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ABSTRACT 

The grand challenge of Intelligent Tutoring Systems 

(ITS) development is that of creating a computer tutor 

as good as a human tutor.  This difficult task may be 

broken into several parts.  The first task real instructors 

perform prior to making instructional decisions is 

assessing the state of the trainee.  Thus, the first 

consideration in the construction of an ITS is obtaining 

meaningful data from sensors and interpreting them in 

order to assess trainee emotional state.  The 

interpretation of sensor data is the significant problem 

in this area, with the problem of sensor data mostly 

having been reduced to sensor selection.  The machine 

learning methods for interpreting unlabelled sensor data 

are significantly more sparse than the sensors available, 

and their selection is far from straightforward.  In this 

paper, Growing Neural Gas (GNG) methods, two types 

of incremental clustering, and Adaptive Resonance 

Theory (ART) will be evaluated against each other on 

fabricated and realtime data streams of trainees‟ state in 

order to determine the best selection of methods to 

accomplish this task. 

 

Keywords: Intelligent Tutoring, Realtime Data Streams, 

Trainee State Assessment, Machine Learning 

 

1. INTRODUCTION 

 

Decisions by instructors regarding the trainee can be 

divided into two basic questions: “How well is the 

trainee doing?”, and “What should be done about it?”.  

In this regard, a computer instructor is no different than 

a human one.  As computer-based instruction gains 

popularity, there is high demand for algorithms and 

methods to autonomously make these types of 

decisions.  If a computer instructor can make these 

types of assessments as optimally as a human instructor, 

computation algorithms can be constructed to optimize 

learning goals more effectively than humans.  Each of 

these are stepping stones for projects in self-directed, 

computer-enabled, automated, learning. 

Computers hold an advantage over human 

instructors as they can make decisions based on sensory 

data not available to the human.  For instance, humans 

cannot see in the Infrared spectrum, measure heart rate, 

measure galvanic skin response, or read 

Electroencephalography (EEG) activity levels.  While 

humans still hold the advantage when processing visual 

and sound data, designers of ITSs should consider the 

advantages they have in order to design more effective 

instructional machines.  The sensors chosen for 

automated trainee assessment should perform their 

individual tasks according to their ability, taking 

advantage of the computer‟s strengths. 

This data is not without challenges.  Sensory input 

to a computer instructor is likely to be usable in only a 

very narrow time window.  Sensory data varies 

significantly from individual to individual and from day 

to day.  Additionally, the data which is processed by 

sensors comes with no interpreted meaning.  Because of 

the high variation in the data, a constructed model is not 

likely to be useful long term, and models constructed 

with this data must be built quickly and not reused.  The 

difficulty in the creation of a unified, emotional model 

for affective sensing is a large part of why emotional 

sensors have not been integrated into the ITS domain 

(Arroyo, Cooper, Burleson, Woolf, Muldner & 

Christopherson, 2009). 

Two traditional methods for dealing with this 

problem are reprocessing by incremental rebaselining, 

in the case of „microclusters‟ (Aggarwal & Yu, 2008), 

or averaging over a Hamming window (Papadimitriou, 

Brockwell & Faloutsos, 2004).  Reprocessing based on 

a new, changed, data stream appears to be a simple 

solution, but only creates more problems.  Issues of 

reprocessing include:  when to reprocess, determination 

of when data shift is too extreme to be usable, and the 

reprocessing window being a time when decisions 

cannot be made on that type of data.  These issues point 

to the idea that reprocessing will not solve the general 

problem.  Using data in a window presents its own 

problems, but it is generally accepted that usable 

conclusions can be conferred via windowed data (Hore, 

Hal & Goldgof, 2007). 

The solution to the generalized problem lies with 

machine learning classifiers that are able to adapt to 

changes in a data stream in realtime.  These methods 

build a model of the data seen so far, use it to make 

decisions, and discard, log, or internalize it after a 

training session is complete.  Using this type of solution 
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provides an accurate assessment of trainee state, but 

creates the problem of dealing with a realtime data 

stream. 

 

2. REALTIME DATA STREAM PROBLEMS 

 

Processing realtime sensory data is becoming 

increasingly easier as computation gains speed and 

takes advantage of multiple cores.  Even though 

computers are becoming faster, the primary trouble with 

data streams does not lie in the speed of computation.  

Algorithms dealing with realtime data streams must 

deal with the critical issues of potentially infinite length, 

concept detection, concept evolution, and concept drift 

(Beringer & Hüllermeier, 2006).  Each of these presents 

their own problems for classification.   

 Sensory data is inherently unlabelled.  Sensor 

measurements, while accurate, do not natively imply 

anything about the item which they are measuring.  Just 

as a nuclear engineer can use a temperature sensor to 

measure the temperature of a reactor core, the sensor 

does not tell him the implications of that temperature.  

An individual, or algorithm in place of an individual, 

must give meaning to the collected data.  In the same 

fashion, measurements of heart rate variability in a 

trainee are not interpreted for their implications on 

learning and training.  However, asking the trainee their 

state at each heartbeat, second, or minute is not only 

impractical, but a task that distracts from learning.  

Labels for state data must be computer-generated, 

infrequently polled from the user, or a combination of 

both. 

 

2.1. Infinite Length 

 

The fundamental problem when dealing with realtime 

data streams is the potentially infinite length.  Any 

machine learning algorithm that relies on viewing all 

data to make a decision at current time will fail to 

process a potentially infinite stream.  Although the data 

stream is not infinite in the real sense, the practical 

implication of infinite length is the presence of a point 

of diminishing returns.  For any algorithm that depends 

on the presence all data to make a decision there is a 

point where there is too much data to process and make 

a decision before more data is presented.  The 

implication at this point is that the algorithm can no 

longer perform in realtime.  While certain algorithms 

may be used up to a hundred, thousand, or million data 

points the presence of the limiting number is not 

recoverable.  The infinite length problem immediately 

discounts the use of traditional systems of machine-

learning such as Bayesian Networks.  Training 

algorithms that iterate over all previous inputs, such as 

backpropagation with Artificial Neural Networks 

(ANNs), also must be discarded. 

 As an example, in the domain of trainee state 

assessment from sensor streams, the duration of a given 

scenario-based training event is unknown and the 

sampling rate can be over 500 Hz with two dimensions. 

 

2.2. Concept Detection 

 

The second problem in dealing with realtime data 

streams is the presentation of a new, previously 

unknown, class of data.  Because there is no 

fundamental limit to the types of observations, there 

must be a method for detection of the novelty.  This 

makes many traditional, unmodified, machine learning 

methods impractical, such as Support Vector Machines 

and Decision Trees, which are unable to dynamically 

respond to the development of new, previously unseen, 

classes of data. 

 In the domain of interest, the number of moods or 

their representation is not known prior to observation.  

Even if the number of states is known a priori, there is 

no guarantee that any of the states will be represented in 

a given period, that one state will correspond to one 

location within the observational space, or that one state 

will correspond to only one location of the sampling 

space. 

 

2.3. Concept Drift 

 

The third issue when dealing with realtime data streams 

is the problem of the underlying concepts changing over 

time.  In the domain of interest, a particular mood of a 

trainee can represent itself differently over time.  For 

instance, in an unpublished Galvanic Skin Response 

(GSR) classification experiment, spikes were observed 

in a GSR data stream of people exposed to fear-based 

imagery.  However, after the spike had been resolved 

and the image had been rescinded, both the next rest 

state and next image presented demonstrated elevated 

GSR measures.  This is not indicative of the subject 

evidencing strong emotion in the rest state or stronger 

emotion in response to fear-based imagery, but instead 

evidence of a change in baseline observation.  This 

further rules out ideas such as Hamming window 

baselining as a possible solution.  The experiment that 

dealt with this datastream evidenced poor performance 

using NeuroEvolution of Augmenting Topologies, 

which has elements of ANNs and Genetic Algorithms, 

to attempt classification.  This indicates that such 

methods would not be successful, even with realtime 

modifications.  A 2010 study, pictured below, found 

similar observance patterns among GSR data. 

 
Figure 1:  Example of concept drift changing baseline 

measurements in one-dimensional, time-aligned, GSR 

data (Gao, Raine, Venables, Dawson & Mednick, 2010) 

 

2.4. Concept Evolution 

 



The final problem present in realtime data streams is 

concept evolution.  This is observed when an already 

evolved concept presents itself in a way different from 

before.  In the domain of text mining, this is presented 

by using different words to express the same concept 

(Masud et. al. 2010).  In the domain of trainee state 

modeling, this may represent itself as a changed 

baseline in one dimension and a different baseline in 

another; however, it is unknown what types of sensory 

measurements are likely to experience the evolution of 

one concept differently in the represented tested 

sampling space. 

 

3. POTENTIAL SOLUTIONS 

 

The nature of this problem lends itself to several 

branches of machine learning.  Unsupervised methods 

can be used in order to cluster inherently unlabelled 

sensory information.  Information can then be attached 

to the clusters in a semi-supervised manner to give 

meaning to the data.  For instance, unsupervised 

methods can point out general data trends and use 

another algorithm, or infrequent survey data, to give 

these established categories various implications.  

Supervised or statistical Machine Learning can process 

clusters with attached meaning to recommend 

instructional decisions for learning goals or outcomes. 

The components of this section will summarize 

algorithms that will be tested against the first portion of 

the adaptive tutoring problem; continuous, realtime, 

noisy, sensor data. 
 

3.1. Incremental Clustering  

 

Clustering is a type of unsupervised learning operating 

on the principle of determining the distance from an 

observed point in sample space to other points relative 

to it.  If the observed point is within a threshold distance 

of similarity to other points, it is assumed to have a 

relationship to them and is clustered together.  

Examples of clustering include hierarchal clustering, 

graph clustering, and k-means (Jain, 2008). 

 Two types of incremental clustering algorithms are 

used for this paper as a baseline measurement of 

performance.  Both of these are k-means variants 

adapted for incremental use on data streams of 

potentially infinite length.  The performance of these 

algorithms is expected to flag on the problems of drift 

and evolution, but provides a reasonable baseline 

approach upon which to compare the other methods 

presented. 

 The first clustering algorithm used in this paper is 

adapted from http://gromgull.net, and closely follows 

the approach of online agglomerate clustering 

(Guedalia., London & Werman, 1998).  This approach 

is summed up in their work as, for each point: 

Move the closest centroid towards the datapoint 

Merge the two closest centroids, if appropriate 

 Creates one redundant centroid 

Set redundant centroid equal to the datapoint 

 

 The second method is custom-developed, but 

follows the basic point recognition algorithm pseudo-

code: 

For each point 

 Compare point to all known clusters 

 If no cluster is within vigilance 

  create new cluster here 

 else 

  move matched cluster up to <delta> in the 

direction of the recent point 

 

3.2. Growing Neural Gas (GNG) 

 

Neural Gas is a method of finding the optimal data 

representations based on feature vectors.  It was 

inspired by the successes of ANNs and Self Organizing 

Maps, and has been used as an alternative to clustering.  

An incremental version has been created in the form of 

GNG (Holmstrom 2002), and is expected to outperform 

baseline clustering on the problems of interest.  The 

general algorithm is below, for each new data point, 

although the specific implementation in that experiment 

may be slightly different, as the Modular toolkit for 

Data Processing (MDP) 2.6 implementation was used: 

If appropriate (current point does not correspond to 

known information), create new reference arc, 

store error 

Else increment age of all arcs in this area, move 

existing arcs towards new data, establish new ages 

for arcs 

Remove Aged arcs 

If any non-emanating arcs exist, remove them 

If it is the time to add a new point (due to timing) 

Add a new reference point, halve the distances of 

the existing arcs to this point, scale the existing 

errors 

Compute non-Hamiltonian path of all arcs (depth first) 

For this point against each class: 

If there are few related nodes, compute the 

probability of the point belonging to the lowest 

error class 

Else determine the modified shape of the cluster it 

is most likely to belong to 

 

3.3. Adaptive Resonance Theory (ART) 

 

ART is a type of neural network architecture which 

classifies objects based on the activation of nodes in the 

structure.  It was developed to classify data in a one-

pass learning environment (Carpenter & Grossberg, 

1995), and has performance roughly equivalent to 

neural networks with significantly reduced training 

time.  In its most basic form ART draws n-dimensional 

hypercubes around similar input patterns, where n is the 

dimension of the input data.  Matched data is the data 

that falls within the smallest hypercube or of the class 

of the closest available hypercube.  Hypercubes are 

expanded to compensate for new data in accordance 

with parameter settings.  Although sometimes viewed 
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as a disadvantage, ART systems are capable of one-pass 

learning, and are consequentially sensitive to the input 

order of data.  It is expected that ART systems will 

respond well to the problem of evolution, but poorly to 

the problem of drift. 

 

3.4. Parameters used in this experiment 

 

The parameters used in this experiment for online 

agglomerate clustering was a maximum cluster number 

of 15.  The incremental k-means approach used a delta 

parameter, corresponding to a numeric value of how 

much to change in response to a new point, of 10%.  It 

also used a vigilance parameter, corresponding to a 

maximum percentage error before creating a new 

cluster of 20%.  These values were chosen based upon 

minor experimental sampling. 

 The ART algorithm used in these experiments was 

complement coded, with no category maximum, fast 

learning, a vigilance of .9, and a bias of .000001.  More 

information about ART parameters can be found in the 

original paper (Carpenter & Grossberg, 1995) or about 

this specific implementation via the pyrobot users 

group. 

 The GNG algorithm used in this paper is 

implemented as part of the Open Source Modular 

Toolkit for Data Processing, with the following 

parameters:  alpha = .1, lamda=20, eps_beta=.5, 

max_nodes=400, max_age=10, epilon_n=.06, d=0.995.  

These all all roughly recommended parameter settings.  

More information about these parameters can be found 

in the MDP 2.6 website:   http://mdp-

toolkit.sourceforge.net/, or in the published paper (Zito, 

Wilbert, Wiskott & Berkes, 2009). 

 

4. PROBLEM SPACE 

 

In order to test each algorithm, several datasets were 

obtained.  The benchmark datasets include:  a fabricated 

two dimensional set of predefined shapes, a fabricated 

two dimensional point-drawing of shapes representing 

movement from one class of data to the next, and a two 

dimensional real dataset of electrocardiology (ECG) 

and GSR data taken during an experiment, and a three 

dimensional real dataset of EEG-classified trainee state. 

 

4.1. Ordered set of point-drawn shapes 

 

A set of predefined shapes will be chosen to represent 

the problem space of generic, unsupervised, 

classification.  The points are presented in order of 

shape appearance in order to establish how well each 

classification algorithm responds to the development of 

new data classes over time.  Each shape is Gaussianly 

distributed among its boundaries with the exception of 

the outlined circle, which has a Gaussianly distributed 

ring.  Points are drawn between shapes in order to 

simulate the gradual change of classes.  This more 

accurately simulates the trainee state space by not 

providing drastically different shift.  Although there is 

no correct answer to this dataset, the general 

classification of observed shapes should be a goal.  

While these are quickly apparent to human eyes, it is 

important to note that these patterns are presented to 

each algorithm with very little memory.  This dataset 

tested 4250 unique points. 

 

4.2. Randomized set of point-drawn shapes 

 

This set uses the same set of datapoints as described in 

section 4.1, with the order of presentation randomized.  

This tests how well each algorithm remembers the 

states that it has previously seen.  As in 4.1, this dataset 

tests 4250 unique points. 

 

 
Figure 2: A set of predefined shapes, used in shape 

order for dataset 4.1, and used in randomized order for 

dataset 4.2 

 

4.3. Feature-extracted  EEG data 

 

A set of ECR and GSR data captured in another, 

currently unpublished, experiment is available to the 

author.  The experiment involved a user interacting with 

a digital character in well-, and ill-defined scenarios.  

One of the three scenarios was deliberately made 

frustrating for the user in order to evince particular 

emotional state.  A random user was selected for the use 

of their data, in order to gauge an idea of performance 

on other, similar, datasets.  Technologies of eMotive 

EEG, Galvanic Skin Response (GSR), and 

electrocardiology (ECG) data were captured in this 

experiment.  It is expected that the user demonstrated 

various cognitive states during the various phases of the 

experiment.  These were, in order, a rest period, a 

scenario which was chosen randomly among three 

possible, and a survey.  The performance on this set of 

data can be used to gauge an idea of performance on 

other, similar, datasets.  This dataset used 9,342 points, 
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corresponding to 38 minutes of actual data collection 

time. 

 

 
Figure 3: Classified EEG data.  Short Term 

Excitement (STE) is along the x-axis, 

Boredom/Engagement is along the y-axis. 

 

4.4. ECG and GSR data 

In the experiment described above, the ECG and GSR 

data was collected as an additional measurement of 

trainee state.  This dataset tested 400,000 datapoints, 

corresponding to 24 minutes of actual data collection 

time. 

 
Figure 4: Unfiltered ECG and GSR data.  ECG data is 

along the x-axis, GSR data is along the y-axis 

 

5. RESULTS 

 

5.1. Set of ordered, predefined shapes 

 

 
Figure 5: Online agglomerate shaped clustering 

 

 
Figure 6: Incremental k-means shaped clustering 

 

 
Figure 7: ART shaped clustering 

 



 
Figure 8: GNG shaped clustering 

 

5.2. Set of random, predefined shapes 

 

 
Figure 9: Online agglomerate random shaped clustering 

 

 
Figure 10: Incremental k-means random shaped 

clustering 

 

 
Figure 11: ART random shaped clustering 

 

 
Figure 12: GNG random shaped clustering 

 

5.3. Classified EEG data 

 

 
Figure 13: Online agglomerate EEG clustering 



 

 
Figure 14: Incremental k-means EEG clustering 

 

 
Figure 15: ART EEG clustering 

 

 

 

 
Figure 16: GNG EEG clustering 

 

5.4. ECG and GSR data 

 

Online agglomerate clustering did not complete this 

successfully within allotted time, and failed to deal with 

the problem of infinite length. 

 

  
Figure 17: Incremental k-means ECG/GSR clustering 

 

 
Figure 18: ART ECR/GSR clustering 

 

 

 
Figure 19: GNG ECR/GSR clustering 

 

5.5. Time Analysis 

 

All experiments were run, single-threaded and 

overnight with no interference on a 2.67 GHz processor 

with 4GB of RAM.  Data was cached before clustered.  

Time was stopped for screen-drawing so as not to bias 

algorithms, such as ART and GNG, where data 



visualization is a lengthier.  Python version 2.7 was 

used to handle garbage collection and other 

programming issues.  Integrated DeveLopment 

Environment (IDLE), a part of Python, was run in a 

thread separate from processing.  Given the high data 

processing rate of these algorithms, it was determined 

that the average time over multiple runs would not be 

required to be analyzed.  However, these numbers 

should be taken as representative rather than 

guaranteed.  

Table 1: Time analysis of various algorithms (in Hz) 

 Online 

agglomerate 

clustering 

Incre. k-

means 

ART GNG 

Ordered 

shapes 

215 69672 11707 1396 

Unordered 

Shapes 

273 27243 4560 1403 

EEG 189 15648 3803 801 

ECG/GSR - 45511 2035 472 

 

6. DISCUSSION 

 

6.1. Ordered Shapes 

 

It is worth noting early that the size of the clusters in 

each of the first two algorithms are not a function of the 

true size, which is difficult for visualization purposes.  

However, the overall trend can be seen, so this is of 

little concern.  In a time analysis, incremental k-means 

outperformed all other methods, with generally good 

responses from ART and GNG. 

Agglomerate clustering does an excellent job of 

capturing the major data clusters, while missing the 

smaller clusters, and generally maintaining a fairly 

stable number of clusters.  It hits the fifteen cluster 

limit, but at a generally acceptable time.  Hitting this 

limit causes it to miss several of the smaller circles, and 

it classifies these as generally transitory states. 

 K-means, while correctly classifying many of the 

smaller clusters, and correctly classifying the larger 

clusters, misclassifies the edge-bound circle and two of 

the squares as a few different classes.  It cannot merge 

these due to the deficiency of the algorithm. 

ART does a successfully captures the meaning in the 

smaller clusters, but generally over-classifies the larger 

shapes.  GNG, however, classifies the obvious shapes 

with very little error and acceptable time performance. 

 

6.2. Randomized Shapes 

 

In general, the performance of the incremental 

clustering algorithms did not degrade with the 

randomization of the data points.  ART, however, 

narrows in the clusters that it is classifying, while GNG 

nearly completely fails to isolate individual classes of 

underlying structure.  This behavior of the GNG 

algorithm is noted in other locations (Ancona, Ridella, 

Rovetta & Zunino, 1997). 

 

6.3. EEG 

 

The EEG dataset has no easily apparent patterns, but it 

does have locations of more data presentation instead of 

less.  Online agglomerate clustering fails to find the 

patterns in the striated middle bands, as does k-means, 

and GNG.  ART, however, classifies x-dimensional 

bands, which are likely to be the observed states.  

Additionally, outliers, which are likely to be noise, are 

classified into a classes of outliers in GNG and ART, 

but not in the online clustering algorithms. 

 

6.4. GSR/ECG 

 

The final dataset deals with a large amount of data to be 

processed, and is indicative of the worst-case, real-life 

situations where these algorithms may be used to 

classify trainee state.  This data was collected at a 

sampling rate of 500 Hz, which puts a significant speed 

test on each of these algorithms.  Online agglomerate 

clustering fails to finish classification in time.  GNG 

also fails to complete in time, but it is worth noting that 

this is only by a slim margin of 472 Hz, rather than 500.  

 With additional speedups found in high 

performance computing, or simply a faster processor, it 

is possible that this algorithm would finish in time.  

However, it is worth noting that any real-life usage will 

likely be in more than two dimensions. 

 This is the second set of data with no readily 

determinable pattern.  Incremental k-means expresses 

this as a series of unmerged clusters, while ART 

expresses this as roughly 20 striated bands.  ART 

completely fails to capture the heartbeat, which is the 

most important part of the ECG data.  Further 

experiments, which are not shown, show this to be true 

even at 5 times the imaging resolution. 

 

7. CONCLUSION 

The obvious conclusion, as demonstrated in the No Free 

Lunch Theorem (Wolpert & Macready, 1997), is that no 

one algorithm works best across all problems.  The 

incremental clustering algorithms performed admirably 

across the domains of well-defined clustering, while 

performing quite poorly on real-world data.  One of the 

important takeaways here is that cluster merging is too 

expensive of a proposition to allow in realtime.  

 Generally speaking, ART was able to classify well 

in realtime even when data patterns were not present or 

not apparent.  The clusters formed by ART were of 

reasonable input size and classification.  GNG was able 

to successfully classify provided that data was in the 

correct order and that a pattern was apparent, but was a 

bit slow on problems of high data input rate. 

 

8. FUTURE WORK 

Future work in this area will branch into two directions.  

The first direction will continue to look for algorithms 

that perform well on this type of data problem, or in the 

adaption of ART and GNG to classify fewer clusters, 



and operate with a quicker timeframe, respectively.  

Feature extraction of meaningful data will also be 

looked into, including the addition of time-stamp 

related data and its effect on formed clusters, which 

would appear to have an effect on other assortments of 

data (Beringer & Hüllermeier, 2006). 

The second direction will look at the problems of 

how to model trainee state, state transitions, and future 

state prediction.  Simultaneously, the author and others 

will look at how to present delayed reward to the 

machine learning algorithms which make decisions 

based on trainee states.  It is expected that these studies 

will involve Markov Chain models, Markov Decision 

Processes, and Partially Observable Markov Decision 

Processes.  Experiments of what constitutes a reward 

will also be conducted. 
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