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Abstract. This article reviews the first of two experiments investigating the 

effect tailoring of training content has on a learner‘s perceived engagement, and 

to examine the influence the Big Five Personality Test and the Self-Assessment 

Manikin (SAM) mood dimensions have on these outcome measures. A 

secondary objective is to then correlate signals from physiological sensors and 

other variables of interest, and to develop a model of learner engagement. Self-

reported measures were derived from the engagement index of the Independent 

Television Commission-Sense of Presence Inventory (ITC-SOPI). 

Physiological measures were based on the commercial Emotiv Epoc 

Electroencephalograph (EEG) brain-computer interface. Analysis shows 

personality factors to be reliable predictors of general engagement within well-

defined and ill-defined tasks, and could be used to tailor instructional strategies 

where engagement was predicted to be non-optimal. It was also evident that 

Emotiv provides reliable measures of engagement and excitement in near real-

time.  
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1 Introduction 

Simulation-based training environments, although potentially powerful, suffer from 

the same weaknesses as other computer-based training methods; they lack  

individualized guidance and feedback. The effectiveness of adaptation in state-of-art 

computer-based training is limited and is far from producing comparable benefits to 

those seen in human-to-human instruction. However, incorporating the application of 

dynamic cognitive-state assessment of a learner can be used to provide additional 

cues to a training system to facilitate personalized self-directed learning. Emerging 

evidence suggests that enabling a training system to access affective and cognitive 

states can enable it to adapt an individual student's learning experience and improve 

learning outcomes [1]. Personalizing instructional content on the individual level 

requires real-time cognitive state assessments that aim to interpret the attentional 

resources a particular student is devoting to a task and to determine a student‘s 



―readiness‖ to learn [2]. Ultimately, this can lead to enabling training systems to 

better diagnose student errors and improve learner engagement. 

This paper presents the results of an initial study which observed whether and to 

what degree tailoring of training content (e.g., clarity and flow of task) in a computer-

based cultural negotiation trainer had on self-reported levels of engagement. It also 

evaluated if specific sensors are practical for gathering data for cognitive-state 

modeling. Engagement is a state of interest. It reflects processes that involve 

information gathering, visual scanning, and periods of sustained attention [3]. A 

secondary research objective is to correlate signals from physiological sensors and 

other variables of interest to arousal leading to development of a model of learner 

engagement. Longer-term, the results of this study could contribute to establishing the 

validity of using commercial off-the-shelf (COTS) cognitive-state sensors for 

manipulations designed to improve engagement and provide inputs sufficient for 

enabling engagement modeling.  

2 The Link of Engagement to Learning 

Developing reliable methods to measure and classify learner engagement, as well as 

better understand its connection to learning has been a research focus within the 

computer-based tutoring community [4]. A number of empirical studies have shown 

student engagement to be a critical predictor of learning and personal development 

[4][6]. Carini et al. [6] found student engagement to be positively correlated with 

desirable learning outcomes such as critical thinking skills and grades; however, the 

magnitude of this connection was fairly weak because engagement is only one of a 

variety of variables which contribute to these particular learning outcomes. Similarly, 

Rowe et al. [4] found, independent of students‘ prior domain knowledge and 

experience, a strong positive relationship between learning outcomes and increased 

engagement. Thus, engaged interest towards an instructional task can influence 

cognitive performance, thereby facilitating deeper learning [4][ 7]. 

The methods for detecting engagement levels across individuals in real-time rely 

primarily on physiological sensors. A number of sensors have been empirically tested 

for detecting engagement levels, including: electrocardiogram (ECG) [18], galvanic-

skin response (GSR) [8], and EEG. EEG is the prominent variable of interest for this 

research because commercial EEG systems have been used to track and model user 

attention in real time [5]. Fairclough and Venables' [17] experiment revealed EEG 

measures to reliably correlate with engagement levels and explained 26-42% of the 

variance for self-reported levels of distress (e.g, tension and confidence associated 

with negative affect) across prolonged task interaction. By comparison, Stevens, 

Galloway & Berka [2] found EEG indices of engagement to negatively correlate with 

experience.  They consider the metric is responding to the appearance/format of the 

content rather than the actual content presented.  

Results from these studies show a number of variables have an impact on a 

learner‘s engagement, and time on task and presentation characteristics of 

instructional content are directly related. Adaptive tailoring of content can mitigate 



 

this effect and extend the time before the onset of disengagement. The primary goal of 

this effort is to identify predictive influencers of engagement so as to adapt content, 

flow and feedback, in real-time, when a classified cognitive state is deemed to have a 

negative impact on learning.  

3 Methodology 

Twenty-one adults volunteered to participate in the experiment with seventeen 

providing usable data. Of the 17 participants, 11 were males (age M = 34, SD = 9.5) 

and 6 were females (age M = 40, SD = 12). Each participant interacted with the 

Cultural Meeting Trainer (CMT), a web-browser-based training system prototype in 

which the learner engages in bilateral conversations with virtual characters 

representative of Middle Eastern culture. Participants interact with CMT characters 

through static dialogue choices. No subjects reported experience in inter-cultural 

conversations or negotiations prior to participating in the study.  

A counterbalanced within-subjects experimental design evaluated the effectiveness 

of an EEG-based cognitive-state sensor during three conversations of (a) varying 

clarity (one well-defined and two ill-defined) and  (b) the presence or absence of 

interruptions. A well-defined task was one which followed an unambiguous series of 

steps, where success was clearly defined. An ill-defined task  was one in which the 

task was vague or ambiguous, where objectives are not clearly stated and there are 

many possible paths to success.   

The second manipulation measured the effect of disruption on engagement, using   

self-report measures of engagement. In the context of the experiment, participants and 

characters take turns speaking or acting. Having the character speak unpredictably is a 

disruption to the pattern of expectancy. This type of disruption occurs in one of the 

two ill-defined conversations. This manipulation enables the assessment of whether or 

not there are detectable differences in reported levels of engagement with the 

inclusion and exclusion of disruptions.   

3.1 Procedure 

Participants were first given an overview of the research, signed a consent form, were 

fitted with the EEG recording Emotiv EPOC, and given a demographics 

questionnaire. Next, initial interaction with the CMT interface is provided through an 

introductory conversation with a virtual character. Then there were three conversation 

tasks presented to the participants in random order. Before each conversation, 

participants observed a relaxation video for 1-2 minutes in order to place them in a 

state of calm before conducting the next conversation. This video was intended to 

mediate the mood state experienced in the previous scenario. At the start of each 

conversation, participants were given a background briefing on the character they 

would be conversing with along with guidelines and the purpose of the meeting.  

For this study, the participant conversed with three hospital employees soon after a 

nearby insurgency attack. The well-defined no interruption (WDNI) task required 



participants to maintain casual small talk with an in-house physician. The two ill-

defined scenarios included an Ill-Defined No Interruption (IDNI) task with the lead 

physician and an Ill-Defined with Interruption (IDI) task with the hospital 

administrator. The objective of the conversation with the lead physician was to gather 

information on the attack without making commitments directly to the doctor. The 

discussion with the administrator was intended to gain U.S. support and identify what 

the hospital needed to function efficiently. This conversation with the hospital 

administrator was designed with an interruption in task flow where the character 

spoke out of turn.  Each meeting was approximately 5-6 minutes in duration.  

3.2 Dependent Measures 

A demographic questionnaire was administered to each participant. Information 

included age and education level, prior experience in inter-cultural conversation and 

negotiation, personality (Big Five Personality Test [9]), and current mood (SAM). 

The Big Five Personality Test provides percentile scores on the dimensions of 

Openness, Conscientiousness, Extraversion, Agreeableness and Neuroticism. 

Research suggests these dimensions provide insight into how an individual governs 

their cognitive resources [20].  

Subjects‘ self-reported engagement levels were collected following each 

conversational task. A 2-part instrument was administered to assess engagement. The 

first part included fourteen ―engagement-specific‖ (α=.89) questions derived from the 

Independent Television Commision-Sense of Presence Inventory (ITC-SOPI). The 

engagement index assesses a subject‘s attention and involvement during task 

interaction [12]. This survey was selected because attention signals have been shown 

to be highly correlated with ―presence‖, which is reasonably correlated with 

engagement in virtual environments [10, 11]. The second part of the post-

conversation survey is the SAM [15], a validated non-verbal graphical approach for 

evaluating Mehrabian‘s three dimensions of mood: pleasure, arousal and dominance 

[16].  

Real-time measures of engagement were derived from sensors placed directly on 

the participant. Data was collected via the Emotiv EPOC Neuroheadset, a 

commercial-off-the-shelf EEG brain-computer interface. The Emotiv EPOC is 

composed of 14 electrodes with locations following the American EEG Standard [14]. 

This device provided rolling continuous measures of associated states, including: 

short term excitement (STE), long-term excitement (LTE) and engagement. The 

Emotiv has previously been used to capture engagement levels within computer-based 

entertainment games [19]. Collection of sensory data provided concurrent 

physiological information allowing assessment of dynamically changing cognitive 

states instead of only evaluating static labels from the administered self-report 

instruments [13]. Data collected with the initial questionnaire was used to correlate 

demographic variables with EEG and self-reported data to generate subgroups. 

This research evaluated the influence of personality, mood and EEG measures on 

the prediction of engagement. The following hypotheses were addressed: (1) Assessed 

measures of personality via Big Five Personality Test and mood via the SAM will 



 

correlate with self-reported measures of engagement, (2) Aggregate physiological 

data (STE, LTE and Engagement from EMOTIV) will correlate with self-reported 

engagement levels. (e.g., feeling of not just watching), (3) Self-reported measures of 

engagement will be significantly higher in the interruption condition (IDI) when 

compared to scenarios with no interruption (WDNI and IDNI), and (4) Self-reported 

measures of engagement will be significantly higher in the ill-defined scenarios (IDNI 

and IDI) when compared to the measures of engagement in the well-defined scenario 

(WDNI) due to unspecified routines for achieving task objectives. It is believed an 

interruption in scenario flow will produce higher engagement scores because the 

expected interaction routine is broken, resulting in more focused attention to dialogue 

selections. 

4 Results 

Analysis was conducted to observe the relationship personality and mood dimensions 

have on self-reported engagement levels following interaction with a web-based 

training system. The following tables present Pearson‘s coefficients for the Big Five 

personality and the SAM mood dimensions in relation to measures derived from the 

engagement index of the ITC-SOPI (See Table 1, 2, and 3). Separate analysis was 

conducted for all conditions and was based on each of the 14 individual items as well 

as their mean to produce an overall engagement score. Individual items were 

examined to gauge causal relationships between variables.   

Table 1. Big Five and SAM correlations with reported Engagement scores for individual items 

within the Well-Defined Conversation Scenario. 

Engagement Item Big Five Dimension  Correlation  
‗I paid more attention to displayed 

environment than I did my own 

thoughts‘ 

Openness 

Agreeableness 
r(16) = -.564, p = .023 

r(16) = -.498, p = .049 

‗I felt myself being drawn in‘ Agreeableness r(16) = -.524, p = .037 

‗I felt involved‘ Agreeableness r(16) = -.527, p = .036 

‗I feel I wasn‘t just watching 

something‘ 

Agreeableness r(16) = -.547, p = .028 

‗I responded emotionally‘ Agreeableness r(16) = -.546, p = .029 

Average Score for All Items Agreeableness r(16) = -.767, p = .001 

‗I felt the characters were aware of 

me‘ 

SAM Pleasure r(16) = .516, p = .041 

‗I feel I wasn‘t just watching 

something‘ 

SAM Dominance r(16) = .596, p = .015 



Table 2. Big Five and SAM correlations with reported Engagement scores for individual items 

within the IDNI Conversation Scenario. 

Engagement Item Big Five Dimension  Correlation 

Average Score for All Items Agreeableness  r(16) = -.612, p = .012 

Average Score for All Items Neuroticism  r(16) = .535, p = .033 

‗The experience was intense‘ SAM Pleasure r(16) = .617, p = .011 

Table 3. Big Five and SAM correlations with reported Engagement scores for individual items 

within the IDI Conversation Scenario. 

Engagement Item Big Five Dimension  Correlation 

‗I felt involved‘ Agreeableness r(16) = .499, p = .049 

‗I paid more attention to displayed 

environment than I did my own 

thoughts‘ 

Agreeableness 

SAM Pleasure 
r(16) = -.566, p = .022 

r(16) = .621, p = .010 

‗I felt that interacting with the 

character was difficult‘ 

SAM Dominance r(16) = -.512, p = .043 

 

Examining the reliability of the assessed personality/mood measures and their 

influence on self-reported engagement, all variables were accounted for in regression 

analysis. Variables were trimmed based on coefficients found to not have a significant 

influence on the prescribed outcome. The results illustrated ―agreeableness and 

arousal‖ to explain a significant portion of variance in Self-Reported Engagement 

scores for the WDNI scenario, adjusted R
2
 = .66, F(2, 13) = 15.68, p < .001. The 

following linear regression model was developed: 

 Self Reported Engagement = 4.374 – 0.013 * agreeableness - 0.099 *arousal (1) 

Furthermore, results suggest a significant amount of variance in Self-Reported 

Engagement scores (IDNI scenario) is explained by ―agreeableness and neuroticism‖, 

adjusted R
2
 = .54, F(2, 13) = 9.89, p = .002, producing the linear regression model 

shown below: 

 Self Reported Engagement = 3.295 – 0.007*agreeableness+0.010 *neuroticism (2) 

In the interruption scenario (IDI), ―agreeableness‖ explained a significant portion 

of variance in “feeling of being involved” scores, adjusted R
2
 = .20, F(1, 14) = 4.65, p 

= .049; and in ―more attention to environment” scores, adjusted R
2
 = .20, F(1, 14) = 

6.59, p = .022. Based on these findings, the two models were formed: 

 Feeling of being involved = 2.566 + 0.014 * agreeableness (3) 

 More attention to environment = 4.598 - 0.020 * agreeableness (4) 

Subsequently, aggregate physiological data (STE, LTE and Engagement) was 

analyzed against self-reported engagement scores to identify correlations (See Table 

4). This analysis incorporated Resting Engagement (RE) data collected during the two 

minute phases prior to each individual scenario. 



 

Table 4. Emotiv STE, LTE, and Engagement correlations with reported Engagement scores for 

individual items within all Conversation Scenarios (WDNI, IDNI and IDI). 

Engagement Item (WDNI, IDNI, IDI) Emotiv Dimension Correlation 

‗I feel I wasn‘t just watching 

something‘ (WDNI) 

STE 

LTE 
r(16) = -.523, p = .019 

r(16) = -.436, p = .046 

‗I felt the character was aware of me‘ 
(WDNI) 

STE 

LTE 
r(16) = -.563, p = .012 

r(16) = -.450, p = .040 

‗I felt that interacting with the 

character was difficult‘ (WDNI) 

STE r(16) = .485, p = .029 

‗I responded emotionally‘ (WDNI) LTE r(16) = -.428, p = .049 

‗I was surprised by something the 

character did or said‘ (WDNI) 

Resting 

Engagement (RE) 
r(16) = -.516, p = .020 

‗I feel I wasn‘t just watching 

something‘ (IDNI) 

RE r(16) = -.455, p = .038 

‗I lost track of time‘ (IDNI) RE r(16) = -.542, p = .015 

‗I paid more attention to displayed 

environment than I did my own 

thoughts‘ (IDNI) 

RE r(16) = -.436, p = .046 

‗I felt myself being drawn in‘ (IDI) STE 

LTE 
r(16) = -.447, p = .041 

r(16) = -.473, p = .032 

‗I felt that interacting with the 

character was difficult‘ (IDI) 

Engagement r(16) = -.457, p = .037 

‗I lost track of time‘ (IDI) RE r(16) = -.569, p = .011 

‗I feel I wasn‘t just watching 

something‘ (IDI) 

RE r(16) = -.440, p = .044 

 

Examining the reliability of self-reported engagement measures in predicting 

physiological outputs for the WDNI scenario, analysis showed “surprised by 

character actions” to explain a significant portion of variance in RE scores, adjusted 

R
2
 = .21, F(1, 14) = 5.08, p = .041 and ―feeling that character was aware of you‖ 

explained a significant portion of variance in STE scores, adjusted R
2
 = .27, F(1, 14) 

= 6.49, p = .023. The following linear regressions were developed from these results: 

 STE = 0.677 – 0.091 * feeling that character was aware of you (5) 

 RE = 0.702 – 0.057 * surprised by character actions (6) 

Within the two ill-defined scenarios, two linear regression models that explain 

significant variance in self-reported scores were found. The item “lost track of time” 

explained a significant portion of variance in RE scores for both the IDNI and IDI 

scenarios, adjusted R
2
 = .24, F(1, 14) = 5.82, p = .030 (IDNI); adjusted R

2
 = .28, F(1, 

14) = 6.69, p = .022 (IDI). The following linear regression models were developed: 



 RE (IDNI) = 0.722 – 0.063 * lost track of time (7) 

 RE (IDI) = 0.714 – 0.065 * lost track of time (8) 

The next statistical test evaluated if engagement scores will be significantly higher 

in the interruption condition (IDI) when compared to scenarios with no interruption 

(WDNI and IDNI). A non-directional t-Test (α = .05) was used to compare the 

average ―interruption‖ scores with the average ―no interruption‖ score. Only the 

“feeling that interaction was difficult” item, a self-reported measure of engagement, 

was shown to have a significant difference in the averages within subjects for the 

WDNI (M = 2.188, SD = 1.05) and the IDI groups (M = 2.875, SD = 1.02), t = -2.63, 

p = .019. All other self-reported measures of engagement failed to show any 

significant differences between the ―interruption‖ and ―no interruption‖ conditions.  

In addition, analysis examined if engagement scores were significantly higher in 

ill-defined scenarios (IDNI and IDI) when compared to the measures of engagement 

in the well-defined scenario (WDNI). A non-directional student‘s t-Test (α = .05) was 

used to compare the ill-defined (both with and without interrupts) average scores with 

the average well-defined score for all ten self-reported measures of engagement.  

For “feeling that interaction was difficult”, significant differences in the averages 

of the IDNI group (M = 3.063, SD = 1.12) and the WDNI group (M = 2.188, SD = 

1.05), t = 3.12, p = .036 were identified. As well, there were significant differences in 

the averages of the IDI group (M = 2.875, SD = 1.02) and the WDNI group (M = 

2.188, SD = 1.05), t = 2.68, p = .017. For “surprised by character actions”, there was 

no significant difference in averages for the IDI and the WDNI groups, but there was 

a significant difference between the IDNI (M = 3.375, SD = 1.09) and the WDNI 

groups (M = 2.75, SD = .93), t = 2.29, p = .036, with a higher mean for the ill-defined 

task. For “lost track of time”, there was no significant difference in the averages of 

the IDNI group and the WDNI group, but there was a significant difference between 

the IDI group (M = 2.56, SD = .89) and the WDNI group (M = 3.13, SD = 1.09), t = -

2.52, p = .023, with the well-defined scenario showing the larger mean.  

5 Discussion 

The manipulation of task clarity and sequence of task interaction has shown reliable 

differences in self-reported scores of engagement. In terms of clarity this conveys that 

more attentional resources are required for task execution when steps for successful 

performance are ambiguously defined. As well, it was hypothesized that the 

interruption scenario would show reliably higher engagement scores when compared 

to non-interruption conversations. Analysis illustrates that subjects reliably reported 

the interaction to be more difficult when an interruption in the expected task flow was 

present. This suggests tailoring training content to incorporate ill-defined rules along 

with interactions that break expectations can produce visible increases in engagement.  

In addition to assessing the effect tailoring of content has on engagement, 

personality factors, mood factors and physiological factors were evaluated to observe 

their predictive power in terms of estimating self-reported ITC-SOPI scores. The 



 

resulting analysis expressed multiple approaches for reliably predicting learner 

engagement through static and dynamic assessment techniques. Specifically, the 

personality dimensions of extraversion, agreeableness, and neuroticism along with the 

mood dimension of arousal were found to be reliable predictors of engagement when 

analyzed within individual tasks. For all post-scenario metrics, the dimension of 

agreeableness (cooperative vs. suspicious) was the only variable to demonstrate 

predictive power independent of task definition, with the majority displaying negative 

correlations. This suggests that individuals who are classified with low 

‗agreeableness‘ engage in training content on a higher scale due to their preference of 

questioning events and content they experience. 

Furthermore, the specificity of the Emotiv system for predicting engagement 

scores was evaluated. Specificity defines how precisely a specific cognitive state can 

be inferred. The protocol attempted to evaluate specificity by comparing self-reported 

levels of engagement to aggregate states (e.g., STE, LTE) classified by the Emotiv. 

The results validated relationships between the RE and STE metrics provided by 

Emotiv with self-reported states of engagement. The RE finding conveys that those 

subjects exhibiting high engagement in rest states are less apt to be drawn in when 

training continues due to their attentional resources already being in use.      

6 Conclusion and Recommended Future Research 

The results of this study show that personality factors (agreeableness, neuroticism) 

were predictors of general engagement and could easily be used to tailor instructional 

strategies where engagement was not predicted to be optimal. It was also evident that 

Emotiv provided significant near real-time measures of engagement and excitement 

where head movement (and thereby signal noise) is restricted. Emotiv would have 

significant limitations in predicting engagement (or other states) in any interactions 

where head movement was significant (e.g., natural interfaces like Xbox 360 Kinect).  

Following this initial study a more expansive experiment that includes Emotiv and 

BioPac (ECG and GSR measures) systems will be conducted. ECG and GSR 

measures have aided EEG in the establishment of an engagement index in order to 

predict engagement [19]. For future research we recommend continued efforts to find 

passive sensors that are portable, durable and indicate the learner‘s cognitive and 

affective states to provide a clearer decision point for adaptive instructional strategies. 
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