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ABSTRACT
This paper introduces, describes, and evaluates real-time models of
affective states of individual learners interacting with Intelligent
Tutoring Systems. Computer-based instructors, like human instructors,
should use affective information for adapting instruction. This requires
an accurate representation of individual learner state during tutoring;
however, models described in the literature are generalised and
constructed offline. Such total population models have faced
validation difficulty with individuals, while individualised models have
had difficulties with offline creation and online use. The simultaneous
creation and utilisation of an individualised model from sensor-based
physiological measurements presents an attractive alternative. We
present and evaluate approaches for building affective models during
the tutoring session which address the difficulties present in real-time
data streams. Additionally, this work examines the impact of
occasional direct user query on model quality. The results indicate that
individualised real-time model construction is comparable to offline
equivalents, yet can be successfully applied in tutoring settings.
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Relevance to human factors/ ergonomics theory

The Theoretical Issues in Ergonomics Science journal serves to advance the science and philosophy of
human factors and ergonomics through providing a vehicle for dissemination of research in the scientific
foundations of human-centered and human-compatible systems. The research in the attached paper cov-
ers these issues directly in a number of manners. Firstly, it reviews the scientific foundation of human-
centered and human-emulating tutoring systems. Secondly, it provides a review of the scientific under-
pinning of the educational systems aspects of affective computing. Finally, it combines these reviews in
the research and design of potential solutions for enhancing future adaptive learning systems. These sol-
utions attempt to optimize the system for performance while addressing the unique problems and oppor-
tunities that a human presence implies. The approaches and solutions presented in this paper are
especially relevant to this special issue as they are the type personalized, and theoretically grounded,
enabling technologies requested in the call.

1. Introduction and motivation

Tutoring by an expert human tutor is extraordinarily effective. Studies have found that
tutored learners outperform their traditional classroom equivalents by between one and
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two letter grades of improvement (Bloom 1984; VanLehn 2011). The increase in learning
resulting from these tutoring interactions has inspired a field of study in Intelligent Tutor-
ing Systems (ITS) to emulate these results with machine-based tutors.

The hypothesis in the ITS field states that individualised tutoring can be provided inex-
pensively via computer and can be as effective in producing learning gains as one-on-one
human tutoring (Verd�u et al. 2008). However, this has yet to be shown unequivocally in
the literature (Woolf 2009; Koedinger et al. 1997). The latest thrusts in ITS research deal
with systems that are sensitive to the affective and cognitive needs of the learner in order
to automatically implement an appropriate instructional strategy for that person at that
moment in time during the tutoring session (Woolf 2009). This represents computer
instruction in a way similar to how human tutors instruct � with attention to affect and
cognitive state management (Kim and Baylor 2006; Lepper and Hodell 1989; Woolf
2009). Theory indicates that learner data inform learner states which inform instructional
strategy selection which influences learning gains (Sottilare et al. 2012), shown in Figure 1.

Within the context of this work, these learner data refer to physiological data gathered
via sensors, but in principle refers to any information about learners. The collection and
interpretation of these data, especially their use for building models of learner states, is
the main interest of our work and the subject of this paper. As ITS research moves
towards highly adaptable and individualised tutoring, the need to automatically assess the
cognitive and affective states of the individual learner for instructional adjustment has
been well documented (Army 2011; Woolf 2010). Extensive work has been performed to
recognise the emotional state of a learner by incorporating sensors to monitor both behav-
ioural and physiological markers and is discussed in the coming sections (D’Mello, Taylor,
and Graesser 2007; Berka et al. 2007; McQuiggan, Lee, and Lester 2007; Sidney et al. 2005;
Beringer and H€ullermeier 2006; Baker et al. 2012; Chaouachi and Frasson 2010; Cooper
et al. 2010; Conati and Maclaren 2004).

However, the prediction and classification of these affective and cognitive states from a
stream of physiological and behavioural data has proven difficult. The authors believes
that there are several reasons for this difficulty: (1) the models used generalised data
obtained from a large sample of human subjects, which lacks applicability to individuals;
(2) poor classification accuracy for single-user individualised models because of changes
in individuals over time; and (3) difficulties in collection of appropriate datasets. Each of
these difficulties, along with the research findings from various projects, is discussed indi-
vidually in the coming sections. As a byproduct of these difficulties, affective data mining
for educational purposes, especially from physiological data, has been slow to gain
momentum, resulting in limited validation of differing modelling approaches. Further-
more, the fitting of generalised models (e.g. of a population) into use for individual learn-
ers is one possible reason for the general difficulty experienced in transitioning such
models from research into actual use, and that individualised modelling and direct user
self-report query may be a good method for enhancing effectiveness and transition.

Figure 1. Learning effect chain (Sottilare 2012).
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Our research questions, therefore, relate to (1) whether individualised affective models,
created and utilised concurrently in real time during a tutoring session, perform better
than their generalised and offline counterparts, and (2) whether the model building pro-
cess is positively supplemented by self-reported ground truth data in real time while the
learner is being tutored. Simply said: can real-time models be created and can they be
enhanced via occasional user query?

Before presenting our current work, however, we review previous attempts to model
affective states of learners in order to frame the problem of real-time state modelling.
While the literature contains many reports of generalised affective state models, individu-
alised models of affective states have been only rarely mentioned. In Section 1, we present
a review of both generalised and individualised affective modelling research for training
and education while attempting to answer the question of suitability of individualised
models. In Section 2, we discuss the desirable features of a dataset for building useful
affective models. Section 3 contains a description of the machine learning techniques we
employed in building such real-time models and how we modified these techniques to
support active learning. Sections 4 and 5, respectively, describe the experiments and their
results, and the conclusions to be drawn from them.

The following sections describe the state-of-the-art in building models of learner affect
and cognition for use in ITS systems. Note that our work only pertains to affective models
and not models of cognitive states. However, because both are important in tailoring
instruction in ITS, and because they are frequently modelled using the same techniques
for the same purposes, our review covers both types of models. This joint work between
the fields of physiology, human factors, instruction, and computer science represents steps
towards the application of the various technologies possible and employed.

1.1. Related research � generalised modelling

The first step to tailoring a pedagogic strategy in an ITS that can respond to affect is, natu-
rally, to detect and identify the affective state of the individual learner in real time. While
self-reported data can be used for this task, these operations can ideally be performed in a
manner that does not interrupt the student from the learning task, thus consuming both
time-on-task and student cognitive resources. Affective state identification has been per-
formed from a variety of interaction and physiological signals; however, for practical rea-
sons, these signals must have validity insofar as the affective state, reliability, appropriate
time resolution, and be minimally intrusive. Previous work (Calvo and D’Mello 2010) has
found physiology to be relevant to affect detection, with relevant variables involving heart
rate, skin conductance, motor response, facial coding, skin temperature, or other measures.

The idea of using an emotionally responsive ITS to improve learning is not new. After
all, this is what human tutors regularly do. The focus in the early days of affective educa-
tional modelling was on building general models of learner state that would predict the
state of a population of learners over an arbitrary period of time. This model construction
is followed by a period of validation, where the ability of the models to accurately predict
learner state is tested with other populations (or the same population at different a time
or under different conditions). Conati (2002) reported the first attempt of this process in
2002 when probabilistic models of emotion through the interaction with learning systems
were used in a game called ‘Prime Climb’, an educational number factoring game with

THEORETICAL ISSUES IN ERGONOMICS SCIENCE 3

D
ow

nl
oa

de
d 

by
 [

A
rm

y 
R

es
ea

rc
h 

L
ab

or
at

or
y 

A
D

B
V

] 
at

 0
7:

19
 0

7 
D

ec
em

be
r 

20
15

 



hinting based on probabilistic knowledge representations. Data were measured via bodily
sensors to construct a model of emotions, theorised to be hidden behind interaction data
(i.e. students in different states interact differently). However, the approach first experi-
enced a problem that was later found to consistently plague generalised affective models:
difficulty in validation process. In the case of the Prime Climb system, Conati and Macla-
ren attempted to validate an offline, generalised approach based upon Dynamic Bayesian
Networks (DBN) (2004) through measurements of predictive accuracy, which experi-
enced high degree of error, likely as a result of the aforementioned differences among
individual learners.

Craig et al. (2004) investigated the influence of affect during tutored interactions using
a tutoring system called AutoTutor. AutoTutor can be used to instruct a variety of sub-
jects through assessment of dialogues and speech acts based on similarity metrics to pre-
configured scripts; it is commonly used to teach principles of physics. The studies of
affect in AutoTutor were focused on the detection of states to correlate with learning gains
in a research setting, rather than for their use in a production system. Sensor measure-
ments for affect detection included body posture, keyboard pressure, and mouse pressure
(Sidney et al. 2005). The collection of sensors used was comparatively extensive in relation
to other such studies. However, similarly to Conati’s findings, this study experienced diffi-
culty in validation of generalisedmodels created offline (Graesser et al. 2007).

Mott and Lester (2006) investigated the inclusion of sensors for affect detection in the
Crystal Island ITS. Crystal Island is a tutoring system for teaching middle school biology
concepts, such as disease causes, via student interactions and explorations of a 3D game
world with a variety of agents. The classification approach of this system made use of
measures of temporal interactions, location features, intentional features, physiological
response from blood volume pulse and galvanic skin response (GSR). These measurements
were collected and classified using various machine learning algorithms (McQuiggan,
Lee, and Lester 2007), including Na€ıve Bayes, decision trees, support vector machines
(SVMs), and n-grams, all of which showed a predictive accuracy superior to baseline condi-
tions. The authors applied many different offline machine learning algorithms in an effort
to create generalised models. These offline generalised models appear useful, as they have
high classification accuracy, but attempts by these authors to validate their models failed,
thereby stressing a continuing need for validation of their models. These validation
attempts are discussed in greater detail within the next section.

1.2. Related research � generalised validation

In summary of the previous section, studies conducted with generalised modelling techni-
ques show that it is possible to build models to recognise affective states in human users,
but that the models do not meet validation thresholds at a generalised level. A few
researchers have pursued efforts directly intended to create and then validate affective
models in different populations, but like the projects described in the previous section,
these efforts also failed to successfully develop generalisable, offline models. This section
discusses the attempts of these authors to validate their results in greater detail, as there is
much to be learned from the few existing validation studies.

Sabourin, Mott, and Lester (2011) continued to study affect in the context of the Crys-
tal Island ITS through the investigation of generalised affective models from system
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interactions. Their 2011 study is one of only two published research articles with valida-
tion results, rather than merely mentioning that validation was difficult, as did all others
before it. Sabourin et al. reported data from 260 learners from two schools. Their study
included injection of experimenter knowledge of student tasks into the models in an
attempt to eliminate statistical options and aid in algorithmic (Dynamic Bayesian Net-
work) performance. The use of experimenter knowledge during model creation for educa-
tional purposes is undesirable, as it makes it highly unlikely that the model will transfer to
another domain of instruction. In this study, the models created from data at one school
dramatically underperformed baseline measurements during validation on a second
school. The authors conclude with the statement that although ‘models were evaluated in
a subject-independent manner, they were not successfully able to extend to a future popu-
lation. This finding is particularly interesting given the strong similarities between the two
populations’ (Sabourin, Mott, and Lester 2011).

A second study that attempted validation was published by Cooper et al. (2010). They
conducted the study in a similar time frame to the other previous studies (McQuiggan,
Lee, and Lester 2007; Sabourin, Mott, and Lester 2011), and report 80-90% accurate classi-
fication of affective state via Bayesian networks that gathered data from students using
webcam-provided Facial Action Coding System (FACS) information, posture sensing
devices, skin conductance, and a pressure sensitive mouse. This research eventually con-
verged on a set of sensors used for several later studies. The dataset informing these mod-
els was collected and labelled on 100 students in the Fall semester and used in an
unlabelled setting in the Spring semester with 500 students. This study indicated that
there was no validated accuracy above baseline when attempting to transfer these highly
accurate generalised models, created offline, into practical application. In short, despite
similarities among groups, group-created models have not seen prediction accuracies
above chance when applied to a different population.

In both of these notable studies (Sabourin, Mott, and Lester 2011; Cooper et al. 2010),
their authors were able to put into practice systems that appeared functional. However,
these generalised emotional models built with several offline machine learning methods
barely performed better than baseline. Even worse, they were shown to not transfer to
real-world conditions.

This evidence points to a significant gap in the research. While there have been many
studies that correlate physiological data to various experiences among groups, there have
been few studies that use models based upon physiological data to make real-time decisions.
This leads to the hypothesis that individual differences between subjects may be the root
cause of the failure of these generalised models to transfer. The problem of individual dif-
ferences between human subjects forces a researcher to consider each person individually
(e.g. using an individualised, rather than a group, approach). These types of approaches are
discussed next. They relate to the first research question stated in Section 1.

1.3. Related research � individualised approaches

Individualised approaches to affective data analysis are rare, but not completely absent
from the literature. Furthermore, certain authors of generalised modelling publications
have pointed to individualisation as a possible solution (Calvo and D’Mello 2010). Certain
types of signals, such as electroencephalography (EEG), naturally lend themselves to
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individualised approaches. As human brains are highly individual, and consequently,
brain models produced from EEG signal data are also highly individualised. EEG studies
have hinged upon the development of highly individualistic models, and therefore also
provide an example of a field where individualistic analysis is commonplace.

Another viable approach involves sensor suites. For example, Blanchard, Chalfoun, and
Frasson (2007) hypothesised that a combination of sensors could identify a user’s emo-
tional state without bias, and successfully account for individual differences within the
data in the context of training and education. They used a combination of sensors for the
measurement of physiological state, including skin temperature, respiration, heart rate,
blood volume pressure, GSR, surface electromyography (EMG), and EEG. Their models,
while individualised, were built offline. The authors were critical of the use of post-hoc
analysis, and highlighted the need for a real time or ‘predictive model’ approach that is
able to quickly classify learner state, given a set of sensor inputs, for use in real-time peda-
gogical adaption, e.g. an online model construction approach capable of immediate use
during the training session.

Blanchard et al., however, cited difficulties prevalent with large individual differences in
physiological data. As an example of individual variations experienced in response to the
same situation, they include a figure that shows a 10% change ratio in absolute GSR mea-
sure (range 4.9�5.3) for one individual during a training session, while another individual
experienced a 133% change ratio (range 5�13) using the same sensor and placement.
Similar individual variations in sensor ranges were found for EEG, skin temperature, and
other measures, even after filtering, highlighting the problem of individual variations: the
variance from one individual to another, using the same sensors, can be large. The authors
mention that the construction of individualised models is ‘not only possible but highly
recommended’, and suggest firmer techniques for individualised base-lining (Chaouachi
and Frasson 2010).

In AlZoubi, Koprinska, and Calvo’s (2008) early research into EEG models, partici-
pants were taught to play Pong by thinking of moving their left and right arms while con-
nected to an EEG measurement system. After this, a model of left and right arm
movement was constructed for each participant. The participant then had to think of left
and right arm movement in order to control a virtual cursor. The findings related to this
work were that models were highly individualised and that the best offline classification
system was never the best performing (e.g. validation) classification system; the models
with highest classification accuracy in an offline setting were never the models with high-
est classification when put into use. Furthermore, they found that individualised and off-
line classification models experienced sharp decrease in accuracy when used for EEG
classification during live tasks (AlZoubi, Koprinska, and Calvo 2008). These findings are
consistent with the findings presented for generalised models described earlier in this
paper, which experience the same sharp decrease during the validation phase of the
research.

Further work in this area by AlZoubi, Calvo, and Stevens’s (2009) indicates that affec-
tive state classification is possible from the EEG sensor array, but cite significant difficul-
ties arising from user fatigue, electrode drift, changes in electrode impedance, and user
cognitive state modulation. They argue that the problem inherent in these physiological
signals is their non-linear nature and that the failure of other models is because of the
underlying linear assumptions. Each of these models, when created offline for online use,
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assumes that the user will be in similar state, with similar baselines, at similar fatigue lev-
els, with millimetre accuracy in placing electrodes, etc. They indicate that the models are
poorly fit for use when assuming that the underlying concept is stationary, when in fact it
is drifting across the sampling space (Hulten, Spencer, and Domingos 2001); models
should be adaptive and continuously adjusting for the reasons enumerated above as well
as others. As such, they hypothesise that nonlinear algorithms could successfully deal
with the dynamic nature of the signal. AlZoubi, Calvo, and Stevens empirically show this
success through an injection of real-time adaptive algorithmic techniques, such as win-
dowed Bayes Networks, which produced 40% less overall error (2009).

With their adaptive approach, AlZoubi et al. addressed the problem of day-to-day indi-
vidual differences in multichannel physiology (2011). They concluded that based on a lab-
oratory study with induced emotions that it would be possible for such an approach to be
implemented in the field. While their approaches using offline adaptive algorithms are
not particularly suitable to the problems of real-time classification, they present a picture
of the problems faced in their current work. This helps to clarify our original research
questions involving individualised models to a number of sub-research questions:

(1) Can individualised affective models, created with online and adaptive machine
learning approaches in real time, perform comparably with their generalised coun-
terparts? Can they be validated in a person-independent context?

(2) What are alternative methods for online and adaptive classifiers?
(3) Is the model building process positively supplemented by self-reported ground

truth data in real time while the learner is being tutored?
(4) How can these algorithms be applied to sparsely labelled data?

1.4. Online real-time models

The use of learner affective models is still among the most promising technologies for
the tailoring of individual training, as indicated by Woolf (2010). The previous sections
have shown a need for validated models that can predict/classify the affective state of the
learner in real time, during the tutoring session. The creation of a validated affective
model that is both adaptive and individualised at runtime presents an opportunity for it
to be transferred into operational ITSs that can use this model to better inform instruc-
tion. The first step towards the use of the prediction/classification of affective models is to
evaluate the effectiveness of the approach.

The clearest and most natural way to evaluate the effectiveness of any model is by
assessing its accuracy. However, there are problems with evaluating the type of models of
interest here merely based upon their accuracy. Not the least of these problems is that no
study exists that links affective model accuracy with learning gains in a tutoring context.
Of course, this is because current affective models have not been accurate, or if accurate,
these models have not successfully transferred. This disconnect further stresses that mod-
els should be built for their use rather than for their predictive accuracy, as the end goal of
an ITS is to improve instruction, rather than to provide accurate student assessment,
although they are theoretically related.

Before running various experiments, it was thought that the real-time model construc-
tion approach may potentially sacrifice overall accuracy in exchange for the real-time
availability of predicted values. This would be acceptable in light of the aims of our
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work � to transfer the models to an operational environment. In short, a model able to
adequately inform an instructional decision while the student is in need has more value
than a more accurate model at a less relevant time, such as after a student has ended a
training session.

Therefore, the hypothesis of our research is that more useful affective learner-specific
models can be constructed in real time during the training session. We further hypothe-
sise that these individualised models of affect, created in real time, can achieve accuracy
on a par with, although possibly slightly diminished, individualised offline models created
for the same learner. Our work directly addresses the challenge put forth by Calvo and
D’Mello (2010) with regard to affective categorisation and affect detection system
evaluation.

2. Data acquisition

To build these models, of course, one needs data. In this section, we discuss the data used
to build the individualised models in real time. We begin by describing an ideal dataset, as
useful datasets for this sort of work are rare. Since the conduct of this experiment, the
authors have used the below checklist as a guide to the creation of future datasets, intend-
ing to carry out further research in this area. The description below of an ideal dataset is
intended to aid future researchers.

2.1. Ideal dataset description

Access to data for building affective learner models can be difficult, as the availability of a
context-appropriate datasets is limited. The creation and sharing of such datasets is an
area where the field has been lacking, and research into this area could benefit if an open
standard for such data were to be adopted. An ideal dataset for creation of an education-
ally based model of affective state of a learner includes several features, which are identi-
fied as follows:

(1) Relates to affective states relevant to learning.
(2) Ability to be used in applications other than the system of creation (i.e. the same

data with the same sensors can be used in another educational setting).
(3) Obtained from a relevant population (i.e. learners learning).
(4) Obtained using cost-appropriate sensors.
(5) Contains labelled data (otherwise, it is impossible to validate).
(6) Has been used in previously established models to be used for comparison (i.e.

allows for ablative studies).
(7) Was collected in a relevant setting.
Many studies meet one or more of these criteria � collection using cheap sensors in a

classroom meets the majority of the criteria. However, many affective datasets do not
address all of them, with #1, #2, and #6 being the most commonly omitted criteria. An
example of a dataset that does not meet criterion #1 is the Pose, Illumination, and Expres-
sion database (Gross et al. 2010), which shows actor expressions. Criterion #6 is fre-
quently left unmet through the research need to assess sensors, interventions, or other
items, rather than the ability of various methods to model or predict.

With respect to criterion #2, there have been several studies that collected emo-
tional data that were only transferable to similar learning environments. One
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example is Baker et al.’s (2012) dataset, which draws emotional inference based on
the actions that the student takes within a learning environment. Such data cannot
be transferred to another learning environment that features different actions.
Another example is data about ‘gaming the system’ models. These models predict
whether the student is meticulously studying based on his/her interaction with sys-
tem-dependent screen elements (Baker et al. 2004). This type of model is referred to
as an interaction-based model, which can be contrasted with models based upon col-
lection of sensor data. Sensor-based models have transferability, as a sensor can sup-
plement an existing system, while interaction-based models are dependent on the
system of interaction. Sensor-based models are of interest to our research, as we
believe it will address the many needs of ITSs.

2.2. Dataset acquisition

The dataset determined to most closely match the above collection criteria, and the one
used in our study, was part of an experiment to evaluate low-cost sensors. While these
data were collected by the first author, they were not collected for the purposes of this
study. Information about the data collection and public availability is found in Brawner
(2014), but a summary is discussed here. In this data collection process, college-aged mili-
tary learners experienced a breadth of learning-relevant emotions while watching videos
or playing video games, while they were measured by a suite of sensors. Cognitive states,
such as distraction, were labelled with a high-cost sensor. Affective states, such as frustra-
tion, were labelled with a self-reporting tool, which has the ‘high cost’ of frequent user
query, using time that could be better spent learning. Models developed in our research
were designed to replace the high-cost EEG sensors’measures as well as the time-consum-
ing affective self-reporting.

The baseline measure of the affective portion of this dataset is the EmoProTM vali-
dated electronic emotional profiling tool (Champney and Stanney 2007), which identifies
the affective state after a brief period of questioning following an emotional episode.
Briefly, the research question addressed in the original study that produced this dataset
was ‘Can you replicate the measures of validated, high-cost, obtrusive sensors with yet-to-
be-validated, low-cost, unobtrusive ones?’, where the low-cost sensors are defined by the
list below, and described in greater depth in other works (Brawner 2014; Carroll et al.
2011; Kokini et al. 2012; Brawner 2013). These devices and the measurements used are
briefly described in Table 1.

(1) Custom eye-tracker
(2) Zephyr Heart Rate Monitor
(3) Phidget-based Chair Pressure Sensor
(4) Vernier Motion Detector
(5) NeuroSky MindSet EEG
A power analysis conducted for this study determined that 18 participants were neces-

sary to determine which of the sensors could reliably gather affective and cognitive state
information from the participants. Twenty-seven (27) datasets were collected; however,
only 19 of these provided usable emotional labels with all their sensors providing stable
information across all of the events. Each sensor used for this study was selected because
of its low cost, which unfortunately also correlated with low reliability. The eight dis-
carded sets of data were rejected because one or more of the sensor data streams became
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unavailable due to malfunctions. This rendered it impossible to evaluate which of the sen-
sors contributed to a generalised model of affect during offline analysis for that particular
individual, or provide a point of comparison during online analysis. In a real-world set-
ting, a system should be able to respond to the lack of availability of one or more input
data sources. Nevertheless, having 19 individual models satisfied the requirement of 18
sets of individual data.

The population of interest was United States Military Academy (USMA) cadets, with
nine to 44 months of experience at West Point. This is roughly equivalent to a population
of modern college students. The majority of the members of the population were plebes
(first year learners) enrolled in the Behavioral Sciences and Leadership (BS&L) Depart-
ment’s General Psychology (PL100) course.

Participants were asked to undertake a visual vigilance task, watch video clips from the
movies Halloween and My Bodyguard, and play several scenarios within the Army’s Vir-
tual Battlespace 2 (VBS2) video game. The video segment from Halloween has been previ-
ously validated to induce Fear/Anxiety, while the video segment from My Bodyguard has
previously been validated to induce Anger/Frustration. The VBS2 scenarios contained
limited visual perception (validated to produce fear, anger, workload), large numbers of
enemies (validated to produce fear, anger, workload, and engagement), annoying sounds
(validated to produce anger, workload, and distraction), and equipment malfunction (val-
idated to produce anger, fear, workload, and distraction). More information about the
conduct of the study and initial analysis may be found in its original publication (Kokini
et al. 2012), while other sources better describe the initial affect elicitation validation of
VBS2 scenarios (Jones et al. 2012) and movie clips (Hewig et al. 2005).

This dataset is not ideal, but is as close to the ideal as can be currently found. Of the
seven requirements discussed earlier, it satisfies six of them. It has learning-relevant states,
from a learning population, with affordable sensors, labelled data, previously established
benchmarks, and should be able to generalise emotion detection beyond its construction
system. The only requirement not addressed is #7 � collected in a relevant setting, as it
does not contain data during interactions with learning events. Furthermore, the data
used in this study was obtained in a laboratory, with a small sample size, using artificial

Table 1. Summary of sensor measurement (see Brawner 2014 for details on these sensors).

Sensor Measures Variables

EmoPro (ground truth) Anger Anxiety/Fear Boredom Self-reported Boolean values
NeuroSky EEG Alpha1, Alpha2, Gamma1, Gamma2,

Delta, Beta1, Beta2, Theta,
Attention, Meditation

Various measures of brain activity in the
specific frequency band, from the two
sensor locations.
Two derived measures, based on
NeuroSky software algorithms

Zephyr HRM Heart rate Reported as it changed
Vernier Motion Detector Motion Reported distance from the laptop computer
Chair Press sensor Chair 1�8 Report the pressure on four locations on each

the back and the seat.
Custom Eye Tracker Left Eye Pupil Diameter Pupil Diameter
Difference-based features

(software creation, simple
difference between last
and current value)

Alpha1 Diff; Alpha2 Diff;
Gamma1Diff Gamma2 Diff;
Delta Diff; Beta1 Diff; Beta2 Diff;
Theta Diff; Attention Diff;
Meditation Diff; Heart Rate Diff;
Motion Diff

Calculated features using the simple formula,
Diff D current-previous formula.
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mood induction rather than in the field. Nevertheless, it is the best set of data that was
available to us, and notwithstanding the above, it is close to being ideal.

After each of these events, the participant was affectively measured with the use of the
EmoPro self-report tool to periodically provide ‘ground truth’ of affective state. The data
from the experiences were labelled to be of the self-report class (e.g. anger, boredom, frus-
tration). The EmoPro labels represented several minutes of real time prior to a single label
and correspond to a large number of data points. Events were kept short to increase the
resolution of the EmoPro data, totalling 309 labelling instances for each of the 19 users,
with states summarised in Table 2. While cognitive states were also labelled with the
ABM EEG headset, the work reported in this paper focuses on the affective states of the
learners, which did not use the EEG data.

2.3. Offline model benchmarks for comparison

Carroll et al. (2011) previously analysed the results of this experiment offline to determine
how well the combined sensors were able to detect the labelled affective state of the
learner. With regard to our work, these analyses serve as benchmarks for comparisons
(e.g. ideal dataset criterion #6). These models built by others represent the best effort by
other researchers to build models of affective states via offline approaches.

The Logistic Model Regression method was integrated in the Logistic Model Trees
technique that was selected as the method to use to create the models. 10-fold cross-vali-
dation was used to prevent model over-fitting. The sample was then analysed with the
receiver-operating characteristic (ROC) function benchmark (Hanley 1989), which plots
the proportion of correctly classified observations from the positive class (true positive
rate) against the incorrectly classified observations (false positive rate). The Area Under
the Curve (AUC) of this function was calculated as a direct measure of the performance
of the resulting model. The AUC ROC is designed to compensate for the misleading fig-
ures of ‘percentage accuracy’ in unbalanced data. The AUC ROC measurement allows an
algorithm with lower overall errors, either false positive or false negative, to score well
(Hanley and McNeil 1983), as all the categories of possible classification are weighted
equally. In general, AUC values of greater than 0.8 are considered to represent good per-
formance, while classifiers lower than 0.6 are considered poor; scores between 0.6 and 0.8
are considered acceptable performance. It is mathematically defined below, with the True-
PositiveRate being a sample of the model’s accuracy, FalsePositiveRate being a sample of
the model’s inaccuracy, and dModel being an incremental sampling adjustment:

Z �1

1
TruePositiveRate Modelð Þ�FalsePositiveRate Modelð Þ; dModel :

Table 2. Summary of reported state instances (dataset provided as supple-
mental material publicly available with documentation; Brawner 2014).

Self-report No. of times reported

Anger / no anger 60 / 249
Boredom / no boredom 37 / 272
Fear / no fear 39 / 270
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These other models were built offline with no limits on the time available to build these
models. Furthermore, each of these models is constructed with all of the data available,
and with all the true class labels. With all data, all labels, no time limit, and well-reasoned
research approaches, these generalised models can be said to represent the ‘gold standard’
against which to later compare our online, real-time models that did not enjoy these
advantages because of their real time, on-line constraints. As mentioned in Section 1,
these offline and generalised models are not expected to transition to the field because of
the generalised vs. individual nature of the models. Nevertheless, they do represent the
highest accuracy in classification that could be obtained. We would not expect that our
online model with limited data, limited label availability, and significantly constrained
time to create the model would result in superior accuracy to these benchmark models.
This represents the engineering trade-off of accuracy for individualised and availability
previously discussed. The results of these offline affective state models are previously
reported by Kokini et al. (2012), are re-printed in Table 3, and serve as a benchmark for
comparison in the creation of online models later in this work.

An interesting aspect of the above work of Kokini et al. is that only some of the features
of the total data stream were used in their offline-created models. In short, the model for
Anxiety/Fear used all of the sensors, while the model for Anger could not be created with
predictive quality above baseline. The regression-based model of Boredom used only two
of the available sensors: the NeuroSky EEG and the Zephyr Heart sensor, while ignoring
the other sensor data feeds. Nevertheless, given that the offline modelling efforts achieved
greatest model quality when ignoring some of the sensors, comparisons using both a
Boredom subset (NeuroSky/Zephyr) and full set (all sensors) may still be viewed as
equivalent.

3. Methods used for real-time classification

The research questions addressed by this work all relate to the suitability of real time, on-
line classification of affective data streams. Additionally, we also sought to investigate
potential advantages obtained from the reduction of total labels required. Given the topic
of research on online real-time models, it is reasonable that only algorithms that can deal
with the challenges of real-time computing are able to address our research needs. These
challenges are divided into four main areas (Beringer and H€ullermeier 2006). In brief,
these are (1) the data can be of potentially infinite length, (2) concept detection (i.e. identi-
fying a group of data as a state), (3) concept drift (i.e. expansion of a representative group
to encompass additional data), and (4) concept evolution (i.e. representing a single state
in multiple/unrelated data organisations). Any method of real-time model construction
requires addressing these challenges, which imposes serious design constraints, including
but not limited to:

Table 3. Previous benchmark results using logistic model trees (Kokini et al. 2012).

Affective measure

Anger Anxiety/fear Boredom

AUC ROC value <0.6 0.83 0.79
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(6) The data stream is treated as infinite in length.
(7) The data stream cannot be stored.
(8) Data stream elements are not available for request.
(9) Presentation order is not controllable.
(10) There are strict time constraints, where all operations must be completed before

arrival of the next data point.
(11) Classification is made at each time step.
(12) Decisions are based on encoded knowledge.
(13) New concepts, such as new affective states, must be identified quickly and tracked

across a sampling space, based only on the encoded knowledge.
To answer the question of whether an online, data stream-based approach lends

itself well to the problem of building real-time affective models, the literature was
reviewed for real-time appropriate learning algorithms. The literature review
addressed the state of the art for each real-time algorithm category. After this review,
we converged upon a minimal but inclusive set to test, including: a clustering algo-
rithm, a neural network-based approach, a graphical model, and an incrementally
updating linear regression technique. One algorithm was selected as the state of the
art in each of the categories of approaches, and each approach is sufficiently different
from the others to warrant their specific inclusion in our study. We cover all funda-
mental approaches (although not necessarily specific adaptations thereof) covered in
modern literature reviews (Jain 2008). Our work was undertaken with the goal of
showing that the individualised real-time approach is valid as well as transferrable to
practice. Each of the four algorithms is described below, along with, and the manner
in which they address the above challenges and design constraints.

3.1. A modified k-means clustering algorithm

As Jain (2008) states: ‘Organizing data into sensible groups is one of the most fundamen-
tal modes of understanding and learning’. Clusters are traditionally evaluated for fitness
based on a distance metric. Clustering represents a standard approach for dealing with
data of an unlabelled class and is the baseline method attempted as part of our work. A
version of the k-means algorithm, modified for online fitness, was used and is described
as follows:

For each new point, incrementally
Compare each point to all known centroids
If no cluster is within range of hvigilancei
this point is a new centroid
Else, move the matched cluster hdeltai in new point direction
Merge closest centroids based on hvigilancei, if appropriate
Keep track of the number of points in these centroids, and the last point which modified the
centroid, label if possible

3.2. Adaptive resonance theory (ART) neural network algorithm

ART is a type of neural network architecture that classifies objects based on the activation
within a layered structure of recognition nodes. It was developed to classify data in a one-
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pass learning process (Carpenter and Grossberg 1995). ART has a performance roughly
equivalent to conventional feed forward neural networks, but with significantly reduced
training time. In its most basic form, ART draws n-dimensional hypercubes around simi-
lar input patterns, where n is the dimension of the input data. Matched data are those
that fall within the smallest hypercube or of the class of the closest available hypercube.
Hypercubes are expanded to compensate for new data in accordance with parameter set-
tings. The locations of the hypercubes are encoded as weight vectors. Although sometimes
viewed as a disadvantage, the one-pass learning ability of ART systems makes them
appropriate for real-time classification problems. This feature of ART makes it sensitive
to the order of the input data. We anticipated that this would assist in the classification of
affective computing signals, where the order of the input data is relevant to the affective
signal, as shown in experiments with sensitivity (Carpenter and Grossberg 1987). The
algorithm used in this work is described as follows:

For each new data point
Compute each neurons’ weighted activation to it (yi D Swij

�xi)
Select the neuron with the highest activation
Test if this neuron in vigilance (xi fuzzyAnd wx < vigilance)
If it is, update the weights:
wi D learningRate�xi C (1�learningRate)�wi

Otherwise, create a new category with xi weights

3.3. Growing neural gas (GNG) graphical algorithm

Growing neural gas (GNG) is a robustly converging alternative to the k-means
approach of clustering that finds optimal representations based on feature vectors.
These feature vectors construct a topographical map overlaying the data. This approach
has its roots in self-organising maps (SOMs) and neural gas topologies. GNG is an
incremental version of neural gas which is appropriate for data stream analysis
(Holmstrom 2002), and was initially proposed by Fritzke (1995). Semi-supervised
GNGs are a further outgrowth of these methods to make use of unlabelled data points
for classification (Zaki and Yin 2008).

GNG is a relatively new technique for pattern recognition. It has seen increasing use in
image recognition (Garc�ıa-Rodr�ıguez, Fl�orez-Revuelta, and Garc�ıa-Chamizo 2007) and
topology learning (Prudent and Ennaji 2005). Our previous research has revealed that it
responds well to the injection of uniform noise information (Brawner and Gonzalez
2011). Fundamentally, the GNG algorithm creates an overlay to the data that detects
edges in patterns and forms the areas interior to the edges into clusters. The boundary
edges clusters serve to identify unique groups of data among the dimensions of the input
space.

Beyer and Cimiano (2011) modified the initial GNG algorithm to remove its depen-
dence on the Expectation Maximisation solution set, making it appropriate for real-time
problems. They present Online, Semi-Supervised, Growing Neural Gasses (OSSGNG) as
a topographical mapping algorithm synthesised from the various contributing fields.
They examine several metrics for determination of the establishment of clusters, and find
that the minimum distance metric has the best performance on problems of interest. We
use the metric recommended by Beyer and Cimiano, but use the originally described
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algorithm (Beyer and Cimiano 2011) without significant modification. The algorithm
used in this work is described as follows:

Present a new point and find the two closest items (s1 and s2)
Increment the age of all edges coming from s1
Compute the local error of s1
error D squared distance from weight to input)
Move s1 and its edge-connected nodes towards xi in two ways:
Directly connected nodes: Dw D eb(xi � ws1)
Indirectly connected nodes:⌂w D en(xi � ws1)
If s1 and s2 are edge-connected, set the age of the edge to 0
Remove all edges older than the maximum age
If a node has no edge now, remove it
If it is time to present a new node:
Determine largest error node network from earlier calculated local errors
Determine the largest error point node in this network
Insert a node halfway between these two items, create edges, remove previous
Decrease all error by a factor, Alpha

3.4. Vowpal Wabbit (VW), linear regression

The previous methods discussed typically favour accuracy from among the various engi-
neering tradeoffs. Vowpal Wabbit is a software package implementation developed by
Langford, Li, and Strehl (2007) designed to be fast and use as little data as possible, with
the assumption that labels are available. It makes extensive use of gradient descent and
multiple passes over the data to train a variety of encoded weight vectors. The background
assumption to our initial problem is that the data of interest are too voluminous to pro-
cess efficiently, and that rapid training is critical. This approach was developed specifically
for large-scale search operations. We included it to represent incremental and semi-super-
vised linear regression modelling approaches. It was used with modifications to support
adaptive learning weights to compensate for limited training phase, and hinge loss func-
tion, as it is shown to increase classification accuracy in a constrained environment with
binary classifications (Rosasco et al. 2004). The algorithm used in this work is described
as follows:

Start with for all i: wi D 0 Within the loop:
Get an example: x 2 (1,1)
Make a prediction: y DSi wixi
Learn the Truth: y 2 [0,1] with importance I
Update the weight: wi D wi C 2h(y-yi)I
Repeat for specified number of passes or other criteria.

3.5. Learning approaches used � supervised, unsupervised and semi-supervised
with active learning

There are several ways that the algorithms described above can be implemented. The
machine learning community has traditionally segmented on the ideas of ‘supervised
learning’ (with labels) or ‘unsupervised learning’ (without labels). However, a new field
known as semi-supervised, or transductive learning (Zhu 2005), is beginning to emerge to
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address some problems in each of the other fields, such as overtraining and supplementa-
tion of knowledge of clusters. Semi-supervised methods use information contained in the
unlabelled data to (1) make inferences on the structure of the labelled data, and (2) repri-
oritise the classification of prior data points. Active learning methods use logic to select
which points should have labels requested in order to accomplish either of these two goals.

Each of the methods used in our work is screened for its ability to deal with all the
problems of real-time data classification, and the ability to handle the real-world issue of
limited label availability. If an algorithm did not have an implementation for semi-super-
vised active learning, we created one for it. The most important feature of each algorithm
selected is its ability to deal with the real-time data problems discussed above. We
expected that some information about the user might be available during runtime, regard-
less of the level of supervision being used in model creation. The user may be asked
directly about their state, but only occasionally, and this information can be used to help
build a model.

Generally, the algorithmic implementation of the tests in this work relies upon the idea
of a ‘label request’, where the algorithm is allowed to request (and be provided!) a finite
number of labels in the course of model construction. Each algorithm must either main-
tain a list of likely hypothesis points that can disambiguate classification boundaries, or be
able to generate one quickly.

The semi-supervised active adaptations are different for each algorithm because of the
fundamental differences in how the data are represented within each construct. Generally,
when given the choice to request a label, each algorithm attempts to label the largest body
of unknown information. The clustering algorithm was modified to support semi-super-
vised active learning by responding to a label request from the evaluation framework by
requesting the label closest to the centroid of the largest unlabelled cluster. ART was mod-
ified to support this requirement by disallowing known mixed-class classifications (when
labels are plentiful) and responding to label requests with the largest currently unlabelled
weight vector. The OSSGNG model was modified to request the largest currently unla-
belled classification category and propagate labelling information across the category.
VW supports semi-supervised active learning by default, in a mathematical representation
of hypothesis likelihoods (Beygelzimer et al. 2010).

4. Experiments, results and conclusions

Before discussing results, it is useful to briefly discuss how data points of accuracy were
generated and which measures of accuracy have been included. Generally, the manner in
which performance values were generated follows the below algorithm:

For x from 10�100, in increments of 10
Feed x% of the data to the algorithm
For each class created by unlabeled class boundaries
Label this class the majority label of true set
Evaluate for AUC ROC accuracy through input of data for classification (next, previous, all
seen)
Destroy model, loop

Three types of AUC ROC measures were taken for three slightly different indications
of performance: ‘all’, ‘next’, and ‘prev’. The ‘all’ AUC ROC measure represents the ability
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of the model to correctly classify all of the data that has so far been presented. As an exam-
ple of the ‘all’measure, the affective model of 50% of the data is compared to the true class
labels of the 50% of the data that was presented. The ‘prev’ measure represents the ability
of the current model to accurately classify the most recently observed data. ‘Recently
observed’, in this instance, refers to the previous 10% of data. The ‘next’ measure repre-
sents the ability of the current model to accurately predict the upcoming class labels.
‘Upcoming data’, in this instance, refers to the next 10%. The measurements of these three
items indicate whether a method is able to correctly model the data presented recently, in
total, and/or in the near future. These three measures were shown to adjust in concert
after a short time (30% of total time) as shown in Figure 2. This was found to be typical
for all participants. Given that we are most interested in knowing the most recent affective
state experienced by the learner, the most relevant feature is then ‘previous’ and this is
what we selected for making our comparisons as well as for graphical and numerical rep-
resentations in this paper.

The total data stream, of course, must be treated as though it has infinite length, as it
would in a production environment. This type of time analysis was done to evaluate our
research questions, as stated earlier, relating to (1) whether individualised affective mod-
els, created and utilised concurrently in real time during a tutoring session, perform better
than their generalised and offline counterparts, and (2) determination of whether the
model building process is positively supplemented by self-reported ground truth data in
real time while the learner is being tutored.

4.1. Results: supervised real-time affective models

Models of Anger, Anxiety/Fear, and Boredom were created from the dataset and labels
evaluated in Section 2, using only the supervised methods discussed in Section 3. Only

Figure 2. Measures of model quality (all/next/prev) for User 4137, shown to adjust in concert. Results
typical across participants.
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supervised methods were used in order to enable an apples-to-apples comparison of real-
time methods using labelled data to offline methods using labelled data. The results over
time are shown in Figure 3.

Table 4 shows that acceptable affective models are able to be created in real time, as
those models created with ART and with k-means remain above 0.6 AUC values for the
majority of the time across all created models. All three affective models built with ART
result in final model quality higher than 0.7. Two of the three clustering models (with the
exception of Boredom and then only at the very end of the cycle) also result in comparable
quality. However, from visual inspection of these figures, it is clearly evident that VW and
GNG were at no point able to exceed the 0.6 AUC threshold of acceptability for any of
the models. The complicated and dynamic nature of the provided graphs call for a more
in-depth discussion of the two best-performing methods: ART and incremental k-means
(abbreviated ‘inck’ in figures). A sample of the full results for this experiment is shown in
Table 5. These results are displayed in summary because of page length limitations and
the space-consuming nature of these tables. More complete numerical results are shown
in (Brawner 2013). These results are shown in summary in Table 4, and complete Table 5.

Figure 3. Affective modelling quality (y-axis, AUC ROC measure), as measured over time (x-axis, % of
data measure) by AUC ROC on the most recent 10% of data, with all algorithms (four graphical seg-
ments) in supervised fashion.

Table 4. Summary of time-averaged supervised ART and clustering AUC when compared with offline
equivalents.

Model Anger Anxiety/fear Boredom

Offline <0.6 0.83 0.79
ART 0.776 0.841 0.796
k-means 0.681 0.810 0.644
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Among the trends seen in the graphical data and tabular data is an overall decrease in
AUC value as more data is obtained. This trend is generally observed in all sections, but is
not unexpected. There are three main reasons for this downward trend.

First, as a byproduct of the AUC metric, the majority of the classifiers start with unrea-
sonably high accuracy. As an example, all 10% of the initial data for User 4104 is of a sin-
gle class, which results in a 100% accurate classifier. A general decrease in accuracy would
be expected after having multiple classes to detect, for all algorithms.

Second, classification accuracy generally increases over time per user, but decreases
slightly over time per group because of the larger magnitude of decrease when compared
to increase. This is why average values per user are used to approximate overall model fit.
User 4136 in Table 5 is an example of this expected tendency, as the reader can see a large
decrement in classification accuracy brought on by initial class change, with gradual
improvement further on. While other individual models have good performance through-
out, the sharp initial drop of other models overwhelms the overall trend of the group aver-
age model performance over time. Lastly, the models do not have good fit overall for all
users. An example of poor model fit can be seen in User 4117. This leads to the conclusion
that such methods may not be appropriate for all users at all times. This phenomenon is
discussed further in our conclusion of this paper, when considering how many of the
models are usable (in addition to their overall quality). The group averaged, time aver-
aged, values presented in Table 4 represent answers to the ‘how useful, on average, would
this approach be?’

4.2. Results: unsupervised real-time affective

If models of reasonable quality can be created without the use of labelled information,
this would mark a significant improvement on the original offline models, as models of

Table 5. Example Anger model qualities, supervised ART.

User 20% 30% 40% 50% 60% 70% 80% 90% 100% Avg

4134 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.54 0.947
4133 0.58 0.58 0.58 0.58 0.54 0.51 0.68 0.69 0.50 0.584
4131 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000
4127 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000
4121 1.00 0.67 0.69 0.71 0.70 0.71 0.77 0.82 0.70 0.753
4111 0.63 0.81 0.79 0.78 0.79 0.80 0.79 0.66 0.74 0.756
4115 0.99 0.87 0.95 0.97 0.97 0.90 0.75 0.74 0.75 0.878
4135 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000
4136 0.78 0.64 0.65 0.62 0.70 0.78 0.74 0.77 0.79 0.719
4137 1.00 0.76 0.53 0.53 0.53 0.73 0.77 0.77 0.76 0.709
4101 1.00 1.00 1.00 1.00 1.00 1.00 0.81 0.50 0.50 0.868
4117 0.56 0.52 0.50 0.50 0.57 0.53 0.58 0.56 0.56 0.545
4102 0.56 0.56 0.56 0.56 0.66 0.50 0.73 0.78 0.50 0.602
4105 0.76 0.70 0.76 0.66 0.65 0.64 0.70 0.70 0.58 0.682
4104 1.00 0.68 0.85 0.86 0.86 0.87 0.87 0.87 0.87 0.859
4107 1.00 1.00 0.99 0.63 0.63 0.63 0.63 0.63 0.63 0.749
4106 0.63 0.63 0.50 0.66 0.67 0.64 0.68 0.69 0.70 0.645
4112 0.91 0.64 0.64 0.67 0.58 0.69 0.76 0.77 0.84 0.723
4132 0.87 0.75 0.67 0.70 0.75 0.74 0.74 0.72 0.56 0.724
Average 0.857 0.780 0.772 0.760 0.768 0.772 0.790 0.771 0.712 0.776
Total Usable (avg ROC>0.6): 17 Percent usable: 89%
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users could be created without their direct knowledge or interaction, aside from sensor
measurement. Only unsupervised versions (without the benefit of labels) of the methods
discussed in Section 3 were used in this section. The results over time are shown in
Figure 4.

It is no surprise that, as seen in Figure 4, the unsupervised models perform more poorly
in overall quality. The use of labelling information allows models to be of higher quality
overall. These algorithms, however, were created for their use in real-world settings, where
labelling information is not always available with fine resolution. There is no comparison
against offline models for unsupervised models, as it is not appropriate to compare a
model that includes labelled information with one that does not. The testing of unsuper-
vised parameters allowed us to estimate how well constructed model quality can be when
transferred to the field of use.

Nevertheless, the Anxiety/Fear models built with ART, k-means and VW performed
well in spite of having no labels. The Anger models for these three algorithms, although
registering inferior performance than Anxiety/Fear, also performed reasonably well
throughout most of the cycle, slipping beneath the 0.6 AUC threshold only at the very
end of the cycle. The Boredom models for these three algorithms started out well, but
slipped below the 0.6 AUC minimal acceptance line (Section 2.3) line halfway through
the cycle. All models built with GNG proved to behave unacceptably poorly.

Unsupervised models were built to represent the worst possible performance, as repre-
sented by creating models without labelled information. This sets the lower bound for
comparison of the semi-supervised methods, which more closely approximate the real-
world problem. This lower bound can be compared against the two established fully
supervised bounds presented by offline and online approaches. A discussion of these
results is found in the concluding section.

Figure 4. Affective modelling quality, as measured over time by AUC ROC on the most recent 10% of
data; all algorithms unsupervised.
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4.3. Results: semi-supervised real-time affective

As discussed in Section 1, it may be feasible on occasion to ask the user directly for a point
of labelled data. Five labelled points (selected by the algorithms themselves) are used for
each learner, which simulates directly asking the user about his/her affective state once
every five minutes. For the models with barely acceptable average quality, does the injec-
tion of the occasional labels help?

We undertook a technique of simulated student querying to simulate the task of asking
the user for their affective state. Roughly, 30% of the total labels are used in this process,
and on-the-fly active learning is used algorithmically with the approach outlined in
Section 3.5. Table 6 shows the effect that this has on overall model quality.

In short, the labelling information for a few points did not provide much additional
value (if any) in affective state classification. The small number of label requests yields rel-
atively little improvement when compared to zero requests for labels (unsupervised). This
can be seen through the comparison of Figures 5 and 4. This small performance increase,
however, for certain applications, may be the difference between acceptable and unaccept-
able model quality, as shown in detail as part of Table 4.

4.4. Results: discussion of VW and GNG

It became clear early on that these two algorithms were not suitable for this application. In
this section we discuss why this may have been the case.

4.1.1. Growing neural gas
When data are closely aligned in the sampling space, segmentation of the data becomes
difficult, and the GNG algorithm becomes more challenged. Each of the features in the
dataset is raw, contains little to no preprocessing, and is not clearly segmentable over
time. Additionally, the features have a tendency to move through the sampling space flu-
idly, leading to difficulty in the establishment of classification boundaries. These two fea-
tures of the data determine the approach of the GNG algorithm on the problem, leading
to a general trend that the GNG approach establishes one large classification cluster of the
entire sampling space. This large cluster grows until it has encompassed all of the data

Table 6. Numerical summary of modelling results for ART and clustering.

Total1 or average2 model quality Individually usable datasets (of 19)

Model Anger Boredom
Boredom
(reduced) Fear Anger Boredom

Boredom
(reduced) Fear

Offline Linear Regression1 < 0.6 (failure) 0.79� 0.79 0.83 Cross-validated, but not expected to transition
for reasons described in early sections

Supervised ART2 0.776 0.796 0.796 0.841 17 18 18 15
Unsupervised ART2 0.652 0.612 0.612 0.805 6 7 7 12
Semi-Supervised ART2 0.652 0.612 0.612 0.805 6 7 7 12

Supervised Clustering2 0.681 0.644 0.644 0.810 9 9 9 12
Unsupervised Clustering2 0.652 0.612 0.612 0.805 6 7 7 12
Semi-Supervised Clustering2 0.677 0.626 0.627 0.810 11 9 9 16
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available, with few exceptions. The ROC measure for such a cluster is 0.5. While the GNG
algorithm appears to ‘improve’ in quality over time and eventually reaches 0.5 AUC, it is
a model of the baseline majority-class classifier, and does not produce usable models for
any of the research questions.

This phenomenon is surprising and suggests a significant research gap. The OSSGNG
model implemented by Beyer and Cimiano [51] is the only approach in this work that
met all of the real-time algorithm checklist real-time-capable features discussed in Section
3. The observation that GNG does not produce usable models in any condition renders
the safe removal of this approach from the discussion.

4.4.2. Vowpal Wabbit
Each algorithm models a different approach. While GNG represents a topographical over-
lay of the data, VW represents an incremental approach to linear regression modelling.
VW adjusts weight vectors towards classes of labelled data, which increases reliance on
labels. VW performs much better than the other algorithms when there are few states and
feature sets to model.

New concept detection, however, has disastrous results in its overall performance. VW
degrades to minimum performance quickly, and does not display any aptitude towards
individual model recovery. The brittleness of the VW models is displayed through the
above sections, with baseline-approaching performance. Although VW had an initially
higher performance, when compared to the rest of the algorithms implemented in this
work, it also had baseline performance for the longest period of time. Additionally, the
VW models behave in more brittle fashion and benefitted the least from performance
boost from labelling information.

Figure 5. Affective modelling quality, as measured over time by AUC ROC on the most recent 10% of
data, with all algorithms in semi-supervised fashion.
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Therefore, further discussion of GNG and VW has been omitted here in favour of dis-
cussion about ART and k-means clustering, as the overall performance of the last two has
proven superior.

4.5. Results: conclusions for real-time models

As discussed earlier, the offline linear regression models created initially did not make use
of all features of the data, denoted in the summary table (�). For completeness, the
reduced feature dataset is tested on the affective models, in order to answer the research
question, ‘When eliminating features determined to be of little use during offline analysis,
is overall quality also improved for affective real-time models?’ The reduced feature set
(e.g. using only the NeuroSky and Zephyr Heart sensors) was created based on the offline
analysis which revealed that the other sensors did not contribute to the total model of
Boredom. The results of this test are added in Table 6.

In brief, and based on our results, we can confidently conclude that quality affective
models can be constructed using supervised, unsupervised, and semi-supervised
approaches, where very infrequent semi-supervision information, at least in certain repre-
sentations, can increase the number of usable models beyond the other approaches. The
results from the creation of the affective models are encouraging. The previously created
affective models achieved quality of <0.6, 0.83, and 0.79 (see Table 3), while supervised
ART is able to outperform, on all benchmarks, the offline approach using a small fraction
of the total data. This succinctly confirms that online models can be created, and indicates
what future research in this area would improve these models further.

Our research described here has not lost track of the goal of creation and use of student
models for use in an ITS setting. With this goal in mind, a more valuable metric of success
is how well the algorithms for creating models perform when given little labelling infor-
mation, as is the case within an ITS during a training session. When evaluating our
research results by this metric, the unsupervised ART and unsupervised clustering models
are equivalent, while the offline models are expected to have poor quality for the reasons
discussed in Section 1. Our research here indicates that our approach to building individ-
ualised online models would be expected to transfer to use. To the knowledge of the
authors, no other authors in the literature have made the claim that their affective models
would expect successful transfer.

5. Summary

Each chosen method represents a different approach to establishing models from data in
real time. Online clustering represents the method of dealing with online data of unknown
classification through establishing and adjusting areas of the sampling space. Vowpal
Wabbit represents the online approach to linear regression modelling, corresponding to
the initial offline modelling approach chosen by the original experimenters. Adaptive Res-
onance Theory represents a neural network approach to online modelling, previously
shown to have good one-pass learning results. GNGs represent the Self Organizing Map
approach to establishing structure among data. The observation of performance of these
real-time methods with physiological data shows that the approach is valid, and serves to
recommend future solutions in the clustering and neural approaches.
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This validity is shown in several ways. Firstly, direct comparison of fully supervised
results indicates that real-time methods outperform their offline equivalents. Secondly,
AUC values shown from the created models indicate that they are of acceptable overall
quality. Such models are able to be created with less overall labelling information while
exploiting user presence. Lastly, since such models are made from scratch, there is no rea-
son to suspect that they suffer from cultural or population biases.

6. Future work

In the first sections of this work, we contend that learner models of affect and cognition
can aid in the selection of a learning strategy, and that a learner model should be created
using an individualised and real-time approach, rather than a general model created off-
line from data collected long time before model creation. We proceed to show that it is
possible to build models for classification of affect in real time as they are needed that are
individualised � that is, for a particular individual during the time of his/her tutoring ses-
sion. The clearest avenue for future work is the integration of this work into an ITS.

This work is not without flaw, and requires further validation. The dataset used in this
research met the majority of the specifications for an ideal dataset, but not all. A follow-
on data collection and offline analysis effort is currently in progress with over 100 partici-
pants. This study will provide additional validation of methods in addition to expanding
into interaction behaviours.

The methods presented here for real-time modelling were not created for the purpose
of research and discovery; their potential use drives their development. The logical next
step is to merge the work presented here into an intelligent tutoring system � for testing,
validation, or for use. At the time of this writing, the Generalized Intelligent Framework
for Tutoring (GIFT) project by Army Research Laboratory has over 600 users, several
running experiments, and a recent workshop at the ITS conference. It is anticipated that
the next version will incorporate the improvements reported here in individualised stu-
dent modelling. The conclusions of this work will be presented to the community through
integration into this community-driven research platform.

GIFT has been designed based on the idea of a learning effect chain (Sottilare et al.
2012). This has the derived requirement for separable software modules, which have
defined interfaces. The defined process of the learner module is to take sensor and perfor-
mance data and form it into a ‘picture of the learner’ from which to make pedagogical
decisions. The current work is targeted to make these decisions.

Of course, knowledge of student state is not enough information, by itself, to inform
how instruction should be adapted. For example, a learner which is anxious during test-
taking may require no instructional intervention, while a leaner anxious during initial
training exposure may need the pace of material presentation slowed. GIFT 3.0 presents a
framework for pedagogy, as informed by state classification machines that adjusts content.
Other work has been done to create domain-independent pedagogy (Goldberg et al.
2012), through an Engine for Macro-Adaptive Pedagogy. Further developments are cur-
rently in progress for a strategy recommendation engine for micro-adaption, which will
likely be more state-dependent than its macro-adaptive counterpart.

This research to classify affective and cognitive states is intended to function as a part
of architecture to support intelligent tutoring. The GIFT architecture is the intended
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architecture for the transition of this technology. It collects various sensor characteristics
such as electro-dermal response, and posture data from the Microsoft Kinect. It makes
instructional strategy recommendations based on a decision tree of traits, states, and per-
formance. It does not, however, contain a module for merging performance and sensor
data into states into decisions. The work presented is the first of its kind to do so in a man-
ner which can withstand validation, and presents a path for use.
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