainees to 

provide explanations for „How‟, „Why‟, and „What-if‟ 

questions. A concern with this approach is the accuracy 

of dialogue systems and their effect on training 

performance. A study was conducted with AutoTutor to 

gage the effect speech recognition errors had on 

learning, with the results conveying a subtle impact on 

performance as well as on a participant‟s emotions and 

attitudes (D‟Mello, King, Stolarski, Chipman & 

Graesser, 2007).  

 

Natural language dialogue is now being integrated in 

ITSs geared for ill-defined domains. The EER-Tutor 

was designed to instruct individuals on database design 

by utilizing a hands on practice environment that 

incorporates dialogue interaction with a computer-

based tutor (Weerasinghe, Mitrovic & Martin, 2009). 

Tutor interventions are applied when an error is present 

and is facilitated by tutorial dialogues. An independent 

dialogue was designed for each identified error type 

and feedback was implemented by a rule-based 

reasoning system. Interventions were designed to 

facilitate remediation, aid in completing the session and 

assisting with technical problems, and for helping with 

the interface components (Weerasinghe et al, 2009). 

Feedback is also designed to be adaptive based on a 

learner‟s current domain knowledge and reasoning 

skills. The model proposed for this tutor was evaluated 

by five acting judges to rate the appropriateness of 

feedback selection and timing. Conclusions from this 

study supported the models ability for error-

remediation in ill-defined tasks and indicated that 

trainees acquired domain concepts in the natural 

dialogue sessions.  

 

Because of the uncertainty in performing ill-defined 

tasks, knowing the appropriate pedagogy to enact is 

difficult to determine. As can be seen in this paper, the 

ITS research community is taking multiple avenues to 

facilitate adaptive instruction across well- and ill-

defined domains. Building standards and guidelines for 

pedagogical intervention selection based on defined 

training objectives can enhance systems to be 

interoperable across a number of domains and aid in 

reducing time on instructional design. This requires a 

modular architecture that incorporates all ITS 

components for the purpose of guiding feedback 

selection.     

 

 

ITS PEDAGOGY ARCHITECTURE BASED ON 

DOMAIN CONSIDERATIONS 

 

The Generalized Intelligent Framework for Tutoring 

(GIFT) architecture (see Figure 1) introduces the 

components of sensor, trainee, pedagogical, learning 

management system (LMS), and domain modules. A 

domain module in GIFT processes feedback requests 

and scenario changes by adjusting scenario elements or 

user interface components. It allows for the pass-

through of domain independent interventions, and 

allows the domain to respond to specific hint requests. 

A domain module can assess feedback either through a 

priori knowledge of the correct answer, having the 

ability to calculate the correct answer, or through 

comparison of a built-in expert model, depending on 

how well-defined a domain is. The architecture 

supports a hybrid model approach to feedback selection 

and requires production rules that dictate activation. 

Through system use the production rules will be 

iteratively updated based on the data fed into the
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Figure 1: Generalized Intelligent Framework for Tutoring (GIFT)

student and domain models. Variables of performance, 

competency, affect, and cognition will all be 

determinants of implementing a training intervention. 

The architecture will allow for grouping of 

feedback/manipulation strategies with a triggering 

variable and supports empirical evaluations to test their 

effect on training outcomes. 

 

The primary outputs of pedagogical strategy decisions 

are whether to make an intervention, and the next 

instructional content which must be presented. While 

the instructional content decisions are processed out of 

view of the user, interventions have a sizable effect. 

Interventions take one of two forms, either that of a 

domain-specific feedback such as “aim higher”, 

domain-independent feedback such as an emotional, or 

a metacognitive prompt. Decisions to change 

instructional content also come in different forms. 

Content decisions can modify task demand, modify task 

complexity, or change the types of content presented. A 

well-designed domain-specific component must address 

these things. 

 

In order for pedagogy and feedback to be successful, 

the architecture requires a domain module that supports 

the types of feedback requested. While the vast 

majority of the components of an ITS may be made 

domain independent, there must always be a specific 

component of the architecture to deal with the problems 

that the instructor desires to teach. The fundamental 

problems of domain dependent components are how to 

assess student actions, how to respond to instructional 

changes, how to respond to requests for immediate 

feedback, and an interface which supports learning 

(Sottilare, Holden, Goldberg, & Brawner, In Review). 

The architecture designed must have built-in support 

for these types of instructional activities. 

 

In a GIFT prototype system for the well-defined 

domain of addition, this module is being constructed in 

the following manner. Student action assessment is 

based on whether or not each digit in a multi-digit 

number is computed correctly. Feedback generation is 

handled either through a pass-through emotional 

prompt or buggy mistake prompt. Complexity is 

handled by adding or subtracting digits to the numbers 

to be added, while task demand is changed by allowing 

less time for the problem to be solved. The user 

interface is a simple screen with the ability to input 

added numbers. This is a proof-of-concept system that 

shows the ease of use of inputting a given domain into a 

more generalized architecture. 
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CONCLUSIONS AND FUTURE WORK 

 

While we intuitively know that it is better to have more 

information when we are making decisions to tailor 

instructional feedback and content to individual trainee 

needs, the influence of specific trainee attributes on 

instructional decisions can be debated. Additional 

experimentation is needed to quantify the impact of 

trainee attributes.  For example, the importance of 

personality attributes like openness to performance 

might differ by task type (e.g., ill or well-defined tasks; 

individual or collective tasks). 

 

Additionally, implementing sound pedagogy in 

computer-based training will require accurate state 

classifications that will determine timing and type. 

Research is needed to evaluate the influence of macro 

and micro variables in classifying trainee cognition and 

affect. Macro variables are generally known at training 

exercise start and include trainee states like affect (e.g., 

personality), domain competence, learning preferences 

and demographic data (e.g., gender, training history).   

 

Micro variables include real-time behavioral and 

physiological attributes.  Behavioral data may be 

captured by recording interactions within the training 

simulation (e.g., mouse movement or control selection) 

or through sensor methods (e.g., motion capture).  

Physiological attributes (e.g., interbeat heartrates, 

brainwaves) are generally captured via sensor methods.  

It will be critical to build validated models of trainee 

cognitive and affective states using behavioral and 

physiological measures, but to make the use of these 

models practical for military training, it will be 

essential to develop sensor methods that are: low-cost, 

unobtrusive and portable. Empirical evaluations, 

validating classification models, and feedback 

approaches across domains is required for developing 

standards of feedback implementation in adaptive 

training. This will enable congruent approaches across 

domains in terms of pedagogical approaches based on 

domain definition and state assessment.      
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