

Book cover goes here.

Design Recommendations

for
Intelligent Tutoring Systems

Volume 3
Authoring Tools and Expert Modeling
Techniques

Edited by:
Robert A. Sottilare
Arthur C. Graesser

Xiangen Hu
Keith Brawner

A Book in the Adaptive Tutoring Series

Copyright © 2015 by the U.S. Army Research Laboratory

Copyright not claimed on material written by an employee of the U.S. Government.

All rights reserved.

No part of this book may be reproduced in any manner, print or electronic, without written

permission of the copyright holder.

The views expressed herein are those of the authors and do not necessarily reflect the views
of the U.S. Army Research Laboratory.

Use of trade names or names of commercial sources is for information only and does not imply endorsement

by the U.S. Army Research Laboratory.

This publication is intended to provide accurate information regarding the subject matter addressed herein. The

information in this publication is subject to change at any time without notice. The U.S. Army Research

Laboratory, nor the authors of the publication, makes any guarantees or warranties concerning the information

contained herein.

Printed in the United States of America

First Printing, June 2015

U.S. Army Research Laboratory
Human Research & Engineering Directorate

SFC Paul Ray Smith Simulation & Training Technology Center

Orlando, Florida

International Standard Book Number: 978-0-9893923-7-2

We wish to acknowledge the editing and formatting contributions of Carol Johnson and Deeja Cruz, ARL

Dedicated to current and future scientists and developers of adaptive learning technologies

CONTENTS

Introduction i

Section I: Perspectives of Authoring Tools and Methods 1

Chapter 1 Challenges to Enhancing Authoring Tools and Methods for Intelligent

Tutoring Systems 3

Chapter 2 Theory-based Authoring Tool Design: Considering the Complexity of

Tasks and Mental Models 9

Chapter 3 One-Size-Fits-Some: ITS Genres and What They (Should) Tell Us About

Authoring Tools 31

Chapter 4 Generalizing the Genres for ITS: Authoring Considerations for

Representative Learning Tasks 47

Section II: Authoring Model-Tracing Tutors 65

Chapter 5 A Historical Perspective on Authoring and ITS: Reviewing Some

Lessons Learned 67

Chapter 6 Authoring Example-based Tutors for Procedural Tasks 71

Chapter 7 Supporting the WISE Design Process: Authoring Tools that Enable

Insights into Technology-Enhanced Learning 95

Chapter 8 Authoring Tools for Ill-defined Domains in Intelligent Tutoring

Systems: Flexibility and Stealth Assessment 109

Chapter 9 Design Considerations for Collaborative Authoring in Intelligent

Tutoring Systems 123

Chapter 10 Authoring for the Product Lifecycle 137

Section III: Authoring Agent-Based Tutors 145

Chapter 11 Authoring Agent-based Tutors 147

Chapter 12 Design Principles for Pedagogical Agent Authoring Tools 151

Chapter 13 Adaptive and Generative Agents for Training Content Development 161

Chapter 14 Authoring Conversation-based Assessment Scenarios 169

Chapter 15 Authoring Networked Learner Models in Complex Domains 179

Section IV: Authoring Dialogue-Based Tutors 193

Chapter 16 Authoring Conversation-based Tutors 195

Chapter 17 ASAT: AutoTutor Script Authoring Tool 199

Chapter 18 Constructing Virtual Role-Play Simulations 211

Chapter 19 Emerging Trends in Automated Authoring 227

Chapter 20 Developing Conversational Multimedia Tutorial Dialogues 243

Section V: Increasing Interoperability and Reducing Workload and

Skill Requirements for Authoring Tutors 255

Chapter 21 Approaches to Reduce Workload and Skill Requirements in the

Authoring of Intelligent Tutoring Systems 257

Chapter 22 Reflecting on Twelve Years of ITS Authoring Tools Research with

CTAT 263

Chapter 23 Usability Considerations and Different User Roles in the Generalized

Intelligent Framework for Tutoring 285

Chapter 24 Invisible Intelligent Authoring Tools 293

Chapter 25 Lowering the Technical Skill Requirements for Building Intelligent

Tutors: A Review of Authoring Tools 303

Chapter 26 Authoring Instructional Management Logic in GIFT Using the Engine

for Management of Adaptive Pedagogy (EMAP) 319

Chapter 27 Tiering, Layering and Bootstrapping for ITS Development 335

Chapter 28 Expanding Authoring Tools to Support Psychomotor Training Beyond

the Desktop 347

Biographies 357

Index 375

INTRODUCTION

Robert A. Sottilare1, Arthur C. Graesser2, Xiangen Hu2,

and Keith W. Brawner1 , Eds.

U.S. Army Research Laboratory - Human Research and Engineering Directorate
1

University of Memphis Institute for Intelligent Systems
2

ii

iii

This book is the third in a planned series of books that examine key topics (e.g., learner modeling,

instructional strategies, authoring, domain modeling, impact on learning, and team tutoring) in intelligent

tutoring system (ITS) design through the lens of the Generalized Intelligent Framework for Tutoring

(GIFT) (Sottilare, Brawner, Goldberg & Holden, 2012; Sottilare, Brawner, Goldberg & Holden, 2013).

GIFT is a modular, service-oriented architecture created to reduce the cost and skill required to author

ITSs, manage instruction within ITSs, and evaluate the effect of ITS technologies on learning,

performance, retention, and transfer.

The first two books in this series, Learner Modeling (ISBN 978-0-9893923-2-7) and Instructional

Management (ISBN 978-0-9893923-0-3), are freely available at www.GIFTtutoring.org and on Google

Play.

This introduction begins with a description of tutoring functions, provides a glimpse of authoring best

practices, and examines the motivation for standards in the design, authoring, instruction, and evaluation

of ITS tools and methods. We introduce GIFT design principles discuss how readers might use this book

as a design tool. We begin by examining the major components of ITSs.

Components and Functions of Intelligent Tutoring Systems

It is generally accepted that an ITS has four major components (Elson-Cook, 1993; Nkambou, Mizoguchi

& Bourdeau, 2010; Graesser, Conley & Olney, 2012; Psotka & Mutter, 2008; Sleeman & Brown, 1982;

VanLehn, 2006; Woolf, 2009): the domain model, the student model, the tutoring model, and the user-

interface model. GIFT similarly adopts this four-part distinction, but with slightly different corresponding

labels (domain module, learner module, pedagogical module, and tutor-user interface) and the addition of

the sensor module, which can be viewed as an expansion of the user interface.

(1) The domain model contains the set of skills, knowledge, and strategies/tactics of the topic being

tutored. It normally contains the ideal expert knowledge and also the bugs, mal-rules, and

misconceptions that students periodically exhibit.

(2) The learner model consists of the cognitive, affective, motivational, and other psychological

states that evolve during the course of learning. Since learner performance is primarily tracked in

the domain model, the learner model is often viewed as an overlay (subset) of the domain model,

which changes over the course of tutoring. For example, “knowledge tracing” tracks the learner’s

progress from problem to problem and builds a profile of strengths and weaknesses relative to the

domain model (Anderson, Corbett, Koedinger & Pelletier, 1995). An ITS may also consider

psychological states outside of the domain model that need to be considered as parameters to

guide tutoring.

(3) The tutor model (also known as the pedagogical model or the instructional model) takes the

domain and learner models as input and selects tutoring strategies, steps, and actions on what the

tutor should do next in the exchange. In mixed-initiative systems, the learners may also take

actions, ask questions, or request help (Aleven, McClaren, Roll & Koedinger, 2006; Rus &

Graesser, 2009), but the ITS always needs to be ready to decide “what to do next” at any point

and this is determined by a tutoring model that captures the researchers’ pedagogical theories.

(4) The user interface interprets the learner’s contributions through various input media (speech,

typing, clicking) and produces output in different media (text, diagrams, animations, agents). In

addition to the conventional human-computer interface features, some recent systems have

incorporated natural language interaction (Graesser et al., 2012; Johnson & Valente, 2008),

http://www.gifttutoring.org/

iv

speech recognition (D’Mello, Graesser & King, 2010; Litman, 2013), and the sensing of learner

emotions (Baker, D’Mello, Rodrigo & Graesser, 2010; D’Mello & Graesser, 2010; Goldberg,

Sottilare, Brawner, Holden, 2011).

The designers of a tutor model must make decisions on each of the various major components in order to

create an enhanced learning experience through well-grounded pedagogical strategies (optimal plans for

action by the tutor) that are selected based on learner states and traits and that are delivered to the learner

as instructional tactics (optimal actions by the tutor). Next, tactics are chosen based on the previously

selected strategies and instructional context (the conditions of the training at the time of the instructional

decision. This is part of the learning effect model (Sottilare, 2012; Fletcher & Sottilare, 2013; Sottilare,

2013; Sottilare, Ragusa, Hoffman & Goldberg, 2013), which has been updated and described below in

more detail in section titled “Motivations for Intelligent Tutoring System Standards” in this introductory

chapter.

Principles of Learning and Instructional Techniques, Strategies, and Tactics

Instructional techniques, strategies, and tactics play a central role in the design of GIFT. Instructional

techniques represent instructional best practices and principles from the literature, many of which have

yet to be implemented within GIFT at the writing of this volume. Examples of instructional techniques

include, but are not limited to, error-sensitive feedback, mastery learning, adaptive spacing and repetition,

and fading worked examples. Others are represented in the next section of this introduction. It is

anticipated that techniques within GIFT will be implemented as software-based agents where the agent

will monitor learner progress and instructional context to determine if best practices (agent policies) have

been adhered to or violated. Over time, the agent will learn to enforce agent policies in a manner that

optimizes learning and performance.

Some of the best instructional practices (techniques) have yet to be implemented in GIFT, but many

instructional strategies and tactics have been implemented. Instructional strategies (plans for action by the

tutor) are selected based on changes to the learner’s state (cognitive, affective, physical). If a sufficient

change in any learner’s state occurs, this triggers GIFT to select a generic strategy (e.g., provide

feedback). The instructional context along with the instructional strategy then triggers the specific

selection of an instructional tactic (an action to be taken by the tutor). If the strategy is “provide

feedback,” then the tactic might be to “provide feedback on the error committed during the presentation

of instructional concept ‘B’ in the chat window during the next turn.” Tactics detail what is to be done,

why, when, and how.

An adaptive, intelligent learning environment needs to select the right instructional strategies at the right

time, based on its model of the learner in specific conditions and the learning process in general. Such

selections should be taken to maximize deep learning and motivation while minimizing training time and

costs. Authoring Tools was the theme of the third advisory board meeting of the collaboration between

(1) the Human Research and Engineering Directorate (HRED) of the U.S. Army Research Laboratory

(ARL) and (2) the Advanced Distributed Learning Center for Intelligent Tutoring Systems Research &

Development (ADL CITSRD) in the Institute for Intelligent Systems (IIS) at the University of Memphis.

The purpose of this volume is to provide a succinct illustration of some commonly used authoring tools

and associated principles of authoring tool design.

The following are examples of successful authoring tools:

 The Authoring Software Platform for Intelligent Resources in Education (ASPIRE) (Mitrovic, et

al., 2009), created by the Intelligent Computer Tutoring Group at the University of Canterbury in

v

New Zealand, employs domain experts to create constraint-based tutors through the generation of

domain model supplemental information from interactions with the system. Such information is

then processed by an expert user who has familiarity with the constraint language.

 The AutoTutor Authoring Tools were created by the University of Memphis IIS. These tools

allow a user to configure AutoTutor conversational scripts via a desktop or web-based interface,

and have made recent efforts to simplify the authoring process to a level which the student can

have input. The AutoTutor Script Authoring Tool (ASAT) is compatible with the GIFT authoring

suite and can be shared as sharable knowledge objects (SKOs) (Nye, Hu, Graesser, and Zhiqiang,

2014)).

 The Cognitive Tutor Authoring Tools (CTAT), developed by Carnegie Mellon University, are

one of the longest running and most successful toolsets. CTAT allows authors to link tutoring

knowledge to a graphical user interface (GUI) with little programming effort and demonstrate

model solutions rapidly. Recently efforts have taken steps to automate authoring through a

process of demonstration by an expert with a project called SimStudent (Matsuda, Cohen, and

Koedinger, 2015), resulting in an expert model.

 The GIFT Authoring Tools, created by ARL and increasingly by the GIFT user community, are

open source. GIFT was created to realize the US Army Learning Model (ALM) self-regulated

learning capability and to reduce the time/cost/skill needed to author ITSs. Currently, the GIFT

authoring tools consist of a series of developer-oriented, XML-based editing tools (e.g., Course

Authoring Tool (CAT), Survey Authoring System, Domain Knowledge File Authoring Tool

(DAT), and Pedagogy Configuration Authoring Tool (PCAT)), which are being integrated with a

single simplified web-based authoring tool known as the GIFT Authoring Tool (GAT). These

tools have been used to create a variety of tutors in a variety of domains of instruction (e.g.,

casualty care, cryptography, solving logic puzzles, and construction equipment use). The design

goal for the GAT is to provide ITS authoring capabilities, which can be used by domain experts

with little or no knowledge or skill in either computer programming or instructional system

design to produce highly effective and efficient ITSs (Sottilare, 2013).

 The Situated Pedagogical (SitPed) authoring tool, created by the University of Southern

California, focuses heavily on preview-based authoring, where a non-technical author can

simulate the experience of a student while simultaneously demonstrating actions and statements

to the tutor. This model blends the authoring components of an expert model, pedagogical action,

and virtual human creation in order to gain efficiency.

There are a number of barriers to making authoring tools usable by the general public. The main barriers

are:

 Specialized skills (e.g., computer programming, understanding of instructional design) are

required to master existing authoring tools.

 Time and cost to author ITSs using existing authoring tools is high due to the complexity of ITSs

and deficiencies in the usability of current authoring tools.

 Time required to retrieve and organize authoring content is high.

 Standards for ITS authoring are non-existent, yielding extremely low interoperability between

authoring toolsets.

vi

Members of the third advisory board were selected because their research fills many of these gaps and

provides more sophisticated authoring strategies for GIFT. More specifically, researchers on the board

have made major advances for model-tracing, agent-based, and/or dialogue-based ITSs in three thematic

subcategories: (1) simplified user interfaces, (2) methods for curation of data (retrieval, storage, and

organization), and (3) development of authoring job aids. Research in these subcategories is destined to

move the horizon of authoring tools from the laboratory to the classroom through the creation of easy to

use systems built on standardized design principles. Our goal was to elicit input from members of this

advisory board and the authors of this book to shape ITSs authoring standards.

Motivations for Intelligent Tutoring System Standards

An emphasis on self-regulated learning has highlighted a requirement for point-of-need training in

environments where human tutors are either unavailable or impractical. ITSs have been shown to be as

effective as expert human tutors (VanLehn, 2011) in one-to-one tutoring in well-defined domains

(e.g., mathematics or physics) and significantly better than traditional classroom training environments.

ITSs have demonstrated significant promise, but 50 years of research have been unsuccessful in making

ITSs ubiquitous in military training or the tool of choice in our educational system. This begs the

question: “Why?”

Part of the answer lies in the fact that the availability and use of ITSs have been constrained by their high

development costs, their limited reuse, a lack of standards, and their inadequate adaptability to the needs

of learners. Educational and training technologies like ITSs are primarily researched and developed in a

few key environments: industry, academia, and government including military domains. Each of these

environments has its own challenges and design constraints. The application of ITSs to military domains

is further hampered by the complex and often ill-defined environments in which the US military operates

today. ITSs are often built as domain-specific, unique, one-of-a-kind, largely domain-dependent solutions

focused on a single pedagogical strategy (e.g., model tracing or constraint-based approaches) when

complex learning domains may require novel or hybrid approaches. Therefore, a modular ITS framework

and standards are needed to enhance reuse, support authoring, optimize instructional strategies, and lower

the cost and skillset needed for users to adopt ITS solutions for training and education. It was out of this

need that the idea for GIFT arose.

GIFT has three primary functions: authoring, instructional management, and evaluation. First, it is a

framework for authoring new ITS components, methods, strategies, and whole tutoring systems. Second,

GIFT is an instructional manager that integrates selected instructional theory, principles, and strategies for

use in ITSs. Finally, GIFT is an experimental testbed used to evaluate the effectiveness and impact of ITS

components, tools, and methods. GIFT is based on a learner-centric approach with the goal of improving

linkages in the updated adaptive tutoring learning effect model (Figure 1; Sottilare, 2012; Fletcher &

Sottilare, 2013; Sottilare, 2013; Sottilare, Ragusa, Hoffman & Goldberg, 2013).

vii

Figure 1. Updated adaptive tutoring learning effect model

A deeper understanding of the learner’s behaviors, traits, and preferences (learner data) collected through

performance, physiological and behavioral sensors, and surveys will allow for more accurate evaluation

of the learner’s states (e.g., engagement level, confusion, frustration). This will result in a better and more

persistent model of the learner. To enhance the adaptability of the ITS, methods are needed to accurately

classify learner states (e.g., cognitive, affective, psychomotor, social) and select optimal instructional

strategies given the learner’s existing states. A more comprehensive learner model will allow the ITS to

adapt more appropriately to address the learner’s needs by changing the instructional strategy (e.g.,

content, flow, or feedback). An instructional strategy better aligned to the learner’s needs is more likely to

positively influence their learning gains. It is with the goal of optimized learning gains in mind that the

design principles for GIFT were formulated.

This version of the learning effect model has been updated to gain understanding of the effect of optimal

instructional tactics and instructional context (both part of the domain model) on specific desired

outcomes including knowledge and skill acquisition, performance, retention, and transfer of skills from

training or tutoring environments to operational contexts (e.g., from practice to application). The feedback

loops in Figure 1 have been added to identify tactics as either a change in instructional context or

interaction with the learner. This allows the ITS to adapt to the need of the learner. Consequently, the ITS

changes over time by reinforcing learning mechanisms.

GIFT Design Principles

The GIFT methodology for developing a modular, computer-based tutoring framework for training and

education considered major design goals, anticipated uses, and applications. The design process also

considered enhancing one-to-one (individual) and one-to-many (collective or team) tutoring experiences

beyond the state of practice for ITSs today. A significant focus of the GIFT design was on domain-

dependent elements in the domain module only. This is a design tradeoff to foster reuse and allows ITS

decisions and actions to be made across any/all domains of instruction.

viii

One design principle adopted in GIFT is that each module should be capable of gathering information

from other modules according to the design specification. Designing to this principle resulted in standard

message sets and message transmission rules (i.e., request-driven, event-driven, or periodic

transmissions). For instance, the pedagogical module is capable of receiving information from the learner

module to develop courses of action for future instructional content to be displayed, manage flow and

challenge level, and select appropriate feedback. Changes to the learner’s state (e.g., engagement,

motivation, or affect) trigger messages to the pedagogical module, which then recommends general

courses of action (e.g., ask a question or prompt the learner for more information) to the domain module,

which provides a domain-specific intervention (e.g., what is the next step?).

Another design principle adopted within GIFT is the separation of content from the executable code (Patil

& Abraham, 2010). Data and data structures are placed within models and libraries, while software

processes are programmed into interoperable modules. Efficiency and effectiveness goals (e.g.,

accelerated learning and enhanced retention) were considered to address the time available for military

training and the renewed emphasis on self-regulated learning. An outgrowth of this emphasis on

efficiency and effectiveness led Dr. Sottilare to seek external collaboration and guidance. In 2012, ARL

with the University of Memphis developed advisory boards of senior tutoring system scientists from

academia and government to influence the GIFT design goals moving forward. Advisory boards have

been held each year since 2012 resulting in volumes in the Design Recommendations for Intelligent

Tutoring Systems series the following year. The learner modeling advisory board was completed in

September 2012 and Volume 1 followed in July 2013. An advisory board on instructional management

was completed in July 2013 and Volume 2 followed in June 2014. The authoring tools advisory board

was completed in June of 2014 and Volume 3 is planned for publication in May or June 2015. Future

boards are planned for domain modeling, learner assessment, team training, and learning effect

evaluations.

Design Goals and Anticipated Uses

GIFT may be used for a number of purposes, with the primary ones enumerated below:

1. An architectural framework with modular, interchangeable elements and defined relationships to

support stand-alone tutoring or guided training if integrated with a training system

2. A set of specifications to guide ITS development

3. A set of exemplars or use cases for GIFT to support authoring, reuse, and ease-of-use

4. A technical platform or testbed for guiding the evaluation, development/refinement of concrete

systems

These use cases have been distilled down into the three primary functional areas, or constructs:

authoring, instructional management, and the recently renamed evaluation construct. Discussed below are

the purposes, associated design goals, and anticipated uses for each of the GIFT constructs.

GIFT Authoring Construct

The purpose of the GIFT authoring construct is to provide technology (tools and methods) to make it

affordable and easier to build ITSs and ITS components. Toward this end, a set of XML configuration

tools continues to be developed to allow for data-driven changes to the design and implementation of

ix

GIFT-generated ITSs. The design goals for the GIFT authoring construct have been adapted from Murray

(1999, 2003) and Sottilare and Gilbert (2011). The GIFT authoring design goals are as follow:

 Decrease the effort (time, cost, and/or other resources) for authoring and analyzing ITSs by

automating authoring processes, developing authoring tools and methods, and developing

standards to promote reuse.

 Decrease the skill threshold by tailoring tools for specific disciplines (e.g., instructional designers,

training developers, and trainers) to author, analyze, and employ ITS technologies.

 Provide tools to aid designers/authors/trainers/researchers in organizing their knowledge.

 Support (structure, recommend, or enforce) good design principles in pedagogy through user

interfaces and other interactions.

 Enable rapid prototyping of ITSs to allow for rapid design/evaluation cycles of prototype

capabilities.

 Employ standards to support rapid integration of external training/tutoring environments (e.g.,

simulators, serious games, slide presentations, transmedia narratives, and other interactive

multimedia).

 Develop/exploit common tools and user interfaces to adapt ITS design through data-driven

means.

 Promote reuse through domain-independent modules and data structures.

 Leverage open-source solutions to reduce ITS development and sustainment costs.

 Develop interfaces/gateways to widely-used commercial and academic tools (e.g., games,

sensors, toolkits, virtual humans).

As a user-centric architecture, anticipated uses for GIFT authoring tools are driven largely by the

anticipated users, which include learners, domain experts, instructional system designers, training and

tutoring system developers, trainers and teachers, and researchers. In addition to user models and GUIs,

GIFT authoring tools include domain-specific knowledge configuration tools, instructional strategy

development tools, and a compiler to generate executable ITSs from GIFT components in a variety of

formats (e.g., PC, Android, and IPad).

Within GIFT, domain-specific knowledge configuration tools permit authoring of new knowledge

elements or reusing existing (stored) knowledge elements. Domain knowledge elements include learning

objectives, media, task descriptions, task conditions, standards and measures of success, common

misconceptions, feedback library, and a question library, which are informed by instructional system

design principles that, in turn, inform concept maps for lessons and whole courses. The task descriptions,

task conditions, standards and measures of success, and common misconceptions may be informed by an

expert or ideal learner model derived through a task analysis of the behaviors of a highly skilled user.

ARL is investigating techniques to automate this expert model development process to reduce the time

and cost of developing ITSs. In addition to feedback and questions, supplementary tools are anticipated to

author explanations, summaries, examples, analogies, hints, and prompts in support of GIFT’s

instructional management construct.

x

GIFT Instructional Management Construct

The purpose of the GIFT instructional management construct is to integrate pedagogical best practices in

GIFT-generated ITSs. The modularity of GIFT will also allow GIFT users to extract pedagogical models

for use in tutoring/training systems that are not GIFT-generated. GIFT users may also integrate

pedagogical models, instructional strategies, or instructional tactics from other tutoring systems into

GIFT. The design goals for the GIFT instructional management construct are the following:

 Support ITS instruction for individuals and small teams in local and geographically distributed

training environments (e.g., mobile training), and in both well-defined and ill-defined learning

domains.

 Provide for comprehensive learner models that incorporate learner states, traits, demographics,

and historical data (e.g., performance) to inform ITS decisions to adapt training/tutoring.

 Support low-cost, unobtrusive (passive) methods to sense learner behaviors and physiological

measures and use these data along with instructional context to inform models to classify (in near

real time) the learner’s states (e.g., cognitive and affective).

 Support both macro-adaptive strategies (adaptation based on pre-training learner traits) and

micro-adaptive instructional strategies and tactics (adaptation based learner states and state

changes during training).

 Support the consideration of individual differences where they have empirically been documented

to be significant influencers of learning outcomes (e.g., knowledge or skill acquisition, retention,

and performance).

 Support adaptation (e.g., pace, flow, and challenge level) of the instruction based the domain and

learning class (e.g., cognitive learning, affective learning, psychomotor learning, social learning).

 Model appropriate instructional strategies and tactics of expert human tutors to develop a

comprehensive pedagogical model.

To support the development of optimized instructional strategies and tactics, GIFT is heavily grounded in

learning theory, tutoring theory, and motivational theory. Learning theory applied in GIFT includes

conditions of learning and theory of instruction (Gagne, 1985), component display theory (Merrill, Reiser,

Ranney & Trafton, 1992), cognitive learning (Anderson & Krathwohl, 2001), affective learning

(Krathwohl, Bloom & Masia, 1964; Goleman, 1995), psychomotor learning (Simpson, 1972), and social

learning (Sottilare, Holden, Brawner, and Goldberg, 2011; Soller, 2001). Aligning with our goal to model

expert human tutors, GIFT considers the intelligent, nurturant, Socratic, progressive, indirect, reflective,

and encouraging (INSPIRE) model of tutoring success (Lepper, Drake, and O’Donnell-Johnson, 1997)

and the tutoring process defined by Person, Kreuz, Zwaan, and Graesser (1995) in the development of

GIFT instructional strategies and tactics.

Human tutoring strategies have been documented by observing tutors with varying levels of expertise. For

example, Lepper’s INSPIRE model is an acronym that highlights the seven critical characteristics of

successful tutors:. Graesser and Person’s (1994) 5-step tutoring frame is a common pattern of the tutor-

learner interchange in which the tutor asks a question, the learner answers the question, the tutor gives

short feedback on the answer, then the tutor and learner collaboratively improve the quality of (or

embellish) the answer, and finally, the tutor evaluates whether the learner understands the answer. Cade,

xi

Copeland, Person, and D’Mello (2008) identified a number of tutoring modes used by expert tutors,

which hopefully could be integrated with ITS.

As a learner-centric architecture, anticipated uses for GIFT instructional management capabilities include

both automated instruction and blended instruction, where human tutors/teachers/trainers use GIFT to

support their curriculum objectives. If its design goals are realized, it is anticipated that GIFT will be

widely used beyond military training contexts as GIFT users expand the number and type of learning

domains and resulting ITS generated using GIFT.

GIFT Evaluation Construct

The GIFT Analysis Construct has recently migrated to become the GIFT Evaluation Construct with an

emphasis on the evaluation of effect on learning, performance, retention and transfer. The purpose of the

GIFT evaluation construct is to allow ITS researchers to experimentally assess and evaluate ITS

technologies (ITS components, tools, and methods). The design goals for the GIFT evaluation construct

are the following:

 Support the conduct of formative assessments to improve learning.

 Support summative evaluations to gauge the effect of technologies on learning.

 Support assessment of ITS processes to understand how learning is progressing throughout the

tutoring process.

 Support evaluation of resulting learning versus stated learning objectives.

 Provide diagnostics to identify areas for improvement within ITS processes.

 Support the ability to comparatively evaluate ITS technologies against traditional tutoring or

classroom teaching methods.

 Develop a testbed methodology to support assessments and evaluations (Figure 2).

Figure 2. GIFT evaluation testbed methodology

xii

Figure 2 illustrates an analysis testbed methodology being implemented in GIFT. This methodology was

derived from Hanks, Pollack, and Cohen (1993). It supports manipulation of the learner model,

instructional strategies, and domain-specific knowledge within GIFT, and may be used to evaluate

variable in the adaptive tutoring learning effect model (Sottilare, 2012; Sottilare, Ragusa, Hoffman, and

Goldberg, 2013). In developing their testbed methodology, Hanks et al. reviewed four testbed

implementations (Tileworld, the Michigan Intelligent Coordination Experiment [MICE], the Phoenix

testbed, and Truckworld) for evaluating the performance of artificially intelligent agents. Although agents

have changed substantially in complexity during the past 20‒25 years, the methods to evaluate their

performance have remained markedly similar.

The authors designed the GIFT analysis testbed based upon Cohen’s assertion (Hanks et al., 1993) that

testbeds have three critical roles related to the three phases of research. During the exploratory phase,

agent behaviors need to be observed and classified in broad categories. This can be performed in an

experimental environment. During the confirmatory phase, the testbed is needed to allow more strict

characterizations of agent behavior to test specific hypotheses and compare methodologies. Finally, in

order to generalize results, measurement and replication of conditions must be possible. Similarly, the

GIFT analysis methodology (Figure 2) enables the comparison/contrast of ITS elements and assessment

of their effect on learning outcomes (e.g., knowledge acquisition, skill acquisition, and retention).

How to Use This Book

This book is organized into five sections:

I. Perspectives of Authoring Tools and Methods

II. Authoring Model-Tracing Tutors

III. Authoring Agent-Based Tutors

IV. Authoring Dialogue-Based Tutors

V. Increasing Interoperability and Reducing Workload and Skill Requirements for Authoring

Tutors

Section I, Perspective of Authoring Tools and Methods, describes a variety of approaches to authoring

ITSs and discusses their capabilities, limitations, and potential impact on learning. Section II, Authoring

Model-Tracing Tutors, examines authoring tools for model-tracing tutors (sometimes referred to as

example-tracing tutors), which are based on a problem representation stored in a behavior graph with

problem-solving steps and specific methods handling alternative student behaviors. Emerging model-

tracing tutoring authoring technologies are discussed with respect to how GIFT should be enhanced to

make authoring of model-tracing tutors easier and more efficient. Section III, Authoring Agent-Based

Tutors, discusses authoring processes guided by intelligent software agents. Section IV, Authoring

Dialogue-Based Tutors, focuses primarily on interactive conversational tutors where virtual humans guide

instruction. Finally, in Section V, we address the need for tools and methods to increase interoperability

between authoring toolsets, and also reduce the knowledge and skill needed to author ITSs. A goal for

GIFT is to reduce the skill and time needed to author ITSs to a point where domain experts can author

ITSs without computer programming and instructional design knowledge/skills.

Chapter authors in each section were carefully selected for participation in this project based on their

expertise in the field as ITS scientists, developers, and practitioners. Design Recommendations for

xiii

Intelligent Tutoring Systems: Volume 3 Authoring Tools is intended to be a design resource as well as

community research resource. Volume 3 can also be of significant benefit as an educational guide for

developing ITS scientists, as a roadmap for ITS research opportunities.

References

Aleven, V., McLaren, B., Roll, I. & Koedinger, K. (2006). Toward meta-cognitive tutoring: A model of help seeking

with a cognitive tutor. International Journal of Artificial Intelligence in Education, 16, 101-128.

Anderson, J. R., Corbett, A. T., Koedinger, K. R. & Pelletier, R. (1995). Cognitive tutors: Lessons learned. Journal

of the Learning Sciences, 4, 167-207.

Anderson, L. W. & Krathwohl, D. R. (Eds.). (2001). A taxonomy for learning, teaching and assessing: A revision of

Bloom’s Taxonomy of Educational Objectives: Complete edition. New York : Longman.

Baker, R.S., D’Mello, S.K., Rodrigo, M.T. & Graesser, A.C. (2010). Better to be frustrated than bored: The

incidence, persistence, and impact of learners’ cognitive-affective states during interactions with three

different computer-based learning environments. International Journal of Human-Computer Studies, 68,

223-241.
Cade, W., Copeland, J. Person, N., and D’Mello, S. K. (2008). Dialogue modes in expert tutoring. In B. Woolf, E.

Aimeur, R. Nkambou & S. Lajoie (Eds.), Proceedings of the Ninth International Conference on Intelligent

Tutoring Systems (pp. 470-479). Berlin, Heidelberg: Springer-Verlag.

D’Mello, S. & Graesser, A.C. (2010). Multimodal semi-automated affect detection from conversational cues, gross

body language, and facial features. User Modeling and User-adapted Interaction, 20, 147-187.

D’Mello, S. K., Graesser, A. C. & King, B. (2010). Toward spoken human-computer tutorial dialogues. Human

Computer Interaction, 25, 289-323.

Elson-Cook, M. (1993). Student modeling in intelligent tutoring systems. Artificial Intelligence Review, 7, 227-240.

Fletcher, J.D. and Sottilare, R. (2013). Shared Mental Models and Intelligent Tutoring for Teams. In R. Sottilare, A.

Graesser, X. Hu, and H. Holden (Eds.) Design Recommendations for Intelligent Tutoring Systems: Volume

I - Learner Modeling. Army Research Laboratory, Orlando, Florida. ISBN 978-0-9893923-0-3.

Gagne, R. M. (1985). The conditions of learning and theory of instruction (4th ed.). New York: Holt, Rinehart &

Winston.

Goldberg, B.S., Sottilare, R.A., Brawner, K.W. & Holden, H.K. (2011). Predicting Learner Engagement during

Well-Defined and Ill-Defined Computer-Based Intercultural Interactions. In S. D’Mello, A. Graesser, , B.

Schuller & J.-C. Martin (Eds.), Proceedings of the 4th International Conference on Affective Computing

and Intelligent Interaction (ACII 2011) (Part 1: LNCS 6974) (pp. 538-547). Berlin Heidelberg: Springer.

Graesser, A.C., Conley, M. & Olney, A. (2012). Intelligent tutoring systems. In K.R. Harris, S. Graham & T. Urdan

(Eds.), APA Educational Psychology Handbook: Vol. 3. Applications to Learning and Teaching (pp. 451-

473). Washington, DC: American Psychological Association.

Graesser, A. C., D’Mello, S. K., Hu. X., Cai, Z., Olney, A. & Morgan, B. (2012). AutoTutor. In P. McCarthy & C.

Boonthum-Denecke (Eds.), Applied natural language processing: Identification, investigation, and

resolution (pp. 169-187). Hershey, PA: IGI Global.

Graesser, A. C. & Person, N. K. (1994). Question asking during tutoring. American Educational Research Journal,

31, 104–137.

Hanks, S., Pollack, M.E. & Cohen, P.R. (1993). Benchmarks, test beds, controlled experimentation, and the design

of agent architectures. AI Magazine, 14 (4), 17-42.

Johnson, L. W. & Valente, A. (2008). Tactical language and culture training systems: Using artificial intelligence to

teach foreign languages and cultures. In M. Goker & K. Haigh (Eds.), Proceedings of the Twentieth

Conference on Innovative Applications of Artificial Intelligence (pp. 1632-1639). Menlo Park, CA: AAAI

Press.

Krathwohl, D.R., Bloom, B.S. & Masia, B.B. (1964). Taxonomy of Educational Objectives: Handbook II: Affective

Domain. New York: David McKay Co.

Lepper, M. R., Drake, M. & O’Donnell-Johnson, T. M. (1997). Scaffolding techniques of expert human tutors. In K.

Hogan & M. Pressley (Eds), Scaffolding learner learning: Instructional approaches and issues (pp. 108-

144). New York: Brookline Books.

Litman, D. (2013). Speech and language processing for adaptive training. In P. Durlach & A. Lesgold (Eds.),

Adaptive technologies for training and education. Cambridge, MA: Cambridge University Press.

xiv

Matsuda, N., Cohen, W. W. & Koedinger, K. R. (2015). Teaching the teacher: tutoring SimStudent leads to more

effective cognitive tutor authoring. International Journal of Artificial Intelligence in Education, 25(1), 1-34.

Murray, T. (1999). Authoring intelligent tutoring systems: An analysis of the state of the art. International Journal

of Artificial Intelligence in Education, 10(1), 98–129.

Murray, T. (2003). An Overview of Intelligent Tutoring System Authoring Tools: Updated analysis of the state of

the art. In Murray, T.; Blessing, S.; Ainsworth, S. (Eds.), Authoring tools for advanced technology learning

environments (pp. 491-545). Berlin: Springer..

Merrill, D., Reiser, B., Ranney, M., and Trafton, J. (1992). Effective Tutoring Techniques: A Comparison of Human

Tutors and Intelligent Tutoring Systems. The Journal of the Learning Sciences, 2(3), 277-305

Mitrovic, A., Martin, B., Suraweera, P., Zakharov, K., Milik, N., Holland, J. & McGuigan, N. (2009). ASPIRE: an

authoring system and deployment environment for constraint-based tutors. International Journal of

Artificial Intelligence in Education, 19(2), 155-188.

Nkambou, R., Mizoguchi, R. & Bourdeau, J. (2010). Advances in intelligent tutoring systems. Heidelberg: Springer.

Nye, B., Hu, X., Graesser, A. & Cai, Z. (2014). Autotutor In The Cloud: A Service-Oriented Paradigm For An

Interoperable Natural-Language Its. Journal of Advanced Distributed Learning Technology, 2(6), pp 49-63.

Patil, A. S. & Abraham, A. (2010). Intelligent and Interactive Web-Based Tutoring System in Engineering

Education: Reviews, Perspectives and Development. In F. Xhafa, S. Caballe, A. Abraham, T. Daradoumis

& A. Juan Perez (Eds.), Computational Intelligence for Technology Enhanced Learning. Studies in

Computational Intelligence (Vol 273, pp. 79-97). Berlin: Springer-Verlag.

Person, N. K., Kreuz, R. J., Zwaan, R. A. & Graesser, A. C. (1995). Pragmatics and pedagogy: Conversational rules

and politeness strategies may inhibit effective tutoring. Cognition and Instruction, 13(2), 161–188.

Picard, R. (2006). Building an Affective Learning Companion. Keynote address at the 8th International Conference

on Intelligent Tutoring Systems, Jhongli, Taiwan. Retrieved from

http://www.its2006.org/ITS_keynote/ITS2006_01.pdf

Psotka, J. & Mutter, S.A. (1988). Intelligent Tutoring Systems: Lessons Learned. Hillsdale, NJ: Lawrence Erlbaum

Associates.

Rus, V. & Graesser, A.C. (Eds.) (2009). The Question Generation Shared Task and Evaluation Challenge. Retrieved

from http://www.questiongeneration.org/.

Simpson, E. (1972). The classification of educational objectives in the psychomotor domain: The psychomotor

domain. Vol. 3. Washington, DC: Gryphon House.

Sleeman D. & J. S. Brown (Eds.) (1982). Intelligent Tutoring Systems. Orlando, Florida: Academic Press, Inc.

Soller, A. (2001). Supporting social interaction in an intelligent collaborative learning system. International Journal

of Artificial Intelligence in Education, 12(1), 40-62.

Sottilare, R. & Gilbert, S. (2011). Considerations for tutoring, cognitive modeling, authoring and interaction design

in serious games. Authoring Simulation and Game-based Intelligent Tutoring workshop at the Artificial

Intelligence in Education Conference (AIED) 2011, Auckland, New Zealand, June 2011.

Sottilare, R., Holden, H., Brawner, K. & Goldberg, B. (2011). Challenges and Emerging Concepts in the

Development of Adaptive, Computer-based Tutoring Systems for Team Training. Interservice/Industry

Training Systems & Education Conference, Orlando, Florida, December 2011.

Sottilare, R.A., Brawner, K.W., Goldberg, B.S. & Holden, H.K. (2012). The Generalized Intelligent Framework for

Tutoring (GIFT). Orlando, FL: U.S. Army Research Laboratory Human Research & Engineering

Directorate (ARL-HRED).

Sottilare, R. (2012). Considerations in the development of an ontology for a Generalized Intelligent Framework for

Tutoring. International Defense & Homeland Security Simulation Workshop in Proceedings of the I3M

Conference. Vienna, Austria, September 2012.

Sottilare, R., Ragusa, C., Hoffman, M. & Goldberg, B. (2013). Characterizing an adaptive tutoring learning effect

chain for individual and team tutoring. In Proceedings of the Interservice/Industry Training Simulation &

Education Conference, Orlando, Florida, December 2013.

Sottilare, R. (2013). Special Report: Adaptive Intelligent Tutoring System (ITS) Research in Support of the Army

Learning Model - Research Outline. Army Research Laboratory (ARL-SR-0284), December 2013.

VanLehn, K. (2006) The behavior of tutoring systems. International Journal of Artificial Intelligence in Education.

16(3), 227-265.

VanLehn, K. (2011). The relative effectiveness of human tutoring, intelligent tutoring systems and other tutoring

systems. Educational Psychologist, 46(4), 197-221.

Woolf, B.P. (2009). Building intelligent interactive tutors. Burlington, MA: Morgan Kaufmann Publishers.

SECTION I

PERSPECTIVES OF

AUTHORING TOOLS

AND METHODS

R. Sottilare, Ed.

2

3

CHAPTER 1 Challenges to Enhancing Authoring Tools and

Methods for Intelligent Tutoring Systems
Robert A. Sottilare

US Army Research Laboratory

Introduction

This chapter highlights a vision for intelligent tutoring system (ITS) authoring capabilities with respect to

the major challenges or barriers to their adoption. A variety of authoring tools for ITSs have emerged,

flourished, and gone extinct over the last 25 years. A few authoring toolsets, which have been introduced

in Chapter 1 of this book, continue to evolve. Outside the growing number of commercial tools, two sets

of authoring tools have found an active user community to sustain them. Carnegie Mellon University’s

Cognitive Tutor Authoring Tools (CTAT; Koedinger, Aleven & Heffernan, 2003) and the AutoTutor

Authoring Tools (University of Memphis; Graesser et al., 1999) have a long history and remain viable

today. Others like the Authoring Software Platform for Intelligent Resources in Education (ASPIRE;

Mitrovic et al., 2009) are a bit more recent and still other authoring tools like the Generalized Intelligent

Framework for Tutoring (GIFT; Sottilare, Brawner, Goldberg & Holden, 2012) and the Situated

Pedagogical Authoring (SPA; University of Southern California, 2013) tools are newer still. Each of these

tools has different scope (e.g., authoring for model-tracing, agent-based, or dialogue-based tutors) and a

different set of learning theories (e.g., component display theory) that drive their design. A short

description of each follows for comparison.

CTAT now has a set of authoring tools for both cognitive and example-tracing tutors. The CTAT

authoring process requires definition of a task domain along with appropriate problems. CTAT was

developed to support problem-based task domains. It may be more difficult to support the authoring of

scenario-based tutors where problem-solving processes are less linear and multiple paths to success are

the norm. In order to develop a domain model, a cognitive task analysis is required to understand how

students learn the required concepts and evolve their skills. CTAT requires familiarity with the Java

Expert System Shell (JESS) production rule language. The authoring tools for example-tracing tutors do

not require any programming. CTAT is currently available as binary (executable) code.

The AutoTutor Authoring Tools are used to develop interactive tutors where students are taught through

natural language discourse. AutoTutor was developed to support specific domains (e.g., Newtonian

physics and computer literacy). As the name suggests, the AutoTutor Script Authoring Tool (ASAT) is a

tool within the AutoTutor framework used to create AutoTutor scripts. ASAT-X is an extensible markup

language (XML)-based tool. The ASAT-V tool is used to view and test AutoTutor visual scripts created

by Microsoft Visio. Conversation rules can be very challenging for instructors, course managers, and

domain experts. However, the AutoTutor Lite authoring interface is more intuitive. The tools are

available as binary code.

ASPIRE is an authoring environment for developing constraint-based ITSs, which can be used by

instructors to author ITSs to supplement their courses. ASPIRE supports authoring of the domain

knowledge. The use of this knowledge is key to development of the domain model which is the most

complex and time-consuming part of an ITS to develop. ASPIRE uses automation and intelligent support

to guide authors through the authoring process. In ASPIRE, authoring consists of seven steps

(aspire.cosc.canterbury.ac.nz/ ASPIRE-Author.php), some of which are beyond the capabilities of

instructors, course managers, and domain experts without the intervention and support of the artificial

intelligence (AI)-based scaffolding. A goal of ASPIRE is to allow non-computer scientists to author ITSs.

4

The SPA Tools support the definition of learning objectives, the development of learner measures and

assessments, and the design appropriate feedback and scaffolding for reflection and self-directed learning.

The goal of SPA is to simplify the process of creating knowledge for automated assessment and feedback

in virtual environments and, like AutoTutor, is targeted at training domains where virtual humans play an

active role in tutoring. The developers of the SPA tools assert that authoring in an environment that

closely emulates the learner’s experience eases the technical burdens usually encountered with ITS

content creation and improves authoring efficiency. SPA is not available to the public at this time.

The GIFT authoring tools currently consist of several separate open-source authoring tools (e.g., course,

domain knowledge file, pedagogy configuration, survey) to support various elements of the authoring

process. A unifying GIFT Authoring Tool (GAT) is being developed as of the publication of this volume

along with cloud-based versions of the entire GIFT. A usability evaluation will drive the development of

an intelligently guided authoring experience. The GIFT authoring tools differ from the other authoring

tools discussed here in that the GIFT tools have been integrated with external toolsets like the ASAT to

support dialogue-based interactions, which can be triggered by GIFT-based tutors, and the Student

Information Models for Intelligent Learning Environments (SIMILE) to support assessments where

serious games are linked to ITSs. GIFT also provides a tool for automatically evaluating the hierarchical

relationships between concepts in text-based material to support rapid development of expert models and

other domain knowledge for use in the authoring process. A goal of the GIFT authoring tools is to allow

development of effective ITSs by domain experts with little or no knowledge of computer programming

or instructional design. This toolset is intended to support authoring across multiple task domains, but will

continue to explore opportunities to leverage and integrate existing toolsets. The GIFT authoring tools,

along with the rest of the GIFT software (source code), are freely available at www.GIFTtutoring.org.

A Vision for Authoring Capabilities

While it is obvious that we may never realize a single authoring toolset for ITSs, we continue to strive for

authoring toolsets that are easy to access and use, and support authoring in multiple task domains

(cognitive, affective, psychomotor, and social) resulting in a variety of ITSs (constraint-based, model-

tracing, dialogue-based, agent-based). For these reasons, our vision is for a shell tutor or architecture

where a variety of ITSs can support training in a variety of task domains.

Customized interfaces are needed to support improved usability novice, journeyman, and expert level

authors. To support ease of use, intelligent agents would be used to guide human authors through the

process where automation is not practical. The authoring process for this ideal toolset would also be

heavily focused on process automation to reduce the burden of content and domain knowledge

development to maximum extent possible. Usability and automation in the authoring process are

discussed in more detail below.

Enhancing the Usability of Authoring Tools

We chose to examine the authoring process as a domain in which the author is being tutored with respect

to best practices and the final ITS product. Using Nielsen’s (1994) 10 usability heuristics, we discuss how

authoring tools might be improved to support tailored interaction with authors of varied capabilities. We

begin by examining the visibility of system status. In guiding the authoring process, the system should

keep authors informed about the impact of their decisions on the final product, and feedback should be

provided in a timely manner.

http://www.gifttutoring.org/

5

Next, we examine the match between system and the real world. If the author has a background in

instructional design, it is desirable to use words, phrases, and concepts familiar to that author and provide

information and guide steps in a natural and logical order based on knowledge of the process. What we

are describing here is a tailored interface based on a user model that describes their capabilities and

preferences.

Another desirable characteristic for our authoring tool interface is centered on user control and freedom.

The ideal authoring system should support easy undo and redo functions without having to through

multiple steps. For our purposes, this means the authoring system will be required to track previous

authoring states in much the same way that Microsoft Office products save previous states of Word,

PowerPoint, and Excel in memory. Given the ITS authoring process is more complex than an Office

document, the specific schema to determine what to keep in memory and how often to update the model

will require some research.

Consistency and standards should be realized across all user interface elements. Words, situations, and

actions should mean the same thing throughout the user interface. Our authoring interface should also

have mechanisms for error prevention either by alerting the author through error messages or by checking

for errors through agents and then presenting confirmation options to the author before allowing the

author to commit to an action. If an action is not permitted, then it would be desirable to have a rule to

exclude it. If errors occur, the authoring system should help the users recognize, diagnose, and recover

from errors. This should include as a minimum some help messages and documentation. Documentation

should be easy to search, focused by the author’s context (where they are in the process), and include a

list of concrete steps.

An intelligent troubleshooting mechanism is a desirable authoring tool feature and should include

constructive options to solve the problem as well as identify it. One option to develop a library of

common errors is to collect user interaction data over time (big data) and mine that data to identify and

document common errors and solution options. User-generated content (social media) may be another

option for evaluating the effectiveness of solutions.

The recognition rather than recall heuristic states that the user interface should minimize the author’s

memory load by making objects, actions, and options visible. The author should not have to remember

where a control is or what the next step is in the process. Standards should be developed for ITS authoring

controls/objects. Where there are universal graphics for controls (e.g., undo), these symbols should be

used instead of creating new, ITS-unique symbols.

Next, we examine the flexibility and efficiency of user interfaces for authoring ITSs. The interface should

be sensitive to different types of users, their capabilities, and their limitations. Authoring tools should be

able to select default conditions for novice users who may not understand the impact of these decisions.

The selections made by the system are not seen by the novice user, but may be selected and changed by

more experienced authors. Authoring tools should also be able to support shortcuts for frequent actions.

Finally, authoring user interfaces should be aesthetic and minimalistic. They should not contain irrelevant

information, which contributes to extraneous cognitive load and reduces available resources for

processing germane and intrinsic workload. Every extra bit of information competes with the relevant

information and diminishes their relative visibility to the author. It may be useful for future authoring

systems to reveal additional information to the user when the object, action, or option becomes relevant

based on where the author is in the process.

6

Automation to Enhance Reuse and Reduce Authoring Burden

While the usability discussion above focused on the author’s interface with the author tools, this section

argues the merits of automation to take the human out of the authoring loop and support the search,

retrieval, curation, and development of content and other domain knowledge. Metadata standards are

needed to tag content objects for reuse. Intelligent search methods would use this metadata to find,

retrieve, and curate appropriate content to support instructional objectives set by the author. Intelligent

search would reduce the workload and skill needed to author effective ITSs.

Another area of reuse may be in the design and publishing of standard interface specifications for ITSs.

As part of its architectural description, GIFT has published an interface control document, which

describes how to push and pull data from GIFT and support real-time interaction with external training

platforms (e.g., serious games, virtual simulations). If we describe adaptive training systems in terms of

interactions between the learner, the training environment, and intelligent agents within the ITS, being

able to reuse external training platforms in conjunction with an ITS reduces the burden of creating a

problem space for each individual training scenario, but still allows for an AI to drive instructional

decisions and provide tailored training.

Automatic authoring techniques would also allow authors to create content without humans in the loop.

For example, GIFT currently has an authoring tool to rapidly develop expert models, which can

automatically analyze a text-based corpus and generate a hierarchical representation of the concepts in

that corpus. This can be used to generate an expert model and other domain knowledge thereby reducing

the authoring burden.

Influence on GIFT Authoring Tool Design

As noted, the major challenges for the ITS authoring process are the time, cost, and skill needed to author

effective ITSs. Based on the usability heuristic and automation discussions above, we have identified

goals for the GIFT authoring tools as follows:

 Develop an authoring tool user interface that supports Nielsen’s usability heuristics and allows

instructors and course managers to develop effective ITS without knowledge of computer

programming and instructional design.

 Create tools and methods to identify best authoring practices through the mining of user-

generated content.

 Develop and publish GIFT metadata standards to support the search, retrieval, and curation.

 Develop search, retrieval, and curation tools to support the reuse of appropriate domain content.

 Examine the end-to-end process to identify the cost of developing ITSs and examine

opportunities to automate elements of the authoring process where practicable.

 Create automated authoring tools and validate their performance.

7

Perspectives on Authoring Tools and Methods

The following chapters in this section discuss various perspectives on authoring tool. In Chapter 2, Dr.

Tom Murray discusses a theory-based approach to authoring tool design. Dr. Murray is well known for

his work in ITS authoring having conducted extensive reviews of authoring tools (Murray, 1999; Murray,

2003). In Chapter 3, Dr. Benjamin Bell compares and contrasts authoring tools for different ITS genres.

Finally, in Chapter 4, Drs. Benjamin Nye, Benjamin Goldberg, and Xiangen Hu discuss design

considerations for authoring tools across various tutoring/training domains.

References

Graesser, A. C., Franklin, S., Wiemer-Hastings, P. & The Tutoring Research Group. (1998). Simulating smooth

tutorial dialog with pedagogical value. In Proceedings of the American Association for Artificial Intelligence

(pp. 163–167).

Koedinger, K. R., Aleven, V. & Heffernan, N. T. (2003). Toward a rapid development environment for cognitive

tutors. In Proceedings of the 11th International Conference on Artificial Intelligence in Education, AIED 2003

(pp. 455-457).

Mitrovic, A., Martin, B., Suraweera, P., Zakharov, K., Milik, N., Holland, J. & McGuigan, N. (2009). ASPIRE: an

authoring system and deployment environment for constraint-based tutors. International Journal of Artificial

Intelligence in Education, 19, 155-188.

Murray, T. (1999). Authoring intelligent tutoring systems: An analysis of the state of the art. International Journal

of Artificial Intelligence in Education, 10(1), 98–129.

Murray, T. (2003). An overview of intelligent tutoring system authoring tools: Updated analysis of the state of the

art. In T. Murray, S. Blessing & S. Ainsworth (Eds.), Authoring tools for advanced technology learning

environments (pp. 491-545).

Nielsen, J. (1994). Usability Engineering (pp. 115–148). San Diego: Academic Press.

Sottilare, R. A., Brawner, K. W., Goldberg, B. S. & Holden, H. K. (2012). The Generalized Intelligent Framework

for Tutoring (GIFT). Orlando, FL: U.S. Army Research LaboratoryHuman Research & Engineering Directorate

(ARL-HRED).

University of Southern California. (2013). Situated Pedagogical Authoring (SPA). Playa Vista, CA: Institute for

Creative Technologies (ICT).

8

9

CHAPTER 2 Theory-based Authoring Tool Design:

Considering the Complexity of Tasks and Mental Models
Tom Murray

School of Computer Science, University of Massachusetts

Introduction

In this chapter, I propose some theoretical foundations for future authoring tool design, focusing on

operationalizing the construct of complexity—for tool, task, and user. Intelligent tutoring systems (ITSs)

are highly complex educational software applications used to produce highly complex software

applications. ITS authoring tools are major undertakings and to redeem this investment it is important to

anticipate actual user needs and capacities. I propose that one way to do this is to match the complexity of

tool design to the complexity of authoring tasks and the complexity capacity of users and user

communities. Doing so entails estimating the complexity of the mental models that a user is expected to

build in order to use a tool as intended. This chapter presents some exploratory ideas on how to

operationalize the concept of complexity for tool, task, and user. I draw from the following theories and

frameworks to weave this narrative: complexity science, activity theory, epistemic forms and games, and

adult cognitive developmental theory (hierarchical complexity theory).

ITS Authoring Tool Design Tradeoffs

This chapter builds on earlier work (now over a decade old) describing the “state of the art” in ITS

authoring tools research and development (R&D) (Murray, 2003). It does not provide any updates on the

state of R&D in this field
1
, but rather takes a perpendicular tact to look at some fundamental issues in

authoring tools design. We start with a review of the design tradeoffs in creating ITS authoring tools.

ITSs are highly complex educational software applications (or learning environments) that can include the

following components: user interface (which might include a simulated phenomenon or task

environment), Expert Knowledge Model (of the task and/or knowledge), learner knowledge model,

pedagogical model, and curriculum model (also collaborative learning environments may include group-

level aspects of any of these) (see Woolf, 2010). For several decades developers and researchers have

been investigating the possibilities for creating ITS authoring tools because these are hoped to (1) reduce

the effort and cost of building or customizing ITSs, and (2) allow non-programmers, including teachers

and domain experts (and even students), to participate fully or partly in building or customizing ITSs

(Murray et al., 2003; Aleven et al., 2006; Suraweera et al., 2010; Constaintin et al., 2013; Ainsworth et

al., 2003; Ritter & Blessing, 1998).

There are many design tradeoffs involved—the primary one being that, in general, the easier or more

efficient a tool is to use, the more simplistic or constrained are the ITSs that can be built from it. Trivial

examples at two extremes are a tool that allows the author to select among checkboxes and lists to order

and toggle and sequence features and curriculum items in an otherwise fixed system vs. a tool that is so

complicated and multi-featured that building an ITS with it is not much easier than traditional software

programming. One can imagine a design tradeoff space (a triangle) among usability, depth, and flexibility

(see Murray, 2004). Depth, which refers to the structural or casual depth of any of the ITS models (listed

1
 For more recent work in the field, see Aleven & Sewall, 2010; Cristea, 2005; Olsen et al. 2013; Specht, 2012;

Suraweera et al., 2010; Mitrovic et al. 2009; Sottilare et al., 2012, 2014; and the chapters in this edited book

10

above), is usually at odds with flexibility, which is the ability to author a diversity of types of ITSs.

Usability is usually at odds with both depth and flexibility, i.e., a system that facilitates building deep

models or many types of models tends to be more powerful yet less usable. A main theme of this chapter

is to provide some rough metrics to help with these design tradeoffs.

Toward Theoretical Foundations

Unlike educational software (including ITSs), whose user audience is relatively well defined and known,

the target users of authoring tools are less well defined and understood (unless the tool is intended for in-

house use by a few specialized personnel, in which case, it has limited value as a research case study or

data source). The main point of authoring tool (academic) research is to produce results that are

generalizable to questions of ITS creation/customization related to production efficiency and accessibility

by a non-trivial cohort of potential authors. That is, descriptions of new systems and innovations should

be framed in terms of results, principles, or lessons learned that are relevant for other projects. Though

efficiency is an important concern, I focus on usability in this chapter.

We can draw from the standard literature on usability for tool design principles, which is important but

relatively straightforward, but in addition there are some more theoretical issues specific to authoring

tools (of any sort, not just for ITSs) that I find quite interesting. Influenced by topics I have studied since

my early papers on the subject, I have come to believe that a key issue is in how one matches the

complexity of the authoring task to the complexity of the tool and the complexity capacity of the target

user. Thus, in the bulk of this chapter, I sketch some preliminary considerations and principles that,

though quite speculative, are intended to initiate inquiry in this direction.

Taking a more theoretical approach to ITS (or any) authoring tools is rarely if ever done, but my goal here

is to point toward possible theoretical foundations for the (sub-) field. “Theory” can sometimes refer to a

mere conceptual framework (without any underlying causal theory), but here I mean cognitive, social,

epistemological, and/or information science theories that provide theoretical underpinnings. These areas

of foundational theory (especially the learning and cognitive sciences) are now routinely considered in the

design of ITSs and other educational software, but are rarely brought into discussions about the design or

use of authoring tools.

Design science and usability theory draw on socio-cognitive theories to explore the relationships between

the design of artifacts and the needs, capabilities, and limitations of intended users (and other

stakeholders) (see Oja, 2010; Norman, 1988; Nielsen, 1993). Originally, these theories were in response

to the (now more accepted) realization that domain experts (those who are not instructors), traditional

software architects, and academics all historically have difficulty predicting or imagining the needs and

limitations of the average software user and the average real-life task scenario (or difficulty predicting the

range of users and task scenarios). Thus software design, and artifact design, in general, is increasingly

understood as needing (1) empirical trial-and-error development, (2) the skills of rigorous empathy and

imagination to put oneself in the shoes of a range of types of users and situations, and (3) some basis in

underlying psycho-socio-technical theory (Brown & Campione, 1996; Cobb et al., 2003).

As mentioned, user-centered design (#1, 2 above) is important but may not lend itself to scholarly

advances in authoring tools, but a more theoretical perspective should constitute a contribution to

authoring tool design. The notion of assessing and coordinating complexity among tool, task, and user is a

central theme in this particular theoretical exploration. In what follows, I first reflect on the factors

leading to my 1999 article on authoring tools. I then consider some challenges facing authoring tool

researchers today. Then, in the remainder of the chapter, I propose some theoretical foundations for future

11

authoring tool design. As mentioned, I draw from the following theories and frameworks to weave this

particular theoretical narrative:

 Complexity in software design

 Activity theory

 Epistemic forms and games, and

 Adult cognitive developmental theory (i.e., hierarchical complexity theory).

Theories of complex software design are used to emphasize some of the issues, because ITS authoring

tools are complex artifacts designed to produce complex artifacts. Complexity science also helps us

operationalize what is meant by complexity in general. Activity theory, which highlights the relationships

between an artifact and its usage-tasks, usage-rules, and community of practice, provides an orientation

and basic vocabulary for the task of ITS design by various types of users in an authoring role. We can ask

whether a tool and its “rules” of use afford the accomplishment of a particular task for a particular class of

users. Much of the process of matching tool/task complexity to user (and community) complexity

capacity revolves around the complexity of the mental models that a user is expected to build in order to

use a tool as intended. Colin’s work on epistemic forms and games provides a highly useful framework

for talking about this tool-rule-user match in holistic terms at the right level of granularity. At this point,

we have a framework for describing many sources of complexity in tools, tasks, and users (cognition or

mental models), but no good way to order or coordinate these types of complexity. For that, we draw on

hierarchical complexity theory and related theories of adult cognitive development to suggest this order as

a final step in matching the complexity of an authoring tool to the complexity capacity of its target users.

Challenges Facing Authoring Tool Research Today

Predicting Future Flying Machines

ITS authoring tool research is in an interesting socio-techno-historical position. Intelligent tutors, despite

30 years of R&D, are not yet common in mainstream education or training, though a few notable systems

have achieved wide-spread use (Koedinger et al., 1997; Heffernan & Heffernan, 2014; Graesser et al.,

2005; VanLehn et al. 2005; Mitrovic, 2012; Johnson et al., 2008; Sitaram & Mostow, 2012). This may be

a completely appropriate development and adoption arc for a technology this complex and innovative,

and we have every reason to believe that the results of ITS (and more generally advanced technology

learning systems (ATLS)) research will continue to influence on-the-ground, computer-mediated learning.

However, authoring tool researchers are in the awkward position of developing the cart before the horse,

or worse yet, developing the cart-factory before the horse. It is as if, as the Wright brothers were

experimenting with the first airplanes, a group of researchers and academics were observing on the side,

working out how to design airplane factories that would make airplane production efficient and flexible.

As those first manned flight contraptions were being developed, it would have been difficult to predict

what future flying machines would look like, never mind what the market would be like or how to best

mass-produce and easily customize them for typical users.

Of course, ITS work is well beyond its first prototypes, so this analogy is stretched. Still, authoring tool

designers work under considerable uncertainty as to what types of systems will find their way to

substantial use and benefit from the scale and flexibility that authoring tools enable. However, we are

talking about software here, not equipment manufacturing. Building abstractions and design tools is a

12

natural impulse in software design (procedural-, data-, and knowledge-abstraction are basic computer

science principles; see Abelson & Sussman, 1983). As indicated in the history of my own projects, it can

be beneficial to build authoring tools merely to facilitate local or small-scale R&D projects. A company

that makes a decent profit on one single piece of widely used software (say, an ITS) would benefit from

building authoring tools to customize and enter content for the ITS. However, the less generic the system,

the more difficult it is to frame research questions and findings (especially after others have mapped out

the territory).

Old vs. New Conceptions of ITSs

The original understanding of computational “intelligence” in ITSs involved mostly modeling and

knowledge representation tasks (or challenges)—learner, domain, and instructional models. The more

deeply cognitive science understands knowledge and learning (or finds how little it does understand), the

more difficult these modeling tasks appear for authentic situated tasks. In general, the most successful

ITSs are those focusing on knowledge that is the easiest to represent, including declarative facts and

procedural steps (simple skills, which create complexity as they are combined). Yet developments in

learning theory increasingly emphasize the importance of less representable forms of knowledge, such as

metacognition, conceptual understanding, problems solving, open-ended inquiry, collaboration,

communication, argumentation, hypothetical and analogical thinking, etc.

The more basic forms of knowledge (fact, skills, and concept-map-like relationships) continue to have

fundamental importance as building blocks for more sophisticated skills, but the more exciting work in

ITS/ATLS has been moving into a wide variety of areas that do not involve “deep modeling” of

knowledge or expertise. These new research trends include recognizing and responding to affect; using

big data to classify and predict learner behavior (without trying to create runnable models per-se);

wearable gadgets; immersive experiences; natural language understanding and production; gamification;

and socialmediafication. For a project to be considered “ITS” research, it no longer requires

computational intelligence per se, but only the inclusion of some state-of-the-art computational

technology (or leading-edge techno-socio-psycho theory). While the idea of a generic ITS framework

requires some commonality of basic components and/or representational frameworks, the scope of ITSs is

becoming increasingly diverse, and overarching frameworks are increasingly difficult to envision.

However, once could counter that as diversity increases, so does the number of projects, so that the actual

impact of designing generic frameworks still serves a significant (if smaller percentage-wise) potential

user base.

Toward Design Theories

Authoring tools are still essential for scale-up, wide adoption, and easy customization of learning systems,

though each may need to be specific to a very specific genre of instructional systems. If so, authoring tool

design may become more of an engineering challenge than a research area. However, there are still

important theoretical issues that can be investigated, which we explore next.

Engineering challenges involve figuring out how to apply general theories, methods, or principles to

specific contexts. These challenges are no less arduous and important, as design principles tend to be

rather abstract, and nailing down “how the rubber meets the road” in each context can be the bulk of the

work. Also, because theory must ground in and remain responsive to actual examples, ideally there is an

ongoing dialogue allowing general principles to be informed by the various methods that have been used

to apply them to practical contexts.

13

Software Usability and Complexity

Usability and Managing Software Development Risks

Bracketing the above concerns, let’s assume that ITSs of some sort will indeed become mainstream and

that authoring tools will become increasingly important—a safe bet, I think. Other than tools designed for

in-house use by highly trained specialists, authoring tools, by their nature, must be usable by some

anticipated user audience. As mentioned, with any tool there are context-specific usability concerns that

can be worked out through good design practices (prototyping, early feedback from authentic users, etc.),

but here I look at very general usability concerns, having to do with the complexity of these systems.

ITSs are complex software applications and full-featured ITS authoring tools can be an order of

magnitude larger and more complex—just as a machine designed to build many types of lamps is much

more complex than a lamp (though the machine itself may be relatively easy for the end-user/author to

use, its interiors will be more complex). Next, we look to the literature on the design and usability of

complex software systems for advice relevant to ITS authoring tool design. This is a first step in

imagining a more theory-driven approach to authoring tool design.

Design tasks such as authoring ITSs fall under the “ill-defined” and “wicked” problems characteristic of

real-world projects (Conklin, 2005; Mirel, 2004). In his treatment of usability of complex systems, Oga

(2010) defines complex software development in terms of Mirel’s definition of complex problem-solving,

which involves “ill-defined situations; vague or broad goals; large volumes of data from many sources...

nonlinear, often uncharted analytical paths; no pre-set entry or stopping points; many contending

legitimate options; collaborators with different priorities; [and] ‘good enough’ solutions with no one right

answer.” Chilana et al. (2010) give three additional factors that contribute to the complexity of designing

usable software: domain-specific terminology, every situation is unique, and limited access to domain

experts. ITS/ATLSs and their authoring tools certainly have all these characteristics.

Oja contends that Nielson’s classic usability heuristics are even more critical for complex software

development (Nielson, 1994). Nielson’s usability heuristics include reification (visualizing key

abstractions and relationships; minimizing working memory load); user control and freedom (not

constraining user actions any more than is necessary); flexibility in outcomes (allowing for variations in

style and needs); match between system and the real world (using the vocabulary and mental models users

already have); assistance with helping users recognize, diagnose, and recover from errors; and efficiency

of use.

Echoing the heuristic to “match between system and the real world,” Johnson (2006) analyzed software

usability failures in the healthcare sector that imposed significant financial and acceptance burdens within

that sector and found that “many usability problems stem from the inability of suppliers and

manufacturers to anticipate [user] requirements.” The educational technology R&D community is poised

to create ITS authoring tools that could be used on a large scale. As the investment in authoring tools

increases, there is a corresponding increased “risk” that investment in design, outreach, etc., will

outweigh the benefits if the tools do not directly meet the needs of a wide variety of users (or if the ITSs

build with the tools do not reach a large number of learners).

Figure 1 illustrates the type of risk management and risk reduction principles increasingly being used in

software and other industries.
2
 Additional investments in software can follow the “80/20” rule, where

2
 Image adapted from “Risk Management in the (Bio)Pharmaceutical and Device Industry,” L Huber &

Labcompliance Inc., http://www.labcompliance.com/tutorial/risk/default.aspx?sm=d_a.

14

perfecting the last 10% or 20% can take a disproportionate amount of effort. Meanwhile, the return on

user value gets proportionately less. The goal is to find the sweet spot where risk is acceptably low and

expected value is relatively high (“optimum” in Figure 1). To mitigate this risk, usability principles

recommend both empirical and theoretical grounding: i.e., usability evaluation and user-feedback from

authentic contexts done “early and often;” and a good theoretical understanding of the user and task.

Complexity is a useful construct for operationalizing Johnson’s “[ability] of suppliers and manufacturers

to anticipate [user] requirements,” but the construct needs better definition for this to happen—which is

what we hope to contribute to here.

Figure 1: Cost vs. value in software risk assessment

Complexity Science and Information Theory

Next we branch away from complexity in software and usability theory to consider how complexity is

theorized in more general terms. Complexity science points to various methods for measuring complexity,

which are all related to the amount of information contained in an object, system, or process, with

“information” being closely related to the concepts of difference, discernibility, and degrees of freedom.

Information and communication theories also quantify information (even “meaning”) in terms of entropy,

randomness, chaos, “surprise,” and “shortest possible description” (Grünwald & Vitányi, 2003). There are

many individual metrics that contribute to overall complexity, including the number and diversity of

components and their structural or functional relationships (Benbya & McKelvey, 2006). Complexity

science also deals with time-based phenomena: change, feedback loops, self-organization, evolution, and

emergence in dynamic systems—so-called “complex adaptive systems.”

Campbell (1988) describes three sources of complexity: number of dimensions of information, the rate of

information change, and the number of alternatives associated with each dimension (i.e., information

diversity). We modify and generalize this scheme as in Figure 2, using the categories of structural,

dynamic, and perspectival complexity.

15

Figure 2: Sources of system complexity

For structural complexity, other things being equal, systems are more complex if they have more parts

(e.g., an ant colony or a huge Lego project); more types of parts (e.g., a car or human anatomy); more

properties in each part; more relationships or constraints among the components (internally and with the

external environment); and more types of relationships. In particular, one-to-one mappings (relationships)

are the simplest, one-to-many mappings are more difficult, and many-to-many mappings are most

complex to manage and conceptualize.

In addition to these structural dimensions (which are metaphorically space-like), systems whose

properties, relationships, and objects change over time are more complex (the dynamic or temporal

dimension). Dynamic complexity can be represented in terms of the laws, rules, mechanisms, or

influences that create change in a system. Not only change but feedback loops and nonlinear dynamics, all

outside our scope to elaborate on, come into play here.

As indicated above, complexity is related to information intricacy, space of possibility, and even

“meaning,” and thus is not simply an objective property of systems, but has a quasi-subjective component

that involves human context, activity and the reasons for doing the complexity analysis. In software,

information systems and usability analysis, there are cognitive and epistemic considerations. Byström &

Järvelin’s analysis of task complexity includes factors such as repetitively, analyzability, a-priori

determinability, number of alternative paths, outcome novelty, number of goals and conflicting

dependencies, uncertainties between performance and goals, number of inputs, and time-varying

conditions of task performance (1995, p. 5). Zhang et al.’s (2009) “epistemic complexity” measures

complexity in terms of the movement from facts to explanations and from unelaborated to elaborated

knowledge—both of which indicate increasing depth and complexity. Epistemic complexity includes

measurement of the “diversity” and “messiness” one encounters in a situation (Bereiter & Scardamalia,

2006). Thus concepts of nuance/subtlety, abstraction/ generalization, uncertainty/ambiguity must be

considered.

Therefore, in Figure 2, we have the third category “perspectival” complexity, which is complexity due to

multiplicity and uncertainty, including conflicting goals or subtasks; diverse perspectives among

stakeholders; stochastic randomness and indeterminacy; and vagueness and uncertainty in any of the

structural or dynamic elements (measuring these would be more heuristic than the other two complexity

factor types). Perspectival factors relate as much to subjectivity and the nature of cognition as to the

objective nature of the artifact.

16

Usability Complexity and Runnable Artifacts

In terms of software systems, specifically authoring tools, the factors mentioned above can be applied to

the software artifacts (code and interface), development (programming or authoring), or the complexity of

use (the user interface understanding and the mental model a user must acquire to understand a system).

Theoretically, each of the sources of complexity in Figure 2 could be enumerated or estimated and

combined to measure the complexity of a system (its code, interface, task, etc.) toward the goal of

comparative analysis of the complexity of systems.

Software tools and applications allow us to make and improve things, which we call “authoring.”

Artifacts that “run” or behave dynamically are, of course, more difficult to author. With authoring tools

and educational software such as Scratch and StarLogo, and scripting languages in Office applications,

the line between programming and using software is increasingly blurred. ITS authoring can fall

anywhere along a spectrum of complexity from customizing parameters and choosing content to creating

teaching strategies, which is closer to software programming.

ITSs are dynamic systems that must be run to test them. They have multiple learning paths and it is

intractable to test every possible student behavior. Unpredictable behaviors inevitably occur in complex

software (which is why rigorous testing is important). The simplest systems have predicable paths with

little interaction or parameterization, such as scripts and story-board-type procedural flows. If an

authoring tool allows branches, if/then rules, procedures, loops, parameterized subroutines, or recursion

(in rough order of difficulty), the level of authoring complexity jumps dramatically. The author is

essentially doing software programming. Writing and debugging computer programs is a complex task

requiring special skill and tools. Without these skills, and even with them, it can be quite difficult to

determine the source of a run-time software bug.

Creators of authoring tools that allow authors to enter into this level of task complexity must (1) not

underestimate the complexity of the task or overestimate the skill of the typical user, and (2) provide real

debugging and tracing tools for the systems to be viable. One of Neilsen’s (1994) “Top 10”

recommendations for usability is to “help users [authors in this case] recognize, diagnose, and recover

from errors.” This can be as simple as providing an Undo feature for authored content, but for systems

with dynamic complexity special tools are needed to trace and debug procedural representations.

Like most software systems, ITSs should be designed in user-participatory feedback loops, where, as

Benbya & McKelvey note, “the critical factor in all information systems is continual change” (2006, p.

20). This might even imply that viable authoring tools should have some sort of “version control”

subsystem.

The above discussion suggests factors that could be considered in characterizing the complexity of

software tasks and interfaces. It is implied that for some tasks, such as version control and debugging,

there is a need for special skill such as knowledge engineering. Thus it is also important to consider the

“complexity capacity” of users and communities of practice—and for this we turn next to activity theory.

Activity Theory—Users, Tasks, Tools, and Communities

We borrow concepts from activity theory, which stresses the mediating role of tools (artifacts) and their

usage rules in collective human activity and development (Jonassen & Rohrer-Murphy, 1999; Stahl,

2006; Engestrom et al., 1999). Here rules indicate the (sometimes implicit) skills, understandings, and

habits held by a community of practice. Thus, we can frame our exploration of authoring tool usability in

terms of the interaction between users, tools, rules, and tasks. We can ask whether a tool and its “rules” of

17

use afford the accomplishment of a particular task for a particular class of users. Clearly, our users are

authoring tool users and the task is to design or customize an ITS; later we introduce “epistemic

forms/games” as a way to describe the rules of use.

Figure 3 illustrates these factors in activity theory terms (adapted from Jonassen & Rohrer-Murphy 1999;

Engestrom et al. 1999). Thus, from our focus on the concept of complexity, we must consider the

following:

 Task and rule complexity (user activity methods and goals)

 Tool (artifact) complexity

 Socio-cognitive complexity (community of practice and division of labor)

We are concerned with the match between the following:

 User vs. tool complexity

 Task vs. user complexity

 Community of practice vs. tool complexity

Figure 3: Activity theory

When we speak of users, we are really speaking of users in particular roles. This distinction is important

when we begin to speak of the complexity capacity of a user (or type of user). We are not referring to a

person’s general ability to handle complexity, but to one’s ability within a certain role (ITS author,

content developer, tester, etc.), which might depend more on training and experience than on innate

intellectual sophistication.

Campbell notes that there are several approaches to assessing complexity: as a subjective psychological

experience of the user, as an objective measure of the task, and as an interaction between subjective and

objective elements (1988, pg. 44). While measuring complexity in terms of user (author) experience is

18

important, methods for doing so are outside our scope here. However, we describe methods for describing

user capacity, and we assume that, on average, complexity capacity is closely related to the complexity

experience of the user (they will be frustrated or confused if their complexity capacity in a particular role

is mismatched for the task). In the prior section, we outlined specific methods for assessing task and tool

complexity objectively (though perhaps heuristically as estimations). Our eventual goal is to assess the

match (or interaction) between user capacities and the measures of tool/task complexity (user capacities is

roughly estimated, while tool/task complexity affords a more objective measurement).

Note that in the prior section tool and task complexity were treated together. Unlike simple tools such as a

hammer, for which the task a tool is used for (e.g., building a barn) is usually much more complex than

the tool itself, for most software tools, the complexity of the tool features can stand as a fair indication of

the complexity of the task. This is, of course, not strictly true, as building an ITS involves much more

than using an authoring tool (e.g., applying learning theory, paper mock-up design, etc.), but for

simplicity we assume that the complexity analysis given above of artifacts (tools) maps well to

complexity analysis of tasks. Task-related issues of how the tool is used and learned are categorized in

rules or community of practice (COP) elements of activity theory, rather than with the artifact.

Epistemic Complexity and Complexity Capacity

Oja quotes Haynes and Kannampallil (2004) who say that “complex software applications require great

cognitive skill, integration of knowledge from various areas, and advanced instruction and learning; thus,

it is not surprising that ‘screen deep’ interfaces to such systems may not yield the best results in terms of

usability.” This is one reason why understanding the intended user is so important—because making a

tool more easy to use, i.e., “usable,” may dumb it down too much for some users or tasks, and decrease

“user control and freedom” and “flexibility and efficiency of use” (from Nielson’s model) for those

contexts. Oja (2010) noted, “As Mirel [2004] points out, most current HCI practices concentrate on ease

of use or simplifying the work, and this may lead to ‘producing good designs but for the wrong

problems’” (p. 3800). The design goal is thus to make tools “operationally simple, while intellectually

sophisticated and nuanced” (Mirel, 2004).

“Cognitive complexity” is one term used to describe a person’s capacity to perform complex mental or

behavioral tasks. Cognitive complexity involves not only the number and complexity of the objects and

relationships as described above, but also the ability to perceive nuances and subtle differences, i.e., it can

involve both integrative and differentiating capacities (Mirel, 2004). Jordan uses the term “complexity

awareness” for “a person’s propensity to notice...that phenomena are compounded and variable, depend

on varying conditions, are results of causal processes that may be...multivariate and systemic, and are

embedded in processes [that involve non-simple information feedback loops]” (2013, p. 41). As

mentioned above, Zhang et al. (2009) use the term “epistemic complexity,” which includes an

understanding of underlying reasons, theoretical explanations, or hidden mechanisms within phenomena.

In what follows, I use the term “complexity capacity” to remind us that cognitive complexity required for

a task is about the context and role a person is in, and depends on experience in addition to any general

complexity “intelligence” they may have.

In the exploratory discussion of software usability and complexity, I enumerated many factors and it

remains for future work to determine how these factors are operationalized, weighted, and combined in

any overall complexity metric (a process that may be quite context-specific, as complexity components

will have different weights for different situations). As we move from characterizing the complexity of

tools (artifacts like software) and tasks (in this case authoring) to that of users, my approach continues to

be preliminary and suggestive, with many details remaining to be worked out beyond this chapter. Let’s

assume, for simplicity, that we have worked out the details of a scheme such as the one described in prior

19

sections of this chapter, have devised a method to characterize task/tool complexity level, and have

collapsed the dimensionality of analysis to rate tasks/tools on a scale of low/medium/high complexity.

How might we map this to user (or community of practice) complexity capacity? Table 1 illustrates what

such a mapping might look like, showing types of authors, benefits, and problems typical of each author

type, and the level of design complexity one can typically expect in the authoring task.

Table 1 Authoring tool user roles and complexity capacity estimates

Roles

(tool use roles)
Benefits

(of that role)
Problems

(of that role)

Complexity

Capacity for ITS

Design

Teachers

PRACTICAL

Practical experience Not good at articulating or

abstracting expertise

LOW

Domain Experts and

content developers

PARTIAL

Auth. tool infers the

instructional methods

A fixed instructional

method

MED

Instructional designers

and learning theorists

THEORETICAL

Know learning theories and

research

Rare; not trained in

knowledge engineering

MED

Knowledge engineers and

ITS developers

EXPERIENCED

Know the tools; are

sometimes also plugged into

user testing

May not know what it is like

to teach or learn the material

MED-HIGH

Computer scientists and

software developers

(ACTUAL?!)

Complexity capacity. Don’t

have to build to a real user

base.

“it’s intuitively obvious to

the casual observer…”

HIGH

Teachers have on-the-ground experience of the needs of students and classroom situations, and, while

their input should be included in the iterative design process, they cannot be expected to have the skill,

nor the time, to use (or learn how to use) complex authoring tools. Domain experts and content

developers are more typically used to define knowledge and expertise, though they may have little

practical or theoretical knowledge of pedagogy. Instructional designers and learning theorists bring

different sources of pedagogical knowledge and epistemological knowledge (understanding how

knowledge is structured), though they will often not have the time to dedicate to a steep tool learning

curve.

For all of the above user types, the task of representing knowledge in a computationally usable fashion

may be foreign—while knowledge engineers are trained in exactly that task. It is only with this level of

skill and higher that we can expect sophisticated authoring tasks to be managed. Most user communities

do not have people with knowledge engineering (or ITS design) skills, meaning that users at this level are

usually part of a dedicated ITS design team, which would only exist in an academic lab, a company

dedicated to building learning systems, or an educational organization large enough to form such a team

to be shared widely (e.g., a university or city school district).
3

3
 Note that this specific scheme is suggestive and meant to illustrate a framework rather than the “content” of the

framework—i.e., I do not need to make a strong argument here that, e.g., “domain experts and content developers”

have a limited or “fixed” understanding of instructional methods, as is given in the Table. Of course, the roles in the

20

The final category of users in Table 1 is computer scientists and software developers. This category

connotes the unfortunate yet understandable fact that many ITS authoring tools never see a robust user

community and are only used within the confines of the team or organization that built the tool. This

stakeholder group tends to be the most sophisticated in terms of designing complex structural and

procedural models. The benefit is that more powerful ITSs can be built, but the drawback is that without

usability input from “real” users, the tools may be too complex to expect many others to pick up, and the

tool designers may be out of touch with the needs of intended users.

In authentic contexts, the actual “capacity” of a user to use a tool to accomplish a task depends on

“community of practice” considerations as well as the potential complexity capacity level of the

individual (see Figure 3). These considerations include (1) opportunities, investment, and incentives in

training; (2) community of practice peer and mentor support; and (3) time available to author. Thus, even

if a user, say, an unusual teacher, has a high level of generic complexity capacity, in order to successfully

make use of an ITS authoring tool that person would need to be able to invest time in the learning curve,

have the support of peers and superiors in adopting this new technology, and have the ongoing time

available to do the authoring (along with other job responsibilities). Contexts satisfying these conditions

are indeed rare.

In addition, for newly introduced artifacts, there is a dynamic, often evolutionary, interplay between

artifacts (their design), the standard and novel ways that artifacts are put to use, and the human capacities

enabled by artifacts. That is, new tools create new capacities, which create new possibilities and new

goals/tasks, around which new (or improved) communities of practice develop—all of which, in turn,

prompt new innovations (tools) to continue the cycle. Benbya & McKelvey (2006, p. 14) refer to the “co-

evolutionary” aspects and “adaptive tension” of the “complex adaptive” socio-technological systems and

discuss the problem of “accumulating requirements.” So, an important community-of-practice question is,

How effective are the feedback and development learning loops between users, trainers, and designers?

Thus far I have described what a tool/task/user complexity mapping scheme might look like, without

saying much about the nature of user cognitive complexity. A user’s understanding of tools, tasks, and

methods can be described in terms of the mental models one has of these things (Gentner & Stevens,1983;

Johnson-Laird, 1983). Mental models are cognitive representations of external systems that include

structures and processes that a person simulates (runs or visualizes) mentally. One task of the authoring

tool is to help the user construct a valid mental model of the ITS building blocks, range of configurations,

and design steps that the authoring tool affords.

Oja notes that “cognitive engineering (Gersh et al., 2005) and learner-centered design (Soloway et al.,

1994) focus on improving system-human cognitive fit and allowing users to construct better mental

models (knowledge) of the system” (p. 3801), and that “reification is the basis for successful

communication and the establishment of a shared goal in human-computer collaboration” (p. 3803). Thus,

it is important that the authoring tool interface accurately and powerfully reify the structures, objects,

constraints, decision rules, and procedures involved in authoring, so that authors can build correct mental

models and can use these mental models to coordinate the various steps and roles within a design process.

The complexity of mental model that is supported in the authoring tool should match the complexity

capacity of the user.

Collins and Ferguson’s work on “epistemic forms” provides a valuable link between task/tool complexity

and the user’s complexity capacity in terms of the mental models that the user must construct and

table can be combined in any individual, but it would be rare that, for example, a classroom instructor would also be

a learning theorist or knowledge engineer.

21

maintain. Their concept of “epistemic games” also anticipates the community-of-practice element of

activity theory. I discuss epistemic forms and games next.

Epistemic Forms and Games

Collins and Ferguson (1993) first articulated the concepts of epistemic games and epistemic forms (see

also, Morrison & Collins, 1994; Shaffer, 2006). Epistemic forms are “target structures, like mental

models, that guide inquiry” and are “recurring forms that are found among theories in science and

history.” Epistemic games are “general purpose strategies for analysing phenomena in order to fill out a

particular epistemic form” that are shared within a community of practice (Collins and Ferguson, 1993, p.

25). Example epistemic forms include lists, hierarchy or tree structures, tables, networks, if-then rules,

and constraint-based systems. They are “generative frameworks with slots and constraints on filling in

those slots,” and in this sense are like domain-independent scripts, templates, or grammars that specify the

structural properties of a phenomena. They serve as commonly understood mental models for

understanding tasks and tools.

The theory of epistemic forms/games considers not only the structure of information, but also the ways

(i.e., games) communities use, understand, and build knowledge using that structure. For example,

perhaps the simplest epistemic form is the list. Knowing how to play an epistemic game includes knowing

its constraints, strategies, and moves. For the “list game,” this includes knowing how to add, remove,

combine, split, and arrange (classify, filter, or sort) items, and knowing when the “list form” is most

appropriate for a particular problem or inquiry. This framing is compatible with activity theory, which

highlights the interplay between cognition, artifact design, and communities of practice.

Morrison and Collins (1994) coined the term “epistemic fluency” to refer to the ability to use and choose

appropriately among the repertoire or ecology of epistemic games available within a community of

practice. Epistemic games are rarely used in isolation and are combined with other games as well as

transformed into other games, as when one representation (a concept network) is seen as more appropriate

than another (a table). Tables can be seen as composed of lists; even more complex forms might combine

tables with networks (e.g., a network of tables, or a table of networks). Table 2 lists some epistemic

forms/games mentioned by Collins and Ferguson (1993).

Table 2 Epistemic forms and games (mental models)

(Collins & Furgeson, 1993)

 list

 matrix or table

 molecular model

 periodic table

 web page menu

 x-y graph

 pert chart

 binary tree

 floor plan

 street map

 org. chart

 musical score

 timeline

 cause/effect diagram

 network

 relational database

 sentence diagram

 term paper outline

Epistemic games can be framed in terms of the key questions driving an inquiry. Knowing an epistemic

game includes knowing how to evaluate whether it is being played well. Example quality/validity criteria

for the list game include coverage (is anything missing?), similarity (do the items belong together, or

should they be split into two lists—apples and oranges?), distinctness (are the items actually different?),

and perspicuity (is it sufficiently short, simple, efficient, and understandable?). Vibrant communities of

practice can be creating, tweaking, and evolving, and mashing up their epistemic games.

22

Authoring Tool Epistemic Forms

Epistemic forms/games allow for a compact method of classifying tool/task complexity. In our original

discussion of artifact complexity, I suggested that one could enumerate the number and types of parts,

properties, relationships, etc., in a system. This may be useful to do but also quite cumbersome.

Meanwhile, epistemic forms serve well as a first-pass description of the complexity of end-user software

systems. Epistemic forms also address one difficult issue in the characterization of an artifact, which I call

the “dimension compression problem:” it may not be difficult to classify and compare artifacts along any

single dimension (as in Figure 2), but we have little guidance thus far on how to combine and prioritize

the many dimensions into a single (or simple) complexity characterization. Epistemic forms are holistic

and representationally efficient in that they incorporate many of these dimensions into each category.

In discussing authoring tools, I am interested specifically in design activities or design games (a term not

used by Collins and colleagues). In all epistemic games, one of the evaluation criteria is whether one’s

product (use of the epistemic form) is understandable or meaningful to others within one’s community,

while design games are distinguished by the additional need to assess how understandable and useable the

product will be to users (who belong to a community related to but different from the designer

community). Thus, the set of design game quality/validity criteria is extended to a group that requires

some cognitive empathy (and design/test iterations) to serve well.

In surveying a set of 14 authoring tools mentioned in Murray et al. (2003), one can clearly see a set of

epistemic forms that are repeated numerous times throughout most of these systems. This list of forms is

not be surprising—they are seen in most software tools, as shown in Figure 4. The basic elements include

check boxes and choice lists; sliders, dials, and meters; graphical networks and trees; and interactive

hierarchical and tabular textual representations. As discussed, to compare across and within any class of

epistemic forms (say, a hierarchical menu system), we can use the elements suggested in the earlier

discussion of complexity science, i.e., the complexity of an interface and task includes the number and

diversity of such elements and the degree of their inter-relationship or coupling in an overall system.

Figure 4: Epistemic forms in authoring tools

23

Intuitively, one can roughly compare or rate the complexity of epistemic forms. Lists, sliders, and

checkboxes are simpler than hierarchies, tables, and concept networks, which are, in turn, simpler than the

complex systems/mental models that are composed of dynamic the interactions among many simple sub-

components. Hierarchical complexity theory offers a more rigorous and more theory-based foundation for

rating and comparing complexity components, and it was developed to apply to human tasks and skills.

Next, I explore HCT as the last theoretical territory of exploration in my journey to link several

interdisciplinary fields.

Hierarchical Complexity and Skill/Task Development

Above I drew from information/systems theories and socio-technology theories (activity theory and

usability theory) to suggest ways to characterize the complexity of systems in general terms. Epistemic

forms provide a way of ameliorating the “dimensionality issue” by enumerating common forms that are

more intuitive and ready-to-hand than a list of low-level complexity dimensions. But we are still far from

a quantitative or semi-quantitative method for combining the factors involved to be able to make

comparative complexity judgments. To move in this direction, I draw from an area of cognitive/learning

science that is has significant implications for learning theory and ATLS design in general, yet, curiously,

is rarely referenced in these fields: Neo-Piagetian developmental theories. Cognitive developmentalists

(Neo-Piagetian theorists) have undertaken a deep study of complexity, because human development and

learning can be described in terms of “qualitative differences in mental complexity” relative to various

tasks, skills, or life contexts (Kegan, 1994, p. 152).

The key insight is that development, and complexity in general, advance through both horizontal and

vertical (“hierarchical”) movement, and do so through a particular alternating or spiraling pattern.
4
 The

structure and nature of horizontal growth is different than the structure and nature of vertical growth.

Vertical growth is more quantized or punctuated, and the vertical leaps involve particular challenges. If

we frame authoring tool features, tasks, and epistemic games in terms of vertical and horizontal

differences in complexity, we have additional tools for comparing complexity, and we gain insight into

why certain forms may be particularly difficult for users to learn.

Neo-Piagetian (adult) developmental theories go beyond early developmental work (e.g., Piaget, Perry,

Kohlberg) to add a hierarchical “structural perspective in analyzing changes in the organization of

“actions and thought” (Fischer & Yan, 2002, p. 283). These theories propose underlying representations

for skills and suggest rules for the transformation of skills to higher-level skills.
5
 These theories apply

principles from complexity science to human cognition and behavior, which can be easily mapped onto

artifacts (tools). As stated by Commons & Pekker, “Theories of difficulty have generally not addressed

the hierarchical complexity of tasks. Within developmental psychology, notions of hierarchical

complexity have come into being in the last 20 years. [...] a model of hierarchical complexity, which

assigns an order of hierarchical complexity to every task regardless of domain, may help account for

difficulty” (2009; p. 2).

Horizontal increases in complexity involve adding more of what already exists to an object, process, or

structure (more parts, relationships, steps, etc.—adding more “bits” of information without adding new

structural emergence). Commons suggests that increases in the horizontal complexity of tasks (which he

calls the “classical” model of information complexity) are analogous to increases in cognitive load

4
 These developmental models are discussed in more detail in the appendix in Murray (2015).

5
 Fischer’s Skill Theory (Fisher, 1980; Fisher & Yan, 2002) and other Neo-Piagetian models, including Commons’

Hierarchical Complexity Model (Commons & Richards1984, Commons et al. 2008), Kegan’s stage model (1994,

1982); and Cook-Greuter’s ego development model (2000, 2005).

24

(Commons & Pekker, unpublished). Horizontal growth can also be roughly compared to Piaget’s

assimilation, as it adds new knowledge in the form of existing structures (Piaget, 1972). Vertical growth

relates to accommodation, in which new structures are created to understand the world in new ways.

Horizontal growth tends to be continuous, while vertical growth follows a more discrete model and occurs

after a sufficient amount of horizontal growth allows for a reorganization at the next higher level.

Vertical increases in complexity lead to a new level or stage by applying an operation upon, or

“coordinating and transforming,” the objects of the lower layer. Each artifact or skill at a given

hierarchical level consolidates a set of items at the lower level into a single whole, transcending and yet

including them. Completely new properties and concerns arise at each level (a phenomena called

emergence). Examples of increasing levels of hierarchical complexity include the development (or

evolution) from words to sentences; addition to multiplication; single celled to multi-celled organisms;

concrete to formal operational concepts; using to designing an artifact; and doing a task to managing

others doing it.

There are numerous operations that can produce the next hierarchical level. Examples include abstraction

and generalization operate on lower-level objects to create higher-level ones; compilation or aggregation

can create higher-level units; steps are combined together to create processes; going “meta” (“thinking

about thinking”); and moving from static to dynamic systems or linear dependency to mutual dependency

also involve hierarchical transformations. Kegan notes that increasing complexity and sophistication

moves (vertically) from entities to processes, from static to dynamic systems and from dichotomous to

dialectical relationships (Kegan, 1994, p. 13).

Horizontal growth also follows a pattern in natural systems including human learning. The sequence is

from single objects, to multiple independent objects, to multiple interacting objects, to massively

interconnected object, and finally to an emergent whole that transitions to the next hierarchical level. It

makes intuitive sense that it is easy to learn a few more words (horizontal), but the leap to speaking

sentences is comparatively momentous (which is not to say that it comes online all of a sudden, i.e.,

children produce quasi-sentences first). Furthermore, this difference is quantitative. If we wanted to

measure language complexity, we can count the size of vocabulary and the length of words, but no

amount of increase in vocabulary will “equal” the shift from words to sentences.

Hierarchical complexity (which is Commons’ term; other developmentalists use different terms)

contributes to our analysis of authoring tool complexity in several ways. First, it ameliorates the

“dimensionality issue” by providing another tool for organizing the plethora of complexity dimensions,

i.e., according to horizontal and vertical differences in complexity, toward our goal of coordinating the

complexities of tool vs. task vs. user and in our goal of comparing two (or more) tools (or tasks, or types

of users). Second, because it is primarily a learning or developmental theory, it provides important

insights into the effort and prerequisite knowledge a new user needs to use an authoring tool. Vertical

growth is typically more difficult than horizontal growth, and the emergence of a new level of

organization often comes with some disequilibrium or dissonance, which, in turn, means there can be

resistance or hesitancy.

Now, we can begin with a rough characterization of the level of software tool complexity that a

hypothetical user already has, and then ask whether the features and tasks of an authoring tool represent

horizontal or vertical types of learning for the skill acquisition learning curve. We must not assume that

new user skill level can be increased in any sort amount of time with something like a training

intervention if vertical learning is involved.

25

Hierarchical Complexity and Epistemic Forms

The analysis of tool/task/user complexity can proceed in basically two directions: more rigorous

qualitative analysis and more heuristic quantitative analysis (though any analyses will probably combine

qualitative and quantitative methods). For my purposes, I focus on heuristic estimations. My goal is to

either start with a particular authoring tool/task and identify the communities of practice and training

needs that will match the tool/task; or, starting with a target user group, design the tool/task to match the

estimated complexity of a community of practice. One can use the concepts introduced in this chapter,

including the dimensions of complexity, types of epistemic forms, and the distinction between horizontal

and vertical differences in complexity, to make subjective shoot-from-the-hip assessments and inform

design discussions as is usually done in software design. Alternatively, and left for others to carry

forward, one can use these concepts to construct detailed quantitative metrics and formulas for calculating

task/tool/knowledge complexity—but such is not necessary to make solid progress in matching

tools/tasks to users.

Morrison and Collins (1994) mention the “epistemic complexity” of epistemic forms and games, but they

do not define it precisely. What I contribute here is an attempt to link epistemic games to cognitive

developmental theory in an attempt to create a grounded framework for assessing the relative complexity

of epistemic forms/games, which then provides a framework for describing the complexity of authoring

tool features. These epistemic forms can be sequenced according to complexity level modeled on the

levels mentioned in hierarchical complexity theory, as shown in Table 3.

Table 3 Epistemic forms organized by complexity level

Epistemic Form for Tool/Task/Mental Model Complexity Level

 Text information fill-in boxes

 Lists, choices, sliders, and check boxes

Simple objects

 Forms, schemas, or templates

 Tables and matrices

 Hierarchies and trees

Abstractions and mappings

 Scripts (with branches)

 Equations and Boolean logic

 Structural models: concept networks, boxology diagrams

Formal systems

 Causal and constraint models (and using variables)

 Behavioral/procedural models: If/then and rule-based procedural

representations

 (Authoring of) decision trees, Bayesian nets, etc.

Dynamic systems

 Coordination of dynamic modules, e.g., complex interactions between

expert, student, teaching modules, and dynamic use scenarios.

 Design that takes into account emergent and chaotic interactions.

Architectures and ecosystems

(systems of dynamic systems)

As a final step, in Figure 5, I link these complexity levels to the low/medium/high level of complexity

associated with different categories of users from Table 2. Again, this mapping is a heuristic estimation

that is intended to illustrate the type of analysis; no strong claims are made for the specific mappings.

26

Figure 5: Complexity levels of epistemic forms

Discussion

Beginning with a summary of my article on ITS authoring tool design, I described some of the challenges

facing authoring tool designers and researchers today. Consonant with this Special Issue’s theme of

personal retrospectives on classic papers, I also included a narrative look at what brought me to authoring

tools work and mentioned that my academic journey since then has included interdisciplinary tributaries

outside of ITS and educational technology per se. The invitation to write this chapter has given me the

happy opportunity to apply new frames of reference to an old topic. The reader hoping for definitive

answers to questions about software complexity may have been disappointed—what I have done is

exploratory theorizing to help frame important questions by suggesting certain theories, principles, and

concepts amenable to ITS authoring tool R&D.

In this chapter, I have explored some theoretical bases for assessing the appropriateness of ITS authoring

tools, and any type of software artifact, to intended user communities. The analysis is based on general

notions of complexity from complexity science and hierarchical complexity theory. The importance of

considering tools, tasks, user capacity, and community of practice in an integrated way was supported

through the inclusion of the models of activity theory and epistemic forms.

Matching tool/task complexity to user/community complexity capacity is important because authoring

tools are complex and expensive to build, and, using a “risk analysis” framework, we can say that the

more expensive a system is to build, the larger the risk if user needs and capacities are not understood and

anticipated. The design goal is to find the sweet spot where risk is acceptably low and expected value is

27

relatively high. Oja’s (2010) study of improving usability in complex software systems concludes that

systems should anticipate that projects usually involve a variety of roles and areas of expertise, and that

interfaces should allow for the “distribution of tasks according to participant strengths” (p. 3800). Thus,

the goal is not so much to match the affordances of an authoring tool to an intended user type, but

anticipate the range of user types involved in an ITS design and build tools that clearly meet the needs of

each design role. Also, and plans for large scale adoption of authoring tools should include plans for

learning and peer-mentoring within specific communication pathways in communities of learning.

The inclusion of complexity science and theories of dynamic systems in our narrative supports a bigger

picture consideration of authoring that considers not only how tools should be built to match user

capacities, but the reciprocal evolution of tools and human capacities over longer periods of time. As

Jerome Bruner notes “through using tools, man changes himself and his culture...human evolution is

altered by man-made tools” (1987). Thus, tools can not only support the construction of advanced

learning systems, but might also be designed to help users (especially instructors) more deeply understand

and incorporate leading-edge learning theories and mental models of the learning process (or build more

adequate mental models of their content domain). We can move beyond seeing authoring tools primarily

in terms of time and effort savings and consider their role in empowering content and pedagogy experts,

including teacher, and in terms of propelling the evolution of computer-mediated learning in general.

References

Abelson, H. & Sussman, G. J. (1983). Structure and interpretation of computer programs. MIT Press, Cambridge,

MA.

Ainsworth, S., Major, N., Grimshaw, S., Hayes, M., Underwood, J., Williams, B. & Wood, D. (2003). REDEEM:

Simple Intelligent Tutoring Systems from Usable Tools. Chapter 8 in Murray, T., Blessing, S. &

Ainsworth, S. (Eds.). Authoring Tools for Advanced Technology Learning Environments. Springer:

Netherlands.

Aleven, V. & Sewall, J. (2010, June). Hands-on introduction to creating intelligent tutoring systems without

programming using the cognitive tutor authoring tools (CTAT). In Proceedings of the 9th International

Conference of the Learning Sciences-Volume 2 (pp. 511-512). International Society of the Learning

Sciences.

Aleven, V., McLaren, B. M., Sewall, J. & Koedinger, K. R. (2006). The cognitive tutor authoring tools (CTAT):

Preliminary evaluation of efficiency gains. In Intelligent Tutoring Systems (pp. 61-70). Springer Berlin

Heidelberg.

Benbya, H. & McKelvey, B. (2006). Toward a complexity theory of information systems development. Information

Technology & People, 19(1), 12-34.

Bereiter, C. & Scardamalia, M. (2006). Education for the knowledge age: Design-centered models of teaching and

instruction. In P. A. Alexander & P. H. Winne (Eds.), Handbook of educational psychology (2nd ed., pp.

695–713). Mahwah, NJ: Lawrence Erlbaum Associates.

Brown, A. L. & Campione, J. C. (1996). Psychological theory and design of innovative learning environments: On

procedures, principles, and systems. In L. Schauble & R. Glaser (Eds.), Innovations in learning: New

environments for education (pp. 289–325). Mahwah, NJ: Lawrence Erlbaum Associates.

Bruner, J. (1987/2004), ‘Life as Narrative’, Social Research, 71: 691–710.

Byström, K. & Järvelin, K. (1995). Task complexity affects information seeking and use. Information processing &

management, 31(2), 191-213.

Campbell, D. J. (1988). Task complexity: A review and analysis. Academy of management review, 13(1), 40-52.

Chilana, P. K., Wobbrock, J. O. & Ko, A. J. (2010, April). Understanding usability practices in complex domains. In

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 2337-2346). ACM.

Cobb, P., Confrey, J., diSessa, A. Lehrer R. Schauble, L. (2003). Design experiments in educational research.

Educational Researcher. Jan/Feb 2003; 32, 1.

Collins, A. & Ferguson, W. (1993). Epistemic forms and epistemic games: Structures and strategies to guide

inquiry. Educational Psychologist, 28(1), 25-42.

28

Commons, M. L. & Richards, F. A. (1984). A general model of stage theory. In M. L. Commons, F. A. Richards &

C. Armon (Eds.), Beyond formal operations: Late adolescent and adult cognitive development,(pp. 120-

141). New York: Praeger.

Commons, M. L. & Pekker, A. (2009, unpublished). Hierarchical complexity and task difficulty.

http://dareassociation.org/papers.php. Accessed Monday, November 30, 2009.

Commons, M. L. & Pekker, A. (2008). Presenting the formal theory of hierarchical complexity. World Futures:

Journal of General Evolution 64(5-7), 375-382.

Commons, M. L., Trudeau, E. J., Stein, S. A., Richards, F. A. & Krause, S. R. (1998). Hierarchical complexity of

tasks shows the existence of developmental stages. Developmental Review, 18, 238-278.

Conklin, J. (2005). Wicked Problems & Social Complexity. Chapter 1 of Dialogue Mapping: Building Shared

Understanding of Wicked Problems, Wiley.

Constantin, A., Pain, H. & Waller, A. (2013). Informing the Design of an Authoring Tool for Developing Social

Stories. In Human-Computer Interaction–INTERACT 2013 (pp. 546-553). Springer Berlin Heidelberg.

Cook-Greuter, S. R. (2000). Mature ego development: A gateway to ego transcendence. J. of Adult Development,

7(4), 227-240.

Cook-Greuter, S.R. (2005). Ego Development: Nine levels of increasing embrace. Available at www.cook-

greuter.com.

Cristea, A. (2005). Authoring of Adaptive Hypermedia. Journal of Educational Technology & Society, 8(3).

Engestrom, Y., Miettinen, R. & Punamaki, R.-L. (Eds.). (1999). Perspectives on activity theory. New York:

Cambridge University Press.

Fischer, K. (1980). A theory of cognitive development: The control and construction of hierarchies of skills.

Psychological Review, 87(6), 477-531.

Fischer, K. & Yan, Z. (2002). The development of dynamic skill theory. In Conceptions of development: Lessons

from the laboratory, 279-312.

Gentner, D. & Stevens, A. (Eds.). (1983). Mental models. Hillsdale, NJ: Lawrence Erlbaum Assoc.

Gersh, J. R., McKneely, J. A. & Remington, R. W. Cognitive Engineering: Understanding Human Interaction with

Complex Systems. Johns Hopkins APL Technical Digest, 26, 4 (2005), 377-382.

Graesser, A.C., Chipman, P., Haynes, B.C. & Olney, A. (2005) AutoTutor: An intelligent tutoring system with

mixed-initiative dialogue. IEEE Transactions in Education, 48, 612–618

Grünwald, P. D. & Vitányi, P. M. (2003). Kolmogorov complexity and information theory. With an interpretation in

terms of questions and answers. Journal of Logic, Language and Information, 12(4), 497-529.

Haynes, S. R. & Kannampallil, T. G. (2004). Learning, Performance, and Analysis Support for Complex Software

Applications. Proc. of the 3rd Ann. Workshop on HCI Research in MIS, 30-34.

Heffernan, N. & Heffernan, C. (2014). The ASSISTments Ecosystem: Building a Platform that Brings Scientists and

Teachers Together for Minimally Invasive Research on Human Learning and Teaching. International

Journal of Artificial Intelligence in Education. 24 (4), 470-497.

Johnson, W. L. & Valente, A. (2008, July). Tactical Language and Culture Training Systems: Using Artificial

Intelligence to Teach Foreign Languages and Cultures. In AAAI (pp. 1632-1639).

Johnson-Laird, P.N. (1983). Mental models: Towards a cognitive science of language, Inference, and consciousness.

Cambridge, MA: Harvard University Press.

Johnson, C. W. (2006). Why did that happen? Exploring the proliferation of barely usable software in healthcare

systems. Quality and Safety in Health Care, 15, i76-i81.

Jonassen, D. & Rohrer-Murphy, L. (1999). Activity theory as a framework for designing constructivist learning

environments. Educational Technology, Research & Development, 47 (1), 61-79.

Jordan, T., Andersson P. & Ringn r, H. (2013). The Spectrum of Responses to Complex Societal Issues: Reflections

on Seven Years of Empirical Inquiry. Integral Review, February 2013, Vol. 9, No. 1.

Kegan, R. (1982). The Evolving Self. Harvard University Press.

Kegan, R. (1994). In over our heads: The mental demands of modern life. Cambridge, MA: Harvard University

Press.

Koedinger, K. R., Anderson, J. R., Hadley, W. H. & Mark, M. A. (1997). Intelligent tutoring goes to school in the

big city. International Journal of Artificial Intelligence in Education (IJAIED), 8, 30-43.

Kumar, P., Samaddar, S. G., Samaddar, A. B. & Misra, A. K. (2010, June). Extending IEEE LTSA e-Learning

framework in secured SOA environment. In Education Technology and Computer (ICETC), 2010 2nd

International Conference (Vol. 2, pp. V2-136). IEEE.

Mirel, B. (2004). Interaction Design for Complex Problem Solving. San Francisco, CA: Morgan Kaufman.

29

Mitrovic, A. (2012). Fifteen years of Constraint-Based Tutors: What we have achieved and where we are going.

User Modeling and User-Adapted Interaction, vol. 22(1-2), 39-72, 2012.

Mitrovic, A., Martin, B. Suraweera, P., Zakharov, K., Milik, N., Holland, J., McGuigan, N. (2009). ASPIRE: an

authoring system and deployment environment for constraint-based tutors. Artificial Intelligence in

Education, vol. 19(2), 155-188, 2009.

Mizoguchi, R. and Murray, T. (Eds.) (1999); Proceedings of “Ontologies for Intelligent Educational Systems,”

Workshop at AIED-99, LeMans France, July 1999.

Morrison, D. & Collins, A. (1995). Epistemic Fluency and Constructivist Learning Environments. Educational

Technology, 35(5), 39-45.

Murray, T. & Woolf, B. (1992). Tools for Teacher Participation in ITS Design. In Frasson, Gauthier & McCalla

(Eds.) Intelligent Tutoring Systems, Second Int. Conf. , Springer Verlag, New York, pp. 593-600.

Murray, T. (1996, May). Having It All, Maybe: Design Tradeoffs in ITS Authoring Tools. In Intelligent Tutoring

Systems: Third International Conference, ITS’96, Montreal, Canada, June 12-14, 1996. Proceedings (Vol.

1086, p. 93). Springer.

Murray, T. (1999). Authoring Intelligent Tutoring Systems: Analysis of the state of the art. Int. J. of AI and

Education. Vol. 10 No. 1, pp. 98-129.

Murray, T. (2003). An Overview of Intelligent Tutoring System Authoring Tools: Updated analysis of the state of

the art. In Authoring tools for advanced technology learning environments (pp. 491-544). Springer:

Netherlands.

Murray, T., Blessing, S. & Ainsworth, S. (Eds) (2003). Authoring Tools for Advanced Technology Learning

Environments: Toward cost-effective adaptive, interactive, and intelligent educational software. Springer:

Netherlands.

Murray, T. (2004). Design Tradeoffs in Usability and Power for Advanced Educational Software Authoring Tools.

Educational Technology Journal, Sept-Oct 2004, pp. 10-16.

Murray, T. (2015). Coordinating the Complexity of Tools, Tasks, and Users: Toward a Theory-based Approach to

Authoring Tool Design,” to appear in the International Journal of Artificial Intelligence and Education,

Vol. 25.

Nielsen, J. (1994, April). Enhancing the explanatory power of usability heuristics. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems (pp. 152-158). ACM.

Nielsen, J. Usability Engineering. Boston, MA: AP Professional (1993).

Norman, D. (1988). The Design of Everyday Things. Doubleday: NY.

Oja, M. K. (2010). Designing for collaboration: improving usability of complex software systems. In CHI’10

Extended Abstracts on Human Factors in Computing Systems (pp. 3799-3804). ACM: Chicago.

Olsen, J. K., Belenky, D. M., Aleven, V. & Rummel, N. (2013, January). Intelligent Tutoring Systems for

Collaborative Learning: Enhancements to Authoring Tools. In Artificial Intelligence in Education (pp. 900-

903). Springer Berlin Heidelberg.

Piaget, J. (1972). The principles of genetic epistemology. Basic Books, NY.

Ritter, S. & Blessing, S. (1998). Authoring tools for component-based learning environments. Journal of the

Learning Sciences, 7(1) pp. 107-132.

Shaffer, D. W. (2006). Epistemic frames for epistemic games. Computers & Education, 46(3), 223-234.

Sitaram, S. & Mostow, J. (2012, May 23-25). Mining Data from Project LISTEN’s Reading Tutor to Analyze

Development of Children’s Oral Reading Prosody. In Proceedings of the 25th Florida Artificial Intelligence

Research Society Conference (FLAIRS-25), 478-483. Marco Island, Florida.

Soloway, E., Guzdial, M. & Hay, K. E. Learner- centered design: the challenge for HCI in the 21st century.

Interactions, 1, 2 (1994), 36-48.

Sottilare, R. A., Brawner, K. W., Goldberg, B. S. & Holden, H. K. (2012). The generalized intelligent framework for

tutoring (GIFT). Orlando, FL: US Army Research Laboratory–Human Research & Engineering

Directorate (ARL-HRED).

Sottilare, R., Graesser, A., Hu, X. & Goldberg, B. (2014). Design Recommendations for Intelligent Tutoring

Systems: Volume 2: Instructional Management. U.S. Army Research Laboratory Human Research &

Engineering Directorate.

Specht, M. (2012). E-Learning Authoring Tools. In Encyclopedia of the Sciences of Learning (pp. 1111-1113).

Springer US.

Stahl, G. (2006). Group Cognition: Computer Support for Building Collaborative Knowledge. Cambridge, MA:

MIT Press.

30

Suraweera, P., Mitrovic, A. & Martin, B. (2010). Widening the knowledge acquisition bottleneck for constraint-

based tutors. International Journal of Artificial Intelligence in Education, 20(2), 137-173.

VanLehn , K., Lynch, C., Schulze, K., Shapiro, J. A., Shelby, R., Taylor, L., ... & Wintersgill, M. (2005). The Andes

physics tutoring system: Lessons learned. International Journal of Artificial Intelligence in Education,

15(3), 147-204.

Woolf, B. & McDonald, D. (1984). Design issues in building a computer tutor. IEEE Computer, Sept. 1984.

Woolf, B. P. (2010). Building intelligent interactive tutors: Student-centered strategies for revolutionizing e-

learning. Morgan Kaufmann.

Zhang, J., Scardamalia, M., Reeve, R. & Messina, R. (2009). Designs for collective cognitive responsibility in

knowledge-building communities. The Journal of the Learning Sciences, 18(1), 7-44.

CHAPTER 3 One-Size-Fits-Some: ITS Genres and What They

(Should) Tell Us About Authoring Tools
Benjamin Bell

Aqru Research and Technology, LLC

Introduction

The process of creating sophisticated Intelligent Tutoring System (ITS) can be costly, complex, and

tedious, and relies on collaborative expertise from multiple disciplines. Authoring tools streamline and

accelerate the construction of ITS by providing a framework within which an author can design a learning

system. Some authoring systems are general-purpose tools that provide an author with a great deal of

leeway. Others embody a set of assumptions about what the authored product will look like and how it

will behave. However, the authoring tool ecosystem has evolved with little discussion of ITS genres and

the desired properties of tools supporting authoring within each genre. Instead, authors of instructional

software often determine a priori what the authoring tool(s) will be and then commence the design

process informed by a combination of past experience, online research, discussion with colleagues, and

product availability.

I hypothesize that authors seldom think about the genre of the learning system they wish to create and

even more seldom use that genre as a filter in selecting the appropriate tools. Moreover, even the author

who engages in this deliberative process is unlikely to find authoring tools that are explicitly aligned with

specific genres of ITS.

In this chapter, I discuss the characteristics of ITSs that can be used to derive a set of genres, and the

relationships between those characteristics and desired properties of ITS tools corresponding to each. I

use examples of authoring tools to contrast general-purpose and specialized tools, and illustrate the utility

of aligning authoring tools to corresponding genres.

Related Research

This chapter discusses various genres of ITSs and what they have to say about ITS authoring tools. The

purpose is not to propose an exhaustive ontology of tutoring systems, but highlight how fundamental

properties of tutorial interactions and simulations influence thinking about authoring tools.

Why ITS Categories Matter

Numerous ontologies have been proposed for characterizing ITS. Since this chapter explores the influence

of ITS genres on authoring tools, the properties relevant to this discussion are not those focusing on the

user experience so much as those governing the design and construction of an ITS (though these are often

related). I can go further and suggest that instructional strategies similarly do not define what genre an

ITS should be identified with, so much as how they are built (though these too are related). Put another

way, the relevant distinguishing characteristics of an ITS are related to the questions “how do I build

one?” and “what’s hard about that?”.
1

1
 Murray (2003) proposes as a fundamental question “who should author ITS?” which is an important question but

less relevant to characterizing ITS categories.

32

This is not a radical departure from traditional ITS research by any means. A view of ITSs that has

endured for four decades and remains influential today identifies the three elements of an ITS as (1) the

expert model (domain knowledge), (2) the student model (knowledge about the user), and (3) the tutor

(knowledge of teaching strategies) (Hartley & Sleeman, 1973). This decomposition factors in neither user

experience nor instructional strategies, but is essentially an architectural blueprint. Researchers thus

generally converged around the general notion that building an ITS was a process of creating, more or

less independently, expert models, student models, and tutoring strategies (Burns & Capps, 1988).

Debate about specific approaches generally focused within each of these three components. A good deal

of research has resulted in an array of theoretical frameworks that remain vigorously investigated to this

day. Reviews of expert modeling appear in Ahuja & Sille (2013); Paviotti, Rossi & Zarka (2012); and

Sani & Aris, (2014). For a review of student modeling, see Pavlik, Brawner, Olney & Mitrovic (2013). A

review of tutoring strategies is presented in Sottilare, DeFalco & Connor (2014).

An extension to the canonical ITS model has acknowledged the interface between the user and tutor as an

integral component (Miller, 1998; Sottilare, 2012). Interface as used here refers to how the user and tutor

interact, not simply to how the display appears. Miller (1998) distinguished two principal metaphors for

this interaction: first-person interfaces, where the user directly manipulates displayed objects; and second-

person interfaces, which allow the user to command actions. First-person interfaces can provide the user

with a feeling of working directly with the domain. This interface metaphor is a natural way for a user to

engage in a simulation because changes in the system, process, environment, or device being simulated

can be effected in a manner that resembles the physical world. That this type of interaction raises

questions about authoring tools should be clear (I discuss this later).

In a second-person interface, a user commands actions to an implicitly or explicitly represented agent.

Agency is thus delegated to the system through what can be an abstraction (e.g., a menu), an embodiment

of a person (e.g., a depiction of a tutor), or some other representation of a non-human but still interactive

entity (e.g., a helpful paper clip). The modality of this interaction can vary. Basic interface controls

provide a (usually) graphically oriented palette of user commands (such as “skip,” “go back,” or “help”).

These commands are distinctive from controls embedded within the simulated environment (a steering

wheel, a syringe, etc.). Menus are another common means to embody an abstraction of an agent, and have

evolved to be highly context-dependent.

The basic elements governing the interaction between the user and tutor thus appear to have become

established in the canonical ITS (Sottilare, 2012). However, answering the questions “how do I build

one?” and “what’s hard about that?” has become less straightforward as ITSs have grown less

homogeneous. This heterogeneity among ITSs matters, in part, because of the implications for authoring

tools. In the next section, I briefly discuss two genres, linked with first- and second-person metaphors,

respectively, and a third that borrows from both traditions. These are representative of the last few

decades of ITS research that have been influential in the technology-mediated learning community. For

purposes of discussion, I label the first two simulation-based learning and discourse-based learning. The

third genre, which adopts elements of both first-person and second-person interfaces, is labeled situation-

based learning. Although the terms “simulation” and “situation” are related, I draw an important

pragmatic distinction between a computational simulation (of a device, process, system or environment)

and a collection of situations that a learner could encounter through taking actions or asking questions—

where each circumstance itself is static but where the overall user experience could feel dynamic.
2
 The

2
For instance, a finite state machine could occupy both simulation and situation paradigms, but since a state has

inspectable, static properties, for our purposes such an architecture fits more within the situation-based learning

genre.

33

discussions that follow are summary in nature; the reader is referred to more comprehensive reviews cited

in each section.

Simulation-Based Learning

The emergence of desktop simulation and its rapid trajectories toward greater fidelity and lower cost have

created rich opportunities for automated learning while raising fundamental questions for the ITS

community. The general construct of a simulated world is captured in the term reactive environment

(Shute & Psotka, 1996) to describe an ITS in which “the system responds to learners’ actions in a variety

of ways that extend understanding and help change entrenched belief structures using examples that

challenge the learner’s current hypotheses.” (p. 579). As a result of much research into the teaching

potential of simulations, the canonical ITS has expanded to include a simulated environment. Researchers

have used various labels to describe such components (and the encapsulating tutoring system), including

environment module (Burton, 1988), microworld (Frederiksen & White, 2002), simulation-centered tutor

(Munro, et al., 1997), or discovery learning environment (Veermans, van Joolingen & de Jong, 2000).

Although a simulator is not in itself a tutoring system, there has been significant progress in the use of

desktop simulation to advance learning objectives in ITSs, particularly those employing games. The

pervasive presence of this approach is reflected in the literature, which discusses, alternately, embedding

a simulation within a tutor (Jong & van Joolingen, 1998; Towne & Munro, 1988) and embedding a tutor

within a simulation (Rickel & Johnson, 1999; Fowler, Smith & Litteral, 2005; Wray, Woods & Priest,

2012; Bell, Johnston, Freeman & Rody, 2004; Bell, Jarmasz & Nelson, 2011). Since this distinction is

largely an implementation question and not a theoretical one, the term “intelligent game-based learning

environment” is often used to refer to a pairing of simulation and tutoring capabilities, irrespective of

system architecture (Lester, Lobene, Mott & Rowe, 2014).

Discourse-Based Learning

The prevalent metaphor for driving second-person interfaces is discourse. Improved capabilities for

natural language interaction have enabled more conversational forms of this kind of interaction. Also,

remarkable gains in speech recognition have yielded second-person interfaces that support spoken

discourse between a user and the agent that is interpreting and carrying out the user’s instructions. In this

regard, technology has caught up with the visions of earlier ITS researchers, exemplified by Miller’s

observation that “the image of an interface as a ‘second person’ agent working for the user is perhaps

most clearly captured by a natural language interface” (1998, p. 155).

Discourse as a tutorial strategy is intended to operate in an ITS much like it does when practiced by a

skilled human tutor (Van Lehn, 2011). Using discourse as a tutoring technique is distinct from using

discourse to train the skills related to engaging in discourse (e.g., in language training, see Johnson &

Valente, 2008). In discourse-based learning, the tutor uses conversation and its varied constructs

(questions, answers, reflection, rhetoric) to elicit thought, reasoning, problem solving, and question-

posing from the student.

This chapter does not survey the literature on dialogue-based tutors though recent reviews appear in

Brawner & Graesser (2014) and Rus, D’Mello, Hu & Graesser (2013). Instead, I use as an exemplar an

influential and representative body of research in dialogue-based tutors led by Graesser and colleagues

called AutoTutor and its variants (Graesser, et al., 2004; Graesser, Chipman, Haynes & Olney, 2005;

D’Mello & Graesser, 2012). AutoTutor embodies a theory of dialogue-based instruction based on

authentic (human) tutoring behaviors. The theory has evolved from proposing numerous dialogue moves

(e.g., question, prompt, correct, hint) (Graesser, et al., 1999; Graesser, et al., 2001) to proposing an

34

integrative dialogue model called Expectation and Misconception Tailored (EMT) (Graesser, et al.,

2012). AutoTutor thus offers a useful example for my discussion later of how authoring tools address

discourse-based ITS.

Situation-Based Learning

The third example of an ITS genre fits neither wholly within first-person interfaces nor wholly within

second-person interfaces. Situation-based learning though has great contemporary importance and

addresses a conceptual flaw in traditional ITS models that did not call for any sort of authentic context—

the requirements for a user model, domain model, and tutoring strategies (and later, an interface) did not

implicate a need for setting instruction against a backdrop relevant to the target skills and knowledge.

Learning sciences researchers though recognized that instructional systems could be more effective when

coupled with circumstances in which the user naturally encounter, learn, and apply the skills and

knowledge being taught.

Collins, Brown & Newman (1989) describe natural alignment of how people learn with the use of an

authentic context in which to embed learning. They use the term cognitive apprenticeship to describe the

application of traditional apprenticeship learning to class instruction, which they argue is especially

relevant to learning higher-order metacognitive skills and problem-solving strategies as employed by

expert practitioners. Situated learning theory (Brown, Collins & Duguid, 1989) asserts that learning in

context is more consistent with how people acquire knowledge and skills as supported by research in

education and cognitive science. The authors “argue that approaches such as cognitive apprenticeship that

embed learning in activity and make deliberate use of the social and physical context are more in line with

the understanding of learning and cognition that is emerging from research” (Brown, Collins & Duguid,

1989, p. 32). Bransford and colleagues (1990) present a framework for anchored instruction that makes

the role of an authentic context explicit by structuring learning through realistic, complex problems

embedded within a narrative. Another body of research influenced by these contextual approaches yielded

a long series of ITS conforming to a framework called goal-based scenarios (GBS) (Schank, Fano, Bell &

Jona, 1994).

Although these theories differ in surface features, they share the essential principles of goal-driven

inquiry in pursuit of authentic, complex and ill-defined problems (Bell & Zirkel, 2001), embedded within

a fictional narrative context (Riedl & Young, 2014). The shared emphasis on creating an authentic context

for learning, and for embedding instruction within a suitable culture of practice, has implications for ITS

authoring as discussed later.

Implications for ITS Authoring Tools

In the previous section I presented three representative ITS genres that have each emerged from, and

altered the canonical ITS model. This section considers the authoring process and its challenges in the

more contemporary context of ITS genres as they have evolved in recent research. In his analysis of ITS

authoring tools, Murray (1999) proposed distinguishing those that are pedagogy-oriented (supporting the

sequencing and teaching of generally static content) from those that are performance-oriented (enabling

interactive environments with opportunities to learn and apply skills and get feedback). Murray (2003)

identified four categories of pedagogy-oriented ITS authoring tools: curriculum sequencing and planning,

tutoring strategies, multiple knowledge types, and intelligent/adaptive hypermedia; and three specific

categories of performance-oriented ITS authoring tools: device simulation and equipment training,

domain expert system, and special purpose.

The three categories mentioned previously do not neatly align with Murray’s categories, but are useful for

contextualizing the present discussion. Simulation-, discourse-, and situation-based learning, while not

35

intended as an elaborated ontology, are used here to organize a brief consideration of how ITS tools can

best support the authoring process along with a few select exemplars.

Intelligent Tutoring Demands Intelligent Authoring

The act of constructing an ITS has been viewed largely as the assembly and integration of disparate but

interacting components, where “traditional intelligent tutoring systems (ITSs) are typically constructed

out of four primary components or modules: the user interface, expert model, student model, and

instructional module” (Jona & Kass, 1997, p. 39), and ITS authoring tools have evolved largely along

these lines (Macmillan, Emme & Berkowitz, 1988; Murray, 2003; Murray & Woolf, 1992; Russell,

Moran & Jordan, 1988; Brawner, Holden, Goldberg & Sottilare, 2012). To support construction of each

of these modules, authoring tools came to “consist of specialized editors for building each component

(i.e., a user interface builder, expert model editor, etc.)” (Jona & Kass, 1997, p. 39).

More recently, work being done under the Generalized Intelligent Framework for Tutoring (GIFT)

initiative has called for authoring support of five functions: user models, domain knowledge, instructional

strategies, user-tutor interfaces, and integrating tutor components (Sottilare, 2012). In calling attention to

integrating components, GIFT researchers explicitly acknowledge the importance of and the challenges

surrounding the integration of ITS components.

GIFT and its precursors are thus generally aligned with a software engineering approach to supporting the

process of creating complex ITS components. However it is also important to consider the underlying

learning principles that are implicitly adopted or explicitly enforced by an authoring tool architecture and

to examine how an ITS authoring tool provides support to an author in properly adhering to those learning

principles.

In previous work, we suggested that authoring tools that observe this component-oriented approach “are

too general to serve as a specification for a piece of educational software, and are too general to be of

much help in guiding a designer in creating such software” (Bell, 2003, p. 349). Lack of specificity

though could have implications for ITS tools beyond just limiting their utility. Kass & Jona (1997) argue

that “while the idea of modular, interchangeable components sounds quite appealing from a software

engineering perspective, we’re skeptical about the educational validity of this idea, and of the implicit

model of learning which underlies it” (p. 39). In other words, authoring tools premised solely on a

software engineering approach may lack a theoretical basis for guiding the creation of effective

instruction.

An alternative is to think about ITS tools as a general label for the space of discrete, specific, and

standalone authoring environments, each conforming to a different teaching architecture (instructional

approach). One benefit to this approach is that there is arguably a wide range of categories of ITSs, so this

approach avoids the problem of how to create a truly supportive and sound “universal” tool. Another

benefit is that the enormous range of potential actions and interactions, which a universal tool would need

to support the authoring of, would require vast representational knowledge capturing the structure of what

users do when engaging with ITS. With tools that are specific to an instructional architecture, the

representational challenges become far more tractable. Third, an ITS tool specific to an instructional

architecture is in principle more capable of providing informed authoring guidance than a tool that, by

necessity, could offer guidance in only very general terms. An ITS authoring tool built with a specific

instructional approach in mind can thus avoid sacrificing value as an intelligent guide in the name of

generality.

36

This sort of approach does not come without some cost: research, analysis, and validation is required in

order to derive teaching architectures that are viable (meaning, ITS tools could effectively support

authoring) and effective (meaning, ITS created from such tools could have instructional utility). There is

therefore a dual process that “entails creating a fully designed and implemented teaching architecture

along with a special-purpose tool for instantiating that architecture in a variety of domains” (Jona & Kass,

1997, p. 39).

In the next sections, I revisit the three categories introduced previously (learning driven by simulations,

by discourse, and by situations) and discuss implications for authoring tools that embody the notion of

category-tailored ITS authoring.

Implications of Simulation-Based Learning for ITS Authoring

The first-person interface metaphor was introduced previously as the basis for a great deal of productive

research that has explored the instructional potential of simulations as powerful environments for tutoring

systems. The process of authoring an ITS in this category is unlikely to conform very closely with the

general model of ITS authoring, so it is also unlikely that a general-purpose tool is the ideal authoring

environment. One challenge faced by the ITS author is how to structure event sequences and transitions to

achieve the desired learning outcomes. Open-word simulations do not ensure that learning objectives are

achieved (or even encountered); a helpful tool should coach the ITS author in exercising some measure of

controls expressed in frameworks such as Guided Experiential Learning (Clark, Yates, Early & Moulton,

2010). So here we see a need for ITS authoring tools to “understand” simulation in a way that diverges

from traditional authoring.

For instance, in a simulation-driven ITS the nature of the student model may not be along the traditional

lines of a separate, explicit module. Student models are useful for recognizing what a user’s goals are in

selecting a course of action (Greer & Koehn, 1995; Whitaker & Bonnell, 1990) and identifying typical

error modes a user may be displaying (Burton & Brown, 1978; Brown & VanLehn, 1988; Brusilovsky,

1994). However, exploratory environments enabled by simulation can reduce the reliance on a student

model, if not eliminate the need entirely. Student models emerged as a means to interpret and track

student actions and intentions. A simulation though can be seen as a dynamic record of a user’s path,

since the state of the simulated world at any moment in time is attributable to the user’s intentions and

how the user effected change in the world in service of those intentions. The environment thus can reveal

how far toward some defined objective the user has progressed and what the user has done correctly or

erroneously (Livak, Heffernan& Moyer, 2004). This is a simplification but expresses the basic argument

that I can elaborate with a brief example.

Consider a flight simulator embedded within an ITS designed to train Air Force student pilots in proper

radio communications procedures. A student model could be developed that cues a tutor to recognize

what goals a user is pursuing (reducing power, extending flaps, and lowering the gear signals a goal to

land) and what behaviors might be attributable to a common type of error (e.g., failing to report gear

down at a required position in the pattern). However, the simulation, as a realistic, doctrinally correct

model, knows (in some sense) what reducing power, deploying flaps, and lowering the gear signals in

terms of intent; it also knows that failing to communicate at a mandatory reporting point is an error. The

simulation would therefore be able to cue the tutor to derive an appropriate intervention, such as

commanding the synthetic instructor pilot to tell the user, “you need to make a gear-down call.” One is

37

left to conclude that either there is no student model in this instance or that the student model is not a

separate module but is embedded in the simulated world (the environment and the agents that occupy it).
3

Either way, one consequence of an ITS that provides a rich set of affordances through which a learner

explores and influences the environment is that the construct of a separate student model becomes less

relevant. It can also be problematic, since an “open world” simulation of any reasonably complex

phenomenology greatly complicates encapsulating all possible solution paths in a model (Derry & Lajoie,

1993). Derry and Lajoie (1993) present five additional factors that cast doubt on the learner modeling

paradigm:

(1) learner error patterns, or bugs, cannot be fully pre-determined;

(2) the presentation of static content and feedback is antithetical to principles of tutorial dialogue;

(3) reflection and diagnosis should be performed by the learner, not the tutor;

(4) learner modeling is technically very difficult; and

(5) the assumptions on which most modeling approaches are based are applicable to procedural

learning, whereas the emphasis should be on critical thinking and problem solving.

What does this say about authoring tools? Though much contemporary ITS research adopts as an

assumption the requirement for a student model, we can say at the very least that the need for a student

model is governed by the instructional objectives of the ITS. And the capabilities of simulation-based

learning ITSs can often reduce, or eliminate, the need for a student model. So to support ITS authoring,

tools should support tagging and tracking the user’s actions in order to correlate user activity with the

state of the world, in support of feedback and assessment.
4

More broadly, a capability that should be characteristic of tools for authoring ITSs in this genre is to help

the author define states of the world and transitions in the world that correspond to instructionally

significant events. How simulations can be controlled to achieve a desired instructional outcome has been

the subject of much research. “Open world” learning environments require structure to align the

interaction with instructional objectives. Lane & Johnson (2008) discuss the need for guided practice, to

make more tractable the problem of managing tutoring given the additional dimensions of time and

movement that simulations add to ITS. Guided Experiential Learning (Clark, Yates, Early & Moulton,

2010), mentioned previously, proposes a structured, seven-step process to ensure an instructionally

effective sequence is observed in using discovery learning environments.

Constraining simulations in instructionally meaningful ways has enabled much recent work that blends

instructional strategies and simulation-driven ITS. Researchers have been investigating methods for

identifying “teachable moments” (Havighurst, 1952) during exploratory interactions. One technique is to

align the content (i.e., the target skills and knowledge) to a user’s goals and then employ the user’s

behaviors to trigger the presentation of the corresponding content (Mall, et al., 2014). Another is to

modulate responses provided through the simulation (e.g., through animated agents) to increase or

decrease feedback and advance the instructional aims of the interaction (Lane & Johnson, 2008). Related

to this approach is the explicit modification of the world state to condition the environment for addressing

specific learning objectives (Magerko, Stensrud & Holt, 2006).

3
 This example was taken from a simulation-driven learning environment developed for US Air Force pilot training

(Bell, Bennett, Billington, S., Ryder & Billington, I., 2010).
4
 A simulation scenario can be an objective and complete assessment rubric as numerous researchers have observed

(Schank, 2001; Fowlkes, Dwyer, Oser & Salas, 1998; Bell, et al., 2010).

38

Although these techniques show promise, there remains the question of how to incorporate them into

authoring tools. Creating the simulation environment itself is not the province of an ITS authoring tool;

simulation construction is a complex and distinctive process and demands a different skill set and

correspondingly tailored suite of tools. Instead, ITS authoring should evolve to allow training developers

to integrate tutoring with simulations.

Implications of Discourse-Based Learning for ITS Authoring

The second-person interface metaphor discussed previously has cultivated a rich body of research

exploring the interactions between a user and an ITS. The central challenges faced by an author of a

dialogue-driven ITS are unique to this genre and thus would be optimally overcome by an authoring tool

that understands discourse-based learning.

One obvious way in which creating discourse-driven ITS diverges from the traditional model (and thus

from traditional notions of authoring tools to support that model) is the blurring of any distinction

between the “tutor module” and the “interface module.” Tutoring knowledge can be encapsulated directly

within the discourse space and in how that space is traversed (by dialogue events triggering state

transitions). Not all discourse models operate precisely in this way but the challenges of the authoring

process largely remain across implementations. A model introduced previously that illustrates the novel

requirements for authoring discourse-driven ITS is AutoTutor. The process of creating AutoTutor

applications implicitly merges the tutoring and interface modules, and requires that an author develop a

well-elaborated conversation space.

Among the authoring challenges that set this ITS genre apart from the other two examples is that the

dialogue must be structured to completely address the intended learning objectives. It also follows that a

tool to support this kind of authoring should embody whatever dialogue theory the author is

implementing. In other words, creating an AutoTutor application is best supported by an ITS authoring

tool that understands the expectation and misconception-tailored (EMT) discourse model, so that the tool

can effectively coach an author in structuring the dialogue in a way that ensures the instructional

objectives are achieved.

An example of such a tool is the AutoTutor Authoring Tools (ASAT), designed to support authors in

creating the underlying rules to achieve the intended tutoring dialogue (Graesser et al., 2004). Similar

tools have been developed to support the authoring of ITS implemented via a related framework called

AutoTutor Lite (Wolfe, et al., 2013). A salient characteristic of these tools relevant to the current

discussion is that they explicitly embody an instructional theory and are therefore able to support the ITS

author. The authoring tool guides the author by presenting the elements of the dialogue that have to be

defined and the actions and transitions that make the dialogue dynamic and instructionally relevant.

Implications of Situation-Based Learning for ITS Authoring

As discussed, situation-based learning is somewhat of a hybrid, adopting both first- and second-person

interface elements. In this section, I consider the process of authoring this kind of ITS and present

examples of ITS tools developed to support the process. Situation-based learning can be, and usually is,

implemented as a network or graph of states (each corresponding to a situation the user has arrived at

through actions taken). Authoring a branching simulation requires defining the state space, creating the

transitions among states, and elaborating each state. The mechanics can be relatively straightforward. The

challenge is more in developing a coherent and compelling narrative that squarely addresses the learning

objectives of the ITS. As a result, the creation of a branched-simulation ITS has often been coincident

with the evolution of an authoring tool used to support that ITS or its immediate progeny. For instance,

39

early work by Ohmaye (1998) in creating a language tutor yielded an architecture and authoring tool for

developing dialogue-driven branched simulations that was further refined by Guralnick (1996) and Jona

(1998).

This approach has been generally referred to as outcome-driven simulation, a term coined by Christopher

Riesbeck at Northwestern University in 1994 that “refers to a class of applications where users adopt a

role in a fictional scenario, and where the decisions and action that the user takes moves the scenario

forward in time to new situations that are relevant to the pedagogical objectives” (Gordon, 2004, p. 230).

This simple architecture can create quite vivid user experiences, creating the impression of a dynamic

simulation, and continues to be employed to both create learning applications and to develop authoring

tools tailored to supporting this genre of ITS. Gordon (2004) described a process to support authoring and

its application to leadership training for US Army officers. A related authoring tool based on this

architecture was developed along with several applications to support cultural awareness training

(Deaton, et al., 2005). This approach remains widely used to this day. For instance, a suite of medical

training applications is being developed around an outcome-driven simulation ITS authoring tool (King,

Scott, Davidson & Bope, 2014).

This work is related to the goal-based scenario (GBS) framework introduced previously (Schank, Fano,

Bell & Jona, 1994). The GBS research team proposed five categories of ITS, named for the principal

activity anchoring learning: advise, investigate and decide, run, script, and persuade (Jona & Kass, 1997).

The research team then developed specialized ITS authoring tools to support the construction of GBS

within each specific category, and conducted numerous evaluations and user trials (e.g., Bell, 1998).

These authoring frameworks continued to evolve, and today several tools are in use that support authoring

of GBS as well as specific sub-categories of these situation-based ITS (e.g., investigate and decide; see

Bell, 2003; Dobson, 1998; Dobson & Riesbeck, 1998; Riesbeck & Dobson, 1998).
5

These variants share an approach to instruction effected through the states and transitions. Tutoring is

implicitly represented in the states and transitions defined by the author, and dynamically engages the

user as states are traversed, with transitions triggered by the user’s decisions and actions.

What these examples of authoring tools tell us is that outcome-driven simulation is created through an

authoring process that is distinctive from the traditional ITS component approach. Outcome-driven

simulation as an instance of situation-based learning has advantages in terms of facilitating authoring and

ensuring instructional goals are achieved. This approach “demonstrates that training experiences in virtual

reality environments need not be constrained by the modeling limitations of current constructive

simulations, and that by focusing on specific decision situations we can design immersive training

environments that are tightly structured around training goals” (Gordon, 2004, p. 237).

Discussion

This chapter illustrates that ITS as a research enterprise has matured and diversified, reflecting a broader

theme of this volume, which similarly segments the ITS space (though along different lines—model-

tracing, agent-based, and dialogue-based). The categories themselves are less important than the question

of authoring tools, and specifically, whether we should strive to create a universal ITS tool or

acknowledge the diversity of ITS and develop authoring tools specific to different types.

5
 The GBS Tool and commercial variants are developed and marketed by Socratic Arts, www.socraticarts.com.

40

This call for distinctive authoring tools is not meant to suggest that different domains call for different

tools. Authoring tools should be agnostic with respect to domain; whether an author wishes to teach about

combat casualty care or playground etiquette is not the issue—the how is more determinant than the what.

It does not even matter greatly whom the intended audience is. As Murray (2003) points out, “the key

differences among ITS authoring systems are not related to specific domains or student populations, but

to the domain-independent capabilities that the authored ITSs have.” (p. 495).

While the domain itself may not be a factor in authoring tool design, research being conducted within the

GIFT community is drawing an important distinction between well-defined and ill-defined domains. The

implication is that “with a two-dimensional approach to domain definition, instructional strategies can be

specified based on the component characteristics identified within the domain designation” (Goldberg,

Holden, Brawner & Sottilare, 2011). So at least at this high level, we see a trajectory for GIFT to support

distinctive authoring processes based on domain.

GIFT researchers also call for specificity at the domain level when authoring assessments. “The

fundamental problems of domain dependent components are how to assess student actions, how to

respond to instructional changes, how to respond to requests for immediate feedback, and an interface

which supports learning” (Goldberg, Holden, Brawner & Sottilare, 2011). However, the GIFT framework

manages these differences through domain modeling tools, which allow for author-customized and

domain-specific feedback and assessment but which do not present distinctive approaches to instruction.

A dimension more discriminating for authoring tools than domain is instructional approach. An assertion

drawn from this chapter is that ITS tools should (and do) embody a specific instructional theory to

supports authoring ITS that also embody that theory (e.g., Adenowo & Patel, 2014; Aleven, McLaren &

Sewall, 2009; Gordon, 2004; Ramachandran & Sorensen, 2007). The GIFT framework takes a more

generic approach than authoring in specific ITS genres—ITS authors instead “can use GIFT to author

strategies aligned with a particular instructional theory” and “have access to libraries of strategies that are

tailored to the user and can be used to develop timely feedback mechanisms.” (Sottilare, Goldberg,

Brawner & Holden, 2012). GIFT thus seeks a best-of-both-worlds solution, by offering a generic suite of

authoring tools while supporting the construction of ITS in a range of instructional traditions.

Where the GIFT approach diverges from proponents of theory-specific ITS authoring tools is not so much

in the availability of strategies but in the knowledge that the authoring tool can bring to bear in helping

the author to properly select and apply those strategies. As an analogy, consider the difference between a

website that lists airline routes and schedules and an experienced travel agent. The GIFT approach can

offer a library of tutoring strategies that provides the savvy ITS author with flexibility but which does

little to support a novice ITS author (for instance, a subject matter expert) in creating effective instruction.

Recommendations and Future Research

The mission of GIFT is more than supporting authoring—GIFT is oriented around providing three

services: authoring of components, management of instructional processes, and an assessment

methodology (Sottilare, Goldberg, Brawner & Holden, 2012). This volume’s focus on authoring tools

provides a range of perspectives on tutoring approaches and how to best support authors in creating

effective ITS.

GIFT is addressing a difficult problem during a time of rapid change. The convergence of ITS with

immersive games, for instance, creates numerous authoring challenges, such as how to support the

creation of reactive agents characteristic of ITS and proactive agents characteristic of simulations

(Brawner, Holden, Goldberg & Sottilare, 2012). Such trends are blurring long-standing boundaries. The

41

blending of tutoring and gaming is likely to raise questions about the relative importance of a tutor in an

ITS (and implications for authoring tool design). Jona & Kass (1997) may have anticipated the

ascendance of gaming in questioning the assumption “that the central component of a learning

environment is the tutor, and that the critical learning events are interactions between the learner and the

tutor.” They assert instead that “this view is not compatible with what many who study education and

human learning have found. For example, many progressive educators would argue that the most

important aspect of a learning environment is a complex, realistic activity in which the learner becomes

engaged, and not the tutoring received” (p. 39, original emphasis).

GIFT, in fulfilling the vision of technology that is generalizable and integrated, is promoting modularity,

reuse and broad applicability (Sottilare, Goldberg, Brawner & Holden, 2012). It remains to be seen

whether this approach is theory-neutral or an aggregation of multiple theories. Also, some might question

whether an ITS authoring tool (which is intended to support the creation of end-products grounded in

some instructional theory) can even be theory-neutral. As observed by Jona & Kass (1997): “The mix and

match approach is not theoretically neutral with regard to the questions of what really drives learning, and

what are the central features of a learning environment” (p. 39).

I conclude by revisiting the general aims of an authoring tool. Reducing the effort needed to produce ITS

can include the following:

 assuming responsibility for mechanical aspects of the task;

 furnishing predefined elements that an author can package together to suit a particular need; and

 guiding the author.

GIFT in its early stages has established a promising framework for supporting some of the mechanical

aspects of ITS construction (Sottilare, Goldberg, Brawner & Holden, 2012). Accelerating the authoring

process with predefined elements has more numerous and nuanced dimensions. There is some appeal to

thinking of authoring as aligning old components in new ways; however, authors would require visibility

into the properties of these components, what can be customized, and how to link them. There are

numerous metaphors that might inspire novel approaches to addressing this need. For instance, preparing

a new dish is something people generally do by adapting a recipe that not only lists the ingredients but

also instructs in how the ingredients are to be combined and even what substitutions might be tried.

Applying this metaphor to GIFT, we can envision a library of completed ITSs, each cataloging its

components, their properties, and instructions on adapting each for reuse. As this framework becomes

populated with more content, GIFT will advance in its support for providing such predefined elements

and libraries that ITS authors can incorporate and adapt. It should be emphasized, however, that simply

making a large collection of ITS components available to an author is not sufficient; in the cooking

analogy, it is more akin to roaming the aisles of a grocery store than to browsing a recipe book.

It is just this sort of guidance for the author that will require increased attention. As the research reviewed

in this chapter suggests, an authoring tool should have some understanding of what the author wishes to

create and be able to offer useful and specific support. The forms such support take can vary from

recommendations about low-level dialogue elements to presenting a worked example similar to the

author’s intended ITS (as recommended in Hsu & Moore, 2011) and supporting its incremental adaptation

(which we term guided-case adaptation, see Bell, 1998).

The needs remains for ongoing evaluation, of GIFT’s authoring tools and of the products emerging from

authors using the framework. As the ranks of GIFT contributors continue to expand, greater opportunities

will become available to study how GIFT supports ITS authoring, and ITS will emerge that will provide

42

researchers with artifacts to evaluate. The instructional effectiveness of products created using GIFT will

provide formative direction to the evolution of the framework, and will ultimately be a persuasive

indicator of the value of GIFT to the ITS community.

References

Adenowo, A. A. A., and Patel, A. M. (2014). A metamodel for designing an intelligent tutoring systems authoring

tool. Computer and Information Science, 7(2), 82-98.

Ahuja, N.J., and Sille, R. (2013). A Critical Review of Development of Intelligent Tutoring Systems: Retrospect,

Present and Prospect. International Journal of Computer Science Issues, Vol. 10, Issue 4, No 2, July 2013.

Aleven, V., McLaren, B. M., and Sewall, J. (2009). Scaling up programming by demonstration for intelligent

tutoring systems development: An open-access website for middle-school mathematics learning. IEEE

Transactions on Learning Technologies, 2(2), 64-78.

Bell, B.L. (1998). Investigate and Decide Learning Environments: Specializing Task Models for Authoring Tool

Design. The Journal of the Learning Sciences, 7(1), 65-105.

Bell, B. (2003). Supporting Educational Software Design with Knowledge-Rich Tools (2003). In T. Murray, S.

Blessing, and S. Ainsworth (Eds.), Authoring Tools for Advanced Technology Learning Environments:

Toward cost-effective adaptive, interactive, and intelligent educational software. Kluwer Academic

Publishers: Dordrecht, Netherlands.

Bell. B., Billington, S., Bennett, W., Billington, I., and Ryder, J. (2010). Performance gains from speech-enhanced

simulation in military flying training. Journal of Defense Modeling and Simulation, 7(2), 67-87.

Bell, B., Jarmasz, J., and Nelson, I. (2011). Development of Scenario-Based Pre-deployment Counter-IED Training.

In Proc. of Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC), Dec, 2011.

Bell, B., Johnston, J., Freeman, J., and Rody F. (2004). STRATA: DARWARS for Deployable, On-Demand

Aircrew Training. In Proc. of the Interservice/Industry Training, Simulation, and Education Conference

(I/ITSEC), December, 2004.

Bell, B.L., and Zirkel, J. (2001). “Goal Directed Inquiry via Exhibit Design: Engaging with History through the

Lens of Baseball”. Journal of Interactive Learning Research, 12(1), 3–39.

Bransford, J.D., Sherwood, R.D., Hasselbring, T.S., Kinzer, C.K., and Williams, S.M. (1990). Anchored instruction:

Why we need it and how technology can help. In D. Nix and R. Sprio (Eds), Cognition, education and

multimedia. Hillsdale, NJ: Erlbaum Associates.

Brawner, K. and Graesser, A.C. (2014). Natural Language, Discourse, and Conversational Dialogues within

Intelligent Tutoring Systems: A Review. In R. Sottilare, A. Graesser ,X. Hu and B. Goldberg (Eds.), Design

Recommendations for Intelligent Tutoring Systems: Volume 2 Instructional Management. US Army

Research Laboratory.

Brawner, K., Holden, H., Goldberg, B., Sottilare, R. (2012). Recommendations for Modern Tools to Author

Tutoring Systems. In Proc. of the Interservice/Industry Training, Simulation, and Education Conference

(I/ITSEC), December, 2012.

Brown, J.S., Collins, A., and Duguid, P. (1989). Situated cognition and the culture of learning. Educational

Researcher, 8(1), 32-42.

Brown, J. S., and VanLehn, K. (1988). Repair theory: A generative theory of bugs in procedural skills. In A. Collins

& E. E. Smith (Eds.), Readings in Cognitive Science (pp. 338-361). Los Altos, CA: Morgan Kaufmann.

Brusilovsky, P. (1994). The Construction and Application of Student Models in Intelligent Tutoring Systems.

Journal of Computer and Systems Sciences International, 32(1), 70-89.

Burns, H.L., and Capps C.G. (1988). Foundations of intelligent tutoring systems : an introduction. Martha C. Polson,

J. Jeffrey Richardson. Foundations of Intelligent Tutoring Systems, Hillsdale, N.J.: Lawrence Erlbaum

Associates, pp.1-19.

Burton, R.R. (1988). The environment module of intelligent tutoring systems. In Polson, M.C. and Richardson, J.J.

(Eds.), Foundations of intelligent tutoring systems. Hillsdale: Lawrence Erlbaum Associates.

Burton, R. and Brown, J. (1978). Diagnostic models for procedural bugs in basic mathematical skills. Cognitive

Science, 2, 155-191.

Clark, R. E., Yates, K., Early, S., and Moulton, K. (2010). An analysis of the failure of electronic media and

discovery-based learning: Evidence for the performance benefits of guided training methods. In K. H.

43

Silber & R. Foshay (Eds.), Handbook of Training and Improving Workplace Performance (Vol. I:

Instructional Design and Training Delivery), pp. 263-329. New York: Wiley and Sons.

Collins, A., Brown, J.S., and Newman, S.E. (1989). Cognitive apprenticeship: Teaching the crafts of reading,

writing, and mathematics. In L. B. Resnick (Ed.) Knowing, learning, and instruction: Essays in honor of

Robert Glaser (pp. 453-494). Hillsdale, NJ: Lawrence Erlbaum Associates.

Deaton, J., Barba, C., Santarelli, T., Rosenzweig, L., Souders, V., McCollum, C., Seip, J., Knerr, B. and M. Singer

(2005). Virtual environment cultural training for operational readiness (VECTOR). Journal of Virtual

Reality, 8(3) (May 2005), 156-167.

Derry, S. J., and Lajoie, S. P. (1993). A middle camp for (un)intelligent instructional computing: An introduction. In

S. P. Lajoie and S. J. Derry (Eds.), Computers as cognitive tools (pp. 1-11). Hillsdale, NJ: Lawrence

Erlbaum Associates

D’Mello, S. K. and Graesser, A. C. (2012). AutoTutor and affective AutoTutor: Learning by talking with cognitively

and emotionally intelligent computers that talk back. ACM Transactions on Interactive Intelligent Systems,

2(4), 23: 1-38.

Dobson, W. (1998). Authoring Tools for Investigate-and-Decide Learning Environments. Ph.D. Dissertation,

Northwestern University Department of Computer Science, Evanston, IL, June, 1998.

Dobson, W., and Riesbeck, C.K. (1998). “Tools for Incremental Development of Educational Software Interfaces”.

In CHI ‘98. Conference Proceedings on Human Factors in Computing Systems, 384-391.

Fowler, S., Smith, B., and Litteral, D.J. (2005). A TC3 Game-based Simulation for Combat Medic Training. In

Proc. of Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC), Dec, 2005.

Fowlkes, J. E., Dwyer, D., Oser, R. L. & Salas, E. (1998). Event-Based Approach to Training (EBAT). The

International Journal of Aviation Psychology, 8 (3), 209-221.

Frederiksen, J., and White, B. (2002). Conceptualizing and constructing linked models: Creating coherence in

complex knowledge systems. In P. Brna, M. Baker, K. Stenning and A. Tiberghien (Eds.), The Role of

Communication in Learning to Model. (pp. 69-96). Mahwah, NJ: Erlbaum.

Goldberg, B.S., Holden, H.K., Brawner, K.W., and Sottilare, R.A. (2011). Enhancing Performance through

Pedagogy and Feedback: Domain Considerations for ITSs. In Proc. of Interservice/Industry Training,

Simulation, and Education Conference (I/ITSEC), Dec, 2011.

Gordon, A.S. (2004). Authoring branching storylines for training applications. In Proceedings of the 6th

International Conference of the Learning Sciences (ICLS ‘04). pp 230-237.

Graesser, A., Chipman, P., Haynes, B. and Olney, A. (2005). AutoTutor: An intelligent tutoring system with mixed-

initiative dialogue. IEEE Transactions on Education, 48(4), 612-618.

Graesser, A., D’Mello, S., Hu, X., Cai, Z., Olney, A. and Morgam, B. (2012). AutoTutor. Applied natural language

processing: Identification, investigation, and resolution. Hershey, PA: IGI Global.

Graesser, A. C., Lu, S., Jackson, G. T., Mitchell, H. H., Ventura, M., Olney, A. and Louwerse, M. M. (2004).

AutoTutor: A tutor with dialogue in natural language. Behavior Research Methods, Instruments and

Computers, 36(2), 180-192.

Graesser, A. C., VanLehn, K., Rosé, C. P., Jordan, P. W. & Harter, D. (2001). Intelligent tutoring systems with

conversational dialogue. AI Magazine, 22(4), 39.

Graesser, A. C., Wiemer-Hastings, K., Wiemer-Hastings, P. and Kreuz, R. (1999). AutoTutor: A simulation of a

human tutor. Cognitive Systems Research, 1(1), 35-51.

Greer, J. and Koehn, G.M. (1995). The peculiarities of plan recognition for intelligent tutoring systems (1995). In

Proc. of the IJCAI Workshop on the Next Generation of Plan Recognition Systems, pp. 54–59, 1995.

Guralnick, D. (1996). Training systems for script-based tasks. Ph.D. dissertaton, The Institute for the Learning

Sciences, Northwestern University.

Hartley, J. R., and Sleeman, D. H. (1973). Towards more intelligent teaching systems. International Journal of Man-

Machine Studies, 2, 215-236.

Havighurst, R. J. (1952). Developmental tasks and education. New York: David McKay.

Hsu, C-H, and Moore, D. R. (2011). Formative research on the Goal-based Scenario model applied to computer

delivery and simulation. The Journal of Applied Instructional Design, 1(1), 13-24.

Johnson, L. W. and Valente, A. (2008). Tactical language and culture training systems: Using artificial intelligence

to teach foreign languages and cultures. In Proceedings of the Twentieth Conference on Innovative

Applications of Artificial Intelligence (pp. 1632-1639). Menlo Park, CA: AAAI Press.

Jona, M (1998). Representing and Applying Teaching Strategies in Computer-based learning-by-doing Tutors. In

R.C. Schank (Ed.), Inside Multi-media Case Based Instruction. Malwah, NJ: Lawrence Erlbaum

Associates.

44

Jona, M.K., and Kass, A.M. (1997). A Fully-Integrated Approach to Authoring Learning Environments: Case

Studies and Lesson Learned. In Intelligent Tutoring System Authoring Tools: Papers from the 1997 Fall

Symposium, Technical Report FS-97-01, AAAI, P. 39.

Jong, T. de, and van Joolingen, W.R. (1998). Scientific discovery learning with computer simulations of conceptual

domains. Review of Educational Research, Vol. 68 No. 2, pp. 179-201.

King, K.S., Scott, R., Davidson, M., and Bope, E. (2014). Branching Simulation Designs for Virtual Patients.

Presented at the MedBiquitous Conference, Baltimore, MD.

Lane, H.C. and Johnson, W.L. (2008). Intelligent Tutoring and Pedagogical Experience Manipulation in Virtual

Learning Environments, in D. Schmorrow, J. Cohn & D. Nicholson (Eds), The PSI Handbook of Virtual

Environments for Training and Education: Developments for the Military and Beyond. Praeger Security

International: Westport, CN.

Lester, J., Lobene, E., Mott B. & Rowe, J. (2014). Serious Games with GIFT: Instructional Strategies, Game Design,

and Natural Language in the Generalized Intelligent Framework for Tutoring. In R. Sottilare, A. Graesser

,X. Hu and B. Goldberg (Eds.), Design Recommendations for Intelligent Tutoring Systems: Volume 2

Instructional Management. US Army Research Laboratory.

Livak, T., Heffernan, N. T. & Moyer, D. (2004) Using cognitive models for computer generated forces and human

tutoring. Presented at the 13th Annual Conference on Behavior Representation in Modeling and Simulation.

Simulation Interoperability Standards Organization, Arlington, VA.

Macmillan, S., Emme, D., and Berkowitz, M. (1988). Instructional Planners: Lessons Learned. In Psotka, J.,

Massey, L.D., and Mutter, S.A. (Eds.), Intelligent Tutoring Systems, Lessons Learned. Lawrence Erlbaum:

Hillsdale, NJ.

Magerko, B., Stensrud, B. and Holt, L. S. (2006). Bringing the schoolhouse inside the box - A tool for engaging,

individualized training. Paper presented at the 25th Army Science Conference, Orlando, FL.

Mall, H., Martin, E., Robson, R., Ray, F., Veden, A., and Robson, E. (2014). In Search of the Teachable Moment. In

Proceedings of the 2014 Interservice/Industry Training, Simulation, and Education Conference.

Miller, J. R. (1988). The role of human-computer interaction in intelligent tutoring systems. In M. C. Polson and J.J.

Richardson (Eds.), Foundations of Intelligent Tutoring Systems. Hillsdale, N.J.: Lawrence Erlbaum

Associates, pp. 143-189.

Munro, A., Johnson, M.C., Pizzini, Q.A., Surmon, D.S., Towne, D.M., and Wogulis, J.L. (1997). Authoring

Simulation-Centered Tutors with RIDES. International Journal of Artificial Intelligence in Education,

1997(8), 284-316.

Murray, T. (1999). Authoring Intelligent Tutoring Systems: An analysis of the state of the art. International Journal

of Artificial Intelligence in Education (IJAIED), 1999, 10, pp.98-129.

Murray, T. (2003). An overview of intelligent tutoring system authoring tools. In T. Murray, S. Blessing, and S.

Ainsworth (Eds.), Authoring Tools for Advanced Technology Learning Environments: Toward cost-

effective adaptive, interactive, and intelligent educational software. Kluwer Academic Publishers:

Dordrecht, Netherlands.

Murray, T. and Woolf, B.P. (1992). A Knowledge Acquisition Tool for Intelligent Computer Tutors. SIGART

Bulletin, 2, 9–21.

Ohmaye, E. (1998). Simulation-based language learning: an architecture and a multimedia authoring tool. In R.C.

Schank (Ed.), Inside Multi-media Case Based Instruction. Malwah, NJ: Lawrence Erlbaum Associates.

Paviotti, G., Rossi, P.G., and Zarka, D. (2012). Intelligent Tutoring Systems: An Overview. Lecce: Pensa

Multimedia, Italy.

Pavlik, P.I. Jr., Brawner, K., Olney, A., and Mitrovic, A. (2013). A Review of Student Models Used in Intelligent

Tutoring Systems. In R. Sottilare, A. Graesser ,X. Hu and H. Holden (Eds.), Design Recommendations for

Intelligent Tutoring Systems: Volume 1 Learner Modeling. US Army Research Laboratory.

Ramachandran, S., and Sorensen, B. (2007). From Simulations to Automated Tutoring. Proceedings of the Fifteenth

Conference on Medicine Meets Virtual Reality (MMVR 2007), Long Beach, CA.

Rickel J., and Johnson, W.L. (1999). Animated agents for procedural training in virtual reality: perception,

cognition, and motor control. Applied Artificial Intelligence 1999(13): 343-82.

Riedl, M.O. and Young, R.M. (2014). The Importance of Narrative as an Affective Instructional Strategy. In R.

Sottilare, A. Graesser ,X. Hu and B. Goldberg (Eds.), Design Recommendations for Intelligent Tutoring

Systems: Volume 2 Instructional Management. US Army Research Laboratory.

Riesbeck, C.K., and Dobson, W. (1998). Authorable Critiquing for Intelligent Educational Systems. In Proceedings

of the 1998 International Conference on Intelligent User Interfaces, January 6-9, 1998, San Francisco, CA.

45

Rus, V., D’Mello, S., Hu, X. and Graesser, A. C. (2013). Recent advances in intelligent systems with conversational

dialogue. AI Magazine, 42-54.

Russell, D., Moran, T.P., and Jordan, D.S. (1988). The Instructional Design Environment. In Psotka, J., Massey,

L.D., and Mutter, S.A. (Eds.), Intelligent Tutoring Systems, Lessons Learned. Lawrence Erlbaum:

Hillsdale, NJ.

Sani, S., and Aris, T.N.M. (2014). Computational Intelligence Approaches for Student/Tutor Modelling: A Review .

In Proceedings of the 2014 Fifth International Conference on Intelligent Systems, Modelling and

Simulation. Langkawi, Malaysia: IEEE.

Schank, R.C. (2001). Designing World Class E-Learning: How IBM, GE, Harvard Business School, and Columbia

University Are Succeeding at E-Learning. New York: McGraw-Hill.

Schank, R.C., Fano, A., Bell, B.L., and Jona, M.Y. (1994). The Design of Goal Based Scenarios. The Journal of the

Learning Sciences, 3(4), 305–345.

Shute, V. J., and Psotka, J. (1996). Intelligent tutoring systems: Past, present, and future. In D. Jonassen (Ed.),

Handbook of research for educational communications and technology (pp. 570-600). New York, NY:

Macmillan.

Sottilare R. (2012). Considerations in the development of an ontology for a Generalized Intelligent Framework for

Tutoring. International Defense and Homeland Security Simulation Workshop, in Proceedings of the I3M

Conference. Vienna, Austria, September 2012.

Sottilare, R.A., DeFalco, J.A., and Connor, J. (2014). A Guide to Instructional Techniques, Strategies and Tactics to

Manage Learner Affect, Engagement, and Grit. In R. Sottilare, A. Graesser ,X. Hu and B. Goldberg (Eds.),

Design Recommendations for Intelligent Tutoring Systems: Volume 2 Instructional Management. US Army

Research Laboratory.

Sottilare, R.A., Goldberg, B.S., Brawner, K.W., and Holden, H.K. (2012). A Modular Framework to Support the

Authoring and Assessment of Adaptive Computer-Based Tutoring Systems (CBTS). In Proc. of

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC), Dec, 2012.

Towne, D.M., and Munro, A. (1988). The Intelligent Maintenance Training System. In Psotka, Massey, and Mutter

(Eds.), Intelligent Tutoring Systems, Lessons Learned. Hillsdale, NJ: Lawrence Erlbaum.

VanLehn, K. (2011). The relative effectiveness of human tutoring, intelligent tutoring systems and other tutoring

systems. Educational Psychologist, 46(4), 197-221.

Veermans, K., Joolingen, W.R. van, and de Jong, T. (2000). Promoting Self-Directed Learning in Simulation Based

Discovery Learning Environments Through Intelligent Support. Interactive Learning Environments, 8, 257-

277: Taylor and Francis.

Whitaker , E.T., and Bonnell, R.D. (1990), Plan recognition in intelligent tutoring systems. In Proceedings of

Intelligent Tutoring Media, 1(2), 73-82.

Wolfe, C. R., Widmer, C. L., Reyna, V. F., Hu, X., Cedillos, E. M., Fisher, C. R., and Weil, A. M. (2013). The

development and analysis of tutorial dialogues in AutoTutor lite. Behavior Research Methods 45(3), 623-

36.

Wray, R. E., Woods, A., and Priest, H. (2012). Applying Gaming Principles to Support Evidence-based Instructional

Design. In Proceedings of the 2012 Interservice/Industry Training, Simulation, and Education Conference,

Orlando.

http://myweb.fsu.edu/vshute/pdf/shute%201996_d.pdf

46

47

CHAPTER 4 Generalizing the Genres for ITS: Authoring

Considerations for Representative Learning Tasks
Benjamin D. Nye

1
, Benjamin Goldberg

2
, Xiangen Hu

1,3

1
University of Memphis,

2
ARL-LITE Lab,

3
Central China Normal University

Introduction

Compared to many other learning technologies, intelligent tutoring systems (ITSs) have a distinct

challenge: authoring an adaptive inner loop that provides pedagogical support on one or more learning

tasks. This coupling of tutoring behavior to student interaction with a learning task means that authoring

tools need to reflect both the learning task and the ITS pedagogy. To explore this issue, common learning

activities in intelligent tutoring need to be categorized and analyzed for the information that is required to

tutor each task. The types of learning activities considered cover a large range: step-by-step problem

solving, bug repair, building generative functions (e.g., computer code), structured argumentation, self-

reflection, short question answering, essay writing, classification, semantic matching, representation

mapping (e.g., graph to equation), concept map revision, choice scenarios, simulated process scenarios,

motor skills practice, collaborative discussion, collaborative design, and team coordination tasks. These

different tasks imply a need for different authoring tools and processes used to create tutoring systems for

each task. In this chapter, we consider three facets of authoring: (1) the minimum information required to

create the task, (2) the minimum information needed to implement common pedagogical strategies, (3)

the expertise required for each type of information. The goal of this analysis is to present a roadmap of

effective practices in authoring tool interfaces for each tutoring task considered.

A long-term vision for ITSs is to have generalizable authoring tools, which could be used to rapidly create

content for a variety of ITSs. However, it is as-yet unclear if this goal is even attainable. Authoring tools

have a number of serious challenges from the standpoint of generalizability. These challenges include the

domain, the data format, and the author. First, different ITS domains require different sets of authoring

tools, because they have different learning tasks. Tools that are convenient for embedding tutoring in a

3D virtual world are completely different than ones that make it convenient to add tutoring to a system for

practicing essay-writing, for example. Second, the data produced by an authoring tool need to be

consumed by an ITS that will make pedagogical decisions. As such, at least some of the data are specific

to the pedagogy of the ITS, rather than directly reflecting domain content. As a simple example, if an ITS

uses text hints, those hints need to be authored, but some systems may just highlight errors rather than

providing text hints. As such, the first system actually needs more content authored and represented as

data. With that said, typical ITSs use a relatively small and uniform set of authored content to interact

with learners, such as correctness feedback, corrections, and hints (VanLehn, 2006). Third, different

authors may need different tools (Nye, Rahman, Yang, Hays, Cai, Graesser & Hu, 2014). This means that

even the same content may need distinct authoring tools that match the expertise of different authors.

In this chapter, we are focusing primarily on the first challenge: differences in domains. In particular, our

stance is that the “content domain” is too coarse-grained to allow much reuse between authoring tools.

This is because, to a significant extent, content domains are simply names for related content. However,

the skills and pedagogy for the same domain can vary drastically across different topics and expertise

levels. For example, algebra and geometry are both high school level math domains. However, in

geometry, graphical depictions (e.g., shapes, angles) are a central aspect of the pedagogy, while algebra

tends to use graphics very differently (e.g., coordinate plots). As such, some learning tasks tend to be

shared between those subdomains (e.g., equation-solving) and other tasks are not (e.g., classifying

shapes).

48

This raises the central point of our chapter: the learning tasks for a domain define how we author content

for that domain. For example, while algebra does not involve recognizing many shapes, understanding the

elements of architecture involves recognizing a variety of basic and advanced shapes and forms. In total,

this means that no single whole-cloth authoring tool will work well for any pair of algebra, geometry, and

architectural forms. However, it also implies that a reasonable number of task-specific tools for each

learning task might allow authoring for all three domains. To do this, we need to understand the common

learning tasks for domains taught using ITSs and why those tasks are applied to those domains. In the

following sections, we identify and categorize common learning tasks for different ITS domains. Then,

we extract common principles for those learning tasks. Finally, we suggest a set of general learning

activities that might be used to tutor a large number of domains.

What is a Learning Task?

Before we begin, it is important to define what we mean by a learning task. Functionally speaking, a

learning task is an activity designed to help the participant(s) learn certain knowledge or skills. Any

learning task has a three essential parts:

(1) Task State (ST) - the context and status of the task,

(2) Task Interface (IT) - the representation used to present the task and its available actions,

(3) Task Goals (GT) - importance or value given to states or state trajectories, which may be stated in

the task, given prior to the task (e.g., by a teacher), or chosen by the learner.

A directed learning task, such as one run by a teacher or an ITS (as opposed to an undirected sandbox

activity), also has complementary parts related to the instructor’s control over the system:

(1) Pedagogical State (SP) - the context and status relevant to pedagogical decision making,

(2) Pedagogical Interface (IP) - the pedagogical actions available during a task, and

(3) Pedagogical Goals (GP) - importance or value given to reaching certain pedagogical states.

The relationships between these parts are noted in Figure 1. From an ITS authoring standpoint, both the

task and the pedagogical model need to be authored. In this representation, the pedagogical state includes

the task goals, task state, and the learner’s state (e.g., a student model). In this respect, the pedagogical

state is more complex than the task state. However, excluding the learner’s internal state (which is only

observable through the history of task interactions) and the task goals (which are typically not changed

during a given task), the pedagogical state is by definition less complex than the task state. Considering a

task as a Markov decision process, the pedagogical state trajectory SP cannot consider any more

information from the task beyond its trajectory of task states (ST). In most cases, the representation of the

pedagogical state is far simpler and based on features sets such as classifying good/bad answers,

identifying specific misconceptions or bugs, and other assessments that reduce even rich environments

(e.g., 3D simulators) into streams of simpler features that form the pedagogical state used for triggering

interventions such as hints (Kim et al., 2009; Nye, Graesser & Hu, 2014; VanLehn, 2006).

49

Figure 1: Tasks and pedagogy

This implies that ITS authoring should be greatly constrained by the learning task. At face value, it seems

like there might be exceptions: a tutor for metacognitive skills might need to know almost nothing about

learner’s performance on their primary learning task, if it only suggests self-reflection and an unassessed

summarization. However, it can be argued that such a task-agnostic tutor has that capability only because

it generates its own learning tasks (e.g., journals for summarization, delays for self-reflection). This has

two implications:

 First, it implies that all ITS authoring is tied to a specific set of tasks.

 Second, it implies that multiple learning tasks may be interleaved or even occurring

simultaneously.

In simulation-based training for complex tasks, such as flight simulators or cross-cultural competencies,

working on multiple tasks simultaneously might even be a major part of the pedagogy (Silverman,

Pietrocola, Nye, Weyer, Osin, Johnson & Weaver, 2012). So long as interactive feedback on each

learning task is independent (i.e., feedback on one task does not directly impact the pedagogical state of

other tasks), authoring for such tasks can typically be done independently as well.

So then, this is what we mean by a learning task from an authoring standpoint: (1) a task with a distinct

pedagogical state, (2) whose dynamics during that task are mainly or wholly derived from the task state,

and (3) which includes the actions performed by the learner (or learners). Moreover, as simplifying

assumptions, we posit that the pedagogical goals and problem goals remain static for the typical ITS

learning task. For example, even in complex training environments, switching the task goals typically

implies ending a task and starting a new one. The counterexample to this case would be a learning task

specifically targeting the learner’s skills at goal-setting or adapting to changing task goals. Such tasks are

uncommon and no major authoring tools target such tasks. Finally, we assume that changes to the learner

during an ITS task (e.g., learning, affect changes) are primarily influenced by and observable based on

interactions with the task interface. If they were not, this would be problematic: the ITS would have little

ability to tell if its interventions are effective if some external factors are causing learning and/or task

performance (e.g., a second user helping). With that said, such confounds are possible, such as when

50

multiple users share an ITS intended for one user (Ogan, Walker, Baker, Rebolledo Mendez, Jimenez

Castro, Laurentino & de Carvalho, 2012). However, as no known authoring tools develop ITS content for

such situations, these are also considered edge cases that we exclude from this analysis authoring learning

tasks for ITSs.

A Review of Authoring-Relevant Characteristics of Learning Tasks

Significant literature focuses on taxonomies of learning tasks and the types of knowledge they are

designed to convey to a learner. Notable examples include Bloom’s Taxonomy and its revisions (Bloom,

1956; Anderson, Krathwohl, Airasian, Cruikshank, Mayer, Pintrich, Raths & Wittrock, 2000), guidelines

for learning activities and resources (R. Clark, 2002; R. Clark & Mayer, 2011), and theories of different

types of knowledge components involved in learning (Koedinger, Corbett & Perfetti, 2012). These three

perspectives each look at a different facet of learning tasks: (1) the task activity (Bloom, 1956), (2) the

pedagogical goals for the learning task (R. Clark, 2002), and (3) the knowledge components theorized to

encode the knowledge (Koedinger et al., 2012). Figure 2 shows different possible combinations of

learning tasks and pedagogical goals.

Figure 2: Combinatorial combinations for learning tasks and pedagogical goals

Bloom’s taxonomy is the most widely used taxonomy to label learning tasks and has undergone a number

of revisions (D. Clark, 2014). Bloom’s revised taxonomy (2000) of cognitive knowledge considers six

levels: remembering (e.g., list facts), understanding (e.g., summarize in own words), applying (e.g., solve

a math problem), analyzing (e.g., identify a statistical trend), evaluating (e.g., select the best-value car for

an average consumer), and creating (e.g., build a robot for some task out of parts). Ruth Clark (2002)

presented a complementary taxonomy for different types of knowledge associated with pedagogical goals

for learning tasks, which built on Merrill (1983). Her categories included facts (unique instances),

concepts (classes of instances), processes (representations of how a system works), procedures (steps to

reach a task state), and principles (causal relationships and general dynamics).

In addition to these pedagogical goals, metacognitive knowledge can also be a pedagogical goal: where

the learner gains understanding or skills to monitor their own cognitive state or learning (Biswas, Jeong,

Kinnebrew, Sulcer & Roscoe, 2010; Azevedo, Johnson, Chauncey & Burkett, 2010; Goldberg & Spain,

2014). While metacognitive knowledge may fall into other categories, it can involve learning to monitor

an additional information channel other than the task state (i.e., their own mental state). As such, at least

some types of metacognitive learning are probably qualitatively different than other types of knowledge

(possibly closer to affective or psychomotor skills).

Koedinger et al. (2012) looked at the next step for learning activities, which was the cognitive

components relevant to assessment and cognitive encoding of knowledge. They considered four facets for

encoding knowledge: the task feature dynamics (static vs. variable), the required learner response (static

vs. variable), the relationship between task features (explicit vs. implicit), and the availability of a

rationale (e.g., a “why” justification for the relationship between features). These different categorizations

51

determine when a learner would need to encode, such as a rule (e.g., y*x = x*y) or simply an association

(e.g., x and y were observed together).

Considering these approaches to categorizing learning activities, key facets emerge for different learning

tasks. These fall into three design concerns: pedagogical goals (what the student should learn), task design

(the learning environment and its affordances), and task interface (how the task is represented and

presented). Together, these concerns constrain the pedagogical interface for how an ITS interacts with

learners and what needs to be authored.

Task Dynamics

A major constraint on ITS authoring is the dynamics of the task state itself. For example, some learning

tasks are static and have no dynamic features (e.g., memorizing a shape or a fact). Koedinger et al. (2012)

highlighted the distinction between tasks whose features are static (e.g., the same across all instances)

versus those that are variable (e.g., some features vary across instances, requiring the learner to generalize

across them). We further subdivide variable tasks into a few types, as shown in Figure 3. In our

conceptualization, three types of variation can occur in the state of a task. The first type, which we call

variable instance, is across presented tasks, such as presenting a series of pictures and requiring the

learner to identify which ones contain triangles. Other variable tasks change during the process of solving

the task. The second type, reactive, is a task whose state changes due to the learners’ actions (e.g., step-

by-step equation solving). In the third type, time-varying, the task state changes over time regardless of

user input (e.g., a video or simulation that unfolds over time). When the task is both time-varying and

reactive to user input, we consider it interactive (e.g., a 3D game world).

Figure 3: Different types of task variability

These distinctions constrain authoring: static tasks are not typically taught by ITSs at all, because many

are rote learning that respond equally well to simpler drill-and-practice methods. However, some

intelligent systems, such as Pavlik et al.’s (2007) FaCT system, improve recall-type tasks by optimizing

spacing effects and the sequence of instance presentations. Static tasks that do not change based on user

input are limited to interventions such as highlighting salient features, demonstrating how to find the right

solution, responding to a single answer from the learner, or presenting different tasks (e.g., learning

prerequisites). It is still possible to adapt to the learner’s responses, such as with systems that provide

hints and retry attempts in response to wrong answers on multiple choice questions (Conejo, Guzmán, de-

la Cruz & Millán, 2006). However, most ITSs tend to focus on reactive and interactive tasks, because

learner actions during the task allow a greater ability to target feedback and hints.

Task Assessment

A second major constraint is how well can the ITS measure progress toward pedagogical goals. Since

tasks are used to assess learning, measuring progress toward pedagogical goals requires measuring

progress toward task goals. In many ways, the ability to measure such progress distinguishes between

well-defined and ill-defined domains (Fournier-Viger, Nkambou & Nguifo, 2010; Nye, Bharathy,

52

Silverman & Eksin 2012). Any task has two possible levels of introspection: the value for the task state

and the value of learner actions. When the goals are known, it is often possible to infer the value of

actions from the state if the outcomes are predictable, but this is not always (e.g., due to competing goals

to choose between). Table 1 categorizes different combinations of knowing the value of states and the

value of learner actions. Knowing the value of states allows measuring good outcomes, while knowing

the value of actions allows measuring good process.

Table 1: Measures for task goal progress

s

If a state utility function is available, all states and transitions between states have a known value. For a

completely measurable task, the relative value of actions is also known, such as a well-formed economics

problem where some actions lead to more profit than others. In other cases, the ultimate impact of actions

is uncertain (e.g., a chaotic system like the stock market), but good outcomes can still be measured.

Generative simulations with emergent behavior often have this quality (Nye et al., 2012).

When an ITS can detect improvements between states but can’t evaluate states exactly, then state

transition gradients are known. So long as the relationship between learner actions and transitions is

known (e.g., problem-solving in algebra), formative assessments such as model tracing and example

tracing can be used (Aleven et al., 2006). When specific learner actions cannot be evaluated easily (e.g.,

editing a learner’s essay), ITSs can still provide feedback on the task state. Design-based ITSs often use

this approach, such as essay-writing ITS that can assess an essay and suggest guidelines to improve the

state of the essay (Roscoe & McNamara, 2013). Likewise, when relative value of overall task states is

unknown, it is sometimes still possible to assess learner actions. This approach to measurement considers

the process, rather than the outcomes. Constraint-based ITSs are often applied to these kind of tasks

(Mitrovic, 2003). If it is impossible to assess the quality of either the task state or the learner’s actions, the

task is ill-defined.

In general, when considering Figure 2, higher levels of Bloom’s Taxonomy tend to involve tasks closer to

the bottom and right of Table 1. The ability to measure progress on task goals is the first constraint on ITS

authoring, since it directly constrains the types of feedback and interventions available to the ITS. If it is

impossible to evaluate the quality of actions, it is impossible to provide a “correction” or suggest a

concrete “next step” action. As such, there is no need to author one. As such, more complex tasks and

generative models tend to offer fewer affordances for authoring traditional ITS content, and tend to rely

on the natural dynamics of the simulation to provide reactive feedback (i.e., intelligent environments,

rather than intelligent tutors).

53

Task Interface

The interface of the task consists of how it is presented to the learner and of how the learner presents

input. More generally, task interfaces are part of the communication module of a classical four-

component ITS diagram (Woolf, 2010). They are the input and output with the learner for the learning

task. Typical inputs to an ITS include discrete selections (e.g., multiple choice), continuous selections

(e.g., manipulating sliders for a simulation), formal representations (e.g., math equations, graphs),

freeform input (e.g., natural language, freehand sketches), and controlling an avatar (e.g., 3D worlds). The

modality of learner input is a further constraint on authoring: the pedagogical interface needs to turn input

from the task into something actionable. Ironically, this means that feature-rich inputs, such as natural

language, are typically simplified into much simpler representations such as discrete selections (e.g.,

good/bad answers). The representation of the user input is the final major constraint on authoring.

Figure 4: Common interventions for an ITS

Based on the pedagogical features extracted from the task state and user input, the ITS needs to author

various interventions. When extending an ITS to new learning tasks, these interventions are typically a

major focus for authoring. When, why, and how the ITS applies its pedagogical strategies and tactics is

the main repository of an author’s domain pedagogy expertise. Figure 4 displays a variety of options for

an ITS to intervene during a task. The most rudimentary of these is to recognize a difference between a

detected state and some other state (e.g., “You seem to like chocolate ice cream more than the average

learner.”). Since this response assigns no specific value judgment, it can be used for entirely ill-defined

domains by using techniques such as novelty detection (Markou & Singh, 2003). It is also possible to

modify the task state or features even for tasks that lack clear assessments of state or action value, such as

through random perturbations. However, typically an ITS changes the state of a task to make it easier or

harder (elastic difficulty). This is done by reducing the degrees of freedom (fewer options), completing a

task step, or increasing the salience of important task features (e.g., highlighting). Another approach is to

react in response to user input. Even if no assessment can be made for that input, their input can always

be acknowledged (Ack). While this might seem like a weak tactic, it is often used to prompt learners to

self-reflect, write in a journal, or mark the start or completion of other metacognitive activities.

On well-defined tasks, ITS tactics often take the form of various types of feedback or modeling effective

solution paths (VanLehn, 2006). Feedback is a response to a user action that either presents an answer or

otherwise modifies the task state. Common feedback methods include reacting to errors or good answers

(binary assessments), scoring (continuous or ranked assessments), corrections (providing a fix to the

answer), and explanations (stating why an answer is right or wrong). Modeling a good answer or solution

path is also common. It can be used as feedback or provided at some point during the task state (e.g.,

provide the worked solution if the user cannot solve the problem). A few types of modeling are possible,

including presenting the solution to a similar task example, providing the next step(s) to the current task,

or providing a good final solution for the student to look at (e.g., a good essay on the same topic they are

54

trying to write about). If the full set of steps and the solution is provided, then the intervention was a

worked solution.

The authoring effort for these types of feedback varies significantly. Meaningful corrections and

explanations require a much deeper connection to domain pedagogy than simpler feedback such as

detecting the existence of errors. Likewise, adding explanations to modeling interventions greatly

increases authoring effort, because it moves beyond simply assessing task performance and starts to

model how a human teacher or instructor might correct student errors or explain the process of working

on the task. However, this authoring effort probably supports some of the most effective ITS tutoring

behaviors, since it is ideally based on the expertise accumulated from hundreds of hours of human

teaching interactions.

Discussion: Common Learning Tasks and Tools

Based on these task features, it is possible to break down a variety of common ITS learning tasks and

examine how their distinguishing characteristics are reflected in their authoring tools. Three types of tasks

can be considered: well-defined tasks (mostly reactive to user input, values for user actions can be known,

user inputs are formal and decidable), less-well-defined tasks (highly interactive, freeform input, lack

well-defined goals etc.), and task sandboxes (e.g., complex simulators used to build pedagogical tasks).

Well-Defined Tasks

Table 2 lists common, well-defined learning tasks. Two salient learning activities and pedagogical goals

for each class of task are noted. With that said, specific tutors may use different types of scaffolding to

use the same task to focus on different pedagogical goals and activities, so there can be significant

variation on these. In terms of pedagogy, well-defined tasks probably allow the widest set of

interventions: because the task state and user input allow clear assessments and have constrained solution

paths, the ITS has a fairly clear view of the task and associated pedagogical state.

The most established ITS tasks center on multi-step problem-solving, such as step-by-step math or

physics (Ritter, Anderson, Koedinger & Corbett, 2007; Aleven, McLaren, Sewall & Koedinger, 2006;

VanLehn et al., 2005), diagnosing systems and repairing them (Lajoie & Lesgold, 1989), and building

dynamical system models (Biswas et al., 2010; Iwaniec, Childers, VanLehn & Wiek, 2014). Step-by-step

problem-solving tasks can also be presented in 2D or 3D worlds (Rowe, Shores, Mott & Lester, 2011).

Step-by-step problem-solving ITSs tend to author hints and feedback that is conditional on the current

task state and the current action (or actions). They also typically provide a full bottom-out worked

solution when needed. In-game worked solutions are not common for ITS with avatar input (e.g., 3D

worlds), though sometimes recorded cut-screen/video solutions are available. The specific ITS

intervention content that is presented is typically tied to general rules that are shared across many task

examples (e.g., hints related to the commutative property of addition). As such, authoring these tasks

tends to require authoring: (1) A well-defined state representation (e.g., a chess board), (2) a set of

domain rules that transform state (e.g., piece move rules), (3) a goal state for the task, (4) a set of expert

rules that rely on features of the task state, (5) sometimes buggy rules that represent specific

misconceptions to remedy, and (6) templates for feedback and hints that are associated with certain task

states or production sequences. In some cases, authoring the task interface is also part of the ITS tool set.

The Cognitive Tutor Authoring Tools (CTAT; Aleven et al., 2006) offers an example of fairly mature

tools for problem-solving tasks.

Authoring tools for these tasks focus on defining ideal and buggy production rules that can be used to

classify task states and learner behavior as they complete the task (Aleven et al., 2006). Ideal production

55

rules can be used to identify points for positive feedback on a good action or provide hints about good

next steps for a problem. These ideal next steps are inferred by evaluating the chains of actions required

to reach the task goal (i.e., solution). Similarly, buggy rules can be used to detect specific misconceptions

for the learner when they perform certain sequences of actions. Instance-based authoring can be used to

infer these rules instead of explicit authoring, through systems such as SimStudent (Matsuda, Cohen &

Koedinger, 2014). Feedback and hints tend to be provided through parameterized templates that can refer

to task features. A simpler approach to authoring these tasks involves forcing the learner to stay on a

linear or simple branching example-tracing approach, with hints that are specific to certain states or

transitions in a problem template (Razzaq, Patvarczki, Almeida, Vartak, Feng, Heffernan & Koedinger,

2009). At least for certain mathematics topics, tutoring a single solution strategy (or even a single path) is

nearly as effective as a more complex structure (Waalkens, Aleven & Taatgen, 2013; Weitz, Salden, Kim

& Heffernan, 2010).

As such, two alternatives exist to rule authoring: (1) instance-based inference and (2) template-specific

tutoring. In the first case (e.g., SimStudent), rules are inferred from expert (and perhaps non-expert)

solution paths. This requires an authoring tool that shows a complete interface to the problem, as well as

an external judgment of the user’s expertise level. This allows skipping explicit rule authoring. In the

second case, task templates can be authored with tutoring associated with specific task paths. This type of

authoring is also used for other tasks (e.g., constrained choice dialogues with branching), so it is a

valuable general-purpose authoring interface in its own right. Much like making inferences across

multiple instances, an authoring tool for integrating tutoring templates with task paths also needs to give

the author a good view of the task state that is similar to the student’s view.

Table 2: Common well-defined ITS tasks

Task Activities

(Top-2)

Pedagogy

Goal (Top-2)

Variability State

Values

Action

Values

Task

Inputs

Interventions to

Author

Step-By-

Step Math

Apply,

Understand

Procedure,

Principle
Reactive

Gradients/

Ranks
Known

Formal

Expression

Feedback (Any),

Next Steps,

Similar

Example,

Worked Solution

Diagnosis &

Repair

Analyze,

Apply

Process,

Procedure

Reactive or

Interactive

Gradients/

Ranks
Known

Formal

Model

Feedback (Any),

Next Steps,

Similar

Example,

Worked Solution

Dynamical

Systems

Create,

Analyze

Procedure,

Process

Reactive or

Interactive

Utility or

Gradients
Known

Formal

Model

Feedback (Any),

Next Steps,

Similar

Example,

Worked Solution

Classifying
Understand,

Analyze

Concept,

Process
Static Category Known

Discrete

Selection

Feedback (Error,

Correct, Expl.),

Similar Example

Bug Detect
Analyze,

Understand

Process,

Concept
Static Category Known

Discrete/

Continuous

Selection

Feedback (Error,

Correct, Expl.),

Similar Example

56

Represent-

ation Map

Understand,

Apply

Concept,

Process
Reactive

Gradients/

Ranks
Known

Formal

Models

Feedback (Any),

Next Steps,

Worked Solution

Concept

Map Revise

Understand,

Analyze
Concept Reactive

Gradients/

Ranks
Known

Formal

Model

Feedback (Any),

Next Steps,

Worked Solution

Constrained

Choice

Analyze,

Evaluate

Process,

Principle

Reactive or

Interactive

Utility or

Gradients
Known

Discrete

Choice
Feedback (Any)

A second major class of problems includes pattern matching and classification of examples, such as

biological taxonomies (Olney et al., 2012), or identifying errors in a complex task, such as bugs in a

computer program (Carter & Blank, 2013). These ITSs tend to provide hints and feedback based on the

difference in features between the chosen classification and the ideal one, with strong use of explanation

but seldom presenting a step-by-step process. A third class of well-defined ITS tasks includes building

formal semantic models from freeform representations (e.g., concept map revision) and converting

between different well-defined representations, such as from a graph to an equation (Olney et al., 2012).

These also tend to keep track of the difference in features between the current and ideal models, but can

also suggest next-step changes because the model can be modified.

Authoring tools for these tasks tend to rely on defining ontologies, concept maps, or other structures that

define the features of classes and examples. Each instance in a task can be authored by tagging its features

or class memberships, after which hints, counter-examples, or other feedback need to be created. If the

pedagogy goals also include following a certain step-by-step process to make classification distinctions,

authoring may also require tutoring similar to branching example tracing. Across these types of tasks, a

simplified ontology class and instance editor could be quite effective, if it provided clear intervention

templates to target differences or similarities between patterns.

Finally, there are constrained choice problems, such as ITS-supported multiple choice or branching

dialogues (Kim et al., 2009). These can actually be quite varied, but tend to provide interventions that are

either dependent only on the current state (e.g., a hint for choosing the wrong answer) or that are

exhaustively defined by a branching state path. This means that authoring such tasks tends to be easier up-

front than a problem-solving ITS, but harder to reuse for related tasks. In general, authoring these tasks

should be similar to linear example-tracing. However, because the tasks may involve fewer general

principles that repeat across examples, the authoring is likely to have more explanations and need fewer

templates and parameters.

Less-Well-Defined Tasks

Ill-defined and less-well-defined tasks are presented in Table 3. These tasks tend to be less-well-defined

because either the goals are not fully defined, the inputs require natural language processing or are

otherwise not formally evaluable, or the task requires the learner to produce a full artifact before it can be

evaluated. Structured argument tasks, such as those used for law (Pinkwart, Ashley, Lynch & Aleven,

2009) or policy (Easterday & Jo, 2014), work similarly to causal concept map tasks. However, they differ

because the goals for argumentation are not always well-defined (i.e., the learner must first choose what

to argue). As such, authoring typically requires generating an extensive formal model of free-text sources.

This model may be hand-authored or extracted from the associated reference texts. Learners will then

need to generate explanations that are logically or causally consistent with the underlying formal model,

while supporting the argument goal that the learner has selected. These ITSs tend to also require a

reusable set of hint and error-correction templates (e.g., for different logical inconsistencies). For specific

common misconceptions, rules or constraints may also be used to trigger explanations or modeling

57

behavior (e.g., presenting an analogous case or example). Case-based reasoning is one mechanism for

identifying similar examples (Kolodner, Cox & González-Calero, 2005) and can also be used as a

pedagogical strategy for these domains.

The next category of tasks requires the user to create significant artifacts, such as essays or computer

programs (Roscoe & McNamara, 2013; Kumar et al., 2013). These ITSs tend to calculate an overall

quality score, based on a number of calculated features that it can highlight or give hints for improvement.

However, unlike an ITS for algebra, these tutors cannot explicitly correct most problems (e.g., a

programming ITS typically cannot fix the learner’s code). ITS authoring for these tasks requires defining

a set of features that are used to determine quality of the task artifact. Typically, this training is done

using supervised learning or hand-authoring. Tutoring often focuses on feedback and hints related to

specific features that need improvement for the artifact, as well as an overall quality score.

Table 3: Common less-well-defined ITS tasks

Task Activities

(Top-2)

Pedagogy

Goal (Top-2)

Variability State

Values

Action

Values

Task

Inputs

Interventions to

Author

Structured

Argument

Evaluate,

Analyze

Principle,

Concept
Reactive

Gradients

/Ranks
Varies

Formal

Model

Feedback (Error,

Score, Explain),

Similar Example

Functional

Coding

Create,

Understand

Procedure,

Concept
Reactive

Gradients

/Ranks

Not

Known

Mixed

Formal

and

Freeform

Feedback (Error,

Score, Explain),

Similar Example

Essay

Writing

Create,

Analyze

Procedure,

Concept
Reactive

Gradients

/Ranks

Not

Known

Freeform

(NLP)

Feedback (Score,

Explain),

 Similar

Example

Summaries Understand
Concept,

Process
Reactive

Gradients

/Ranks

Not

Known

Freeform

(NLP)

Feedback (Score,

Explain)

Expectation

Coverage

Understand,

Analyze

Concept,

Principle
Interactive

Gradients

/Ranks
Known

Freeform

(NLP)

Feedback (Any),

Next Steps,

Worked Solution

Short

Answer

Understand,

Analyze

Concept,

Fact

Reactive/

Interactive

Gradients

/Ranks
Known

Freeform

(NLP)

Feedback (Any),

Similar Example

Open Self-

Reflection
Understand

Concept,

Process
Static

Not

Known

Not

Known
Freeform

Difference

Recog.,

Acknowledge

Choice

Search

Evaluate,

Analyze

Process,

Principle
Interactive

Utility or

Gradients

Not

Known

Freeform

or Avatar

Feedback (Any),

Similar Example

Setting

Goals and

Priorities

Evaluate,

Analyze

Principle,

Process
Interactive

Not

Known

Not

Known

Varies

(Formal or

Freeform)

Difference

Recog.,

 Similar

Example

58

The next set of less-well-defined ITS focus on helping the learner understand, analyze, and evaluate

information. They include self-reflection, expectation coverage tasks (Graesser, Chipman, Haynes &

Olney, 2005), summarization and paraphrasing tasks (McNamara, Levinstein & Boonthum, 2004), and

short-answer tasks. All of these tasks focus on helping the learner understand semantic content and its

relationships. Open self-reflection tasks focus on the metacognitive practice of reflecting on the content.

As such, in many cases the quality of content is not assessed (e.g., a journaling task). Instead, ITS content

focuses on encouraging the habit of self-reflection. In general, many metacognitive tutors focus on

building habits, such as encouraging question-asking or hint button use (Azevedo et al., 2010; Roll,

Aleven, McLaren & Koedinger, 2011). Open self-reflection tasks and other content-agnostic tasks tend to

require little content authoring, and often require only a set of simple prompt and acknowledgement

templates. These reflection prompts can be triggered by task events or even by general timers.

Expectation coverage tasks unfold over many dialogue turns, which assume a part-whole relationship for

multiple expectations as part of a full explanation. As such, these ITS must detect multiple related

subtopics and provide feedback and hints on each one. Short answer tasks are even more constrained, and

their answers tend to be binned into good answers, specific misconceptions, or general bad answers.

Expectation coverage tasks tend to contain short answer tasks inside of them, when specific knowledge

needs to be assessed. A variety of authoring representations exist for evaluating semantic statements,

which fall into three main categories: instance-based authoring, feature authoring, and grammar-based

authoring. Instance-based authoring involves generating various classes of answers (i.e., good/bad), which

are then used to match against using various algorithms. Feature-based authoring involves creating special

features, such as regular expressions or keywords that capture key defining features between different

types of answers. Finally, grammar-based authoring involves developing domain-specific parsers that

extract domain-relevant relationships from the text.

In all cases, these techniques are used to bin learner answers into specific speech act categories, which

can then be associated with feedback, hints, or modeling interventions. Summarization tasks work

similarly, but require the learner to rephrase a passage. A successful summary requires the answer to have

similar semantics, but dissimilar surface features (i.e., it cannot be identical). These tend to focus on

understanding the content, but their quality tends to be rated on a continuous scale, because there are

competing feature sets. In addition to assessments of learner input, rules are also required to allow the

dialogue to progress naturally. In general, a limited set of templates can be sufficient to handle typical

ITS tasks. While there are some indications that different levels of knowledge might benefit from

different dialogue interactions (Nye et al., 2014), similar logical rules for managing dialogue interactions

can cover a variety of domains.

Task Sandbox Environments

As a final task category, open-ended searches and decision-points for choices are common, particularly in

virtual worlds and scenario-based learning. These include looking for a satisfactory or optimal set of

actions to some learning task. In many cases, the action sets vary by context and are not known a priori. If

the quality of choices can be ranked or their component features ranked, the ITS can provide feedback,

hints, and explanations about the quality of actions (Kim et al., 2009; Sottilare, Goldberg, Brawner &

Holden, 2012). However, for a simulation, this information may only be available after the completion of

a scenario. The next level of complexity occurs when the task goals are not fully defined, but must be set

or prioritized by the learner. For subjective or “wicked” tasks where actions change how goals are

understood, goal selection tasks are almost unavoidable (Nye et al., 2012). This tends to occur almost

exclusively in simulations or design tasks, where defining and monitoring goals are a major part of the

tasks and learning content. These tasks tend to be very hard to tutor directly and sometimes rely on

detecting certain common or uncommon patterns, which are then brought to the attention of the learner.

59

For complex simulations, many current pedagogical methodologies focus on after-action review

procedures. These tend to include a mixture of artifact evaluation (i.e., considering metrics collected from

a simulation run) and self-reflection. After-action reviews have historically been facilitated by a human-

in-the-loop and are geared toward focused reflection and knowledge elicitation. The underlying task

consists of a series of choices and decision points in a specific scenario, which are translated to

overarching learning objectives. These choices are then considered similarly to other types of learning

tasks, such as following procedural rules while receiving feedback about deviations from desired

performance.

Rather than being more complicated to author, the pedagogy for complex choice tasks is often as simple

(or simpler) than highly constrained domains such as mathematics. This is because well-defined domains

give many opportunities for clear pedagogical interventions: the state of the task is fully known,

completely based on the learner’s inputs, and allows immediate feedback. By comparison, a game-based

task requires game messages that are sent to assessment models that infer the pedagogical state. As a

result, ITS authoring is limited to the data made available by a task interface that was not originally

intended to offer pedagogically useful assessments (e.g., a 3D game engine). As such, an additional

authoring layer needs to convert the raw task state into a much more pedagogical state. This requires an

operational task analysis and authoring tools that transform various task events into pedagogically useful

assessments. This extra assessment layer makes complex environments more difficult to author, which

ultimately limits the interventions that can be authored (e.g., hints and feedback).

While serious games and simulation-based training environments can alleviate this problem in the

development phase, many do not. In fact, simulation-based training solutions have increasingly moved

toward commercial and open-source game engines to reduce production costs, such as Virtual Battle

Space 3 (VBS3), Unity, and the Unreal Game Engine. These sandbox authoring environments enable

developers to build complex task scenarios for both individuals and collaborative/team-based interactions.

However, the data generated by these systems follow generic protocols for distributed delivery, such as

distributed interactive simulation (DIS) and high-level architecture (HLA) that lack any concept of

pedagogy or semantics (Hofer & Loper, 1995; Kuhl, Dahmann & Weatherly, 2000).

The best solution so far to this problem has been to explicitly build a layer of metrics onto the task

environment, which are then consumed by the ITS as its pedagogical state. Basically, a simpler task state

is constructed from features in the task sandbox, which is then linked to assessments. For example,

Generalized Intelligent Framework for Tutoring (GIFT) provides a generalized architecture that can

consume game-message traffic and use this to infer pedagogical conditions linked to a concept hierarchy

(Sottilare et al., 2012). Much of the data captured associate with entity state (i.e., avatars, non-player

characters, weapons, machines, vehicles, etc.) location, movement, and action. In short, much of the task

state is too low-level or downright irrelevant to ITS behavior. A subset of these data are continuously

communicated to GIFT and routed to the domain knowledge file (DKF) for managing assessment

practices. The DKF is where an author structures: the concept hierarchy associated with a set of tasks,

how data are integrated into a concept assessment, and how those data are managed at runtime.

Assessments can be authored directly within a DKF or it can be supported by an external assessment

engine, such as the Student Information Models for Intelligent Learning Environments (SIMILE;

Goldberg, 2013), where the DKF acts by routing data to the appropriate concept assessments (Figure 5).

60

Figure 5. SIMILE workbench with authored assessments for vMedic

However, the reverse direction (i.e., offering specific interventions) has the same complications.

Conditions need to consider both the real-time performance and user intention, as well as the possible

actions that are available to the user (which must also be relayed to the ITS, to enable suggestions). In

GIFT’s current use-cases, this information includes tagged locations for the user’s position in the

environment, the set of entities and objects that are around the user, what entities the user can currently

observe, the actions available, and the timers related to task execution.

For example, consider the task of “maintaining cover” while patrolling a compound, which requires time,

location, and entity state data. Waypoints and areas of interest are defined around the compound wall so

that the player can be tracked to monitor patrol progress. An author can then define assessments based on

if the user has reached certain waypoints within a specific timeframe. In addition, if a scenario author

determines that a user should adjust their entity’s state within specific areas of interest, such as adjusting

their stance from standing to kneeling due to a wall being low, then the author can associate assessments

to inform student action in relation to performance criteria. By knowing this context, it is also possible to

deliver real-time feedback based on the actions and current assessment information.

To further complicate the issue, these types of interactive environments are excellent for collaborative and

team-based learning events. From the ITS perspective, this requires additional modeling dependencies

that associate interaction and intention with team oriented skills and attributes. While there is extensive

literature on what makes effective teams and effective team training approaches (Salas et al., 2008), how

to establish these practices in an automated fashion is a challenge. Beyond modeling individualized tasks

and how interaction in a virtual environment can infer competencies, additional assessments must analyze

group-level data that is aggregated across a set of users. These assessments include team cohesion, trust,

communication, and shared cognition. While this field is a wide-open research area, architectures like

GIFT must be designed to facilitate the type of modeling techniques that are based on trends across users

rather than within users. In terms of authoring, the challenge is taking available data and translating them

to team-based inferences that can designate performance across a set of concepts. In addition, how to

react to these assessments needs to be explored, such as how interventions are handled and how they are

communicated to a team.

61

Recommendations and Future Research

Across this book, examples and lessons learned for authoring each type of learning task are discussed. By

identifying common learning tasks in ITSs, it should be possible to develop general authoring interfaces

that make authoring for each type of task intuitive and effective. In some cases, highly effective authoring

models already exist and might serve as exemplars for task-specific authoring tools in generalized ITSs

such as GIFT. Ideally, these authoring tools should collect information in ways that are familiar to

instructors and other domain pedagogy experts. Form-based authoring, example-based authoring, and

supervised tagging are all reasonable approaches that are particularly attractive.

However, there are also learning tasks that do not yet have well-established techniques that allow non-

technical domain experts to easily author content. For example, authoring real-time assessments for

complex tasks remains more of an art than a science. At least some of this authoring involves mapping

simulation or virtual world events to pedagogical features. For this type of authoring, even if game worlds

had integrated pedagogical tools, a tool to easily map raw simulation data to metrics may be hard to use

by the domain experts, even if it is well designed. Similarly, authoring for ITS tasks with multiple

learners is a poorly understood area. For example, team-based tutoring requires assessment and

intervention at multiple levels (e.g., individual and group). Further research on such tasks and exploration

of different types of authoring approaches may be needed before good examples of such authoring tools

become clear.

References

Aleven, V., McLaren, B. M., Sewall, J. & Koedinger, K. R. (2006). The cognitive tutor authoring tools (CTAT):

Preliminary evaluation of efficiency gains. In M. Ikeda, K. D. Ashley & T. Chan (Eds.) Intelligent Tutoring

Systems (ITS) 2006 (pp. 61-70). Springer Berlin Heidelberg.

Azevedo, R., Johnson, A., Chauncey, A. & Burkett, C. (2010). Self-regulated learning with MetaTutor: Advancing

the science of learning with MetaCognitive tools. In M. S. Khine & I. M. Saleh (Eds.) New Science of

Learning (pp. 225-247). Springer New York.

Biswas, G., Jeong, H., Kinnebrew, J. S., Sulcer, B. & Roscoe, R. D. (2010). Measuring Self-Regulated Learning

Skills through Social Interactions in a teachable Agent Environment. Research and Practice in Technology

Enhanced Learning, 5(2), 123-152.

Carter, E. & Blank, G. D. (2013). An Intelligent Tutoring System to Teach Debugging. In H. C. Lane, K. Yacef, J.

Mostow & P. Pavlik (Eds.) Artificial Intelligence in Education (AIED) 2013 (pp. 872-875). Springer Berlin

Heidelberg.

Clark, D. (2014). Bloom’s taxonomy of learning domains. Retrieved August, 26, 2014.

Clark, R. C. (2002). Applying cognitive strategies to instructional design. Performance Improvement, 41(7), 8-14.

Clark, R. C. & Mayer, R. E. (2011). E-learning and the science of instruction: Proven guidelines for consumers and

designers of multimedia learning. John Wiley & Sons.

Conejo, R., Guzmán, E., de-la Cruz, J. L. P. & Millán, E. (2006). An empirical study about calibration of adaptive

hints in web-based adaptive testing environments. In V. Wade, H. Ashman & B. Smyth (Eds.) Adaptive

Hypermedia and Adaptive Web-Based Systems (pp. 71-80). Springer Berlin Heidelberg.

Easterday, M. W. & Jo, I. Y. (2014). Replay Penalties in Cognitive Games. In S. Trausan-Matu, K. Boyer, M.

Crosby & K. Panourgia (Eds.) Intelligent Tutoring Systems (ITS) 2014 (pp. 388-397). Springer Berlin

Heidelberg.

Fournier-Viger, P., Nkambou, R. & Nguifo, E. M. (2010). Building intelligent tutoring systems for ill-defined

domains. In R. Nkambou, R. Mizoguchi & J. Bourdeau (Eds.) Advances in Intelligent Tutoring Systems

(pp. 81-101). Springer Berlin Heidelberg.

Goldberg, B. & Spain, R. (2014). Creating the Intelligent Novice: Supporting Self-Regulated Learning and

Metacognition in Educational Technology. In R. Sottilare, A. Graesser, X. Hu, and B. Goldberg (Eds.)

Design Recommendations for Intelligent Tutoring Systems, Vol. 2: Instructional Management (pp. 109-

134). U.S. Army Research Laboratory.

62

Goldberg, B. (2013). Explicit Feedback Within Game-Based Training: Examining the Influence of Source Modality

Effects on Interaction. Ph.D., University of Central Florida.

Graesser, A. C., Chipman, P., Haynes, B. C. & Olney, A. (2005). AutoTutor: An intelligent tutoring system with

mixed-initiative dialogue. IEEE Transactions on Education, 48(4), 612-618.

Hofer, R. C. & Loper, M. L. (1995). DIS today [Distributed interactive simulation]. Proceedings of the IEEE, 83(8),

1124-1137.

Iwaniec, D. M., Childers, D. L., VanLehn, K. & Wiek, A. (2014). Studying, teaching and applying sustainability

visions using systems modeling. Sustainability, 6(7), 4452-4469.

Kim, J. M., Hill, Jr, R. W., Durlach, P. J., Lane, H. C., Forbell, E., Core, M., ... & Hart, J. (2009). BiLAT: A game-

based environment for practicing negotiation in a cultural context. International Journal of Artificial

Intelligence in Education, 19(3), 289-308.

Koedinger, K. R., Corbett, A. T. & Perfetti, C. (2012). The Knowledge-Learning-Instruction framework: Bridging

the science-practice chasm to enhance robust student learning. Cognitive Science, 36(5), 757-798.

Kolodner, J. L., Cox, M. T. & González-Calero, P. A. (2005). Case-based reasoning-inspired approaches to

education. The Knowledge Engineering Review, 20(03), 299-303.

Kuhl, F., Dahmann, J. & Weatherly, R. (2000). Creating computer simulation systems: an introduction to the high

level architecture. Prentice Hall PTR Upper Saddle River.

Kumar, A. N. (2013). Using Problets for problem-solving exercises in introductory C++/Java/C# courses. In IEEE

2013 Frontiers in Education Conference (pp. 9-10). IEEE Press.

Lajoie, S. P. & Lesgold, A. (1989). Apprenticeship Training in the Workplace: Computer-Coached Practice

Environment as a New Form of Apprenticeship. Machine-Mediated Learning, 3(1), 7-28.

Markou, M. & Singh, S. (2003). Novelty detection: a review- part 1: Statistical approaches. Signal Processing,

83(12), 2481-2497.

Matsuda, N., Cohen, W. W. & Koedinger, K. R. (Online First). Teaching the Teacher: Tutoring SimStudent Leads to

More Effective Cognitive Tutor Authoring. International Journal of Artificial Intelligence in Education, 1-

34.

McNamara, D. S., Levinstein, I. B. & Boonthum, C. (2004). iSTART: Interactive strategy training for active reading

and thinking. Behavior Research Methods, Instruments & Computers, 36(2), 222-233.

Merrill, M. D. (1983). Component Display Theory. In C. M. Reigeluth (Eds.), Instructional Design Theories and

Models: An Overview of their Current States (279-333). Hillsdale, NJ: Lawrence Erlbaum.

Mitrovic, A. (2003). An intelligent SQL tutor on the web. International Journal of Artificial Intelligence in

Education, 13(2), 173-197.

Nye, B. D., Bharathy, G. K., Silverman, B. G. & Eksin, C. (2012). Simulation-Based training of ill-defined social

domains: the complex environment assessment and tutoring system (CEATS). In S. A. Cerri, W. J.

Clancey, G. Papadourakis & K. Panourgia (Eds.) Intelligent Tutoring Systems (ITS) 2012 (pp. 642-644).

Springer Berlin Heidelberg.

Nye, B. D., Graesser, A. C. & Hu, X. (2014). AutoTutor and Family: A review of 17 years of natural language

tutoring. International Journal of Artificial Intelligence in Education, 24(4), 427-469.

Nye, B. D., Rahman, M. F., Yang, M., Hays, P., Cai, Z., Graesser, A. & Hu, X. (2014). A tutoring page markup

suite for integrating Shareable Knowledge Objects (SKO) with HTML. In Intelligent Tutoring Systems

(ITS) 2014 Workshop on Authoring Tools, (pp. 1-8). CEUR.

Ogan, A., Walker, E., Baker, R. S., Rebolledo Mendez, G., Jimenez Castro, M., Laurentino, T. & de Carvalho, A.

(2012). Collaboration in Cognitive Tutor use in Latin America: Field study and design recommendations.

In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 1381-1390).

ACM.

Olney, A. M., D’Mello, S., Person, N., Cade, W., Hays, P., Williams, C., ... & Graesser, A. (2012). Guru: A

computer tutor that models expert human tutors. In S. A. Cerri, W. J. Clancey, G. Papadourakis & K.

Panourgia (Eds.) Intelligent Tutoring Systems (ITS) 2012 (pp. 256-261). Springer Berlin Heidelberg.

Pavlik Jr., P. I., Presson, N., Dozzi, G., Wu, S., MacWhinney, B., Koedinger, K. R. (2007). The FaCT (Fact and

Concept Training) System: A New Tool Linking Cognitive Science with Educators. In McNamara, D.,

Trafton, G. (eds.) Proceedings of the Twenty-Ninth Annual Conference of the Cognitive Science Society,

pp. 397–402. Lawrence Erlbaum: Mahwah.

Pinkwart, N., Ashley, K., Lynch, C. & Aleven, V. (2009). Evaluating an intelligent tutoring system for making legal

arguments with hypotheticals. International Journal of Artificial Intelligence in Education, 19(4), 401-424.

63

Razzaq, L., Patvarczki, J., Almeida, S. F., Vartak, M., Feng, M., Heffernan, N. T. & Koedinger, K. R. (2009). The

Assistment Builder: Supporting the life cycle of tutoring system content creation. IEEE Transactions on

Learning Technologies, 2(2), 157-166.

Ritter, S., Anderson, J. R., Koedinger, K. R. & Corbett, A. (2007). Cognitive Tutor: Applied research in

mathematics education. Psychonomic Bulletin & Review, 14(2), 249-255.

Roscoe, R. D. & McNamara, D. S. (2013). Writing pal: Feasibility of an intelligent writing strategy tutor in the high

school classroom. Journal of Educational Psychology, 105(4), 1010.

Roll, I., Aleven, V., McLaren, B. M. & Koedinger, K. R. (2011). Improving students’ help-seeking skills using

metacognitive feedback in an intelligent tutoring system. Learning and Instruction, 21(2), 267-280.

Rowe, J. P., Shores, L. R., Mott, B. W. & Lester, J. C. (2011). Integrating learning, problem solving, and

engagement in narrative-centered learning environments. International Journal of Artificial Intelligence in

Education, 21(1), 115-133.

Salas, E., DiazGranados, D., Klein, C., Burke, C. S., Stagl, K. C., Goodwin, G. F. & Halpin, S. M. (2008). Does

team training improve team performance? A meta-analysis. Human Factors: The Journal of the Human

Factors and Ergonomics Society, 50(6), 903-933.

Silverman, B. G., Pietrocola, D., Nye, B., Weyer, N., Osin, O., Johnson, D. & Weaver, R. (2012). Rich socio-

cognitive agents for immersive training environments: case of NonKin Village. Autonomous Agents and

Multi-Agent Systems, 24(2), 312-343.

Sottilare, R. A., Goldberg, B. S., Brawner, K. W. & Holden, H. K. (2012). A modular framework to support the

authoring and assessment of adaptive computer-based tutoring systems (CBTS). In Interservice/Industry

Training, Simulation and Education Conference (I/ITSEC) 2012.

VanLehn, K. (2006). The behavior of tutoring systems. International Journal of Artificial Intelligence in Education,

16(3), 227-265.

VanLehn, K., Lynch, C., Schulze, K., Shapiro, J. A., Shelby, R., Taylor, L., ... & Wintersgill, M. (2005). The Andes

physics tutoring system: Lessons learned. International Journal of Artificial Intelligence in Education,

15(3), 147-204.

Waalkens, M., Aleven, V. & Taatgen, N. (2013). Does supporting multiple student strategies lead to greater learning

and motivation? Investigating a source of complexity in the architecture of intelligent tutoring systems.

Computers & Education, 60(1), 159-171.

Weitz, R., Salden, R. J., Kim, R. S. & Heffernan, N. T. (2010). Comparing worked examples and tutored problem

solving: Pure vs. mixed approaches. In S. Ohlsson & R. Catrambone (Eds.) Proceedings of the Thirty-

Second Annual Meeting of the Cognitive Science Society (pp. 2876-2881).

Woolf, B. P. (2010). Building intelligent interactive tutors: Student-centered strategies for revolutionizing e-

learning. Morgan Kaufmann.

64

65

SECTION II

AUTHORING MODEL-

TRACING TUTORS

Xiangen Hu, Ed.

66

67

CHAPTER 5 A Historical Perspective on Authoring and ITS:

Reviewing Some Lessons Learned
Benjamin D. Nye

1
 and Xiangen Hu

1,2

1
University of Memphis,

2
China Central Normal University

Introduction

This section discusses the practices and lessons learned from authoring tools that have been applied and

revised through repeated use by researchers, content authors, and/or instructors. All of the tools noted in

this section represent relatively mature applications that can be used to build and configure educationally

effective content. Each tool has been tailored to address both the tutoring content and the expected

authors who will be using the tool. As such, even tools which support similar tutoring strategies may use

very different interfaces to represent equivalent domain knowledge. In some cases, authoring tools even

represent offshoots where different authoring goals led to divergent evolution of both the authoring tools

and the intelligent tutoring systems (ITSs) from a common lineage. Understanding how these systems

adapted their tools to their particular authoring challenges gives concrete examples of the tradeoffs

involved for different types of authoring. By reviewing the successes and challenges of the past, the

chapters in this section provide lessons learned for the development of future systems.

Authoring Tools for Adaptive and Data-Driven Systems

In general, for ITS authoring tools, discussion often centers on tools for creating content, such as new

problems or new dialogues that interactively help the learner step-by-step. While these are a key part of

the authoring process, mature authoring tools tend to cover a wider array of authoring and configuration

options. These activities range from small activities like selecting HTML pages to larger tasks such as

manually selecting or sequencing curriculum topics. In other cases, the problem is not so much authoring

as versioning: maintaining and updating content in a reliable way. Within this section, all of these

activities are considered as facets of the larger authoring lifecycle.

This lifecycle typically includes the following steps:

(1) Creating initial content module (e.g., a problem),

(2) Interacting with module like a student,

(3) Revising the module,

(4) Selecting and composing modules for inclusion in a given curriculum,

(5) Collecting data on student interaction, and

(6) Revising module based on collected data.

From the standpoint of content quality, each of these steps contributes to development of effective

tutoring and learning. Efficient tools for certain stages of this lifecycle may be less effective for other

stages. For example, while a series of simple may be efficient for entering the initial content, that same

interface would not necessarily make it easy to find and correct a specific field during the revision step.

68

As such, all systems must make choices about the authoring activities that receive the most support, often

based on the types of expected authors. With this in mind, the chapters in this section describe a variety of

approaches to authoring.

In Chapter 6, Blessing, Aleven, Gilbert, Heffernan, Matsuda, and Mitrovic discuss different approaches to

“Authoring Example-based Tutors for Procedural Tasks.” This chapter discusses the convergence of

multiple lines of authoring tools for step-based problem solving tutors toward example-based authoring.

Example-based authoring, also sometimes called instance-based authoring, provides an interface where

the author builds tutoring content and student support (e.g., hints) for an individual example or limited

class of parameterized examples. By comparison, traditional authoring techniques often required

implementing a full set of explicit domain rules. A number of advantages for such tutors are provided,

which are evident in the authoring tools presented. For some systems, such as ASSISTments and

Cognitive Tutor Authoring Tools (CTAT), this approach was chosen to lower barriers to authoring so that

instructors could develop ITS content. For other systems, such as the Extensible Problem-Solving Tutor

(xPST), the approach allows tightly integrating tutoring with a wide variety of content, ranging from 3D

games to web pages. Finally, in systems such as Authoring Software Platform for Intelligent Resources in

Education (ASPIRE) and SimStudent, algorithms are used to generalize domain rules and constraints that

enable the ITS to tutor a wider variety of problems than were explicitly authored. Particularly since

domain content experts are much more likely to be able to author examples than create formal

representations of their rules, this approach is appealing for well-defined procedural tasks.

In Chapter 7, Matuk, Linn, and Gerard describe the authoring capabilities of the Web-based Inquiry

Science Environment (WISE) system. While WISE is does not currently focus on adaptive elements, the

system has a strong focus on both theory-based (the knowledge-integration framework) and data-driven

development and revision of content. This system demonstrates the potential reach of a well-designed

system designed around teachers, with over 10,000 teachers registered to use WISE. Their main

principles are to provide tools accommodate a range of abilities, allow users to reuse, revise, and extend

what others have made, reporting student data as evidence to inform revision, and allowing flexibility for

authors to repurpose the system for their goals. Compared to many authoring systems, WISE strongly

supports later parts of the authoring lifecycle (i.e., selecting content and data-driven revision).

In Chapter 8, Jacovina, Snow, Dai, and McNamara describe the authoring tools for iSTART-2 and

Writing Pal. These systems use natural language processing techniques to support reading comprehension

strategies and essay-writing skills, respectively. Authoring tools within these systems are novel in a few

ways. First, the tools explicitly contain distinct features that are intended for researchers (e.g.,

randomizing the use of a certain feedback strategy) versus for teachers (e.g., modifying or selecting

content). In general, authoring in these systems attempts to mirror the student experience with the system

but with buttons to edit content or behavior. Second, the tools are being designed to allow authoring

behavior that is associated with stealth assessments, such as feedback or experimental activities.

Compared to other systems in this section, this work explores the potential for collecting and applying

rich metrics on student behavior (e.g., the narrativity of a student’s essays).

In Chapter 9, Charlie Ragusa outlines the design principles of the Generalized Intelligent Framework for

Tutoring (GIFT) authoring tools, which are currently being used by multiple groups to integrate tutoring

into environments as varied as 3D worlds and PowerPoint presentations. A major focus of this chapter is

the need and development of collaborative authoring tools: frameworks that allow multiple authors with

complementary expertise to contribute effectively. These processes are essential, since the knowledge

needed to author an ITS tends to be spread across multiple experts.

Finally, in Chapter 10, Steve Ritter describes practices related to authoring and refining ITS content

across the lifecycle of a commercial product, based on practices used by the widely used Cognitive Tutor

69

system. This chapter focuses significantly on methods to leverage student data to improve an ITS over

time. The discussion revolves around the types of changes that are often necessary (e.g., parameters,

design of the tasks, content) and methods to determine the changes (e.g., manually, automatically

calculated, crowdsourced). Versioning issues are noted with data-driven models, such as data becoming

less-applicable if the design of the task has changed. Also, suggestions are made for which types of

changes are best suited for certain methods (e.g., certain parameter changes can be automatically rolled

out). These issues reflect the realities of balancing data-driven design with a regularly-used product that

must also behave reliably for users on a day-to-day basis.

Themes and Lessons Learned

Across these chapters, some common themes emerged for systems that have matured to reach wider user

bases. Strong themes included the following:

(1) User-Centric Design: Authoring tools that are tailored for the specific authors who are intended to

use them. In some cases, building multiple tools that serve qualitatively different types of authors.

Both systems with wide user bases of authors (ASSISTments and WISE, both with >1k teachers)

strongly focused on serving the common needs of teachers, which include being able to modify

and add content. This was also a significant theme for multiple other systems (e.g., iSTART-2).

(2) Workflows: In some cases, multiple tools and qualitatively different approaches are used to build,

refine, and enhance different parts of a system. The GIFT discussion focuses extensively on

collaborative authoring. The Cognitive Tutor product lifecycle discussion also describes a multi-

faceted authoring process.

(3) Constraints: Authoring tools constrain the author (by design). For each of the systems with large

student user bases (Cognitive Tutor, ASSISTments, and WISE, all with > 75k students),

authoring and configuration was often significantly constrained. In many cases, this was to

simplify the authoring process. However, systems may also attempt to limit certain types of

configurations or authoring that are not pedagogically sound within the system. This raises the

issue that sometimes the options that are not given for authoring can be as important as those that

are.

(4) Content vs. Adaptivity: Different authoring tools and processes emphasize different parts of the

content authoring cycle, with systems for teachers tending to support simple content creation

revision (WISE, iSTART-2 for teachers, ASSISTments) and systems with stronger use by the

research community providing more tools for training step-based adaptivity (CTAT, SimStudent,

GIFT, ASPIRE).

(5) What You See Is What You Get (WYSIWYG): Nearly all of the systems in this chapter describe

methods to quickly view the content after it is authored, incrementally and iteratively (CTAT,

SimStudent, xPST, ASSISTments, iSTART-2, WISE, ASPIRE). By allowing authors to see what

they are creating in real time, these tools enable a more direct authoring process.

(6) Generalization Algorithms: While some of these systems use complex formal representations

(e.g., ontologies, production rules), the field has taken steps toward authoring using examples. As

such, research on methods to identify general principles or rules from examples has become an

important topic (SimStudent, ASPIRE).

70

(7) Versioning and Maintaining Content: For systems with large user bases, these chapters touched

on the complexities and advantages of maintaining a large system, such as supporting modified

content, tracking its evolution, and retaining only content with signs of effectiveness evident in

the student data (Cognitive Tutor and WISE).

Based on these lessons learned, a few areas of focus emerge. First, support for example-based authoring

and other WYSIWYG approaches is probably essential to help instructors author new ITS-tutored

activities. Second, collecting and presenting centralized data about an existing repository of tutoring

modules (such as GIFT’s domain knowledge files) could significantly improve the ability and confidence

of authors trying to select tutoring for an activity. These data could also be used for versioning that tracks,

maintains, and prunes the set of recommended tutoring modules over time (an issue that is explored in

Chapter 6). Finally, this work implies that multiple authoring interfaces are needed to support the research

community versus instructors. With these shifts, GIFT could expand its user base and also increase the

effectiveness of content over time. More generally, these are lessons that authoring tools for ITS and other

learning technologies should follow to ensure that their systems are easier to author, effective for learners,

and can be revised and maintained over time.

71

CHAPTER 6 Authoring Example-based Tutors for

Procedural Tasks

Stephen B. Blessing
1
, Vincent Aleven

2
, Stephen B. Gilbert

3
, Neil T. Heffernan

4
,

Noboru Matsuda
2
, Antonija Mitrovic

5

1
University of Tampa;

2
Carnegie Mellon University;

3
Iowa State University;

4
Worcester Polytechnic Institute;

5
University of Canterbury

Introduction

Researchers who have worked on authoring systems for intelligent tutoring systems (ITSs) have

examined how examples may form the basis for authoring. In this chapter, we describe several such

systems, consider their commonalities and differences, and reflect on the merit of such an approach. It is

not surprising perhaps that several tutor developers have explored how examples can be used in the

authoring process. In a broader context, educators and researchers have long known the power of

examples in learning new material. Students can gather much information by poring over a worked

example, applying what they learn to novel problems. Often these worked examples prove more powerful

than direct instruction in the domain. For example, Reed and Bolstad (1991) found that students learning

solely by worked examples exhibited much greater learning than those learning instruction based on

procedures. By extension then, since tutor authoring can be considered to be teaching a tabula rasa tutor,

tutor authoring by use of examples may be as powerful as directly programming the instruction, while

being easier to do.

Several researchers have considered how examples may assist programmers in a more general sense (e.g.,

Nardi, 1993; Lieberman, 2001). This approach, referred to as “programming by example” or

“programming by demonstration,” generally involves the author programmer demonstrating the

procedure in the context of a specific example and then the system abstracting the general rules of the

procedure on the basis of machine learning or other artificial intelligence (AI) techniques. The balance in

such systems is between its ease of use versus its expressivity. A system may be easy to use, but lack

expressive power and thus generality. At the other extreme (e.g., a general-purpose programming

language), a system can be very expressive and thus generalizes to new situations readily, but lacks ease

of learning. Of course, as an author gets more used to a tool, regardless of initial complexity, the tool

becomes easier. The balance between ease of use and expressivity lies with tutor authoring tools as much

as it does in the more general case of programming by example.

Some researchers who build authoring systems for ITSs have leveraged this general approach, using

examples as a major input method for the ITS. Five such systems are discussed here: Authoring Software

Platform for Intelligent Resources in Education (ASPIRE), ASSISTments, Cognitive Tutor Authoring

Tools (CTAT), SimStudent, and the Extensible Problem-Solving Tutor (xPST). All of these systems use

examples in at least some important aspect of tutor creation. A main goal in using examples is to ease the

authoring burden, to both speed up the authoring of ITSs and enable authoring for a wider variety of

people. All five systems build tutors for procedural-type tasks, where each step of the task is reasonably

well defined and student answers tend to be easily checked. The tutors built by these systems have been

deployed in a wide variety of such tasks (e.g., math, chemistry, genetics, statistics, and manufacturing, to

name a few). However, some of the systems can also tutor on non-procedural tasks (e.g., ASPIRE). The

type of tutoring interaction mediated by these tutors is typically in the pattern of constraint-based and

model-tracing tutors. That is, each student step is checked for correctness, with help and just-in-time

messages available.

72

A short description of each of these five systems follows. After these discussions, the general implications

for such an example-based method for tutor creation conclude the chapter.

The Authoring Systems

ASSISTments

ASSISTments is a web-based tutoring system started from work on CTAT (discussed below), and

developed at both Carnegie Mellon University (CMU) and Worcester Polytechnic Institute (WPI). It is a

platform, hosted at WPI, which allows sharing of content between teachers. The platform is domain

neutral. ASSISTments gives students problems, and there are content libraries for many disparate subjects

including mathematics, statistics, inquiry-based science, foreign language, and reading, but 90% of the

content is in mathematics. Each item, or ASSISTment, consists of a main problem and the associated

scaffolding questions, hints, and buggy messages.

Early work on this system (circa 2004) required programmers to build content, but soon this was

untenable, so a graphical user interface (GUI)-based authoring tool was developed to enable other people,

such as teachers and other researchers, to create content in quantity. Figure 1 shows the tutor and

authoring screens for the same problem (Razzaq et al., 2009). Somewhere around 2011,the total amount

of content created by non-WPI personnel began to outnumber that created by WPI personnel.

Figure 1. ASSISTments interface.

This is possible because we created an authoring tool that makes it easy to build, test, and deploy items, as

well as for teachers to get reports. We have a gentle slope for authors in that they can use our

73

QuickBuilder to just type in a set of questions and associated answers. In that sense, they have created a

simple quiz, where the one hint given would just tell them the answer. For those that want to add further

hints to the questions, that step is easy and is part of the QuickBuilder. If they want to create scaffolding

questions or feedback messages for common wrong answers, they have to invoke the ASSISTment

Builder, requiring a steeper learning curve. While there is a steeper learning curve, we have shown that

going through the work of creating scaffolding questions can be very helpful for the lower knowledge

students (Razzaq & Heffernan, 2009), but that does not mean that everyone creating content in

ASSISTments needs to create both a scaffolding version and a hint version.

This gives teachers the opportunity to create problems specific to their school, for differentiated

instruction, or to work with their textbook. All content created by any user can he viewed by, but not

edited by, any other user that has the problem number. This makes sharing easy and prevents teachers

from having to worry that their content could get “graffiti” on it.

We are exploring a new way of adding content with teachers in Maine. The teacher types in something

like the following, “Do #7 from Page 327,” so the students have to open their textbook to page 327 to see

the seventh question on that page (in doing it this way, the teachers are not violating the copyright of the

publisher by duplicating the problem). Teachers can elect for students to receive correctness only

feedback or additional tutoring on the homework. The content created around these texts is driven by the

teachers and can be shared by anyone using that book. Inspired by Ostrow and Heffernan (2014) that

showed video hint messages were more effective that a text version that used the same words, we funded

seven teachers to make video hint messages, posted on YouTube or SchoolTube. We are just starting a

study to examine the effectiveness of this.

The variabilization feature of the ASSISTments builder allows an author to design one problem and then

have many problems created that assess the same skill. This was key to our getting our Skill Builders

running. Skill Builders are problem sets that allow a student to keep doing problems until they reach the

proficiency threshold, which by default its three correct in a row but can be set by the author. Any teacher

that wants to change that simply makes their own copy and changes it.

Figure 2 shows the interface for a variablized assistment. Authors can variablize the hint messages,

scaffolding questions, and feedback messages. Authors have to write tiny programs of interconnected

variables, which do things like randomly changing the numbers used in the problems. Skill builders are

much harder to create, and only a few teachers do this themselves, but WPI has created several hundred

for topics from 4th to 10th grade mathematics. Well over half of the teachers use our skill builders.

Figure 2. This is a variablized problem on the Pythagorean Theorem.

74

The authoring tool for ASSISTments has a gentle usability slope. Many teachers start using

ASSISTments by first using content WPI created, but most of them soon use the extensibility of the tool

to write their own questions. Most of these questions will be what we call “naked,” or the lacking of

scaffolding hints, as that takes more time to create. We do have some authors that have used the tool to

create large libraries of content. For instance, one teacher successfully made hundreds of Advanced

Placement (AP) statistics questions with extensive hints.

CTAT

Examples are used extensively in CTAT, a widely used suite of authoring tools (Aleven, McLaren, Sewall

& Koedinger, 2009; Aleven, Sewall, McLaren & Koedinger, 2006; Koedinger, Aleven, Heffernan,

McLaren & Hockenberry, 2004). CTAT supports the development of tutors that provide individualized,

step-by-step guidance during complex problem solving. These tutors provide ample assistance within a

problem, such as feedback on the steps, next-step hints, and error feedback messages. They also support

individualized problem selection to help each individual student achieve mastery of all targeted

knowledge components. Therefore, these tutors support most of the tutoring behaviors identified by

VanLehn (2006) as characteristic of ITSs. Over the years, many tutors have been built with CTAT in a

very wide range of domains (Aleven et al., 2009; under review). Many of these tutors have been shown to

be effective in helping students learn in actual classrooms.

CTAT supports the development of two kinds of tutors: example-tracing tutors, which use generalized

examples of problem-solving behavior as their central representation of domain knowledge, and model-

tracing tutors (or Cognitive Tutors), which use a rule-based cognitive model for this purpose (Aleven,

2010; Aleven, McLaren, Sewall & Koedinger, 2006). Example-tracing tutors are an innovation that

originated with CTAT; this tutoring technology was developed as part of developing CTAT; cognitive

tutors on the other hand have a long history that pre-dates CTAT (e.g., Aleven & Koedinger, 2007;

Anderson, Corbett, Koedinger & Pelletier, 1995; Koedinger, Anderson, Hadley & Martk, 1997). These

two types of tutors support the same set of tutoring behaviors. The main difference is that rule-based

cognitive tutors are more practical when a problem can be solved in many different ways (Waalkens,

Aleven & Taatgen, 2013). CTAT supports three different approaches to authoring (Figure 3). Example-

tracing tutors are built with a variety of end-user programming techniques, including building an interface

through drag-and-drop and then programming by demonstration within that interface, where the author’s

actions are recorded as paths in a behavior graph (Figure 4; the behavior graph is on the right). Rule-

based tutors on the other hand can be built in CTAT either through rule-based cognitive modeling, a form

of AI programming (Aleven, 2010) or through programming by automated rule induction by a module

called SimStudent, which is described in the next section.

Figure 3. Tutor types and ways of authoring in CTAT

75

 Figure 4. Author using CTAT (right) and Flash (left) to create an example-tracing tutor.

Examples figure prominently in each of these three authoring approaches. These examples take the form

of behavior graphs, which capture correct and incorrect problem-solving behavior for the problems that

the tutor will help students solve. A behavior graph may have multiple paths, each capturing a different

way of solving the problem. Put differently, a behavior graph represents the solution space of a problem.

Behavior graphs go at least as far back as Newell and Simon’s (1972) classic book Human Problem

Solving, a foundational work in cognitive science. An author can easily create behavior graphs using

CTAT, by demonstrating how to solve problems in the tutor interface. A tool called the Behavior

Recorder records the steps in a graph. CTAT also offers tools with which an author can generalize a

behavior graph, expanding the range of problem-solving behavior that it represents.

Examples serve many different purposes in CTAT. In all three of CTAT’s approaches to tutor authoring,

examples (i.e., behavior graphs) function as a tool for cognitive task analysis. They help an author map

out the solution space of the problems for which tutoring is to be provided, think about different ways a

problem might be solved, and develop hypotheses about the particular knowledge components needed and

how these components might transfer across steps. In addition, behavior graphs serve various separate

functions in each of the authoring approaches. First, in example-tracing tutors generalized examples are

the tutor’s domain knowledge. The author generalizes the examples in various ways to indicate the range

of student behaviors that the tutor will deem correct, so the tutor can be appropriately flexible in

recognizing correct student behavior (Aleven, McLaren, Sewall & Koedinger, 2009). Also, in the

common authoring scenario that many problems of the same type are needed, an author can turn a

behavior graph into a template and create a table with specific values for each problem. Second, in

building rule-based cognitive tutors by hand, the examples help in testing and debugging. They help

navigate a problem’s solution space (e.g., authors can jump to any problem-solving state captured in the

graph, which is useful when developing a model from scratch), they serve as semi-automated test cases,

and they can be used for regression testing (i.e., making sure that later changes do not introduce bugs).

Lastly, in SimStudent, author-demonstrated examples are used to automatically induce production rules

that capture the tutor’s problem-solving behavior (more detail on this process can be found in the

SimStudent section below).

76

As mentioned, example-tracing tutors use generalized examples (behavior graphs) to flexibly interpret

student problem-solving behavior. The tutor checks whether the student follows a path in the graph. Once

the student commits to a path, by executing one or more steps on that path, the example-tracer will insist

that the student finishes that path, that is, that all subsequent actions are all on at least one path through

the graph. Students are not allowed to backtrack and try an alternative problem-solving strategy within the

given problem in order to keep them moving forward. Within this basic approach, CTAT’s example tracer

is very flexible in how it matches a student’s problem-solving steps against a behavior graph. First, the

example tracer can handle ambiguity regarding which path the student is on and when the steps that the

student has entered so far are consistent with multiple paths in a graph. In such situations, the example

tracer will maintain multiple alternative interpretations of student behavior until subsequent student steps

rule out one or more interpretations. The example tracer also can deal with variations in the order of steps.

That is, the student does not need to strictly follow the order in which the steps appear in the graph. An

author can specify which parts of a behavior graph require a strict order and which steps can be done in

any order. Even better, an author can create a hierarchy of nested groups of unordered and ordered steps.

Further, steps can be marked as optional or repeatable. The example tracer can also deal with variations of

the steps themselves. An author has a number of ways to specify a range of possibilities for a particular

steps, including range matches, wildcard matches, regular expressions, as well as an extensible formula

language for specifying calculations and how a step depends on other steps. Thus, in CTAT example-

tracing tutors, a behavior graph can stand for a wide range of behavior well beyond exactly the steps in

the graph in exactly the order they appear in the graph. Authors have many tools that enable them to

specify how far to generalize. When an author wants to make behavior graphs for many different but

isomorphic problems, CTAT provides a “Mass Production” approach in which an author creates a

behavior graph with variables for the problem-specific values and then, in Excel, creates a table with

problem-specific values for a range of problems. They can then generate specific instances of the template

in a merge step. This template-based process greatly facilitates the creation of a series of isomorphic

problems, as are typically needed in tutor development.

Our experience over the years, both as developers of example-tracing tutors and consultants assisting

others in developing example-tracing tutors, indicates that this type of tutor is useful and effective in a

range of domains. It also indicates that the example-tracing technology implemented in CTAT routinely

withstands the rigors of actual classroom use. Examples of example-tracing tutors recently built with

CTAT and used in actual classrooms are Mathtutor (Aleven, McLaren & Sewall, 2009), the Genetics

Tutor (Corbett, Kauffman, MacLaren, Wagner & Jones, 2010), the Fractions Tutor (Rau, Aleven &

Rummel, 2015; Rau, Aleven, Rummel & Pardos, 2014), a version of the Fractions Tutor for collaborative

learning (Olsen, Belenky, Aleven & Rummel, 2014; Olsen, Belenky, Aleven, Rummel, Sewall &

Ringenberg, 2014), a fractions tutor that provides grounded feedback (Stampfer & Koedinger, 2013), the

Stoichiometry Tutor (McLaren, DeLeeuw & Mayer, 2011a; 2011b), AdaptErrEx (Adams et al., 2014;

McLaren et al., 2012), an English article tutor (Wylie, Sheng, Mitamura & Koedinger, 2011), Lynnette, a

tutor for equation solving (Long & Aleven, 2013; Waalkens et al., 2013), and a tutor for guided invention

activities (Roll, Holmes, Day & Bonn, 2012). We have also seen, in courses, workshops, and summer

schools that we have taught, that learning to build example-tracing tutors with CTAT can be done in a

relatively short amount of time. Generally, it does not take more than a couple of hours to get started, a

day to understand basic functionality, and a couple more days to grasp the full range of functionality that

this tutoring technology offers. This is a much lower learning curve than that for learning to build

cognitive tutors with CTAT. Authoring and debugging a rule-based cognitive models is a more complex

task that requires AI programming. Example-tracing tutors on the other hand do not require any

programming. In our past publication (Aleven, McLaren, Sewall & Koedinger, 2009), we estimated,

based on data from projects in which example-tracing tutors were built and used in real educational

settings (i.e., not just prototypes) that example-tracing tutors make tutor development 4–8 times more

cost-effective: they can be developed faster and do not require expertise in AI programming. Echoing a

theme that runs throughout the chapter, we emphasize that building a good tutor requires more than being

77

facile with authoring tools; for example, it also requires careful cognitive task analysis to understand

student thinking and students’ difficulties in the given task domain.

In sum, the CTAT experience indicates that the use of examples, in the form of behavior graphs that

capture the solution space of a problem, is key to offering easy-to-learn, non-programmer options to ITS

authoring. Thinking in terms of examples and concrete scenarios is helpful for authors. So is avoiding

actual coding, made possible by the use of examples. The experience indicates also that the same

representation of problem-solving examples, namely, behavior graphs, can serve many different purposes.

This versatility derives from the fact that behavior graphs are a general representation of problem-solving

processes. As such, they may be useful in a range of ITS authoring tools, not just CTAT, since many ITSs

deal with complex problem-solving activities.

SimStudent

SimStudent is a machine-learning agent that inductively learns problem-solving skills (Li, Matsuda,

Cohen & Koedinger, 2015; Matsuda, Cohen & Koedinger, 2005). At an implementation level,

SimStudent acts as a pedagogical agent that can be interactively tutored. SimStudent is a realization of

programming by demonstration (Cypher, 1993; Lau & Weld, 1998) in the form of inductive logic

programming (Muggleton & de Raedt, 1994). SimStudent learns domain principles (i.e., how to solve

problems) by specializing and generalizing positive and negative examples on how to apply, and not to

apply, particular skills to solve problems.

At a theory level, SimStudent is a computational model of learning that explains both domain-general and

domain-specific theories of learning. As for the domain-general theory of learning, SimStudent models

two learning strategies: learning from examples and learning by doing (Matsuda, Cohen, Sewall, Lacerda

& Koedinger, 2008). Learning from examples is a model of passive learning in which SimStudent is

given a set of worked-out examples and it silently generalizes solution steps from these examples. There

is no interaction between the “tutor” and SimStudent during learning from examples, except that tutor

provides examples to SimStudent. Learning by doing, on the other hand, is a model of interactive,

tutored-problem solving (i.e., cognitive tutoring) in which SimStudent is given a sequence of problems

and asked to solve them. In this context, there must be a “tutor” (i.e., author) who provides tutoring

scaffolding (i.e., feedback and hints) to SimStudent. That is, the “tutor” provides immediate flagged

feedback (i.e., correct or incorrect) for each of the steps that SimStudent performs. SimStudent may get

stuck in the middle of a solution and ask the “tutor” for help on what to do next. The “tutor” responds to

SimStudent’s inquiry by demonstrating the exact next step.

As for the domain-specific theory of learning, SimStudent can be used as a tool for student modeling to

advance a cognitive theory of learning skills to solve problems for a particular domain task. Using the

SimStudent technology, researchers can conduct simulation studies with tightly controlled variables. For

example, to understand why students make commonly observed errors when they learn how to solve

algebraic linear equations, we conducted a simulation study. An example of a common error is to subtract

4 from both sides of 2x–4=5. We hypothesized that students learn skills incorrectly due to incorrect

induction. We also hypothesized that incorrect induction might more likely occur when students carry out

induction based on weak background knowledge that, by definition, is perceptually grounded and

therefore lacks connection to domain principles. An example of such weak background knowledge is to

perceive “3” in 5x+3=7 as a last number on the left-hand side of the equation, instead of perceiving ‘+3’

as a last term. To test these hypotheses, we controlled SimStudent’s background knowledge by replacing

some of the background knowledge (e.g., the knowledge to recognize the last term) with weak

perceptually grounded knowledge (e.g., the knowledge to recognize the last number). We trained two

versions of SimStudent (one with normal background knowledge and the other one with weak

78

background knowledge) and compared their learning with students’ learning. The result showed that only

SimStudent with weak background knowledge made the same errors that students commonly make

(Matsuda, Lee, Cohen & Koedinger, 2009).

So far, we have demonstrated that SimStudent can be used to advance educational studies for three major

problems: (1) intelligent authoring, (2) student modeling, and (3) teachable agent. For intelligent

authoring, SimStudent functions as an intelligent plug-in component for CTAT (Aleven, McLaren, Sewall

& Koedinger, 2006; Aleven, McLaren, Sewall & Koedinger, 2009) that allows authors to create a

cognitive model (i.e., a domain expert model) by tutoring SimStudent on how to solve problems. The

intelligent authoring project was started as an extension of prior attempts (Jarvis, Nuzzo-Jones &

Heffernan, 2004; Koedinger, Aleven & Heffernan, 2003; Koedinger, Aleven, Heffernan, McLaren &

Hockenberry, 2004).

In the context of intelligent authoring, the author first creates a tutoring interface using CTAT, and then

“tutors” SimStudent using the tutoring interface (Figure 5). There are two authoring strategies, authoring

by tutoring and authoring by demonstration, and each corresponds to two learning strategies mentioned

above, i.e., learning by doing and learning from worked-out examples, respectively. We have showed that

when the quality of a cognitive model is measured as the accuracy of solution steps suggested by the

cognitive model, authoring by tutoring generates a better cognitive model than authoring by

demonstration (Matsuda, Cohen & Koedinger, 2015). It is only authoring by tutoring that provides

negative examples, which by definition tell SimStudent when not to apply overly general productions,

and negative examples have the significant role in inductively generating a better quality cognitive model.

Figure 5. Authoring using SimStudent with the assistance of CTAT

SimStudent also functions as a teachable agent in an online learning environment in which students learn

skills to solve problems by interactively teaching SimStudent. The online learning environment is called

the Artificial Peer Learning environment Using SimStudent (APLUS). APLUS and a cognitive tutor share

underlying technologies. In fact, APLUS consists of (1) the tutoring interface on which a student tutors

79

SimStudent; (2) a cognitive tutor in the form of the meta-tutor that provides scaffolding for the student on

how to teach SimStudent and how to solve problems; and (3) a teachable agent (SimStudent), with its

avatar representation. The combination of CTAT and SimStudent allows users to build APLUS for their

own domains. In this context, SimStudent plays a dual role: (1) a tool to create a cognitive model for the

embedded meta-tutor and (2) a teachable agent.

Examples, in the context of the interaction with SimStudent, are major input for SimStudent to induce a

cognitive model. SimStudent learns procedural skills to solve target problems either from learning by

doing or learning from worked-examples. SimStudent generalizes provided examples (both positive and

negative) and generates a set of productions that each represents a procedural skill. The set of productions

become a cognitive model that can be used for cognitive tutoring in the form of a cognitive tutor or a

meta-tutor in APLUS.

An empirical study (Matsuda et al., 2015) showed that to make an expert model for an algebra cognitive

tutor, it took a subject matter expert 86 minutes for authoring by tutoring SimStudent on 20 problems

whereas authoring by demonstration with 20 problems took 238 minutes. A more recent study showed

that authoring an algebra tutor in SimStudent is 2.5 times faster than example-tracing while maintaining

equivalent final model quality (MacLellan, Koedinger & Matsuda, 2014). We are currently conducting a

study to validate the quality of production rules. In the study, we actually use a SimStudent-generated

cognitive model for an algebra cognitive tutor to model trace real student’s solution steps. A preliminary

result shows that after tutoring SimStudent on 37 problems, the model tracer correctly model traces 96%

of steps that students correctly performed. At the same time, the “accuracy” of detecting a correct step

(i.e., the ratio of the correct positive judgement, judging a step as correct, to all positive judgement) was

98%.

ASPIRE

The Intelligent Computer Tutoring Group (ICTG; http://www.ictg.canterbury.ac.nz/) has developed many

successful constraint-based tutors in diverse instructional domains (Mitrovic, Martin & Suraweera, 2007;

Mitrovic, 2012). Some early comparisons of constraint-based modeling (Ohlsson, 1994) to the model-

tracing approach have shown that constraint-based tutors are less time-consuming to develop (Ohlsson &

Mitrovic, 2007; Mitrovic, Koedinger & Martin, 2003), but yet require substantial expertise and effort. The

estimate of time per constraint for Structured Query Language (SQL)-Tutor, the first and biggest

constraint-based modeling (CBM) tutor developed (Mitrovic, 1998), was 1 hour per constraint, with the

same person acting as the knowledge engineer, domain expert, and software developer. In order to

support the development process, ICTG developed an authoring shell, the Web-Enabled Tutor Authoring

System (WETAS; Martin & Mitrovic, 2002). Studies with novice ITS authors using WETAS had shown

that the authoring time per constraint on average was 2 hours (Suraweera et al., 2009), but the authors still

found writing constraints challenging.

ASPIRE (http://aspire.cosc.canterbury.ac.nz/) is a general authoring and deployment system for

constraints-based tutors. It assists in the process of composing domain models for constraint-based tutors

and automatically serves tutoring systems on the web. ASPIRE guides the author through building the

domain model, automating some of the tasks involved, and seamlessly deploys the resulting domain

model to produce a fully functional web-based ITS.

The authoring process in ASPIRE consists of eight phases. Initially, the author specifies general features

of the chosen instructional domain, such as whether or not the task is procedural. For procedural tasks, the

author describes the problem-solving steps. This is not a trivial activity, as the author needs to decide on

80

the approach to teaching the task. The author also needs to decide on how to structure the student

interface and whether the steps will be presented on the same page or on multiple pages.

The author then develops the domain ontology, containing the concepts relevant to the instructional task.

The purpose of the domain ontology is to focus the author on important domain concepts; ASPIRE does

not require a complete ontology, but only those domain concepts students need to interact with in order to

solve problems in the chosen area. The ontology specifies the hierarchical structure of the domain in

terms of sub- and super-concepts. Each concept might have a number of properties and may be related to

other domain concepts. The author can define restrictions on properties and relationships, such as the

minimum and maximum, number of values, types of values, etc. The ontology editor does not offer a way

of specifying restrictions on different properties attached to a given concept, such as the number of years

of work experience should be less than the person’s age. It also does not contain functionality to specify

restrictions on properties from different concepts, such as the salary of the manager has to be higher than

the salaries of employees for whom they are responsible. However, these restrictions are not an obstacle

for generating the constraint set, as ASPIRE generates constraints not only from the ontology, but also

from sample problems and their solutions. Figure 6 shows the domain ontology for the thermodynamics

tutor, which is defined as a procedural task. In this tutor, the student needs to develop a diagram first and

later compute unknowns using a set of formulas.

Figure 6: The ontology of Thermo-Tutor

In the third phase, the author defines the problem structure and the general structure of solutions,

expressed in terms of concepts from the ontology. The author specifies the types of components to show

on the student interface and the number of components (e.g., a component may be optional or can have

81

multiple instances). On the basis of the information provided by the author in the previous phases,

ASPIRE then generates a default, text-based student interface, which can be replaced with a Java applet.

ASPIRE also provides a remote procedure call interface, allowing for sophisticated student interfaces to

be built, such as an Augmented Reality interface (Westerfield, Mitrovic & Billinghurst, 2013). Figure 7

shows the Java applet allowing students to solve problems in Thermo-Tutor (Mitrovic et al., 2011).

Figure 7: A screenshot from Thermo-Tutor showing the applet

In the fifth phase, the author adds sample problems and their correct solutions using the problem solution

interface. ASPIRE does not require the author to specify incorrect solutions. The interface enforces that

the solutions to adhere to the structure defined in the previous step. The author is encouraged to provide

multiple solutions for each problem, demonstrating different ways of solving it. In domains where there

are multiple solutions per problem, the author should enter all practicable alternative solutions. The

solution editor reduces the amount of effort required to do this by allowing the author to transform a copy

of the first solution into the desired alternative. This feature significantly reduces the author’s workload

because alternative solutions often have a high degree of similarity.

ASPIRE then generates syntax constraints by analyzing the ontology and the solution structure. The

syntax constraint generation algorithm extracts all useful syntactic information from the ontology and

translates it into constraints. Syntax constraints are generated by analyzing relationships between concepts

and concept properties specified in the ontology (Suraweera, Mitrovic & Martin, 2010). An additional set

of constraints is also generated for procedural tasks, which ensure the student performs the problem-

solving steps in the correct order (also called path constraints).

Semantic constraints check that the student’s solution has the desired meaning (i.e., it answers the

question). Constraint-based tutors determine semantic correctness by comparing the student solution to a

single correct solution to the problem; however, they are still capable of identifying alternative correct

solutions because the constraints are encoded to check for equivalent ways of representing the same

semantics (Ohlsson & Mitrovic, 2007; Mitrovic, 2012). ASPIRE generates semantic constraints by

analyzing alternative correct solutions for the same problem supplied by the author. ASPIRE analyses the

82

similarities and differences between two solutions to the same problem. The process of generating

constraints is iterated until all pairs of solutions are analyzed. Each new pair of solutions can lead to either

generalizing or specializing previously generated constraints. If a newly analyzed pair of solutions

violates a previously generated constraint, its satisfaction condition is generalized in order to satisfy the

solutions, or the constraint’s relevance condition is specialized for the constraint to be irrelevant for the

solutions. A detailed discussion of the constraint-generation algorithms is available in (Suraweera,

Mitrovic & Martin, 2010).

xPST

When an author uses the xPST system to create a model-tracing style tutor (e.g., Koedinger, Anderson,

Hadley & Mark, 1997) for a learner, the author bases the instruction on a particular example. The

example needs to already be in existence—xPST does not provide a way to create that example. Rather,

that example comes from previously created content or is based on third-party software. This aspect of the

system is contained in its name—problem-specific tutor. Very little generalization is done from the

example. Broadly speaking, the instruction that the author creates is appropriate only for that one

example. While this limits the ability for the instruction to be applied in multiple instances, it allows for a

more streamlined and simplistic authoring process, opening up the possibility of authoring tutors to a

wider variety of people, e.g., those who do not possess programming skills.

To quickly explain the first word in the xPST name, extensible, that ability comes from two different

aspects. First, xPST can be extended in terms of the types of learner answers it can check. xPST’s

architecture compartmentalizes these “checktypes,” and it is easy for a programmer to add additional ones

and make them available to xPST authors. Second, and more importantly, xPST can be extended in terms

of the interfaces on which it can provide tutoring. Like other ITSs (such as seen in CTAT, or see Blessing,

Gilbert, Ourada, and Ritter, 2009; Ritter & Koedinger, 1996), xPST’s architecture makes a clear

separation between the learner’s interface and the tutoring engine. The architecture contains a TutorLink

module that mediates the communication between these two parts of the system. The learner’s interface

can in theory be any existing piece of software, as long as a TutorLink module can translate the actions of

the learner in the interface into what xPST understands, and then the module needs to communicate the

tutoring feedback back to the learner’s interface (e.g., a help message or an indication if an answer is right

or wrong). More information concerning this type of communication can be found elsewhere (Gilbert,

Blessing & Blankenship, 2009).

Allowing the learner interface to be existing software, given the proper TutorLink module, opens up

many possibilities in terms of what to provide tutoring on and how that tutoring manifests itself. We have

written TutorLink modules for Microsoft .NET programs, the Torque 3-D game engine, and the Firefox

web browser. Regardless of the interface, the authoring interaction is similar: a specific scenario is

created within the context of the interface and instruction on completing that scenario is authored in

xPST. To explain how examples are used to create tutoring in xPST, we illustrate the process using the

Firefox web browser as the interface. In this case, the TutorLink module operates as a Firefox plug-in.

This allows any webpage to contain potentially tutorable content, where the student is provided with

model-tracing style feedback. In one project, we had authors, which included non-programmer

undergraduates, use a drag-and-drop form creation tool to easily create custom homework problems for a

statistics tutor (Maass & Blessing, 2011). Countless webpages already exist that could be used for

instruction. In another project, we used a webpage from the National Institutes of Health (NIH) to create

activities involving DNA sequencing.

To provide a specific example, imagine an author wanted to create instruction on how to search using a

popular article database, the American Psychological Association’s (APA) PsychINFO, to find research

83

papers, so that students become better at information literacy. The webpage already exists, with all the

widgets (the entry boxes, radio buttons, and pull-down menus) in place. The Firefox plug-in allows the

author to write a problem scenario (e.g., to find a particular paper using those widgets) that will appear in

a sidebar next to the already established page, and then the author writes instruction code that will ensure

that the learner uses the page appropriately, providing help when needed, so that the learner finds the

correct article. The author does their work on the xPST website (http://xpst.vrac.iastate.edu). This website

provides a form to create a new problem, where the instruction to the existing webpage (in this case,

http://search.proquest.com/psychinfo/advanced/), the sidebar’s problem scenario, and the tutor “code”

that contains the right answers and help messages can all be entered. While the code does have some of

the trappings of traditional programming, those are kept to a minimum.

Figure 8 shows some of the code that would be used to create this PsychINFO tutor. This code in

conjunction with the author-supplied scenario is in essence the example. The existing webpage provides

the means by which the learner will work through the example (via the entry boxes and drop-down

menus), and what is seen in Figure 8 is the information needed by xPST to provide tutoring. The code has

three main sections: Mappings, Sequence, and Feedback. The Mappings map the interface widgets onto

the names that the xPST tutor will use. The Firefox plug-in provides the names of the widgets for the

author as the author begins to create the scenario. The Sequence is the allowed orderings for how the

learner may progress through the problem. The syntax allows for required and optional parts, along with

different kinds of branching. The Feedback section is where the author indicates the right answer for a

widget, and the help and just-in-time messages that might be displayed for incorrect responses. Once

authors have entered in enough code to see results, they can click the “Save and Run” button and

immediately see the results of the xPST tutor. Figure 9 shows the tutor running the PsychINFO site with

the code shown in Figure 8. This code is specific to this problem scenario, but could easily be copied and

modified in order to create a different problem. In such a way an author could quickly create a short 5–6

problem homework set to provide practice to students concerning information literacy.

Figure 8. Authoring interface for xPST.

84

Figure 9. The example-based tutor running on the PsychInfo site.

We have examined the way non-programmers have learned to use xPST (e.g., Blessing, Devasani &

Gilbert, 2011). Despite the text-entry method for instruction, non-programmers have successfully used

xPST to create new tutors. In Blessing, Devasani, and Gilbert (2011), five such authors spent roughly 30

hours on average learning the system and developing 15 statistics problems apiece. Keeping in mind that

all the problems had a similar feel to them, the endpoint was the ability to create one of the problems,

which contained about 10 minutes of instruction, in under 45 minutes.

Conclusions

We start our conclusions by comparing the above systems on five dimensions: (1) their heritage,

(2) practical concerns such as teacher reporting, (3) the authoring process, (4) how they generalize

examples, and (5) their approach to cognitive task analysis. We finish by making recommendation to the

Generalized Intelligent Framework for Tutoring (GIFT) architecture based on our observations.

Heritage

Four of these five systems (ASSISTments, CTAT, SimStudent, and xPST) share a common heritage, the

ACT Tutors that John Anderson and his colleagues developed over the course of many years (Anderson,

Corbett, Koedinger & Pelletier, 1995). The researchers created these tutors to fully test the ACT Theory

of cognition, and they covered a few different domains, including several programming languages and

many levels of mathematics. The most direct descendant of the ACT Tutors existing today are the

commercial tutors produced by Carnegie Learning, Inc., which cover middle and high school math.

Despite this common heritage of the present systems, they were developed independently. Each of us felt

that the authoring tools created to support the ACT Tutors (the Tutor Development Kit for the original set

of tutors (Anderson & Pelletier, 1991) and the Cognitive Tutor Software Development Kit for Carnegie

Learning’s tutors (Blessing, Gilbert, Ourada & Ritter, 2009)), while powerful, were not approachable by

non-programmers or non-cognitive scientists. We realized that in order for ITSs to be more prevalent,

authoring needed to be easier. In our own labs, we developed separate systems that mimicked the

behavior of the original ACT Tutors, because that had proved so successful, but without the programming

85

overhead that prior tools required. As seen in our descriptions above and our discussion here, these

systems contain some similarities, but differ in important ways as well.

ASPIRE, the one system that does not have a connection to the ACT Tutors, originated with Ohlsson’s

work on a theory of learning from performance errors (Ohlsson, 1996). This led to the development of

CBM (Mitrovic & Ohlsson, 1999), in which the tutor’s knowledge is represented as a set of constraints,

as opposed to the production-based representation of the ACT Tutors. In this way, the tutor’s knowledge

represents boundary points within which the solution lies. Having multiple systems that descend from

multiple sources provides credence to the idea that the general technique of programming by

demonstration and the use of examples is a useful and powerful one for the creation of ITSs.

Practical Concerns

There are scientific concerns as to what knowledge representations are most valuable to use to reflect how

humans think (e.g., Ohlsson’s constraints-based theory vs. Anderson’s production rules). However, there

are also practical concerns. For example, which tools prove easier to use might drive adoption, not

necessarily those that produce the most learning. As another somewhat practical concern, some of the

authoring methods discussed above may allow authors to more easily add complexity to their content over

time. For instance, after assigning a homework question, a teacher may see that an unanticipated common

wrong answer occurs, and the system needs to allow the teacher to write a feedback message that

addresses that common wrong answer quickly.

While this chapter has focused on author tools for the content, an equally important element has to do

with reporting. Some of these tools, such as ASSISTments and CTAT offer very robust ways to report

student data. There is a possible tradeoff on the complexity and adaptability of the content, and the ways

we report to instructors. We need easy ways that report information to the instructors and content creators.

The reports to these classes of people should be focused differently than the types of reports to

researchers. For instance, if a researcher has used ASSISTments’ tools to create a randomized controlled

experiment (see sites.google.com/site/neilheffernanscv/webinar for more information concerning this

feature) embedded in a homework, perhaps comparing text hints versus video hints, the reports that the

teachers receive should be different than the reports that the researchers receive.

The Authoring Process

The method by which authors create tutors in these systems varies along at least two different, though

somewhat related, dimensions: (1) how the instruction is inputted and (2) how much of the process is

automated. With regard to how the instruction is inputted, this varies from a method that is more

traditional coding as in xPST, to a method that is more graphical in nature, such as CTAT’s behavior

graph. ASSISTment’s QuickBuilder and ASSISTment Builder techniques seem to be a bit of a midpoint

between those two methods of input. Devasani, Gilbert, and Blessing (2012) examined the trade-offs

between these approaches with novice authors building tutors in both CTAT and xPST within two

different domains, statistics and geometry. Relating their findings to Green and Petre’s (1996) cognitive

dimensions, they argued that the GUI approach has certain advantages, such as eliminating certain types

of errors and the fact that visual programming allows for a more direct mapping. A more text-based

approach has the advantages of flexibility in terms of how the authoring is completed and the ability to

capture larger tutors that contain more intermediate states and solution paths more economically (what

Green and Petre termed “diffuseness” and “terseness”). That flexibility may also translate into easier

maintenance of those larger tutors.

86

The systems also differ in how much of the process is automated. This is also related to the amount of

generalizability that the systems are able to perform, discussed below. In both ASSISTments and xPST,

very little, if anything, is automated. ASPIRE and SimStudent have some degree of automation, in terms

of how they induce constraints or productions. This automation eliminates or reduces greatly some of the

steps that the author would otherwise have to do in order to input the instruction. CTAT is the middle

system here, as it does have some mechanisms available to the author to more automatically created

instruction (e.g., using Excel to more quickly create problem sets that all share similar instruction). As in

any interface and systems design, these two dimensions play off each other in terms of what advantages

they offer the author, between ease-of-use and generalizability.

Generalization of Examples

The discussed authoring technologies are diverse: they help authors create different kinds of domain

models that can be used for adaptive tutoring. Some help authors create a collection of questions and

answers with knowledge of feedback (ASSISTments, the example-tracing version of CTAT, and xPST),

whereas others provide scaffolding to create the domain model either in the form of constraints (ASPIRE)

or production rules (the model-tracing version of CTAT and SimStudent).

Some of the discussed approaches rely on the author’s ability for programming while providing

elaborated scaffolding to facilitate the programming process and ease the author’s labor (ASSISTments,

CTAT, xPST). In xPST, there is no generalization of examples at all. In CTAT, the author specifies the

behavior graphs that includes both correct and incorrect steps, and also provides feedback on steps and

hints. Furthermore, the author generalizes examples by adding variables and formulas that express how

steps depend on each other or how a given vary, by relaxing ordering constraints, and by marking steps as

optional or repeatable. In ASSISSTments, some variabilization is possible. In those two cases, the

authoring system does not generalize examples on its own; this task is left to the author.

On the other hand, ASPIRE and SimStudent deploy AI technologies to generate the domain model given

appropriate background knowledge. ASPIRE, for example, generates constraints given the domain

ontology developed by the author and example solutions. SimStudent uses the given primitive domain

skills to generate a cognitive model from a set of positive and negative examples provided by the author.

The difference between ASPIRE and SimStudent is not only in the formalism in which domain

knowledge is represented, but also in the kind of examples they use. ASPIRE requires the author to

specify only the alternative correct solutions for problems, without any feedback or further elaborations

on them. SimStudent requires immediate feedback on steps (when inducing production rules in the

learning by doing mode) or a set of positive and negative examples.

All five authoring systems discussed in this chapter share a common input for tutor authoring—example

solutions. Different techniques are used for different purposes to generalize or specialize the given

examples. It must be noted that all these five authoring systems share a fundamentally comparable

instructional strategy for procedural tasks, step decomposition (i.e., force students to enter a solution one

step at a time). ASPIRE differs from this requirement, as it can also support non-procedural tasks, in

which the student can enter the whole solution at once. With the exception of ASPIRE, which provides

on-demand feedback, the other authoring systems provide immediate (or semi-immediate) feedback on

the correctness of the step performed, and just-in-time hint on what to do next.

Cognitive Task Analysis

Performing a cognitive task analysis (CTA) has been shown to be an effective means of producing quality

instruction in a domain (Clark & Estes, 1996). CTA involves elucidating the cognitive structures that

87

underlie performance in a task. Another aspect of CTA is to describe the development of that knowledge

from novice to expert performance. The more ITS authors (or any other designers of instruction)

understand about how students learn in the given task domain, what the major hurdles, errors, and

misconceptions are, and what prior knowledge students are likely to bring to bear, the better off they are.

This holds for designing many, if not all, other forms of instruction, regardless of whether any technology

is involved.

The space of cognitive task methods and methodologies is vast (Clark, Feldon, van Merriënboer, Yates &

Early, 2007). Some of these techniques have been applied successfully in tutor development (Lovett,

1998; Means & Gott, 1988; Rau, Aleven, Rummel & Rohrbach, 2013). Two techniques that have proven

to be particularly useful in ITS development, though not the only ones, are think-aloud protocols and a

technique developed by Koedinger called difficulty factors assessment (DFA; Koedinger & Nathan,

2004). DFA is a way of creating a test (with multiple forms and a Latin-Square logic) designed to

evaluate the impact on student performance of various hypothesized difficulty factors. Creating these tests

is somewhat of an art form, but we may see more data-driven and perhaps crowd-based approaches in the

future. Baker, Corbett, and Koedinger (2007) discussed how these two forms of cognitive task analysis

can help, in combination with iterative tutor development and testing to detect and understand design

flaws in a tutor and create a more effective tutor. Interestingly, in the area of ITS development, manual

approaches to CTA are more and more being supplemented by automated or semi-automated approaches,

especially in the service of building knowledge component models that accurately predict student learning

(Aleven & Koedinger, 2013). CTA is important to ITS development, as it is for other forms of

instructional design. The more instruction is designed with a good understanding of where the real

learning difficulties lie, the more effective the instruction is going to be. ITSs are no exception. This point

was illustrated in the work by Baker et al. (2007) on a tutor for middle school data analysis—CTA helped

make a tutor more effective. Outside the realm of ITSs, this point was illustrated in the redesign of an

online course for statistics, using CTA, where the redesigned course was dramatically more effective

(Lovett, Myers & Thille, 2008).

Given the importance of CTA in instructional design, we should ask to what degree ITS authoring tools

support any form of CTA and in what ways they are designed to take advantage of the results of CTA to

help construct an effective tutor and perhaps make tutor development more efficient. For example, one

function of the behavior graphs used in CTAT is as a CTA tool. The other authoring tools described here

make use of CTA in various ways as the author creates a tutor. Although mostly implicit in their design,

the authoring systems depend on authors having performed an adequate task decomposition in their initial

interface construction, sometimes referred to as subgoal reification (Corbett & Anderson, 1995). Without

the author having enabled the learner to make explicit their thought processes as they use the tutor, then

attempts at assessing their current state of knowledge or addressing any deficiency will be greatly

diminished. Therefore, before beginning the writing of any help or just-in-time messages, it is crucial to

have the student’s interface support the appropriate tasks needed to be performed by the student.

As mentioned, CTA is supported in CTAT, as the easily recorded behavior graphs. A behavior graph is a

map of the solution space for a given problem for which the tutoring-system-being-built will provide

tutoring. In other words, it simply represents ways in which the given problem can be solved. CTAT

provides a tool, the Behavior Recorder, for creating them easily. Behavior graphs help in analyzing the

knowledge needs, support thinking about transfer, and thereby guide the development of a cognitive

model.

As a representation of the solution space of a problem, behavior graphs are not tied to any particular type

of tutor and are likely be useful across a range of tutor authoring tools, especially those addressing

tutoring for problems with a more complex solution space. For example, they may be helpful in tools for

building constraint-based tutors. They may be less useful in the ASSISTments tool, given ASSISTments

88

strongly constrains the variability of the problems’ solution space, with each problem essentially having

one single-step path and multi-step path, the latter representing the scaffolded, version.

As the CTAT author creates a behavior graph, an xPST author begins to construct the task sequence and

goal-nodes in xPST pseudo-code. In both cases, these authoring steps are a reflection of the tasks and

knowledge components that the author is indicating as needed in order for a learner to do the task.

ASPIRE has the author identify those tasks upfront, before the author creates the examples, based on the

ontology that the author creates. SimStudent’s induction of the task’s rules depends on the representation

being used, so the author’s CTA is important in shaping what the learned rules will look like.

After the author has created the first version of the tutor and students have gone through its instruction,

some of these systems have features that enable the authors to iterate the design of the tutor using student

log files to inform a CTA and a redo of the tutor. ASSISTments, CTAT, and SimStudent all have robust

ways for researchers and teachers to examine learner responses and adapt their tutor’s instruction

accordingly. ASSISTments produces a report showing learners’ most common wrong answers, and also

allows students to comment on the problems. SimStudent has a tool to validate its cognitive model by

model-tracing through student log data to ensure correct functioning. Initial work has shown that this

improves the quality of the model, though additional work will have to be performed to see how much it

improves student learning.

Recommendations for GIFT

Having reviewed the challenges and benefits of example-based tutor authoring, we offer suggested

features for GIFT so that it may also benefit from this approach. We begin with a brief summary of its

architecture from the authoring perspective. GIFT is closer to ASPIRE than the other tools, in that its

tutors can be viewed as a collection of states to be reached or constraints to be satisfied, without a

particular procedural order to be followed. While sequencing can be achieved through conditions and

subconditions, GIFT’s core is designed around states. In particular, in GIFT’s domain knowledge file

(DKF) editor, typically used for authoring, there are tasks, which have concepts, which, in turn, have

conditions, which, in turn, trigger feedback (Figure 10). The tasks are collections of states to be achieved.

The concepts (with possible subconcepts) are analogous to learner skills used. Concepts are designed as

learned if their conditions and subconditions are met. There is not a specific analogy to a procedural step

that a learner might take, but a DKF condition is similar. If a step is taken, a condition is likely met. Note

that the feedback assigned to be given when a condition is met is chosen from a menu of possible

feedback items. Thus, a given feedback item can be reused easily by the author in multiple conditions.

Figure 10: GIFT’s DKF format, typically used for authoring

Conditions might be based on whether a certain time has passed in the simulation, or whether the learner

has reached a specific location or state. At this early point within GIFT’s development, there is not any

way to combine conditions in its DKF authoring module, e.g., if the learner does X (Condition 1) while

89

also in location Y (Condition 2), then perform a particular action. However, it does have an additional

authoring tool, SIMILE, that works more like a scripting engine in which authors write explicit if…then

code, in which this is possible.

In GIFT there is not a natural way to represent a procedural solution path or branching at a decision point

such as in CTAT or xPST. Software applications that manage the passage of time (e.g., video editing

suites or medical systems monitoring patient data), aka “timeline-navigators” (Rubio, 2014), typically

have a timeline and playhead metaphor as part of their user interface. An analogous interface is

recommended for GIFT to indicate to the author the current status of the internal condition evaluations,

though it would not likely map cleanly onto a linear timeline, since GIFT looks for active concepts and

then evaluates their conditions. Whenever conditions are true, they generate feedback, which may

accumulate across multiple conditions. While it is feasible with significant management of the conditions

to create a sequence with branching points, the underlying architecture does not make this a natural task

for an author. Also, GIFT does not differentiate between forms of feedback, such as hints, prompts, or

buggy messages based on incorrect answers.

This state-based and less procedural approach makes GIFT much better adapted to tutors on simulations

that enable multiple complex states, such as game engines. A 3D game engine scenario, with multiple live

player entities and some game-based non-player characters, is difficult to frame as a procedural tutor and

is better approached as a network of noteworthy states (Devasani, Gilbert, Shetty, Ramaswamy &

Blessing, 2011; Gilbert, Devasani, Kodavali & Blessing, 2011; Sottliare & Gilbert, 2011). Game engines

often have level editors that allow almost WYSIWYG editing and scripting by non-programmers. These

could be an inspiration for GIFT. However, since GIFT is essentially an abstraction layer used to describe

conditions and states within such a system, enabling the author to visualize the learner’s experience

within the simulation while simultaneously understanding the current state of the tutor is a complex

challenge for which that are not many common user interface precedents. Currently within GIFT, it is

difficult to preview and debug the learner’s experience using the tutor or to easily encode a particular

example into GIFT. The CTA of a tutoring experience (described above) must first be created separately

and then be transformed to match GIFT’s state-based condition architecture. Once authored, this

architecture also makes it difficult to conduct quality assurance testing. The condition-based tutor can be

complex to test because the author must think through all possible combinations of states that might

generate feedback.

In terms of example-based authoring, a given GIFT tutor is essentially one large example; there is no

particular mechanism for generalization. However, GIFT is highly modular, so that elements of a given

tutor such as the feedback items can be re-used in other tutors. The features of the aforementioned

tutoring systems that promote generalization of rules and easy visualization of the learner’s experience via

the authoring tool would be ones for GIFT to emulate.

References

Adams, D. M., McLaren, B. M., Durkin, K., Mayer, R. E., Rittle-Johnson, B., Isotani, S. & Velsen, M. V. (2014).

Using erroneous examples to improve mathematics learning with a web-based tutoring system. Computers

in Human Behavior, 36, 401 - 411. doi:10.1016/j.chb.2014.03.053}

Aleven, V. (2010). Rule-Based cognitive modeling for intelligent tutoring systems. In R. Nkambou, J. Bourdeau &

R. Mizoguchi (Eds.), Studies in Computational Intelligence: Vol. 308. Advances in intelligent tutoring

systems (pp. 33-62). Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-14363-2_3

Aleven, V. & Koedinger, K. R. (2013). Knowledge component approaches to learner modeling. In R. Sottilare, A.

Graesser, X. Hu & H. Holden (Eds.), Design recommendations for adaptive intelligent tutoring systems

(Vol. I, Learner Modeling, pp. 165-182). Orlando, FL: US Army Research Laboratory.

90

Aleven, V., McLaren, B. M. & Sewall, J. (2009). Scaling up programming by demonstration for intelligent tutoring

systems development: An open-access web site for middle school mathematics learning. IEEE

Transactions on Learning Technologies, 2(2), 64-78

Aleven, V., McLaren, B. M., Sewall, J. & Koedinger, K. R. (2006). The Cognitive Tutor Authoring Tools (CTAT):

Preliminary evaluation of efficiency gains. In M. Ikeda, K. D. Ashley & T. W. Chan (Eds.), Proceedings of

the 8th International Conference on Intelligent Tutoring Systems (pp. 61-70). Berlin: Springer Verlag.

Aleven, V., McLaren, B. M., Sewall, J. & Koedinger, K. R. (2009). A New Paradigm for Intelligent Tutoring

Systems: Example-Tracing Tutors. International Journal of Artificial Intelligence in Education, 19(2), 105-

154.

Aleven, V., McLaren, B. M., Sewall, J., van Velsen, M., Popescu, O., Demi, S. & Koedinger, K. R. (under review).

Toward tutoring at scale: Reflections on “A new paradigm for intelligent tutoring systems: Example-tracing

tutors.” Submitted to the International Journal of Artificial Intelligence in Education.

Aleven, V., Sewall, J., McLaren, B. M. & Koedinger, K. R. (2006). Rapid authoring of intelligent tutors for real-

world and experimental use. In Kinshuk, R. Koper, P. Kommers, P. Kirschner, D. G. Sampson & W.

Didderen (Eds.), Proceedings of the 6th IEEE international conference on advanced learning technologies

(ICALT 2006) (pp. 847-851). Los Alamitos, CA: IEEE Computer Society

Anderson, J. R. & Pelletier, R. (1991). A development system for model-tracing tutors. In Proceedings of the

International Conference of the Learning Sciences, 1-8. Evanston, IL.

Anderson, J. R., Corbett, A. T., Koedinger, K. R. & Pelletier, R. (1995). Cognitive tutors: Lessons learned. The

Journal of the Learning Sciences, 4(2), 167-207.

Baker, R. S. J. d., Corbett, A. T. & Koedinger, K. R. (2007). The difficulty factors approach to the design of lessons

in intelligent tutor curricula. International Journal of Artificial Intelligence and Education, 17(4), 341-369.

Blessing, S. B., Devasani, S. & Gilbert, S. (2011). Evaluation of webxpst: A browser-based authoring tool for

problem-specific tutors. In G. Biswas, S. Bull & J. Kay (Eds.), Proceedings of the Fifteenth International

Artificial Intelligence in Education Conference (pp. 423-425), Auckland, NZ. Berlin, Germany: Springer.

Blessing, S. B., Gilbert, S., Ourada, S. & Ritter, S. (2009). Authoring model-tracing cognitive tutors. International

Journal for Artificial Intelligence in Education, 19, 189-210.

Clark, R. E. & Estes, F. (1996). Cognitive task analysis. International Journal of Educational Research. 25(5). 403-

417.

Clark, R. E., Feldon, D., van Merriënboer, J., Yates, K. & Early, S. (2007). Cognitive task analysis. In J. M. Spector,

M. D. Merrill, J. J. G. van Merriënboer & M. P. Driscoll (Eds.), Handbook of research on educational

communications and technology (3rd ed.). (pp. 577-93). Mahwah, NJ: Lawrence Erlbaum Associates.

Corbett, A. T. & Anderson, J. R. (1995). Knowledge decomposition and subgoal reification in the ACT

programming tutor. Artificial Intelligence and Education, 1995: The Proceedings of AI-ED 95.

Charlottesville, VA: AACE.

Corbett, A., Kauffman, L., MacLaren, B., Wagner, A. & Jones, E. (2010). A cognitive tutor for genetics problem

solving: Learning gains and student modeling. Journal of Educational Computing Research, 42(2), 219-

239.

Cypher, A. (Ed.). (1993). Watch what I do: Programming by demonstration. Cambridge, MA: MIT Press.

Devasani, S., Gilbert, S. & Blessing, S. B. (2012). Evaluation of two intelligent tutoring system authoring tool

paradigms: Graphical user interface-based and text-based. Proceedings of the 21st Conference on Behavior

Representation in Modeling and Simulation (pp. 54-61), Amelia Island, FL.

Devasani, S., Gilbert, S. B., Shetty, S., Ramaswamy, N. & Blessing, S. (2011). Authoring Intelligent Tutoring

Systems for 3D Game Environments. Presentation at the Authoring Simulation and Game-based Intelligent

Tutoring Workshop at the Fifteenth Conference on Artificial Intelligence in Education, Auckland.

Gilbert, S. B., Blessing, S. B. & Blankenship, E. (2009). The accidental tutor: Overlaying an intelligent tutor on an

existing user interface. In CHI ‘09 Extended Abstracts on Human Factors in Computing Systems.

Gilbert, S., Devasani, S., Kodavali, S. & Blessing, S. B. (2011). Easy authoring of intelligent tutoring systems for

synthetic environments. Proceedings of the 20th Conference on Behavior Representation in Modeling and

Simulation (pp. 192-199), Sundance, UT.

Green, T. R. G. & Petre, M. (1996). Usability analysis of visual programming environments: A ‘cognitive

dimensions’ framework. Journal of Visual Languages and Computing, 7, 131- 174.

Jarvis, M. P., Nuzzo-Jones, G. & Heffernan, N. T. (2004). Applying Machine Learning Techniques to Rule

Generation in Intelligent Tutoring Systems. In J. C. Lester (Ed.), Proceedings of the International

Conference on Intelligent Tutoring Systems (pp. 541-553). Heidelberg, Berlin: Springer.

91

Koedinger, K. R. & Nathan, M. J. (2004). The real story behind story problems: Effects of representations on

quantitative reasoning. The Journal of the Learning Sciences, 13(2), 129-164.

Koedinger, K. R., Aleven, V. & Heffernan, N. (2003). Toward a rapid development environment for cognitive

tutors. In U. Hoppe, F. Verdejo & J. Kay (Eds.), Proceedings of the International Conference on Artificial

Intelligence in Education (pp. 455-457). Amsterdam: IOS Press

Koedinger, K. R., Anderson, J. R., Hadley, W. H. & Mark, M. A. (1997). Intelligent tutoring goes to school in the

big city. International Journal of Artificial Intelligence in Education, 8, 30-43.

Koedinger, K. R., Aleven, V., Heffernan, N., McLaren, B. & Hockenberry, M. (2004). Opening the door to non-

programmers: Authoring intelligent tutor behavior by demonstration. In J. C. Lester, R. M. Vicario & F.

Paraguaçu (Eds.), Proceedings of seventh international conference on intelligent tutoring systems, ITS 2004

(pp. 162-174). Berlin: Springer.

Lau, T. A. & Weld, D. S. (1998). Programming by demonstration: An inductive learning formulation Proceedings of

the 4th international conference on Intelligent user interfaces (pp. 145-152). New York, NY: ACM Press

Li, N., Matsuda, N., Cohen, W. W. & Koedinger, K. R. (2015). Integrating Representation Learning and Skill

Learning in a Human-Like Intelligent Agent. Artificial Intelligence, 219, 67-91.

Lieberman, H. (2001). Your wish is my command: Programming by example. San Francisco, CA: Morgan

Kaufmann.

Long, Y. & Aleven, V. (2013). Supporting students’ self-regulated learning with an open learner model in a linear

equation tutor. In H. C. Lane, K. Yacef, J. Mostow & P. Pavlik (Eds.), Proceedings of the 16th

international conference on artificial intelligence in education (AIED 2013) (pp. 249-258). Berlin: Springer

Lovett, M. C. (1998). Cognitive task analysis in service of intelligent tutoring system design: a case study in

statistics. In B. P. Goettl, H. M. Halff, C. L. Redfield & V. Shute (Eds.) Intelligent Tutoring Systems,

Proceedings of the Fourth International Conference (pp. 234-243). Lecture Notes in Computer Science,

1452. Berlin: Springer-Verlag.

Lovett, M., Meyer, O. & Thille, C. (2008). JIME-The open learning initiative: Measuring the effectiveness of the

OLI statistics course in accelerating student learning. Journal of Interactive Media in Education, 2008(1).

Maass, J. K. & Blessing, S. B. (April, 2011). Xstat: An intelligent homework helper for students. Poster presented at

the 2011 Georgia Undergraduate Research in Psychology Conference, Kennesaw, GA.

MacLellan, C., Koedinger, R. K. & Matsuda, N. (2014). Authoring tutors with SimStudent: An evaluation of

efficiency and model quality. In S. Trausen-Matu & K. Boyer (Eds.), Proceedings of the International

Conference on Intelligent Tutoring Systems (pp. 551-560). Switzerland: Springer.

Martin, B. & Mitrovic, A. (2002). WETAS: a web-based authoring system for constraint-based ITS. In: P. de Bra, P.

Brusilovsky and R. Conejo (eds) Proc. 2
nd

 Int. Conf on Adaptive Hypermedia and Adaptive Web-based

Systems AH 2002, Malaga, Spain, LCNS 2347, 543-546.

Matsuda, N., Cohen, W. W. & Koedinger, K. R. (2005). Applying Programming by Demonstration in an Intelligent

Authoring Tool for Cognitive Tutors AAAI Workshop on Human Comprehensible Machine Learning

(Technical Report WS-05-04) (pp. 1-8). Menlo Park, CA: AAAI association.

Matsuda, N., Cohen, W. W. & Koedinger, K. R. (in press). Teaching the Teacher: Tutoring SimStudent leads to

more Effective Cognitive Tutor Authoring. International Journal of Artificial Intelligence in Education.

Matsuda, N., Lee, A., Cohen, W. W. & Koedinger, K. R. (2009). A computational model of how learner errors arise

from weak prior knowledge. In N. Taatgen & H. van Rijn (Eds.), Proceedings of the Annual Conference of

the Cognitive Science Society (pp. 1288-1293). Austin, TX: Cognitive Science Society.

Matsuda, N., Cohen, W. W., Sewall, J., Lacerda, G., & Koedinger, K. R. (2008). Why tutored problem solving may

be better than example study: Theoretical implications from a simulated-student study. In B. P. Woolf, E.

Aimeur, R. Nkambou & S. Lajoie (Eds.), Proceedings of the International Conference on Intelligent

Tutoring Systems (pp. 111-121). Heidelberg, Berlin: Springer.

McLaren, B. M., Adams, D., Durkin, K., Goguadze, G., Mayer, R. E., Rittle-Johnson, B., . . . Velsen, M. V. (2012).

To err is human, to explain and correct is divine: A study of interactive erroneous examples with middle

school math students. In A. Ravenscroft, S. Lindstaedt, C. Delgado Kloos & D. Hernández-Leo (Eds.), 21st

century Learning for 21st Century Skills:7th European Conference of Technology Enhanced Learning, EC-

TEL 2012 (pp. 222-235). Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-33263-0_18

McLaren, B. M., DeLeeuw, K. E. & Mayer, R. E. (2011a). Polite web-based intelligent tutors: Can they improve

learning in classrooms? Computers & Education, 56(3), 574-584.

McLaren, B. M., DeLeeuw, K. E. & Mayer, R. E. (2011b). A politeness effect in learning with web-based intelligent

tutors. International Journal of Human Computer Studies, 69(1-2), 70-79. doi:10.1016/j.ijhcs.2010.09.001

92

Means, B. & Gott, S. (1988). Cognitive task analysis as a basis for tutor development: Articulating abstract

knowledge representations. In J. Pstotka, L.D. Massey & S.A. Mutter (Eds.), Intelligent tutoring systems:

Lessons learned (pp.35-57). Hillsdale, NJ: Lawrence Erlbaum Associates.

Mitrovic, A. (1998). Experiences in implementing constraint-based modelling in SQL-tutor. In Goettl, B.P., Halff,

H.M., Redfield, C.L. and Shute, V.J. (Eds.), Proceedings of Intelligent Tutoring Systems, 414-423.

Mitrovic, A. (2012). Fifteen years of constraint-based tutors: What we have achieved and where we are going. User

Modeling and User-Adapted Interaction, 22, 39-72.

Mitrovic, A. & Ohlsson, S. (1999). Evaluation of a constraint-based tutor for a database language, International

Journal of Artificial Intelligence in Education, 10, 238-256.

Mitrovic, A., Koedinger, K. R. & Martin, B. (2003). A Comparative analysis of cognitive tutoring and constraint-

based modeling. In: Brusilovsky, P., Corbett, A., and de Rosis, F. (Eds.) Proceedings of User Modelling,

313-322.

Mitrovic, A., Martin, B. & Suraweera, P. (2007). Intelligent tutors for all: Constraint-based modeling methodology,

systems and authoring. IEEE Intelligent Systems, 22, 38-45.

Mitrovic, A., Williamson, C., Bebbington, A., Mathews, M., Suraweera, P., Martin, B., Thomson, D. & Holland, J.

(2011). An Intelligent Tutoring System for Thermodynamics. EDUCON 2011, Amman, Jordan, 378-385.

Muggleton, S. & de Raedt, L. (1994). Inductive logic programming: Theory and methods. Journal of Logic

Programming, 19-20(Supplement 1), 629-679.

Nardi, B. A. (1993). A small matter of programming: Perspectives on end-user computing. Boston, MA: MIT press.

Newell, A. & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ: Prentice-Hall.

Ohlsson, S. (1994). Constraint-based student modelling, in Student modelling: The key to individualized knowledge-

based instruction, 167-189.

Ohlsson, S. (1996). Learning from performance errors. Psychological Review, 103, 241-262.

Ohlsson, S. & Mitrovic, A. (2007). Fidelity and efficiency of knowledge representations for intelligent tutoring

systems. Technology, Instruction, Cognition and Learning, 5, 101-132.

Olsen, J. K., Belenky, D. M., Aleven, V. & Rummel, N. (2014). Using an intelligent tutoring system to support

collaborative as well as individual learning. In S. Trausan-Matu, K. E. Boyer, M. Crosby & K. Panourgia

(Eds.), Proceedings of the 12th International Conference on Intelligent Tutoring Systems, ITS 2014 (pp.

134-143). Berlin: Springer. doi:10.1007/978-3-319-07221-0_66

Olsen, J. K., Belenky, D. M., Aleven, V., Rummel, N., Sewall, J. & Ringenberg, M. (2014). Authoring tools for

collaborative intelligent tutoring system environments. In S. Trausan-Matu, K. E. Boyer, M. Crosby & K.

Panourgia (Eds.), Proceedings of the 12th International Conference on Intelligent Tutoring Systems, ITS

2014 (pp. 523-528). Berlin: Springer. doi:10.1007/978-3-319-07221-0_66

Ostrow, K. & Heffernan, N. T. (2014). Testing the multimedia principle in the real world: a comparison of video vs.

Text feedback in authentic middle school math assignments. In Proceedings of the 7th international

conference on educational data mining (pp. 296-299).

Rau, M. A., Aleven, V. & Rummel, N. (2015). Successful learning with multiple graphical representations and self-

explanation prompts. Journal of Educational Psychology, 107(1), 30-46. doi:10.1037/a0037211

Rau, M. A., Aleven, V., Rummel, N. & Pardos, Z. (2014). How should intelligent tutoring systems sequence

multiple graphical representations of fractions? A multi-methods study. International Journal of Artificial

Intelligence in Education, 24(2), 125-161.

Rau, M. A., Aleven, V., Rummel, N. & Rohrbach, S. (2013). Why interactive learning environments can have it all:

Resolving design conflicts between conflicting goals. In W. E. Mackay, S. Brewster & S. Bødker (Eds.),

Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems (CHI 2013) (pp.

109-118). ACM, New York.

Razzaq, L. M. & Heffernan, N. T. (2009, July). To tutor or not to tutor: That is the question. In AIED (pp. 457-464).

Razzaq, L., Patvarczki, J., Almeida, S. F., Vartak, M., Feng, M., Heffernan, N. T. & Koedinger, K. R. (2009). The

assistment builder: Supporting the life cycle of tutoring system content creation. Learning Technologies,

IEEE Transactions on, 2(2), 157-166.

Reed, S. K. & Bolstad, C. A. (1991). Use of examples and procedures in problem solving. Journal of Experimental

Psychology: Learning, Memory, and Cognition, 17, 753-766.

Ritter, S. & Koedinger, K. R. (1996). An architecture for plug-in tutor agents. International Journal of Artificial

Intelligence in Education, 7, 315-347.

Roll, I., Holmes, N. G., Day, J. & Bonn, D. (2012). Evaluating metacognitive scaffolding in guided invention

activities. Instructional Science, 40(4), 1-20. doi:10.1007/s11251-012-9208-7

93

Rubio, E. (2014) Defining a software genre: Timeline navigators. (Unpublished Master’s thesis). Iowa State

University, Ames, IA.

Sottilare, R. and Gilbert, S. B. (2011). Considerations for adaptive tutoring within serious games: authoring

cognitive models and game interfaces. Presentation at the Authoring Simulation and Game-based

Intelligent Tutoring Workshop at the Fifteenth Conference on Artificial Intelligence in Education,

Auckland.

Stampfer, E. & Koedinger, K. R. (2013). When seeing isn’t believing: Influences of prior conceptions and

misconceptions. In M. Knauff, M. Pauen, N. Sebanz & I. Wachsmuth (Eds.), Proceedings of the 35th

Annual Conference of the Cognitive Science Society (pp. 916-919). Berlin, Heidelberg: Springer.

doi:10.1007/978-3-642-39112-5_145

Suraweera, P., Mitrovic, A. & Martin, B. (2010). Widening the knowledge acquisition bottleneck for constraint-

based tutors. International Journal of Artificial Intelligence in Education, 20(2), 137-173.

Suraweera, P., Mitrovic, A., Martin, B., Holland, J., Milik, N., Zakharov, K. & McGuigan, N. (2009). Ontologies for

authoring instructional systems. D. Dicheva, R. Mizoguchi, J. Greer (eds.) Semantic Web Technologies for

e-Learning. IOS Press, (pp. 77-95).

VanLehn , K. (2006). The behavior of tutoring systems. International Journal of Artificial Intelligence in Education,

16(3), 227-265.

Waalkens, M., Aleven, V. & Taatgen, N. (2013). Does supporting multiple student strategies lead to greater learning

and motivation? Investigating a source of complexity in the architecture of intelligent tutoring systems.

Computers & Education, 60(1), 159-171.

Westerfield, G., Mitrovic, A. & Billinghurst, M. (2013). Intelligent augmented reality training for assembly tasks.

In: H. C. Lane, K. Yacef, J. Mostow, O. Pavlik (Eds.): Proceedings of the Sixteenth International

Conference of Artificial Intelligence in Education, LNAI 7926, pp. 542-551. Springer, Heidelberg.

Wylie, R., Sheng, M., Mitamura, T. & Koedinger, K. (2011). Effects of adaptive prompted self-explanation on

robust learning of second language grammar. In G. Biswas, S. Bull, J. Kay & A. Mitrovic (Eds.),

Proceedings of the 15th International Conference on Artificial Intelligence in Education, AIED 2011 (pp.

588-590). Springer Berlin Heidelberg. doi:10.1007/978-3-642-21869-9_110

94

95

CHAPTER 7 Supporting the WISE Design Process:

Authoring Tools that Enable Insights into

Technology-Enhanced Learning

Camillia Matuk
1
, Marcia C. Linn

2
, and Libby Gerard

2

1
New York University;

2
University of California, Berkeley

Introduction

Authoring environments not only provide tools to create supports for learning, they can also be

opportunities to better understand the role of technology in learning. The key to achieving their dual

purpose is to support users in reflective cycles of iterative, evidence-based refinement of learning

materials. Doing so can enable users to ask and answer their own questions; encourage them to be more

reflective of their instructional and design practices; and increase their awareness of the relationships

between technology, learning, and instruction. Ultimately, this leads to improved materials that enhance

learning.

This emphasis on supporting design is reflected in Murray’s (2003) goals for contemporary digital

authoring tools. These include lowering the cost of creating learning materials; involving users in the

design of materials; supporting the representation of domain and pedagogical knowledge; facilitating the

implementation of effective design principles; enabling rapid testing and refinement of new ideas; and

producing materials that are reusable by multiple authors. Together, these goals encapsulate a vision of

design that is more accessible, guided, and likely to flourish from the efforts of a community as opposed

to those of an individual.

Authoring tools that support design are especially important for inquiry learning environments, which

benefit from iterative refinement, customization, and a community of users. This chapter discusses four

principles by which the Web-based Inquiry Science Environment (WISE) guides users’ design processes.

These include (1) providing design tools that are accessible by users with a range of abilities; (2) enabling

users to build on the contributions of others; (3) making student data available as evidence to inform

iterative refinement; and (4) allowing ways for users to appropriate the system to advance new goals. We

end by discussing challenges and future directions for the design of similar authoring tools for inquiry-

learning environments. Through examples drawn from the experiences of our network of users, we

illustrate how WISE supports a process of design that also enables new understandings of technology-

enhanced learning.

Related Research

For some time now, there has been a trend in the field of educational technology design toward thinking

of teachers as more than just end-users, but rather as designers of curricula (e.g., Brown, 2009; Brown &

Edelson, 2003; Cviko, McKenney & Voogt, 2014; Edelson, 2002). Indeed, the increasing availability of

usable technologies means that authoring need no longer be a specialized task relegated only to

developers (Dabbagh, 2001), but also one in which researchers and teachers of varying abilities can

participate. Authoring moreover allows users to engage directly in design-based research (Murray 2003),

which allows them to pose and answer their own questions about technology-enhanced learning; reflect

upon their students’ and their own teaching and design practices; and directly change the materials of

their instruction.

96

The authoring of learning environments takes many shapes. It can be as minimal as duplicating existing

materials and making a few textual edits. It can extend to reordering activities, adding features, and

building curriculum and embedded technologies from scratch (Davis & Varma, 2008; Matuk, Linn &

Eylon, under review). Such modifications by users, regardless of their extent, help ensure the materials’

successful implementation and sustainability beyond the original designer’s involvement (McLaughlin,

1976).

Authoring tools for inquiry learning environments are especially crucial. Although the benefits of inquiry

learning are widely acknowledged (NRC, 1996, 2000), conducting inquiry in the classroom is challenging

and benefits from adequate support (Evans, 2003; Settlage, 2003). Whereas several authoring tools

feature all manner of advanced design capabilities, including the ability to create and customize

curriculum materials through remixing, adapting, and sharing with other users (Dabbagh, 2001, Murray,

2003), few of these environments explicitly support inquiry learning (Donnelly et al., 2014). Below, we

present an authoring environment that enables the principled design of science inquiry learning and

instruction.

The Web-based Inquiry Science Environment

WISE (wise.berkeley.edu) is a free, open-source curriculum platform. Integrated tools allow users to

author and customize units, manage student progress, and give feedback on students’ work. The 20 freely

available classroom-tested units—several of which are available in Spanish, Taiwanese, and Dutch, as

well as English—cover challenging topics in the middle and high school science standards. These units

have been refined through years of design-based research, guided by the Knowledge Integration

framework (KI, Linn & Eylon, 2011), a pattern of instruction based in cognitive theories of how students

learn. Units guided by KI engage students in a cycle of activities that includes eliciting their prior ideas,

adding new normative ideas, distinguishing among and organizing those ideas, and reflecting upon and

integrating them into a coherent explanation. WISE has a long history of improving students’ science

learning and an extensive user network of teachers and researchers (Linn & Eylon, 2011). As of Fall

2014, WISE had more than 10,000 registered teachers and 85,000 registered students worldwide (see

wise.berkeley.edu/webapp/ pages/statistics.html for live use statistics).

The units available on the WISE website have undergone cycles of review by experts in curriculum

development, subject matter, and education research (Linn, Clark & Slotta, 2009). Concurrently, the

design of the authoring tools has been iterated as we learn about users’ goals and needs. Our observations

of teachers implementing units in their classrooms, and our formal and informal conversations with

teachers and researchers provide insights into user’s authoring needs. Particularly as the usability of

technology continues to shift authoring away from the developer and into the hands of the end-user,

questions arise regarding how authoring tools might add value by not only supporting users’ goals, but

also guiding them to follow best practices in design and instruction.

Our work continually aims to balance the pedagogical practices we wish to promote among our users,

with their actual observed practices. This can sometimes present tensions for designers, as teachers’

decisions are by necessity not always driven by their pedagogical ideals. Indeed, when pressed for time or

pressured to cover much content, teachers’ instructional strategies can tend to emphasize content delivery

rather than scaffold inquiry processes (Bell, 1998; Dabbagh, 2001; Murray, 1998); their decisions can

tend to be driven by practical constraints rather than grounded in evidence from students’ work

(Boschman et al., 2014); and their professional insights can tend to remain static and isolated, and fail to

benefit colleagues beyond their local circles.

http://wise.berkeley.edu/webapp/pages/statistics.html

97

At the same time, the system could evolve in beneficial ways if it could be constantly informed by and

updated according to teachers’ expertise.

We contend that authoring tools in support of users’ research and design processes add most widespread

value when their interaction is dialogic: That is, when use of the tools guides users’ pedagogically sound

actions, and when users’ expertise and insights can be harnessed to refine the tools and extend their

benefit to others. Our years of work from this perspective have resulted in the emergence and refinement

of four guiding principles underlying WISE’s authoring technologies:

(1) Provide design tools that are accessible by users with a range of abilities.

(2) Enable users to build on the contributions of others.

(3) Make student data available as evidence to inform iterative refinement.

(4) Allow ways for users to appropriate the system to advance new goals.

Discussion

Provide Design Tools that are Accessible to Users with a Range of Abilities

End-users have unique insights into the local needs of their classrooms and can thus design materials with

greater relevance to learners than can developers. But not all users have the time nor the expertise to

master complicated tools that might otherwise allow them to realize their ideas. Tools that lower the bar

for users of all ability levels can make authoring accessible to a wide audience (Murray, 2003).

Authoring Tools for Customization

WISE makes design accessible to a range of users by providing tools that facilitate the creation and

customization of materials without requiring programming skills. Units are organized as sequences of

steps contained within activities (Figure 1). In building a unit, authors may iterate between creating and

sequencing these nested containers in order to define the flow of tasks, and populating these with content.

Users define individual step types from a drop-down menu, which include an array of question and

response formats, such as multiple choice, open response, object sequences, drawings, concept diagrams,

annotated images, data tables, and graphs. Through a what you see is what you get (WYSIWYG)

interface, users can create and edit textual content, and embed rich multimedia from various sources,

including web-based applications such as simulations, video, images, animations, and interactive

multimedia. These customizations are displayed in real time within a preview mode, which allows users

to test the appearance and functionality of their work from the student’s point of view.

98

Figure 1. These screenshots from the WISE authoring interface show the sequence of steps and activities,

which can be created, copied, imported, and reordered (top); and the WYSIWYG editing interface that

supports text and layout edits, automated feedback, and embedding of rich multimedia.

Becoming familiar with the tools to make these and more complex customizations requires new users less

than 1 hour of training. The time to actually perform those customizations can vary greatly between both

novice and expert authors, but depends mainly on authors’ familiarity with the content, clarity of goals,

and commitment to a design strategy for achieving those goals. For example, minor edits to text,

embedded media, and page formatting, can take just a few minutes to perform and can even be done in

the midst of students’ work on the unit. More complex authoring tasks, however, such as designing

activity sequences, creating new content, and integrating scaffolding tools, require careful alignment of

99

designs to some pedagogical framework. In these cases, it is an author’s general experience having

authored curricula that determines the time costs rather than having authored with particular WISE tools.

Among the core WISE research and design team, these more elaborate designs go through cycles of

review, feedback, and iteration by curriculum designers, content experts, educators, and technologists

(Slotta & Linn, 2009). It may take just several hours to lay the foundation for a new curriculum unit, but it

may take weeks, months, and years to continue to refine it.

The extent to which teachers use these tools to customize depends on various factors. These include

practical considerations, as well as teachers’ attitudes toward technology, assumptions about learning, and

views on their roles as educators (Luehmann, 2002). Some teachers have independently learned to use the

authoring environment to modify the content of given units for their particular classroom needs. One

middle school teacher, for example, used the text editing tools to tailor the prompts in a grade 7 WISE

unit about cell division. Knowing the specific comprehension difficulties of her mainly English-language

learners, she elaborated on the instructions and incorporated hints, keywords, and sentence starters to

guide her students’ responses (Matuk, Linn & Eylon, 2015).

With the proper kind of support, these authoring tools allow teachers to effect powerful changes in their

instruction. During summer professional development workshops, for instance, teachers worked in groups

under the guidance of WISE researchers. Using the authoring tools they made customizations to units,

which subsequently led to improved student learning (Gerard, Spitulnik & Linn, 2010). In this case,

teachers benefited from having time to work with another teacher who taught the same unit during the

prior school year and examine their students’ work to inform customizations. Together, the teachers

shared their classroom experiences with one another and identified places in the unit where students had

difficulty. The teachers then examined their students’ work on an embedded assessment in one of these

challenging spots and students’ work on a pre/posttest. Based on their classroom experiences and analysis

of their students work, teacher negotiated changes for the unit. Importantly, researchers were present to

provide technology support and insights on best practices in inquiry learning design.

Authoring Tools for Research

The ease with which units can be created and modified affords the rapid testing of ideas, and thus, their

use as instruments for research. Researchers often use WISE’s more complicated authoring functions to

construct design experiments to investigate how students learn from technology-enhanced materials

(Murray, 2003). For example, users can incorporate input to the WISE interface from hardware such as

light, temperature, and motion probes. By checking boxes, users can specify navigation constraints

dependent on students’ responses. By selecting steps from a list, they can define nonlinear trajectories

through a unit. Within the authoring interfaces of certain items, users can also compose conditional

automated feedback directly beside students’ possible responses. For other items, users can specify

keywords that, if they were to appear in students’ open responses, would trigger certain kinds of feedback

to be delivered to students.

Using these capabilities, researchers have designed and implemented alternative versions of the same unit

to investigate the value of different instructional approaches. They have explored the impacts of different

kinds of automated feedback on how students revise their drawings (Rafferty, Gerard, McElhany & Linn,

2013), concept diagrams (Ryoo & Linn, 2014), graphs (Vitale, Lai & Linn, 2014), and open-ended

responses (Liu, et al., 2014). They have compared ways of integrating new collaborative technologies into

existing curriculum (Matuk & Linn, 2014), scaffolding students’ understanding of visualizations (Chang,

et al., 2008; Zhang & Linn, 2011), and supporting students’ interpretations of visual evidence (Matuk &

McElhaney, 2014).

100

The availability of several content-free scaffolding tools has allowed researchers to author units across

subject matters in order to investigate their own questions about learning. The Idea Manager, for instance,

a tool that helps students track and share ideas over the course of a unit, has been used to study the

development of students’ ideas about chemistry (McElhaney et al., 2013) and astronomy (Matuk & King

Chen, 2011); and understand the value of exchanging ideas when studying the life sciences (Matuk &

Linn, 2014; Wichmann et al., 2014). Likewise, the Image Annotator, a tool that allows students to label

static and animated visuals, has been used to scaffold students’ observations in chemistry, physics, and

cell biology (Matuk & McElhaney, 2014). In another example, the concept diagramming tool, MySystem,

has been used to study students’ understanding of energy in physics (Swanson, 2010) and biology (Ryoo

& Linn, 2010).

Thus, tools that facilitate creation and customization lower the bar for users of all abilities. They make it

easy for teachers to adapt materials to their particular needs, and they enable researchers to rapidly build

and test ideas in order to investigate questions about learning with technology-enhanced materials. In

these manners, authoring tools allow the educational environment to become a platform for research as

much as a platform for learning and instruction.

Enable Users to Build on the Contributions of Others

Another way that authoring is made more accessible is through the availability of existing resources. The

ability to make use of an array of existing, pre-constructed artifacts offloads much of the workload from

authoring, which allows teachers to focus on teaching and researchers to focus on research.

Indeed, while it is possible to author units from scratch, most users build upon existing, freely available

materials. Authors can search for and clone any publicly available classroom-tested unit, any of their own

privately owned units, and any unit directly shared with them by other users. They may then use these

materials as templates for their own work, importing whole activities or individual steps, along with the

existing resources contained within them. These resources include embedded multimedia, page layouts,

investigation narratives, and assessment items. Tools for inserting, editing, and reordering allow users to

easily remix various given materials for new purposes.

The ability to thus copy and modify units takes advantage of a community’s contributions to make design

more efficient (Recker et al., 2007). One middle school unit on global climate change, for example, has

undergone multiple iterations by different generations of WISE researchers. As new users copied the unit,

they made modifications to the embedded models and scaffolds: They added details to the content and

even re-crafted the narrative to present the ideas from different angles. One version of the unit, for

example, focuses on how the transfer of energy affects the Earth’s temperature, while another examines

the chemical reactions behind the greenhouse effect, and a third version introduces the notion of feedback

loops as an explanation for climate change. It is also possible to merge elements from different units. This

allows authors to quickly create entirely new activity sequences by combining existing tested material,

and then modify these for coherence.

This ability to build on existing materials has moreover permitted systematic refinements to units on

subsequent classroom implementations. Svihla and Linn (2012), for instance, made multiple iterations on

their version of the Global Climate Change unit. Small adjustments made with each classroom

implementation helped to clarify the visualizations, distinguish between concepts, and add structure to

students’ experimentation with a NetLogo simulation. Ultimately, their iterations produced a version of

the unit that resulted in higher learning gains.

The ability to remix existing resources by copying and modifying has also allowed researchers new to

WISE to quickly design and implement their own research projects. In a period of just several weeks, one

101

visiting researcher appropriated a middle school unit on photosynthesis as the context for a study on

collaborative learning. Maintaining the unit’s original simulations, she crafted a new inquiry narrative,

integrated a collaborative tool to scaffold students’ exchanging ideas with their peers, and analyzed

students’ learning based on existing assessment items (Wichmann, et al., 2014).

A strength of WISE is that it allows users to draw from the vast resources available online to compose

coherent and personally relevant investigations (Linn, 2000; Linn & Hsi, 2000). By enabling users to

draw on a user community resource of shared materials, WISE’s authoring environment aids the

refinement of existing designs, encourages the initiation of new research, and increases the variety of

existing materials available for others’ use.

Make Student Data Available as Evidence to Inform Iterative Refinement

Making student work accessible means it can be used as evidence for identifying refinements and

customizations. Indeed, research finds that curriculum customizations informed by students’ work result

in greater learning gains than typical refinements that rely on teacher insights (Ruiz-Primo & Furtak,

2007). By making student evidence accessible in many formats and from various outlets, WISE enables

researchers and teachers to readily use it to guide their revisions or customizations.

For example, most teachers and researchers make use of the grading interface’s basic facilities for

displaying class progress through a unit. These simple bar graphs show the percentage of students who

have completed individual steps in the unit, as well as the percentage of the unit completed by individual

students. With this information, users can make general pacing decisions that include adjusting allocated

class time on subsequent implementations. Users may also obtain a snapshot view of students’ ideas by

browsing submitted responses, filtering these along different dimensions (class period, step in the unit),

and viewing them by individual student or by step in the unit. Most teachers use the “grade by step”

feature to see a range of responses to the same question at one time and use this information to customize

their guidance, class instruction, and the unit accordingly. More experienced users may sort these

responses according to various criteria, such as teacher-assigned or computer-automated score, whether

the teacher had flagged or commented upon the response during grading, the number of revisions students

made, and so forth. They may also view a table of the numbers of students currently working on any

given step and the length of time spent there. Such information has been especially useful to those with

previous experience implementing a given unit. By observing when critical masses of students either

struggle or progress without the benefit of a challenge, teachers can identify where in the unit to adjust

their face-to-face guidance, as well as how to modify the unit’s embedded scaffolds. Each of the functions

above allows users to more closely monitor students’ progress and thinking at both the individual and

group levels, thus informing appropriate modifications to the design of the materials. The My Notes tool

available in the grading interface furthermore permits users to document private reflections that remain

associated with the unit and useful as reference during subsequent implementations.

Researchers can conduct detailed analyses of students’ interactions within the unit by exporting logged

data in the form of a spreadsheet. McElhaney and Linn (2011) analyzed logs of students’ interactions with

a simulation of a car collision in a high school physics unit. By examining the number of students’ trials,

what variables they chose, and how they varied them, the researchers identified categories of students’

approaches to experimentation and the necessary conditions for understanding its nature.

Similarly, Matuk and Linn (2014) used logs of students’ uses of the Idea Manger to identify patterns in

how middle school students shared ideas during a unit on cell division and the effects of these behaviors

on their subsequent explanations of cancer treatment. Given ways to inspect and interpret students’

102

interactions, users can ensure their design refinements are grounded in evidence from students’ work, and

thus, avoid making unfounded design decisions.

Allow Users to Appropriate the System to Advance New Goals

Above, we discussed how WISE’s authoring tools allow units to be adapted to individuals’ local needs.

However, there are also tools that allow users to tailor the platform itself for broader audiences and goals.

For example, international researchers have employed WISE’s translation tools to adapt versions of units

from WISE’s public library in Spanish, Taiwanese, and Dutch. These translated units have been featured

in teacher professional development workshops and used by students and teachers in Europe, Asia, and

South America (e.g., Rizzi et al., 2014). They have also served as platforms for users at other academic

institutes to pursue research programs of their own (e.g., Raes, Schellens & de Wever, 2013).

New technologies can also be tested within WISE, given the ability to integrate third-party technologies.

These can include virtual models from Molecular Workbench (Xie et al., 2011) and NetLogo (Wilensky,

1999), which are themselves free, open-source, and customizable. Users can also embed technologies of

their own within WISE’s existing step types.

This is how the Image Annotator was developed: as a basic working version of a tool—programmed in

Actionscript—that allowed students to directly label existing static and animated graphics. Findings from

subsequent classroom pilot tests (Matuk & Linn, 2013, Matuk & McElhaney, 2013) prompted users to

request further features, which led WISE developers to create a dedicated Annotator step based on the

initial prototype. The latest version features authorable elements, including user- rather than developer-

defined images and label colors, prompts for students to elaborate written explanations of their labels,

constraints on the number of labels required, and automated scoring and feedback dependent on students’

responses. Thus, the result of WISE allowing the embedding of user-contributed technologies and ways to

easily test them in classrooms led to the development of a new authorable tool usable by a wide audience

of users both to support and research student learning.

WISE’s open-source license has attracted an even broader base of users, who by their collective efforts,

improve and enrich the system for others. Users have set up unique instances of WISE on their own

servers and are tailoring it for new purposes. At Northwestern University, for example, the Center for

Connected Learning (CCL) and Computer-Based Modeling, led by Uri Wilensky, has chosen WISE as a

platform for delivering a curriculum of NetLogo/HTML5 simulations to teach complex systems. Their

choice was based in their survey of contemporary learning management systems, which found WISE to

be the most fully featured and capable as a platform to support the delivery and data-logging of their

technologies (Wilensky, personal communication). Another research group led by Douglas Clark at

Vanderbilt University has built a novel curriculum-integrated game engine within WISE called SURGE

(www.surgeuniverse.com) and uses it to investigate how games can teach formal concepts of Newtonian

mechanics (Clark et al., 2011). Meanwhile, Jennifer Chiu at the University of Virginia has re-skinned the

WISE platform for a curriculum on engineering design (Chiu & Linn, 2011).

These examples illustrate the value of maintaining WISE on an open-source license. In doing so,

improvements to the system evolve from the expert contributions of a distributed community of users

(Kogut & Metiu, 2001), as uncoordinated developers can propose and select changes that optimize the

system over time (Axelrod & Cohen, 2000).

103

Recommendations and Future Research

This chapter discussed four principles behind the design of WISE’s authoring environment that enable

users to engage in design-related activities for teaching and research. We specifically described how tools

that enable efficient creation and customization can help lower the bar for design by users of all abilities,

and empower them to ask and answer their own questions about technology, learning, and instruction. We

described how the ability to draw upon and remix shared, pre-constructed elements encourages refined

curriculum designs and supports systematic design-based research. We discussed how making student

data available for users to inspect and query can inform design revisions, as well as make visible new

insights into student learning. Finally, we described how the open sourcing of WISE has encouraged other

researchers to use it as a platform for new research programs. Ultimately, users’ contributions enhance the

usefulness of the system for others.

The examples from WISE illustrated how features of authoring environments can support efficient testing

and iteration of new learning tools, materials, and ideas. In doing so, users can be free to ask and answer

their own questions, and to make direct modifications based on their observations—behaviors that

encourage reflective educational practice, and contribute to research insights. Together, these outcomes

can lead to powerful impacts on students’ learning.

Below, we highlight three remaining questions derived from this work and discuss opportunities for

future development.

How Do We Design Tools that Guide Pedagogically Sound Design?

While contemporary authoring environments permit considerably more freedom to design outside set

patterns and structures than did the earlier computer-based instruction systems (Dabbagh, 2001), they also

permit designs that veer from tested pedagogical approaches. Indeed, a number of commercially available

authoring environments support the creation of visually appealing materials. However, when these

environments are not founded on pedagogically oriented design principles, they invite ineptly made, text-

heavy drill-and-practice tasks and few inquiry-oriented activities (Bell, 1998; Dabbagh, 2001; Murray,

1998). This is especially true when teachers feel pressured to cover large amounts of content. A challenge

for developers of authoring environments is thus to balance the tension between allowing users the

freedom to design, while also providing the guidance needed to produce the most effective designs.

Our experiences suggest the most effective guidance to be in face-to-face support, whether this occurs in

informal interactions among fellow teachers and researchers, or organized professional development.

However, features within the authoring environment itself add value by offering timely, in-the-moment

guidance during users’ independent work. In WISE, guidance is implicit in the pre-constructed resources

available to authors, which reflect the underlying Knowledge Integration pedagogy. Existing classroom-

tested units exemplify successful instructional patterns (e.g., predict-observe-explain, response-feedback-

revision, faded scaffolds); and when cloned, these serve as templates upon which new authors can build.

Integrated tools, such as the Idea Manager, are explicit in breaking down the process of eliciting,

organizing, distinguishing, and reflecting upon ideas; and when integrated into a unit, they scaffold

students through these steps. Contrary to the media primitives (e.g., buttons, menus, icons) that

characterize other authoring environments (see Mulholland et al., 2011), these pedagogical primitives

make transparent an underlying pedagogy with assumptions about how students learn and what makes

effective instruction (Murray, 2003).

But how can we ensure that users are actually building upon successful instructional patterns and

avoiding the lethal mutations that occur when customizations detract from the goals of the original design

104

(Haertel, cited in Brown and Campione, 1996)? The solution may be to explore ways to integrate

guidance on effective pedagogical and instructional approaches into various stages of the design process

(Dabbagh, Bannan-Ritland & Silc, 2000).

To aid in the planning stages, WISE might encourage users to thoughtfully approach their instruction by

providing tools to conceptually map the flow of activities and associated resources (cf. learning activity

management system (LAMS), CADMOS, Learning Designer, etc., cited in Conole, 2013). Learning tools

and activity templates might be explicitly connected to outcomes, such that users might select patterns

according to the learning goals they wish to target (e.g., incorporate the Image Annotator tool to develop

students’ observational skills; use a predict-observe-explain task to structure students’ approaches to

experimentation). “Running” the design would result in an evaluation of its predicted success and offer

recommendations for activities, tools, and resources to optimize the design for given constraints (e.g.,

available class time, percentage of English language learners, etc.) and better align it with the goals of

inquiry.

While authoring, shared artifacts might contain embedded guidance in the form of annotations. These

could be contributed by designers, education researchers, and experienced educators; and would offer

authors insights into design rationales and best practices for their use (cf. educative curriculum materials,

Davis & Krajcik, 2005; Davis & Varma, 2008).

Finally, ready access to a database of instructional design principles would allow users guidance on-

demand (e.g., Kali, 2006). Integrating these or similar solutions into the authoring process may help

balance users’ freedom to design with guidance for making pedagogically-sound design decisions.

How Can We Create Authoring Communities that Also Enable the System to Evolve?

As discussed, WISE authors benefit greatly from the ability to build upon others’ contributions. Although

WISE maintains a public database of classroom-tested units, there is currently no way for users to make

their own creations publicly accessible except by directly sharing individual units with known users.

Supporting an open marketplace of artifacts has the potential to allow individuals to build on one

another’s past successes on a large scale (see Morris & Heibert, 2011; Recker et al. 2007). However,

unsupervised exchange also risks introducing contributions that are not aligned with practices known to

be successful.

Whether and how to curate users’ contributions is both a democratic issue, as well as a logistical one.

Allowing users to freely exchange artifacts can foster the social interactions conducive to learning (Lave

& Wenger, 1991; Lerner, Levy & Wilensky, 2010; Vygotsky, 1978; Wenger, 1998), and enrich the

variety of contributions upon which others might draw. At the same time, an open marketplace of artifacts

might decrease its perceived authority, as it would no longer be a resource of tested, theory-based

materials. Yet, curation of such a repository would be costly to maintain. It would require the long-term

commitment of a central individual or group of curators, as well as an effective system for passing down

knowledge of the system to subsequent members.

One compromise is for a consortium of curators to maintain a subset of tested materials separate from a

library for open exchange (cf. Lerner, Levy & Wilensky, 2010). This would offer users both the value of a

trustworthy resource of materials alongside the value of social interactions and richness of community

contributed artifacts. The impact of each for supporting high quality authoring needs to be explored.

105

How Can We Tap into the Vast Amounts of Logged Data to Support Authoring and

Encourage Looking at Students’ Ideas?

Logged data can be valuable for informing authoring decisions. WISE can track fine-grained data on

students’ interactions in WISE, from their responses and revisions within units, to the grades and

feedback received across units and years. Some of this information is accessible through the teacher tools,

which teachers use to inform their current and future instruction (e.g., when to give feedback on particular

items, and to whom). Similarly, the authoring system might channel automated scores and other logged

data to inform specific design decisions. For instance, information documented on past students’

performance on particular items might inform authors of areas requiring revision. Archives of students’

typical ideas on certain topics, and even records of the average time spent completing particular activities,

might help authors see where more or less emphasis would benefit students’ understanding.

These data, along with the annotations and templates contributed by other users, might fuel a

recommender system to guide authors in following sound instructional design principles and tailoring

their designs toward particular needs and goals (Dabbagh, 2000). A further question then becomes how to

design a dashboard that displays these data in ways that make them accessible. What data are most

appropriate and how are they best visualized to guide authors’ design tasks?

In sum, supporting educators and researchers in designing learning environments, especially inquiry-

based ones, can encourage more reflective practice, and ensure the long-term sustainability of materials.

This goal is met when authoring tools follow principles that are sensitive to the design issues faced by

researchers and educators.

Design Implications for GIFT

WISE shares many features in line with the design goals of the Generalized Intelligent Framework for

Tutoring’s (GIFT) authoring construct. Among others, these include tools that decrease the level of effort

and skill necessary to author; allow integration of external media; facilitate rapid prototyping and testing;

enable reuse and adaptation of materials; and rely on an open-source model of development of

maintenance.

Two characteristics of WISE’s efforts might inform the design of GIFT authoring tools. One is that WISE

devotes many resources to creating and making available ready-to-use curriculum materials. Because the

teachers that WISE targets have little time to devote to creating their own curriculum materials, let alone

to learning to use authoring tools, the provision of existing materials encourages and sustains their

engagement, and guides their practice. Units that address specific topics in middle and high school

science curricula draw teachers to use WISE, and provide classroom-tested seed material upon which they

can build when authoring their own customizations (Matuk, Linn & Eylon, 2015).

In seeking similar resources, users self-select as members of a community with specific shared goals. This

allows WISE to build targeted support. Regularly scheduled gatherings bring WISE users together around

mutual questions and challenges. These allow researchers and teachers to exchange insights about

teaching, learning, and technology, and so better understand and appreciate one another’s complementary

roles.

This is related to a second characteristic of WISE, which is that through the concurrent nurturing of a

community of users, teachers are both mentored in their use of the tools, as well as given voice to the

shape those tools. In-class assistance and online support from WISE researchers, as well as regular

organized professional development, serve to orient teachers who are new to WISE. They ensure smooth

106

and positive curriculum implementation experiences with the expectation that this initial guidance will

build teachers’ confidence to author their own customizations for subsequent implementations.

Teacher-researcher partnerships are moreover opportunities for teachers to contribute to designing and

refining the tools of their own practice. Over the years, WISE has developed methods for eliciting

teachers’ insights, and a commitment to incorporating these into new iterations of its technologies (Matuk

et al., 2015). An approach that thus privileges the voice of a user community ensures that the authoring

environment is not prescriptive of researchers’ theoretical ideals. Instead, these ideals continually evolve

with practitioners’ needs and goals, which, in turn, shape and drive the design of the tools.

In conclusion, WISE has found that its success lies beyond merely providing a comprehensive set of tools

to meet the anticipated demands of its users. It also relies upon providing multiple channels of support

and communication among its researchers and teachers. These ensure that the tools remain responsive to

users’ changing needs and are also used to their greatest value.

References

Axelrod, R. and Cohen, M. (2000), Harnessing Complexity: Organizational Implications of a Scientific Frontier,

New York, Free Press.

Boschman, F., McKenney, S. & Voogt, J. (2014). Understanding decision making in teachers’ curriculum design

approaches. Educational Technology Research and Development 62(4), 393–416.

Brown, A. L. & Campione, J. C. (1996). Psychological theory and the design of innovative learning environments:

On procedures, principles, and systems. In R. Glaser (Ed.), Innovations in learning: New environments for

education (pp. 289–325). Mahwah, NJ: Erlbaum.

Brown, M. & Edelson, D. (2003). Teacher as design. (Design brief). LeTUS, Evanston, IL.

Chiu, J. L. & Linn, M. C. (2011). Knowledge integration and WISE engineering. Journal of Pre-College

Engineering Education Research (J-PEER), 1(1), 2.

Clark, D. B., Nelson, B., Chang, H., D’Angelo, C. M., Slack, K. & Martinez-Garza, M., (2011). Exploring

Newtonian mechanics in a conceptually-integrated digital game: Comparison of learning and affective

outcomes for students in Taiwan and the United States. Computers and Education, 57(3), 2178-2195.

Conole, G. (2013). Tools and resources to Guide Practice. In H. Beetham & R. Sharpe (Eds.), Rethinking Pedagogy

for a Digital Age: Designing for 21st Century Learning (pp. 78-101). New York: Routledge.

Cviko, A., McKenney, S. & Voogt, J. (2014). Teacher roles in designing technology-rich learning activities for early

literacy: A cross-case analysis. Computers & Education, 72, 68-79

Dabbagh, N. H., Bannan-Ritland, B. & Silc, K. (2000). Pedagogy and Web-based course authoring tools: Issues and

implications. Web-based training, 343-354.

Davis, E. A. & Krajcik, J. S. (2005). Designing educative curriculum materials to promote teacher learning.

Educational researcher, 34(3), 3-14.

Davis, E. A. & Varma, K. (2008). Supporting teachers in productive adaptation. In Y. Kali, M. C., Linn & J.

Roseman (Eds.), Designing coherent science education: Implications for curriculum, instruction, and

policy (pp. 94-122). New York, NY: Teachers College Press.

Donnelly, D. F., Linn, M. C. & Ludvigsen, S. (2014). Impacts and Characteristics of Computer-Based Science

Inquiry Learning Environments for Precollege Students. Review of Educational Research. Retrieved from

http://rer.sagepub.com/cgi/doi/10.3102/0034654314546954

Evans, C. (2003, January). Challenges to successful science inquiry: Finding unifying themes in the multivariate

nature of inquiry models. Paper presented at the annual meeting of the National Association for Research in

Science Teaching, Philadelphia.

Gerard, L. F., Spitulnik, M. & Linn, M. C. (2010). Teacher use of evidence to customize inquiry science instruction.

Journal of Research in Science Teaching, 47(9), 1037-1063.

Kali, Y. (2006). Collaborative knowledge building using the Design Principles Database. International Journal of

Computer-Supported Collaborative Learning, 1(2), 187-201.

107

Lerner, R., Levy, S.T. & Wilensky, U. (2010, August 10-14). Encouraging Collaborative Constructionism:

Principles Behind the Modeling Commons. In J. Clayson & I. Kalas (Eds.), Proceedings of the

Constructionism 2010 Conference. Paris, France.

Luehmann, A. L. (2002). Understanding the appraisal and customization process of secondary science teachers.

Paper presented at the annual meeting of the American Educational Research Association: New Orleans,

LA.

Linn, M. C. (2000). Designing the knowledge integration environment. International Journal of Science Education,

22(8), 781-796.

Linn, M. C., Clark, D. and Slotta, J. D. (2003), WISE design for knowledge integration. Sci. Ed., 87: 517–538. doi:

10.1002/sce.10086

Linn, M. C. & Eylon, B. S. (2011). Science learning and instruction: Taking advantage of technology to promote

knowledge integration. Routledge.

Linn, M. C. & Hsi, S. (2000). Computers, teachers, peers: Science learning partners. Routledge.

Liu, O. L., Brew, C., Blackmore, J., Gerard, L., Madhok, J. & Linn, M. C. (2014). Automated Scoring of

Constructed‐Response Science Items: Prospects and Obstacles. Educational Measurement: Issues and

Practice, 33(2), 19-28.

Matuk, C. F. & King Chen, J. (2011). The WISE Idea Manager: A Tool to Scaffold the Collaborative Construction

of Evidence-Based Explanations from Dynamic Scientific Visualizations. In, Proceedings of the 9th

International Conference on Computer Supported Collaborative Learning CSCL2011: Connecting

computer supported collaborative learning to policy and practice, July 4-8, 2011. The University of Hong

Kong, Hong Kong, China.

Matuk, C. F. & Linn, M. C. (2013, April 27 - May 1). Technology Integration to Scaffold and Assess Students Use

of Visual Evidence In Science Inquiry. Paper presented at the American Educational Research Association

Meeting (AERA2013): Education and Poverty: Theory, Research, Policy and Praxis, San Francisco, CA,

USA.

Matuk, C. & Linn, M. C. (2014). Exploring a digital tool for exchanging ideas during science inquiry. In ICLS’14:

Proceedings of the 11th International Conference for the Learning Sciences, Boulder: International Society

of the Learning Sciences.

Matuk, C., Gerard, L., Lim-Breitbart, J. & Linn, M. C. (2015, April 16-20). Gathering Design Requirements During

Participatory Design: Strategies for Teachers Designing Teacher Tools. Paper presented at the American

Educational Research Association Meeting, Chicago, IL, USA.

Matuk, C., Linn, M. C. & Eylon, B.-S. (2015). Technology to support teachers using evidence from student work to

customize technology-enhanced inquiry units. Instructional Science, 43(2), 229-257. DOI:

10.1007/s11251-014-9338-1

Matuk, C. & McElhaney, K. (2014, April 3-7). Investigating a Digital Annotation Tool for Distinguishing Visual

Evidence in Science Inquiry. Paper presented at the American Educational Research Association Meeting,

Philadelphia, PA, USA.

McLaughlin, M. W. (1976). Implementation as mutual adaptation: Change in classroom organization. Teachers

College Record, 77: 339–351.

Morris, A. K. & Hiebert, J. (2011). Creating Shared Instructional Products An Alternative Approach to Improving

Teaching. Educational Researcher, 40(1), 5-14.

Murray, T. (2003). An Overview of Intelligent Tutoring System Authoring Tools: Updated analysis of the state of

the art. In Authoring tools for advanced technology learning environments (pp. 491-544). Springer

Netherlands.

Murray, T. (1998). Authoring knowledge-based tutors: Tools for content, instructional strategy, student model, and

interface design. The Journal of the Learning Sciences, 7(1), 5-64.

National Research Council. (1996). National science education standards. Washington, DC: National Academies

Press.

National Research Council. (2000). Inquiry and the national science education standards: A guide for teaching and

learning. Washington, DC: National Academies Press.

Kogut, B. & Metiu, A. (2001). Open‐source software development and distributed innovation. Oxford Review of

Economic Policy, 17(2), 248-264.

Raes, A., Schellens, T. & De Wever, B. (2013). Web-based Collaborative Inquiry to Bridge Gaps in Secondary

Science Education. Journal of the Learning Sciences, 23(3), 316-347.

Rafferty, A. N., Gerard, L., McElhaney, K., Linn, M. C. (2013). Automating Guidance for Students’ Chemistry

Drawings. Proceedings of Formative Feedback in Interactive Learning Environments (AIED Workshop).

108

Rizzi, Iribarren, C., Furman, M; Podestá, M.E & Luzuriaga, M. (2014, November 12-14) Diseño e implementación

de la plataforma virtual de aprendizaje WISE en el aprendizaje de las Ciencias Naturales. Congreso

Iberoamericano de Ciencia, Tecnología, Innovación Y Educación, Buenos Aires, Argentina.

Ruiz-Primo, M. A. & Furtak, E. M. (2007). Exploring teachers’ informal formative assessment practices and

students’ understanding in the context of scientific inquiry. Journal of research in science teaching, 44(1),

57-84.

Ryoo, K. K. & Linn, M. C. (2010, June). Student progress in understanding energy concepts in photosynthesis using

interactive visualizations. In Proceedings of the 9th International Conference of the Learning Sciences-

Volume 2 (pp. 480-481). International Society of the Learning Sciences.

Ryoo, K. & Linn, M. C. (2014). Designing guidance for interpreting dynamic visualizations: Generating versus

reading explanations. Journal of Research in Science Teaching, 51(2), 147-174.

Settlage, J. (2003, January). Inquiry’s allure and illusion: Why it remains just beyond our reach. Paper presented at

the annual meeting of the National Association for Research in Science Teaching, Philadelphia.

Slotta, J. D. & Linn, M. C. (2009). WISE science: Web-based inquiry in the classroom. Teachers College Press.

Svihla, V. & Linn, M. C. (2012). A design-based approach to fostering understanding of global climate change.

International Journal of Science Education, 34(5), 651-676.

Swanson, H. (2010, June). Eliciting energy ideas in thermodynamics. In Proceedings of the 9th International

Conference of the Learning Sciences-Volume 2 (pp. 254-255). International Society of the Learning

Sciences.

Vitale, J., Lai, K. & Linn, M. C. (2014). Dynamic Visualization of Motion for Student-Generated Graphs. In

ICLS’14: Proceedings of the 11th International Conference for the Learning Sciences, Boulder:

International Society of the Learning Sciences.

Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA:

Harvard University Press.

Wichmann, A., Matuk, C., Sato, E., Gerard, L., Madhok, J. & Linn, M. C. (2014, August 18-20). Critiquing Peer-

Generated Ideas during Inquiry Learning. The Biennial Meeting of the EARLI SIG20 Computer Supported

Inquiry Learning, Malmö, Sweden.

Wilensky, U. (1999). NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-

Based Modeling, Northwestern University, Evanston, IL.

Xie, C., Tinker, R., Tinker, B., Pallant, A., Damelin, D. & Berenfeld, B. (2011). Computational experiments for

science education. Science, 332(6037), 1516-1517.

Zhang, Z. H. & Linn, M. C. (2011). Can generating representations enhance learning with dynamic visualizations?.

Journal of research in science teaching,48(10), 1177-1198.

http://ccl.northwestern.edu/netlogo/

109

CHAPTER 8 Authoring Tools for Ill-defined Domains

in Intelligent Tutoring Systems: Flexibility and

Stealth Assessment
Matthew E. Jacovina, Erica L. Snow, Jianmin Dai, and Danielle S. McNamara

Arizona State University

Introduction

Intelligent tutoring systems (ITSs) provide customized instruction to students by modeling what students

need to know and what they seem to know, and by providing adaptive feedback and problem sets based

on performance within the system (e.g., Beal, Arroyo, Cohen & Woolf, 2010; Graesser et al., 2004).

Building a successful ITS requires a great deal of time and expertise, which has inspired researchers to

develop authoring tools to aid in their development (Ainsworth & Fleming, 2006; Blessing, 1997;

Marchiori et al., 2012). Authoring tools have empowered instructors, researchers, and designers to create

additional content and modify the ways in which a system responds to different performance and

behaviors. One key goal of authoring tools is to facilitate these design objectives. Although authoring

tools are developed for all stages of ITS development, we focus on tools (and the techniques that enable

such tools) that are designed for researchers and instructors who, ultimately, are the ones who use the

system. Ideally, for example, domain experts should be able to successfully modify a system for their

particular domain even if they lack training as a computer programmer (Murray, 2003).

Notably, not all domains impose the same challenges to the creation and implementation of ITSs and their

authoring tools. Developing a system to provide instruction on algebra is quite different from a system to

teach aesthetic design. One common distinction made by developers of educational technologies is

between well-defined and ill-defined learning problems and domains (Le, Loll & Pinkwart, 2013; Lynch,

Ashley, Pinkwart & Aleven, 2009). Generally, problems in more well-defined domains have a limited

number of solutions, and importantly, those solutions can be objectively predefined (e.g., 2x2=4). By

contrast, problems in ill-defined domains often have multiple solutions and the accuracy or quality of

those solutions can be subjective and on a continuous scale (e.g., the quality of an essay). As such,

building an expert model or tracing students’ progress through a series of problems is different for well-

defined and ill-defined domains. In this chapter, we particularly focus on the needs of researchers and

teachers in the ill-defined domains of reading comprehension and writing, and how those needs can begin

to be addressed by authoring tools and data collection techniques.

The observations and recommendations in this chapter are based on two systems developed in our lab: the

Interactive Strategy Training for Active Reading and Thinking-2 (iSTART-2) and Writing Pal (W-Pal).

Through our discussion, we aim to extract key lessons we have garnered during our development process

and use those lessons learned to provide suggestions for Generalized Intelligent Framework for Tutoring

(GIFT) and other ITSs. Specifically, we first highlight the need for flexibility of content within our

systems. Researchers require the ability to edit system features to test their effectiveness, and teachers

need to add and edit content to better align with their courses. The system features that are made available

to researchers and teachers should be selected to support these particular needs. Next, we highlight the

potential benefits of collecting and analyzing behavioral data beyond what is required for traditional

assessments. By conducting such analyses, researchers can learn about the processes underlying students’

choices and performance. Importantly, these analyses are intended to eventually feed back into system

flexibility, affording more appropriate and timely feedback for a broader range of content. Although our

110

recommendations are not limited to systems for ill-defined domains, they have emerged as particularly

salient topics in our own work.

Related Research

In this section, we first provide a brief overview of each of our systems. We then discuss research related

to scoring student responses using natural language processing (NLP) techniques and stealth assessments.

Ultimately, these are the approaches we suggest here as having some potential to enhance flexibility and

efficacy in tutoring systems, particularly in the context of authoring tools.

iSTART-2 and Writing Pal

The iSTART-2 system is a game-based tutoring system designed to improve high school students’

reading comprehension by providing self-explanation and comprehension strategy instruction (Jackson &

McNamara, 2013; McNamara, Levinstein & Boonthum, 2004; Snow, Allen, Jacovina & McNamara,

2015). Students using iSTART-2 complete a training phase before moving on to the practice phase. The

training phase consists of a series of lesson videos that cover five self-explanation strategies and provide

examples of their use. These lessons provide students with instruction on how to paraphrase texts in their

own words, monitor their understanding of text information, predict what topics and information the text

will next cover, bridge information with previous parts of the text, and elaborate on text information using

prior knowledge. Each lesson video also includes a series of checkpoint questions that reinforce students’

understanding of these strategies.

The practice phase includes a series of practice activities and customization options. From the practice

menu, students can engage with several practice games, check their achievements earned during practice,

or personalize the color of the system of the appearance of an on-screen avatar. The practice games fall

into two categories: generative or identification practice. In generative practice, students read science

texts and self-explain selected target sentences. They receive a score and (in certain activities) feedback

on how to improve their self-explanations. In identification games, students read self-explanations that

have ostensibly been written by other students, with the goal of identifying which of the five self-

explanation strategies were used by the student. Our research indicates that when students receive self-

explanation training in iSTART-2 (and earlier versions, iSTART and iSTART-ME), their self-explanation

quality and comprehension improves when compared to receiving no self-explanation training (e.g.,

McNamara et al., 2004; McNamara, O’Reilly, Best & Ozuru, 2006; McNamara, O’Reilly, Rowe,

Boonthum & Levinstein, 2007).

W-Pal is a game-based tutoring system designed to provide high school students with strategy lesson

training, strategy practice, and holistic writing practice, specifically for prompt-based, argumentative

essays (Allen, Crossley, Snow & McNamara, 2014; Roscoe & McNamara, 2013; Roscoe, Brandon, Snow

& McNamara, 2013). The system includes eight modules that cover topics within prewriting (Freewriting

and Planning), drafting (Introduction Building, Body Building, and Conclusion Building), and revising

(Paraphrasing, Cohesion Building, and Revising). Each of these modules contains a series of lesson

videos covering specific strategies that students are encouraged to use during the writing process.

Examples of the strategies and checkpoint questions are included in these videos.

Students practice using strategies in a variety of practice games that focus students on individual

components of writing (e.g., practicing conclusion paragraphs). Across games, students are given

different tasks, such as generating text, answering multiple-choice questions, or organizing information

by dragging and dropping. The game mechanics, such as points, levels, and bonus activities (e.g., a

Sudoku-like game) are designed to enhance motivation and engagement. Students can also practice

111

writing essays and receive automatic formative feedback. Research from our lab indicates that students’

writing strategy knowledge and writing proficiency improves over time while using the system (e.g.,

Allen, Crossley, et al., 2014; Crossley, Varner, Roscoe & McNamara, 2013).

Flexibility through Natural Language Processing

NLP lies at the core of both iSTART-2 and W-Pal. Within both, we have attempted to develop NLP

algorithms that maintain a certain degree of flexibility within the systems, such that new content can be

added to the systems (e.g., by the teachers) without having to recalculate the algorithms.

In iSTART-2, an NLP algorithm drives the self-explanation scoring using both latent semantic analysis

(LSA; Landauer, McNamara, Dennis & Kintsch, 2007) and word-based measures to provide a score from

0 to 3. The algorithm is designed to assess the quality of the self-explanation in terms of how well

students employed self-explanation strategies, not in terms of their content knowledge. That is, the

comparisons made between the content of the text and students’ self-explanations can detect similarities

but not inaccuracies. One considerable advantage of not scoring quality of content knowledge (which is a

very difficult task) is that any text can be entered into the system and used for practice. The algorithm

assigns a low score when the self-explanation is short or contains irrelevant information and higher scores

when the self-explanation incorporates information from earlier in the text and other relevant information.

Scores from the iSTART algorithm have been shown to be similar to those of human raters (McNamara,

Boonthum, Levinstein & Millis, 2007; Jackson, Guess & McNamara, 2010). Based on these scores and

other factors (e.g., students’ recent history of scores and the strategies they self-report using), students

also receive feedback messages. When students consistently generate high quality self-explanations, they

receive positive feedback. But when students receive lower scores, they might be encouraged to employ

different self-explanation strategies, such as elaborating on what is in the text with what they already

know. Instructors are able to add their own texts to the system that students can then self-explain using

one of the system’s generative practice activities. By adding their own texts, teachers can customize the

content of iSTART-2 to more efficiently fit into their lesson plans. For example, a science teacher might

input and assign several texts on photosynthesis; completing this training will then not only provide

instruction on comprehension strategies for challenging science texts, but also help cover material within

the teacher’s curriculum.

NLP algorithms also drive the scoring and feedback in W-Pal. These algorithms are based on several

linguistic properties of students’ essays, ranging from simple measures such as the total number of words

and paragraphs, to more sophisticated measures such as syntactic complexity and lexical specificity.

Linguistic indices are calculated using both Coh-Metrix (McNamara & Graesser, 2012; McNamara,

Graesser, McCarthy & Cai, 2014) and the Writing Analysis Tool (WAT; McNamara, Crossley & Roscoe,

2013). These algorithms provide students with both summative feedback on their essay (i.e., a holistic

score on 6-point scale) as well as formative strategy feedback. The formative feedback provides students

with actionable suggestions for how to improve the student’s current and future essays. The feedback

messages align with the strategy lesson videos provided within W-Pal. For example, if an essay contains

very few words, feedback messages will likely focus on idea generation. Similar to iSTART-2, the

algorithms in W-Pal are designed to be relatively generalizable; they are not tied to specific prompts. This

allows teachers to add their own essay prompts into the system and create their own assignments for

students.

Stealth Assessments

The ability for a system to provide intelligent feedback and recommendations to students is, in part,

dependent on the quality of the student model and the data that drive that model. Performance measures

112

(e.g., accuracy) are clearly important, but sometimes not sufficient for a system to behave ideally—for

example, they may not successfully detect when a student is sufficiently bored to consider quitting the

system. Additional measures of student behavior and engagement may also be necessary. One way to

covertly capture learning behaviors is through the use of stealth assessment (Shute, 2011; Shute, Ventura,

Bauer & Zapata-Rivera, 2009). Stealth assessments are metrics designed to measure a specific variable

that are discretely woven into a learning task rendering them invisible to the learner. This design allows

these covert measures to assess designated constructs (e.g., engagement, cognitive skills, etc.) without

disrupting students’ flow during learning. Stealth assessments offer an alternative to traditional self-report

or explicit construct measures. Indeed, one advantage of stealth assessments is that they do not rely on

students’ perceptions or memory of the learning task, but instead capture the targeted behavior in real

time as it occurs during learning, thus eliminating the concern of a discrepancy between students’

perceived behavior and observations of their actual behavior (McNamara, 2011). Stealth assessments can

also save valuable time during an experiment or in a classroom. These measures do not have to be

collected separately from the learning task and as such, and do not require extra instruction or time

allocation that can take away from the teacher or ultimate learning task.

There are multiple ways that researchers can create and design stealth assessments (Shute, 2011).

Relevant to this chapter is the use of online data (i.e., log data, language, and choice patterns) as proxies

for learning behaviors. Online data have been used as a form of stealth assessment to measure a multitude

of constructs, such as students’ self-regulatory abilities (Hadwin et al., 2007), amount of exerted agency

(Snow et al., 2015), and gaming behaviors (Baker, Corbett, Roll & Koedinger, 2008). For example,

Hadwin and colleagues (2007) used log data from gStudy to examine variations and patterns in students’

studying; gStudy is software that displays content to learners and tracks, for example, their annotating,

searching, and help-seeking behaviors. The authors were particularly interested in examining how log

data from gStudy could be used to profile students’ self-regulatory abilities compared to traditional self-

report measures. Results from this work revealed that students’ studying habits could be captured by log

data and patterns in these habits were predictive of self-regulation ability. Such promising results

showcase the potential for stealth assessments to influence the behavior of an ITS. Critically, however,

researchers must be careful (and often quite clever) in thinking about which interactions could relate to

important student attributes or abilities, systems must be designed to record this information, and finally,

the information needs to be usefully implemented into the system to make it more adaptive to individual

students.

Discussion

Flexibility for Researchers and Teachers

Our ultimate goal is for iSTART-2 and W-Pal to be widely used by educators to enhance instruction of

reading comprehension and writing. Specifically, one audience is high school teachers and their students.

In order to optimize our systems, while simultaneously better understanding the processes involved with

writing and reading, we also need our systems to be easily used by researchers who want to design

experiments within our systems to answer research questions. Even research questions that are not

directly designed to test the system will inevitably give some indication of system effectiveness and

collect behavioral data from participants’ use. For these reasons, we consider the usability of our system

for researchers and teachers to be a high priority, thus requiring the development of authoring tools to

meet their needs. Table 1 provides a summary of the features we discuss. We note that our estimates of

the difficulty of use are based on anecdotal experiences rather than empirical data.

113

Table 1. Summary of the tools/features discussed in this chapter, including the targeted user for each.

Feature System(s) User(s) Difficulty Comments

Lesson/practice

selection

iSTART-2

& W-Pal

Researchers* Easy Intuitive: Checkboxes mark available

activities

Practice activity

appearance groups

W-Pal Researchers Moderate Requires an understanding of how different

completion conditions (e.g., completing a

game) will trigger the next appearance group

Performance

thresholds

iSTART-2 Researchers Moderate Requires an understanding of iSTART-2

scoring

Essay feedback

quantity/control

W-Pal Researchers Easy Intuitive: Uses radio buttons

Essay self-

assessments

W-Pal Researchers Easy Intuitive: Uses radio buttons

New essay prompts W-Pal Teachers &

Researchers

Easy Intuitive: However, prompts must be for

persuasive essays

New practice texts iSTART-2 Teachers &

Researchers

Advanced Requires knowledge of how to tag

appropriate target sentences

* Currently being considered for teachers

Note: Difficulty corresponds to the time required to use the feature competently, not masterfully. We estimate

that “easy” features are immediately usable provided the user has a basic understanding of the system;

“moderate” features require 1–2 hours to learn; “advanced” features require specialized knowledge through

training/tutorials (~3–5 hours).

Before attempting to design a complete set of authoring tools for researchers and teachers, we built

systems that delivered lesson content that covered targeted strategies and practice activities that provided

actionable feedback—that is, more or less complete (essentially hard coded) systems that functioned on

their own. As we tested the success of these systems, building certain tools for our research team was a

practicality; we needed to toggle features on and off to test their relative effectiveness. Moreover, we

wanted researchers without a programming background to be able to set these options for different

students within the system. To meet this need, our programming team developed a web interface through

which researchers can set the parameters for several options. As these selectable features accumulated in

our researcher control panel, the systems became more flexible. Because student accounts are enrolled in

“system classrooms,” each of which has its own settings, researchers can make comparisons between

students in different classrooms.

When possible, settings and features are selectable through a live connection between the authoring tool

and students’ interface. For example, researchers can select which lesson videos and practice activities are

displayed to students. Figure 1 shows the iSTART-2 researcher control panel being used to disable certain

practice games from appearing in students’ practice interface. Importantly, the layout of the authoring tool

for this page matches the layout of the practice interface, with checkboxes indicating which games will be

114

available to students. In W-Pal, a more powerful (though more complex) tool is available that allows

researchers to both select practice activities in each module as well as the order in which the activities are

available to students. Figure 2 shows the tool that researchers use to define practice game “appearance

groups” (i.e., one or more games that appear to students as part of a single group) as well as the

conditions that must be met to advance to the next appearance group. In the depicted example from W-

Pal’s Body Building module, a researcher has created two groups, each with one game. To advance from

the first group to the second, a student must complete the game Fix It: Bodies three times. Researchers

can also define a time requirement for how long students must play a game before advancing (leaving the

time at zero yields no time requirements). Several other settings are available through this tool, such as

the ability to control how students are transitioned from one group to the next once time has expired, or

display pop-up messages to students after completing the appearance group. The appearance group

editing tool is thus useful for controlling students’ practice experience and assessing the relative value of

different games. After completing an appearance group that has been set, researchers see a visual

representation for each group, which is similar to what will be displayed to students. The close alignment

between what is seen by researchers and students renders it easy for researchers to confirm that settings

are correct.

Figure 1. Research settings in iSTART-2 and the resulting practice interfaces that are visible to students.

115

Figure 2. The appearance group editor in W-Pal and the resulting visual representation of the groups.

As examples of more specialized features, researchers in iSTART-2 can set pop-up messages to trigger

when students do not meet a performance threshold in generative practice games, after which they are

transitioned to a more rigorous practice activity. In Figure 3, a researcher has set the threshold to a score

of 2.0 and applied that threshold to the games Map Conquest and Showdown. With this setting, whenever

students’ average self-explanation quality score is below 2.0 across those games, they receive a pop-up

message that is defined in the editor. After closing the pop-up message, students are transitioned to

Coached Practice, an activity that has fewer game features but provides additional feedback to students.

By using this tool, researchers can assess the effects of alerting students of their poor performance and

prescribing a specific practice activity as a means for improvement—additionally, the specific wording of

the message and the stringency of the threshold can be easily manipulated. In W-Pal, researchers can also

set options that change students’ experiences while practicing; notably, during the process of writing

essays and receiving feedback. These changes are made through the researcher control panel simply by

toggling features on and off, or by selecting among options using radio buttons. For example, researchers

can set whether students self-assess the quality of their essay after submitting it but before receiving

feedback. Researchers also select whether students have control over the number of feedback messages

that they receive about their essay, and the maximum number of messages that they can receive. By

varying these features, researchers can study the optimal conditions for encouraging quality essay

revisions following the delivery of the automated essay feedback.

116

Figure 3. The self-explanation threshold editor and the pop-up message students receive after not meeting the

performance threshold.

Generally, we consider the numerous options available to be a boon for researchers. We view our

authoring tools as communicative of the features that are potentially important for students. By design, a

researcher who is interested in reading comprehension or writing should be able to set up system

classrooms with different settings and design an experiment using our researcher control panel, with

minimal experience with the system and no programming knowledge. Selecting which system features to

test and in which combination to design an interesting study, of course, requires expertise. However,

some features are obviously more important than others, and we rely on researchers to make careful study

design decisions whenever changing a feature from its default setting.

For teachers, the communicative function of our authoring tools is somewhat different. Options available

through the teacher control panel may be considered as a means to customize the system to best match

course content and classroom needs. When considering many of the features available to researchers, the

goal of optimally setting system options is ambiguous. Disabling games might seem like a sensible

decision if the teacher is under a tight time schedule and if the teacher fears that students will ignore the

goal of learning to write in the context of games. However, our research indicates that eliminating the

motivating features of games will likely decrease performance over the long term (e.g., Jackson &

McNamara, 2013). Therefore, we currently do not include the ability to toggle games on and off within

the teacher control panel. This may change in the future, of course, and teachers always retain their

control over what they do and do not assign to students. Some features, meanwhile, are esoteric and

clearly should be excluded from teachers’ options (e.g., being able to disable certain uses of the word

“game,” which was included for a study in which we did not want to prime students to think of practice as

gaming). Thus, for teachers, we have aimed to build authoring tools around their needs for adapting the

system to their course. This has primarily centered on content creation.

A recent survey found that a majority of teachers prefer to modify the content of educational resources

they obtain, and that they often share the resources they find with colleagues (Hassler, Hennessy, Knight

& Connolly, 2014). Our experiences working with teachers match these findings, and we propose that

flexibility of content is particularly important for ill-defined domains in which skills are often taught in

the context of topics particular to individual classrooms. For example, the persuasive essay writing skills

covered in W-Pal might normally be taught in the context of current events or topics raised by a book the

117

class is currently reading. Teachers may be unlikely to use systems in ill-defined domains that do not

allow them to align practice (i.e., students’ system use) with system content. Because of the NLP

techniques we use to drive our scoring algorithms, however, our systems are able to meet this

considerable challenge (see the previous section on NLP for more information). Figure 4 shows the

interface teachers use to add new argumentative writing prompts into W-Pal. Though plain, this simple

interface allows teachers to create new assignments in W-Pal that receive the same level and quality of

feedback as the prompts built into it. Thus, pasting in an essay prompt and assigning it takes minutes and

provides students, by default, a 25+ minute practice experience (longer if revisions are required).

Similarly, iSTART-2 allows teachers to add texts to the system that can be self-explained in the practice

activities. Although this process is somewhat complicated by the need to define target sentences

(currently, we work directly with teachers wishing to add texts but will add tutorials in the future), it

allows teachers, without an understanding of the algorithms driving feedback, to expand and customize

system content. The NLP underpinnings in both systems are invisible to teachers, allowing them to focus

on adding essay prompts and texts through the simple features available in the teacher control panel.

Learning to adeptly tag target sentences takes many hours, but once mastered, teachers will be able to add

texts in about 30 minutes, completing both the entry and tagging processes; practice with each text will

last 10–30 minutes depending on its length.

Figure 4. Interface for adding a new essay prompt in W-Pal.

Stealth Assessments and their Representation in Authoring Tools

An ongoing goal for our systems is to better direct instruction and feedback to each student. Although our

systems currently deliver feedback messages and make recommendations based on students’ current and

past performance, we plan to build richer student models that can respond with greater nuance. For ill-

defined domains, in particular, constructing these models is a challenge that must be supported by copious

data. As we discussed earlier, we are strong proponents of using stealth assessments to help obtain much

information about students in a non-intrusive manner. In our own system designs, we allow students to

make important choices that afford meaningful interaction patterns and generate responses that can be

analyzed using NLP techniques. Essentially, our goal is to build systems that convey rich information

about students through their normal interactions that go beyond what is directly being measured. This

promotes meaningful data mining of system interactions. For example, in one study, we analyzed the

118

degree to which students were ordered or disordered in their interactions with iSTART-2, and found that

more ordered interactions led to better performance (Snow et al., 2015). In another study, we found that

when analyzing the narrativity of students’ writing over a series of several essays, more successful writers

were less rigid in their use of narrative elements (Allen, Snow & McNamara, under revision). In both

studies, we were able to use stealth assessment to measure important student characteristics. In the future,

we will attempt to leverage our ability to monitor these student attributes by using them to drive feedback

messages.

The importance of stealth assessment, however, is not primarily what we wish to push forward (the

virtues of stealth assessment have already been beautifully laid out in a past volume: Ventura, Shute &

Small, 2014). Instead, we suggest that stealth assessments should become more prominent and easier for

researchers (and eventually teachers) to use. The goals are to build better understandings of what stealth

measures are capturing and, subsequently, drive better instruction for students. Eventually, we plan for

our authoring tools to provide examples of the types of measures that are logged by the system and

encourage researchers to consider those measures in conjunction with the other components of their

studies. Over time, we intend this enhanced awareness of stealth measures to improve the understanding

of tutoring systems for reading comprehension and writing. This goal could be particularly important for

all ill-defined domains that already struggle for tractability in scoring and modeling. If a research group,

for example, conducts a study examining impulsivity and writing performance, they could easily compare

impulsivity scores with choice pattern measures, which our systems already measure—this could provide

insight into impulsivity, choice patterns, and their interaction with writing performance. The authoring

tools that researchers use when setting up their studies should make it apparent that these analyses are

possible. When researchers are ready to run the analyses, tools should then provide these data to

researchers in an understandable format. Again, we view it as an important goal of authoring tools to

communicate system features that are pertinent to the needs of researchers.

Teachers, likewise, could benefit from an understanding of some of the stealth assessments that a system

records. Although the system will ideally be using relevant information to guide instruction, keeping

teachers apprised of their students’ system performance can be helpful for letting the teacher know what

is and is not working, and, of course, teachers can often intervene in ways that the system cannot (e.g., a

teacher might assign different work to a student who is struggling with system content). By displaying

certain stealth measures to teachers within their authoring interface, they will also develop a better

understanding of how the system works. Although teachers do not need to understand the intricacies of

how a system’s “intelligence” works, it might also inspire observations about their students’ in-person

behavior as it connects to their system performance. Perhaps an oft-distracted student is particularly

motivated by the game components of reading practice, and a teacher can leverage this information in

other ways. Finally, by empowering teachers with knowledge of how a system works, they are better able

to communicate their feedback and work with designers to improve its ability to function within

classrooms. An obvious issue with displaying this information is that it may be counterproductive; instead

of being enlightening, it may be overwhelming, confusing, and unhelpful. For our own systems, we have

been cautious in adding too much information and have discussed with several teachers the pros and cons

of adding specific pieces of information. Our approach to communicating with teachers about these issues

varies by situation. Some teachers have a strong interest in educational technology and frequently provide

feedback about their desired features and are excited to provide insights about the utility of more

advanced features. In other situations, we ask teachers to fill out short online surveys that include free

response questions asking about how we can improve and what they would like to see added. Based on

information from teachers, we are planning new features, some of which will convey students’ choice

patterns.

119

Recommendations and Future Research

In this chapter, we discussed how stealth assessment techniques undergird our tutoring systems, iSTART-

2 and W-Pal, which operate in the ill-defined domains of comprehension and writing. We specifically

explore how techniques, such as NLP, can be used within the context of authoring tools and ill-defined

domains in which student-generated responses must be scored and for which teachers (or researchers)

may want to add their own content and prompts. Stealth assessments afford researchers the opportunity to

examine and build more nuanced, complete models of student performance and behavior. Thus, for

researchers and teachers, these techniques can help inform authoring tools, acting both as communicative

devices to explain the impact of various features on learning and as means for content to be edited and

added.

GIFT offers a platform to build powerful tutoring systems that can adapt to student needs. Its greatest

strengths are currently most likely to be used by cognitive scientists and programmers who are already

skilled developers. In order for the efficient advancement and proliferation of ITSs in ill-defined domains,

however, we suggest that researchers and teachers must collaborate in system design, particularly to test

and optimize system features. Across the brief time of our using GIFT, it has already made great strides in

becoming easier for non-programmers to author; the example courses available through the GIFT package

can easily be used as models and modified. The exemplified ability to use PowerPoint to present

content—a familiar tool for many researchers and teachers—is an excellent means of affording educators

opportunities to expand course content.

One avenue for expanding GIFT would be the addition of features that allow students to generate written

responses and then receive feedback. Students often experience memory benefits when generating

content, making generative activities educationally desirable (e.g., McNamara & Healy, 1995; Slamecka

& Graf, 1978). To support these features, GIFT might consider incorporating simple NLP techniques (see

Crossley, Allen & McNamara, 2014). NLP algorithms that rely on simple indices such as word counts

and bags of words can go a long way in providing information about a student’s responses. Such

techniques can be effective for many purposes such as scoring responses to short answers, open-ended

questions, and even, essays. As the framework evolves to more easily provide NLP output and use it to

guide scoring and feedback, more sophisticated techniques can be developed and implemented (Allen,

Snow, Crossley, Jackson & McNamara, 2014). An important goal for more advanced, flexible scoring

and feedback algorithms will be to allow teachers to add their own question content.

Another consideration would be to provide easily understood methods of recording log data during

system use. As we have discussed, the use of stealth assessments during tutoring affords the means to

better understand students’ use of the system and also collect information about the student without

interruptions from surveys or additional assessments. Adding the ability to then implement these data—as

well as linguistic data extracted from student-generated responses—into student models delivers a

powerful tool for researchers. For teachers, displaying the most important and interpretable of these

measures could also be useful to communicate nuances of student performance that might remain hidden

when only traditional performance summaries are provided. Ultimately, the information provided by

stealth assessments such as NLP techniques, can improve systems’ ability to identify when students need

assistance and what specific assistance would be most appropriate.

One exciting aspect about the GIFT project is its potential to empower both research and educational

communities with the ability to build powerful ITSs. Because of the flexible and adaptable nature of the

framework, a wide range of features can be built into systems that cover content in many domains. A

particular hope is that these systems spread, inspiring researchers to test components of various systems

and offering educators the opportunity to provide valuable feedback. Through such a network, combined

120

with the power of stealth assessment techniques such as NLP, even the challenges of ill-defined domains

can be met successfully.

References

Ainsworth, S. & Fleming, P. (2006). Evaluating authoring tools for teachers as instructional designers. Computers in

Human Behavior, 22, 131-148.

Allen, L. K., Crossley, S. A., Snow, E. L. & McNamara, D. S. (2014). Game-based writing strategy tutoring for

second language learners: Game enjoyment as a key to engagement. Language Learning and Technology,

18, 124-150.

Allen, L. K., Snow, E.L., Crossley, S. A., Jackson, G. T. & McNamara, D. S. (2014). Reading components and their

relation to the writing process. Topics in Cognitive Psychology, 114, 663-691.

Allen, L. K., Snow, E. L., and McNamara, D. S. (under revision). The narrative waltz: The role of flexible style on

writing performance. Manuscript submitted to the Journal of Educational Psychology.

Baker, R. S. J. D., Corbett, A. T., Roll, I. & Koedinger, K. R. (2008). Developing a generalizable detector of when

students game the system. User Modeling and User-Adapted Interaction, 18, 287-314.

Beal, C., Arroyo, I., Cohen, P. & Woolf, B. (2010). Evaluation of AnimalWatch: In intelligent tutoring system for

arithmetic and fractions. Journal of Interactive Online Learning, 9, 64 –77.

Blessing, S. B. (1997). A programming by demonstration authoring tool for model-tracing tutors. International

Journal of Artificial Intelligence in Education, 8, 233-261.

Crossley, S. A., Allen, L. K., Kyle, K. & McNamara, D. S. (2014). Analyzing discourse processing using a simple

natural language processing tool. Discourse Processes, 51, 511-534.

Crossley, S. A., Varner (Allen), L. K., Roscoe, R. D. & McNamara, D. S. (2013). Using automated cohesion indices

as a measure of writing growth in intelligent tutoring systems and automated essay writing systems. In H.

C. Lane, K. Yacef, J. Mostow & P. Pavlik (Eds.), Proceedings of the 16
th

 International Conference on

Artificial Intelligence in Education (AIED) (pp. 269-278). Heidelberg, Berlin: Springer

Graesser, A., Lu, S., Jackson, G., Mitchell, H., Ventura, M., Olney, A. & Louwerse, M. (2004). AutoTutor: A tutor

with dialogue in natural language. Behavior Research Methods, Instruments & Computers, 36, 180 –192.

Hadwin, A. F., Nesbit, J. C., Jamieson-Noel, D., Code, J. & Winne, P. H. (2007). Examining trace data to explore

self-regulated learning. Metacognition and Learning, 2, 107-124.

Hassler, B., Hennessy, S., Knight, S. & Connolly, T. (2014). Developing an open resource bank for interactive

teaching of STEM: Perspectives of school teachers and teacher educators. Journal of Interactive Media in

Education.

Jackson, G. T., Guess, R. H. & McNamara, D. S. (2010). Assessing cognitively complex strategy use in an untrained

domain. Topics in Cognitive Science, 2, 127-137.

Jackson, G. T. & McNamara, D. S. (2013). Motivation and performance in a game-based intelligent tutoring system.

Journal of Educational Psychology, 105, 1036-1049.

Landauer, T. K., McNamara, D. S., Dennis, S. & Kintsch, W. (Eds.). (2007). Handbook of Latent Semantic Analysis.

Mahwah, NJ: Lawrence Erlbaum.

Le, N. T., Loll, F. & Pinkwart, N. (2013). Operationalizing the continuum between well-defined and ill-defined

problems for educational technology. IEEE Transactions on Learning Technologies, 6, 258-270.

Lynch, C., Ashley, K. D., Pinkwart, N. & Aleven, V. (2009). Concepts, structures, and goals: Redefining ill-

definedness. International Journal of Artificial Intelligence in Education, 19, 253-266.

Marchiori, E. J., Torrente, J., del Blanco, Á., Moreno-Ger, P., Sancho, P. & Fernández-Manjón, B. (2012). A

narrative metaphor to facilitate educational game authoring. Computers & Education, 58, 590-599.

McNamara, D. S. (2011). Measuring deep, reflective comprehension and learning strategies: Challenges and

successes. Metacognition and Learning, 3, 1-11

McNamara, D. S., Boonthum, C., Levinstein, I. B. & Millis, K. (2007). Evaluating self-explanations in iSTART:

Comparing word-based and LSA algorithms. In T. Landauer, D. S. McNamara, S. Dennis & W. Kintsch

(Eds.), Handbook of latent semantic analysis (pp. 227–241). Mahwah, NJ: Erlbaum.

McNamara, D. S., Crossley, S. A. & Roscoe, R. D. (2013). Natural language processing in an intelligent writing

strategy tutoring system. Behavior Research Methods, 45, 499-515.

121

McNamara, D. S. & Graesser, A. C. (2012). Coh-Metrix: An automated tool for theoretical and applied natural

language processing. In P. M. McCarthy & C. Boonthum (Eds.), Applied natural language processing and

content analysis: Identification, investigation, and resolution (pp. 188-205). Hershey, PA: IGI Global.

McNamara, D. S., Graesser, A. C., McCarthy, P. & Cai, Z. (2014). Automated evaluation of text and discourse with

Coh-Metrix. Cambridge: Cambridge University Press.

McNamara, D. S. & Healy, A. F. (1995). A generation advantage for multiplication skill and nonword vocabulary

acquisition. In A. F. Healy & L. E. Bourne, Jr. (Eds.), Learning and memory of knowledge and skills (pp.

132-169). Thousand Oaks, CA: Sage.

McNamara, D. S., Levinstein, I. B. & Boonthum, C. (2004). iSTART: Interactive strategy trainer for active reading

and thinking. Behavioral Research Methods, Instruments & Computers, 36, 222-233.

McNamara, D. S., O’Reilly, T., Best, R. & Ozuru, Y. (2006). Improving adolescent students’ reading

comprehension with iSTART. Journal of Educational Computing Research, 34, 147-171.

McNamara, D. S., O’Reilly, T., Rowe, M., Boonthum, C. & Levinstein, I. B. (2007). iSTART: A web-based tutor

that teaches self-explanation and metacognitive reading strategies. In D. S. McNamara (Ed.), Reading

comprehension strategies: Theories, interventions, and technologies (pp. 397–421). Mahwah, NJ: Erlbaum.

Murray, T. (2003). An overview of intelligent tutoring system authoring tools: Updated analysis of the state of the

art. In T. Murray, S. Blessing & S. Ainsworth (Eds.), Authoring tools for advanced technology learning

environments (pp. 491-544). Dordrecht, Netherlands: Kluwer Academic Publishers.

Roscoe R, D., Brandon, R, D., Snow, E. L. & McNamara, D. S. (2013). Game-based writing strategy practice with

the Writing Pal. In K. Pytash & R. Ferdig (Eds.), Exploring technology for writing and writing instruction.

(pp. 1-20). Hershey, PA: IGI Global.

Roscoe, R. D. & McNamara, D. S. (2013). Writing pal: Feasibility of an intelligent writing strategy tutor in the high

school classroom. Journal of Educational Psychology, 105, 1010–1025.

Shute, V. J. (2011). Stealth assessment in computer-based games to support learning. Computer games and

instruction, 55, 503-524.

Shute, V. J., Ventura, M., Bauer, M. & Zapata-Rivera, D. (2009). Melding the power of serious games and

embedded assessment to monitor and foster learning. In U. Ritterfield, M. Cody & P. Vorderer (Eds.),

Serious games: Mechanisms and effects (pp. 295-321). New York, NY: Routledge.

Slamecka, N. J. & Graf, P. (1978). The generation effect: Delineation of a phenomenon. Journal of Experimental

Psychology: Human Learning and Memory, 4, 592-604.

Snow, E. L., Allen, L. K., Jacovina, M. E. & McNamara, D. S. (2015). Does agency matter?: Exploring the impact

of controlled behaviors within a game-based environment. Computers & Education, 26, 378-392.

Ventura, M., Shute, V. & Small, M. (2014). Assessing persistence in educational games. In R. Sottilare, A. Graesser,

X. Hu, and B. Goldberg (Eds.), Design recommendations for intelligent tutoring systems: Volume 2

 Instructional management (pp. 93-101). Orlando, FL: U.S. Army Research Laboratory.

122

CHAPTER 9 Design Considerations for Collaborative

Authoring in Intelligent Tutoring Systems
Charlie Ragusa

Dignitas Technologies, LLC

Introduction

Use of eLearning systems has grown dramatically in recent years, driven by demand from government,

educational institutions, and corporations. Technological advancements have facilitated this growth,

including software as a service (SaaS), cloud computing, and an increasing variety of delivery platforms

(e.g., mobiles, tablets, internet-of-things). As Internet access and mobile device usage increase, the next

generation is accustomed to the concept of interactive media for everything from informal information

gathering to formal training.

In comparison to the broader eLearning community, intelligent tutoring systems (ITSs) are still primarily

limited to a research and development context. A key enabler to the widespread adoption of ITSs will be

the existence of robust and easy-to-use authoring tools (Murray, 2003). ITS development has special

challenges compared to a general eLearning system, and development of domain independent ITSs even

more so. Though certainly not trivial, the basics of authoring in many non-ITS eLearning systems are

straightforward, typically involving support for authoring of non-interactive content (e.g., text, pictures,

videos) and simple assessments (e.g., multiple choice). Learner assessment often takes the form of

quizzes or exams, while content is frequently a link to existing media or an attached document. All too

often this results in little more than a migration of offline content such as text books and lecture notes to

an online environment, with the presentation of data enhanced through limited multimedia.

Authoring for an ITS is more demanding because the system is interactive: the difference is analogous to

creating a playable video game instead of a movie. Content and knowledge assessment remain essential,

but ITS-enabled courses require representations of domain knowledge, learner models, expert models,

pedagogical models, conditional and non-linear flow through the material, and various meta-data. For

ITSs equipped with physiological sensors, authoring is needed to adapt to the learner’s affective state.

Due to these complexities, for non-trivial domains, the knowledge and skills required to author effective

instruction often do not reside in a single individual. The best outcome is achieved by collaboration

among some combination of instructional designers, subject matter experts, psychologists, traditional

educators, and software engineers (Nye, Rahman, Yang, Hays, Cai, Graesser & Hu, 2014). This chapter

examines the challenges related to collaborative authoring in general and as they pertain to the

Generalized Intelligent Framework for Tutoring (GIFT; Sottilare, Brawner, Goldberg & Holden, 2012).

Topics include roles and responsibilities, workflow, and software architecture considerations.

As an intelligent tutoring framework, GIFT is unique in that it is open source and domain independent,

includes a sensor framework, and is designed to integrate with external training applications. These

characteristics, along with the author’s familiarity with GIFT, make it well suited for a discussion on

collaborative ITS authoring. Consequently, discussion from this point forward is very GIFT centric. Of

course, many of the ideas should be applicable to collaborative authoring in general.

124

Related Research

While the literature is replete with publications on eLearning and ITSs, relatively little has been published

on the topic of collaborative authoring for ITSs. Early research on collaborative authoring typically

addressed collaborative authoring of documents. More recently, collaboratively writing documents is

pervasive and most readers should have some experience with collaborative authoring in a variety of

formats such as the following:

 Documents shared via email

 Shared network drives within an organization

 Shared documents on cloud-based drives such as Microsoft OneDrive and Dropbox

 Wiki page authoring, e.g., Wikipedia

 Document workflow tools, such as Microsoft SharePoint

 Google Documents

 Microsoft OneNote and Word

 Content Management Systems

 WebDAV (Whitehead Jr. & Wiggins, 1998)

 Version control systems such as Subversion, Git, or Mercurial

Research on collaborative writing continues; however, only some of this work is relevant for eLearning.

The eLearning industry has published The Ultimate List of Cloud-Based Authoring Tools, which lists over

50 cloud-based eLearning authoring tools (Pappas, 2013). Several tools offer support for collaborative

authoring and some even support branching and interactivity, implying a rudimentary level of intelligent

tutoring. There are a few published reviews of these tools, in some cases comparing many tools (Elkins,

2013), and in other cases, providing more in depth comparison of just two (Tao, 2015). This set of tools

offers some insights for collaborative authoring. First, each tool tends to focus on either web developers

or instructors, and less commonly both. Second, most tools allow authors to create content in ways that is

familiar to them (e.g., translating their PowerPoint slides into an interactive web page). Finally, most

tools focus in building specific learning resources that can be embedded as HTML pages.

Another relevant collaborative authoring environment is Stanford University’s WebProtégé, a free open-

source collaborative ontology development environment for the web (Tudorache, Nyulas, & Noy, 2013).

WebProtégé is particularly interesting because, in addition to being a cloud-based collaborative authoring

environment, it embodies many of the concepts described in this chapter including history and revision

management, built-in discussion support, and interoperability with a desktop version of the Protégé

authoring tool. Much like GIFT, it is a highly technical editor that outputs extensible markup language

(XML) (among other formats). Also, WebProtégé is constructed using the Google Web Toolkit (GWT)

 the same platform used to construct GIFT’s web based authoring tools. Assuming the continued

use of GWT by the GIFT team, approaches and techniques used by WebProtégé may be directly

transferrable to future GIFT collaborative authoring tools.

125

Discussion

The current suite of GIFT authoring tools is largely desktop applications (Hoffman & Ragusa, 2014). The

tools allow flexible configuration of the system, but are aimed toward software developers rather than

content experts. Moreover, they were not specifically designed with collaboration in mind. However, each

incremental improvement to the GIFT framework can update these tools, since they are generated

automatically from the XML schemas of GIFT’s configuration files. Additional coding is necessary only

when it is required to implement specialized functions, such as creation of custom dialogues or additional

validation beyond the schema. While these tools do not formally support collaboration, the usual

cumbersome collaboration methods for collaboration are possible: emailing authored files, shared drives,

or a revision control system (e.g., Subversion). The latter approach has the advantage of versioning,

graceful merging of edits, and conflict resolution for when two authors edit the same part of a file.

Though most GIFT tools are desktop applications, a few are web-based. The GIFT survey authoring

system was designed as a web application and recent GIFT releases have introduced web-based tools for

authoring courses and for domain knowledge files. These new tools are a step toward reaching content

experts, but would be more powerful with explicit support for collaboration.

General Considerations

Independent of issues related to collaboration, any new authoring tools should adhere to best practices for

user interface design (Stone, Jarrett, Woodroffe & Minocha, 2005), such as the following:

 Intuitive interfaces that do not surprise users with unusual behavior

 Availability of context sensitive help

 Aesthetics

 Input validation

 User-friendly error messages

 Undo/Redo

 Preview capability

These considerations are not discussed in detail, but are noted here for completeness.

Terminology and Authoring Granularity

Currently, GIFT supports authoring and runtime execution at the granularity of a single learner session

which it calls a GIFT “course.” There is no minimum or maximum time associated with a course, but the

working assumption is that a course will be completed in a single learner session, whether it be 5 minutes

or 2 hours or more. Given a single granularity, this is the obvious choice, however, independent of

collaborative authoring concerns, GIFT should expand its capability to support a wider range of

granularities and would be well served by modifying its nomenclature to match current norms. One

suggestion would be to rename the current course construct to “lesson” and repurpose the term “course”

to describe a series of related lessons.

126

A further refinement would be to add an optional intermediate level of granularity that could be used to

define “sections” or “modules” within a course. The precise terminology is perhaps less important than

the support for the hierarchical construct. Despite this suggestion, unless otherwise noted, “course” will

be used throughout the remainder of this chapter to reflect a GIFT course as currently implemented by

GIFT. Collaborative authoring considerations for course/module/lesson hierarchies is left to a future

discussion.

Authoring in the Cloud

GIFT supports both web-based content delivery as well as desktop/fat-client operation. Regardless of the

runtime environment, GIFT authoring can and should be managed as a cloud-based web application.

Cloud deployment is an ideal environment for collaborative authoring (Schneider, 2012). Beyond the

obvious benefits to collaborative authoring of concurrent access by multiple users, cloud infrastructure

typically includes support for several key elements of a collaborative system such as accessibility,

storage, versioning, and scalability. For simple courses that require no other client resources beyond a

web browser, content can remain in the cloud and be fetched by the browser as needed. On a desktop

runtime environment, the course and any resources needed locally can be downloaded and cached as

necessary. For the remainder of this chapter, a cloud-based authoring system is assumed.

Given the assumption of a cloud-based authoring environment, GIFT must move all core authoring

functions to the cloud. Essential functions of the authoring system (ignoring collaboration, for the

moment) include the following:

 Authoring, uploading, and management of content

 Authoring, uploading, and management of GIFT configuration elements/files

 Authoring and management of surveys
1

 Publishing authored courses (i.e., making them available for use)

The objective is for authored courses and all required resources to be served from the cloud, and fetched

or downloaded as needed. Courses requiring only a browser and internet connection can be delivered on

demand to the browser from the cloud. Courses using sensors or third-party desktop applications will be

downloaded and cached by the local GIFT runtime, where the user or local administrator will bear some

responsibility for downloading and installing the necessary desktop applications.

It should be noted that some changes suggested here will require changes to the GIFT runtime

environment. As much as possible and practical, existing third-party software (e.g., Java Web Start) that

can be used without license fees or proprietary encumbrances should be leveraged to handle the low-level

details, including security related issues. From the author’s standpoint, the goal is a seamless and

straightforward system. The same cloud application responsible for authoring could then be leveraged for

tools such as report generation.

Resource Management, Projects, and Tool Integration

A typical GIFT course references multiple resources including some combination of the following:

1
 GIFT uses “survey” as a catch-all term for form-based quizzes, assessments, exams, as well as traditional surveys

(e.g., psychological, biographical, and satisfaction, etc.).

127

 Content (HTML, PDF, PowerPoint, etc.)

 Core GIFT XML configuration files: Course, Domain Knowledge, Meta-Data

 Surveys
1

 3
rd

 Party Training Applications including application-specific scenario and configuration files,

such as 3D training simulation data.

 Secondary XML configuration files: Learner and Sensor Configuration

Content and XML configurations currently exist as files. Surveys are managed using a relational database.

To date, third-party training applications have been desktop applications installed on the user workstation

that not directly managed by GIFT. Existing GIFT best practices are to organize content and primary

XML configuration files inside a common subfolder of a designated domain folder for the GIFT

installation. A domain knowledge folder is required, but organization beyond that is not enforced. Rather

than being configured on a per-course basis, secondary XML configuration files have been managed as

part of the GIFT installation.

To facilitate collaboration, GIFT will need to create a project construct to serve as the overarching logical

container for all the resources related to a specific effort. The project is analogous to the best-practice idea

of locating related resources in a common folder, but is more flexible. Resources used by multiple

projects can be stored in a single location and simply referenced by projects as needed. The project

construct also serves to manage the collaboration settings for the project, including the user names of the

collaborators, their roles, and access control specifications. This paradigm has parallels to collaborative

editing tools of compiled documents (such as LaTeX, e.g., www.overleaf.com) or code projects (e.g.,

Cloud9, c9.io).

GIFT currently uses a distinct editor for each major authoring task. This is true of both the desktop

authoring tools as well as the browser-based authoring tools. The project construct also serves to unify the

tools so that the user experiences the tool suite as a single unified tool with multiple integrated functions.

With the project construct as a framework, two collaboration functions are essential:

 Project creation

 Collaborator management

Project creation means the creation of a new project within the system. Collaborator management is the

infrastructure used to manage collaborators and their roles, permissions, and workflow.

Types of Collaboration

Collaboration can take multiple forms. The most basic forms of collaborative authoring include in-person

reviews where a document is shown on a shared screen and a group reviews and/or edits together.

Another simple collaborative authoring technique is sharing documents via email or a shared document

repository for multiple authors to contribute to or review. In the following sections, more advanced

collaboration modes and related issues are discussed.

http://www.overleaf.com/
https://c9.io/

128

Concurrent Editing

In a concurrent editing environment, multiple authors can edit a shared document in real time. Edits made

by one author appear immediately in the views of the other authors. Well-known commercial applications

supporting concurrent authoring include recent versions of certain Microsoft Office applications,

Microsoft OneNote, Etherpad, and documents in Google Drive. Aside from a few variations, these

applications all work similarly in that they are cloud-based, require sharing of the document with other

collaborators, and allow updates and edits to be seen by other collaborators in real time (if shared with

those collaborators).

Concurrent editing has the obvious advantage of allowing real-time collaboration between two or more

remote authors, which closely mimics working together side-by-side at a single workstation or

whiteboard, especially when paired with an additional voice or chat communication channel to discuss

ideas. This is especially useful for authoring where ideas are not fully developed, and require discussion,

negotiation, and agreement by the authors.

Roles

In the context of intelligent tutoring, collaborative authoring implies a team of two or more individuals

working together to create an intelligent tutor. In some cases, the team members may be peers, in which

case the team may exist for no other reason than to divide the workload or support peer reviews.

However, a more likely scenario is that the team consists of individuals with differing skills and

backgrounds that are brought together to leverage their complementary talents. Thus, before considering

the nature of role-based collaboration, we first define some common roles of potential collaborators.

Key authoring roles include the following:

Instructional System Designer This is a person with experience and/or formal training in the design and

construction of instructional systems. A person in this role is well founded in learning theory and the

application of current technology to the learning process.

Subject Matter Expert Within the context of a given authoring project this is the person with advanced

domain knowledge in the area to be trained. The expertise could be from advanced education in the

area, life experience, or both.

Course Facilitator This is the person(s) that will be responsible for delivering the training to the

end-user (learners). They could be an actual instructor in a blended learning environment or simply a

training coordinator.

Supporting roles include the following:

Educational Psychologist This is a person with an expertise in the science of learning from both a

cognitive and behavioral perspective.

Software Engineer The existence of this role reflects the idea that certain ITS capabilities require

expertise in programming, formal logic, or other specialized skills. Thus, the software engineer’s role

is to manage and/or implement any lower-level system requirements or configuration items that are

either not handled by the authoring tool’s user interface or require strong technical expertise.

129

Experimenter Given that GIFT and other ITSs are often used as research tools, experiments are an

important part of the ecosystem. This role involves implementing an experimental design and

collecting the correct types and quantities of data to satisfy the objectives of an experiment.

Reviewer This is a role that exists to capture and approve learners’ completion or results, with

responsibility for review and approval. An example would be a training compliance officer within a

corporate environment. This role may overlap with other roles, particularly the course facilitator.

Administrator This is a system-level role. Users with administrative privileges have the ability to

configure authoring tool and application-wide settings, perhaps including adding and/or approving

new users to the site and assigning roles.

It’s worth noting that the composition of authoring teams is likely to vary widely from one organization to

another and even from one project to another within an organization. In many cases, a single individual

may support multiple roles, and in other cases, multiple individuals may share the same role.

Additionally, though the set of roles described above may be sufficient for many authoring environments,

the system should not limit users to the roles in this set. Rather the system should support the arbitrary

creation of new roles via assignment of access levels and privileges.

Role-Based Access Control

Controlling access to project resources based on role is valuable for collaborative ITS authoring. It is a

ubiquitous concept in multi-user information technology (IT) systems. Collaborators are assigned one or

more roles on a per-project basis, and their access to resources is constrained by their least restrictive role.

Allowing “read” and/or “write” privileges for each role may be sufficient for most projects, although

“create” and “delete” for management roles may also be required. Such constraints serve to declutter

views and minimize unwanted and potentially costly erroneous operations.

It is worth considering the granularity at which privileges can be set, as too fine a granularity can be

overwhelming for those setting privileges, but too coarse a granularity may leave gaps where a user has

too few or too many privileges. Fine granularity gives the administrator the most control, but coarse

granularity is easier to implement. In places where fine granular control is appropriate, the burden should

be minimized by cascading changes on nested resources and resource elements.

Both the organizational level and the project level of a collaborative authoring system should allow role-

based access control. Roles and permissions established at the organizational level would become defaults

for any new project, but could be customized by the project as needed, simplifying initial setup.

Role-Based Interface Customization

In light of the roles previously described, it is clear that different collaborators may need to interact with

the authoring system in substantially different ways. Some roles have completely non-intersecting skills

and experience, and may author different parts of the course. All portions of the course under

development frequently require input and/or review by more than one user. Displaying content in a form

that is natural to the author or reviewer should be considered a best practice.

Multiple viewers/editors can be built in to the authoring system to provide an intuitive interaction for a

user based upon the role(s). The working assumption is that users with a given role will have similar

130

expectations and technical abilities. For example, many software engineers may prefer editing content as

raw XML, whereas subject matter experts may prefer a graphical drag-and-drop interface.

At a minimum, interfaces must have two modes: one that allows editing and one that is simply for review

where edits are not permitted. For this functionality, the interface would remain effectively the same. This

level of interface customization may be sufficient for some portions of the authoring system, while others

would benefit from fully separate views of the data. There is a trade-off in terms of effort required to

implement additional interfaces and a pay-off in terms of usability of those interfaces. Accordingly,

analysis and input from potential users in each of the target roles must drive the decisions to implement

each additional interface (i.e., build to meet demand).

Workflow

Role-based access controls constrain who and what can be edited, while a workflow typically (though not

always) imposes constraints based on timing, sequencing, and roles. Enterprise document management

systems offer examples of formal document workflows, such as Microsoft SharePoint. GIFT authoring is

currently unconstrained by workflow. Courses can be authored in a top-down or bottom-up fashion, and

any and all aspects of a GIFT course can be edited at any time. If workflow is desired, it must be agreed

upon and managed by the collaborators themselves.

Given the extreme flexibility and generalized nature of GIFT, low-level authoring is unlikely to ever be

constrained by workflow. Nevertheless, implementing support for workflow for high-level authoring

could have several advantages for collaborators, including division of labor, support for review/approval

processes, assignments based on expertise, or enforcement of authoring best practices.

A system of note in this regard is EasyGenerator (www.easygenerator.com), a commercial cloud-based

adaptive system, which supports both collaborative authoring and built-in workflow. In EasyGenerator,

authoring is performed using a didactic approach. Authors first enter learning objectives based on course

goals. After goals and objectives are established, authors enter questions used to evaluate student learning

of goals. Finally, learning content is added/authored. Content can be added separately or it can be tied

directly to a question.

For GIFT, workflow support could be created at one of three different levels. The first and simplest level

would be to provide built-in support for one or more pre-defined workflow templates, analogous to the

EasyGenerator approach. The second level would integrate a workflow engine into the authoring system

and provide a means to upload (or choose from previously uploaded) workflow configurations created

outside of the authoring system. The third, and most sophisticated, approach builds on the second but

includes support for creating the workflow definition within the authoring tool itself.

Before developing any workflow, it is essential to solicit input from the user community. This is

especially true for the first level, given that user-configurable workflow would not be supported. For the

second and third approaches, a key step is to identify a suitable workflow engine. One promising option

in this regard is jBPM (http://www.jbpm.org/), an open-source business process management (BPM)

suite, which includes, among several features and tools, an extensible pure Java workflow engine

supporting the Business Process Modeling Notation specification (www.omg.org/spec/BPMN/2.0/). Of

course, jBPM is just one of many open-source workflow engines that might be applied to this purpose

(for more examples, see java-source.net).

http://www.easygenerator.com/
http://www.jbpm.org/
http://www.omg.org/spec/BPMN/2.0/
http://java-source.net/

131

Inline Support for Collaborator Communication

Support for inline communication is an appreciated feature in many collaborative environments. This

functionality is primarily provided by two modes of communication in current technology. The first

allows real-time conversations/discussions between collaborators with a global real-time chat capability.

Applications such as Google Chat provide this capability and are widely available for no cost. For many

use cases, this may be sufficient; however, there is some advantage to having the capability built in to the

collaborative authoring system. With a built-in capability, a record of the conversation could be saved as

part of the course “project” and then referenced in the future. Also, because the current state of the course

is readily available on their screen, collaborators are able to more easily reference the material they are

discussing.

The second mode of communication is per-element annotations that can be associated with various

aspects of the course. This functionality is seen on the review tab in Microsoft Office products, which

allow “comments” on specific parts of a document. Such a feature enables asynchronous communication

between authors concerning specific aspects. For example, reviewers could use it to note confusion or

mark something needing improvements during the review process.

Should the GIFT team decide to implement support for comments, decisions must be made as to the

appropriate level of granularity. In the case of Microsoft Word, comments can be inserted/attached to

something as small as a single character. However, as a practical matter for GIFT, it may be best to keep

the comments fairly coarse to avoid introducing unnecessary complexity to the authoring tools. There are

also issues about the portability of comments across multiple authoring interfaces for the same data (e.g.,

raw XML vs. a form-based tool).

Social Networking

Collaborative authoring is social by its very nature. However, beyond the obvious, it is uncertain exactly

what role social networking should play. It may be that social networking in the larger sense has more of

a role in the end-user/learner experience than in the authoring process itself. In this case, the authoring

system would clearly require support for configuration of the social networking aspects of the runtime

environment, perhaps on a per-course basis, and could then provide a view into data generated via the

social interactions as a means to inform ongoing course development. Furthermore, it is not uncommon

for instructors to engage with learners in a social learning context, so a mechanism to support this may

also be required. Given the assumption of a cloud architecture, it is easy to envision the instructor’s

interaction being mediated through the authoring system itself, blurring the distinction between the

authoring system and the runtime system.

On the other hand, in the event that GIFT (or any other ITS) is deployed as large-scale SaaS platform,

there may be a role for social networking in authoring. One can imagine, for example, the authoring

system allowing authors from different organizations sharing resources, ideas, etc. Of course, this is

impractical for commercial enterprises based on proprietary intellectual property but fits well with various

open education initiatives. In general, this area has a wide variety of areas for investigation and requires

significant further research.

Version Control and Course Publication

Version control of documents is essential in a collaborative authoring system. The idea is to protect work

progress against inadvertent changes and deletion by saving revisions of the work as it progresses. In the

132

event that unwanted changes or deletions are made, the system provides a mechanism to roll back to an

earlier revision.

GIFT currently manages course configuration and content at the file level, while surveys are managed as

entries in a relational database. The first step for revision management would be to manage revisions at

these same levels. Concurrent editing requires a more sophisticated approach than file-level management.

One approach would be to abandon the notion of files and store configuration and content items as objects

in a database. In this way, revisions can be tracked at more granular levels. This approach also supports

other ideas described in this document such as access constraints, workflow, and comments. For

versioning surveys, database schema changes would be required.

Currently GIFT course authoring and publishing are decoupled. Thus, after authoring, a second explicit

step, using the GIFT export tool, must be taken by the author to export an authored course—a process

which packages up one or more GIFT courses, including copies of required resources, in a form suitable

for distribution. After receiving the distribution, the recipient of the exported course must explicitly

import the course into a GIFT instance.

Once the GIFT authoring tool and GIFT content both reside in the cloud, the distinction between a course

that is under development (i.e., being authored) and one that’s ready for use will be blurred. Courses in-

progress may reside in the same repository and (depending upon the implementation) may actually

reference some of the same shared files. The act of publishing a course then becomes an operation that

provides visibility and access to a particular revision(s) of a set of course resources, rather than the

physical act of copying files. Additional refinements to the course would be saved as later (non-

published) revisions, that can be published if desired.

Course Resource Metadata

A potentially valuable feature for the authoring system would be support for metadata tagging of course

resources. Such a capability is probably best categorized as a like-to-have feature more than a must-have,

but is certainly worthy of consideration. Such a scheme would be useful for capturing and managing

documentation of rationales for key decisions, references for content acquired from third parties and other

data relevant to the authoring process. Having such data stored and available alongside the corresponding

resource could be useful to authors in the same way that inline code comments are useful to computer

programmers. The true value of such metadata is often fully appreciated (either by their presence or their

absence) only when the content is revisited or modified at some point in the future, particularly by a new

author.

Managing metadata at the file level could be done as a sub-element of the project construct and/or as part

of a shared content repository. Approaches for finer grained management vary depending on the resource.

For example, metadata for objects in a database (e.g., surveys) are probably best handled by extending the

database schema appropriately. Given that GIFT already supports metadata tagging of content for

pedagogical purposes, there may be some opportunity for synergy or reuse.

Usability Metrics

Any new authoring system should include support for capturing usability metrics. The objective is to log

user interactions with the authoring system and then, once a sufficient dataset is collected, perform an

analysis on the data to better understand how the system is used. Lessons learned from the analysis can be

applied to improve the application’s user experience in forthcoming releases.

133

 At a minimum, the application should be instrumented to capture the following time-stamped data:

 User navigation to the functional areas of the application

 User access to the help system

 Usage errors (e.g., errors caught by input validation)

 Server response times

Finer-grained instrumentation could include detailed logging of user interactions (e.g., mouse clicks) with

widgets contained in the different functional areas. Also, although the value of the help system can often

be inferred from surrounding user interactions, it may be worthwhile to directly ask users of the help

system if the provided help was satisfactory via a simple checkbox conveniently and unobtrusively

located within the help display.

Details about data analysis must be left for another discussion; however, it is worth noting that users must

be tracked individually, rather than collectively, and the analysis should not be viewed as a static data set

but rather should track how user behavior changes over time. Doing so enable inferences to be made

about collaboration as well as how individuals and teams increase in their proficiency over time.

Integration with Third-Party Authoring Tools

GIFT currently has some level of integration with four systems: AutoTutor (Graesser, Chipman, Haynes

& Olney, 2005; Nye, 2013), the Student Information Models for Intelligent Learning Environments

(SIMILE) Workbench (Goldberg & Cannon-Bowers, 2013), Tools for Rapid Development of Expert

Models (TRADEM) (Brown, Martin, Ray, & Robson, 2014), and RapidMiner (Hoffman & Klinkenberg,

2013). None of these authoring tools are integrated seamlessly, but the design of GIFT is meant to support

authoring of ITSs via external (third-party) applications that deliver content and user experiences within

the context of a GIFT course. Indeed, the current version of GIFT includes sample courses that use

AutoTutor, Virtual Battlefield Simulator 2 (VBS2), Tactical Combat Casualty Care Simulation (TC3Sim;

Sotomayor, 2010), PowerPoint, and others. In each case, scenarios and/or content was developed using

the training application’s respective authoring capabilities.

As a matter of practicality, it is not feasible for GIFT authoring tools to integrate with more than a small

subset of possible third-party authoring tools, although these integrations are beneficial. Integration with

third-party tools means that each new release of either system incurs a significant burden of ongoing

testing and maintenance. In addition, many third-party authoring tools exist only as proprietary desktop

applications and very few expose the requisite functionality via an application programming interface

(API), making cloud-based integration difficult if not impossible. Hence, as a general rule, external

authoring tools will not/should not be integrated, but rather should remain as independent tools, the output

of which is used as input to the GIFT authoring system.

A compelling use case driven by either a unique technical capability and/or substantial user demand could

motivate an exception to this rule. Of course, the extent to which such integration can be made seamless

would vary based upon technical feasibility. One of the four systems currently integrated with GIFT,

AutoTutor is an ITS unto itself and offers the most promise in terms of authoring integration.

AutoTutor’s compelling capability is that it provides the ability to engage learners in two-way dialogue

driven by computational linguistics and semantic analysis. Additionally, the AutoTutor runtime has been

integrated with GIFT for some time now. More recently the AutoTutor Script Authoring Tool has been

134

released as a web application (Nye, Graesser, Hu & Cai, 2014), and thus is well suited for integration with

any web or cloud based authoring system for GIFT.

There will likely be increased interest and opportunities for integration with third-party authoring systems

as the GIFT authoring capability matures and its popularity grows. Each potential integration partner

system must be considered based on its merit and weighed against competing opportunities. An

alternative approach might be to make a common plug-in API for third-party authoring tools, though this

might be complex to implement in a cloud-based environment. Since GIFT is an open-source project, this

sort of specialized integration may best be left to third-parties with a vested interest in the success of the

respective authoring system.

Mobile

Without question, GIFT should support mobile learning; however, mobile authoring seems less of a

priority. Desirable though it may be, there are simply too many competing priorities. The work of creating

and maintaining platform specific (iOS, Android, Windows, etc.) apps as well as addressing the concern

for minimizing bandwidth seems like an unnecessary burden at this time.

That said, it would be wise for ongoing ITS authoring development to proceed with a mobile future in

mind. At the very least, developers should be acquainted with mobile best practices so as to architect the

system in such a way as to facilitate migration in the future. Until such time, mobile considerations may

best be limited to designing web pages to render effectively on mobile devices.

Scalability and Cloud Architecture Considerations

Earlier we made the assumption that any collaborative ITS authoring system would be best constructed as

a cloud-based web application. However, the discussion thus far, save for a brief mention of the

advantages of deploying within the cloud, has relied very little on cloud technology per se. In fact, the

only real assumption has been that an authoring tool would be Internet accessible and support multiple

concurrent users. For small-scale use, a traditional web application would be sufficient. In theory, the

entire system could reside on a single host, perhaps augmented by a second host for database operations.

For enterprise-level deployments, more sophisticated architectures are required to take full advantage of

the cloud, especially in the area of scalability. Perhaps the greatest scalability challenge would arise from

offering GIFT (inclusive of the authoring system) as a SaaS platform. In such a case, there would simply

be a single GIFT presence in the cloud, which would scale to meet demand as new organizations and their

users came on board.

To gracefully support this level of scalability, GIFT must be architected for and implemented on a cloud

infrastructure, either platform as a service (PaaS) or infrastructure as a service (IaaS). While a detailed

discussion on the implications of these choices is beyond the scope of this chapter (see Mell & Grance,

2011 for an overview), PaaS would allow developers to start at a higher level of abstraction and thereby

accelerate development. The trade-off, of course, is that PaaS ties the application to the chosen platform,

reducing, and perhaps even, eliminating, any hopes for portability. This may be irrelevant for a

commercial enterprise, but may be of some concern for an open-source project such as GIFT. Conversely,

the choice of IaaS will tend to maintain a higher level of portability at the expense of development time

and long-term maintenance expense.

A particularly interesting IaaS option is OpenStack (www.openstack.org), an open-source IaaS platform.

Ignoring the relative merits of OpenStack vs. other IaaS options, OpenStack has the unique advantage of

http://www.openstack.org/

135

being available both through commercial OpenStack cloud service providers, while also being deployable

to organization-owned hardware for an internally owned and operated cloud.

Lastly, regulatory and compliance requirements, such as International Traffic in Arms Regulations

(ITAR), must be considered for certain applications by US government agencies and contractors. Amazon

Web Services, for example, offers Amazon Web Services (AWS) GovCloud (2015) to address this

concern. In general, service providers have been expanding to fill these types of spaces, with specialized

support for government needs and also Health Insurance Portability and Accountability Act (HIPAA)

privacy regulations.

The IaaS/PaaS choice is just the first of several architectural considerations, where getting the architecture

right is the fundamental design that will determine scalability. The bottom line is that development of any

cloud-based authoring system must be preceded by a thorough analysis of cloud architectures, in light of

current and anticipated system requirements.

Recommendations and Future Research

Future success of advanced ITSs will depend on the availability of collaborative authoring tools. Any

effort to develop the next generation of such authoring tools should be preceded by a thorough analysis

including the following:

 Detailed examination of the design considerations as outlined here,

 Review of analogous tools such as WebProtégé and EasyGenerator, and

 Input from the user community to identify design considerations and priorities.

Once objectives and priorities for the authoring tool are established they must also be put into the larger

context of schedule and budget for the ITS as a whole. Tradeoffs will have to be made between advancing

the capabilities of the ITS itself and advancing the authoring system.

Given the rapid pace of development of GIFT (and presumably other ITSs) authoring tool design should

plan for change. To the greatest extent practical, the authoring system should be built with appropriate

abstractions, perhaps as a framework, so that authoring for new ITS capabilities can be added with

minimal changes to the system as a whole.

Finally, while authoring tools are currently mainly used to support research on ITSs and their capabilities,

a sophisticated collaborative authoring environment could offer a testbed for research on the psychology

of collaboration. Even in the short term, quantitative research studying the performance and efficiency of

the ITS authoring systems is an important direction. As such, moving forward, identification and analysis

of a common set of usability metrics is probably an important step forward.

References

Amazon Web Services. (2015, Mar 20). Retrieved from AWS GovCloud (US) Region - Government Cloud

Computing: http://aws.amazon.com/govcloud-us/

Brown, D., Martin, E., Ray, F. & Robson, R. (2014). Using GIFT as an Adaptation Engine for a Dialogue-Based

Tutor. Proceedings of the Second Annual GIFT Users Symposium (GIFT Sym2), (pp. 163-174).

Easy Generator. (2015, Mar 20). Retrieved from www.easygenerator.com

136

Elkins, D. (2013, January 24). E-Learning Authoring Tool Comparison. Retrieved from E-Learning Uncovered :

http://elearninguncovered.com/2013/01/e-learning-authoring-tool-comparison/

Goldberg, B. & Cannon-Bowers, J. (2013). Experimentation with the Generalized Intelligent Framework for

Tutoring (GIFT): A Testbed Use Case. AIED 2013 Workshops Proceedings Volume 7, (pp. 27-36).

Graesser, A. C., Chipman, P., Haynes, B. C. & Olney, A. (2005). AutoTutor: An intelligent tutoring system with

mixed-initiative dialogue. IEEE Transactions on Education, 48(4), 612-618.

Hoffman, M. & Ragusa, C. (2014). Unwrapping GIFT: A Primer on Authoring Tools for the Generalized Intelligent

Framework for Tutoring. Generalized Intelligent Framework for Tutoring (GIFT) Users Symposium

(GIFTSym2), (pp. 11-24).

Hofmann, M. & Klinkenberg, R. (2013). Rapidminer: Data Mining Use Cases and Business Analytics Applications.

Chapman & Hall/CRC.

Mell, P. & Grance, T. (2011). The NIST Definition of Cloud Computing (800-145). National Institute of Standards

and Technology (NIST).

Murray, T. (2003). An Overview of Intelligent Tutoring System Authoring Tools: Updated analysis of the state of

the art. In T. Murray, S. Blessing & S. Ainsworth, Authoring tools for advanced technology learning

environments (pp. 491-544). Springer.

Nye, B. D. (2013). Integrating GIFT and AutoTutor with Sharable Knowledge Objects (SKO). AIED 2013

Workshop on GIFT, (pp. 54-61).

Nye, B. D., Graesser, A. C., Hu, X. & Cai, Z. (2014). AutoTutor in the cloud: A service-oriented paradigm for an

interoperable natural-language ITS. Journal of Advanced Distributed Learning Technology, 2(6), 49-63.

Nye, B. D., Rahman, M. F., Yang, M., Hays, P., Cai, Z., Graesser, A. & Hu, X. (2014). A tutoring page markup

suite for integrating shareable knowledge objects (SKO) with HTML. Intelligent Tutoring Systems (ITS)

2014 Workshop on Authoring Tools.

Open Source Workflow Engines in Java. (2015, Mar 20). Retrieved from Java-Source.net: java-source.net/open-

source/workflow-engines

Pappas, C. (2013, March 12). The Ultimate List of Cloud-Based Authoring Tools. Retrieved from eLearning

Industry: http://elearningindustry.com/the-ultimate-list-of-cloud-based-authoring-tools

Schneider, P. (2012, June 18). Content Authoring Tools: Cloud-Based or Desktop? Retrieved from Learning

Solutions Magazine: http://www.learningsolutionsmag.com/articles/952/content-authoring-tools-cloud-

based-or-desktop

Sotomayor, T. M. (2010). Teaching tactical combat casualty care using the TC3 sim gamebased simulation: a study

to measure training effectiveness. Studies in health technology and informatics., 154, 176-179.

Sottilare, R. A., Goldberg, B. S., Brawner, K. W. & Holden, H. K. (2012). A modular framework to support the

authoring and assessment of adaptive computer-based tutoring systems (CBTS). Interservice/Industry

Training, Simulation, and Education Conference (I/ITSEC) 2012., Paper No. 12017, pp. 1-13.

Tao, T. (2015, Feb 28). Articulate vs. Captivate: The complete series. Retrieved from Fredrickson Communications:

fredcomm.com/articles/detail/articulate_vs_captivate_comparing_popular_rapid_elearning_development_t

ools

Tudorache, T., Nyulas, C. & Noy, N. F. (2013). WebProtégé: A collaborative ontology editor and knowledge

acquisition tool for the web. Semantic Web, 4(1), 89-99. Retrieved from WebProtege - Protege Wiki:

http://protegewiki.stanford.edu/wiki/WebProtege

Whitehead Jr., E. J. & Wiggins, M. (1998). WebDAV: IEFT standard for collaborative authoring on the Web.

Internet Computing, IEEE, 2(5), 34-40.

137

Chapter 10 Authoring for the Product Lifecycle
Steve Ritter

Carnegie Learning

Introduction

Intelligent tutoring systems (ITSs) and other adaptive learning environments have been developed and

tested for many years, and there is substantial evidence that they can contribute to significantly better

student outcomes (Van Lehn, 2011; Pane et al., 2014). However, such systems have found limited use in

schools and training programs. In part, this reflects a mismatch between the traditional educational

environment, which holds time fixed and aims to teach students as much as possible within that time, and

adaptive systems (and other mastery environments), which aim to allow students to define levels of

student mastery and then provide enough instruction to allow students to reach that level of competency,

however long it takes.

Within the authoring tool community, there is another theory about the relatively slow adoption of

adaptive learning environments: they are too expensive to produce. In the classic volume on such

authoring tools (Murray, Blessing and Ainsworth, 2003), there are two stated reasons for developing

authoring tools: “to reduce development cost, and to allow practicing educators to become more involved

in their creation.” (p. iv). In both of these goals, we have primarily focused on the creation of the

instructional systems (c.f. Blessing, 2003; Razzaq and Heffernan, 2010; Aleven, et al., 2006). Some

systems have focused on reuse of existing systems (Ainsworth, et al., 2003; Ritter and Koedinger, 1996),

but even these take the creation of a new system from existing parts to be their goal.

It is important that authoring tools for intelligent tutoring systems focus on being able to create new

systems quickly and on making authoring accessible to teachers and content experts who are not

sophisticated programmers. But if ITSs are to become widespread and in regular use, they need to also

focus on features that allow these systems to be maintained and improved over time. One of the primary

advantages of ITSs is that they allow us to collect detailed data on student learning, which can help us

improve the educational outcomes of the systems themselves. We call this focus on continual

improvement “authoring for the product lifecycle.”

The Far-Outer Loop

VanLehn (2006) describes tutoring systems as containing an inner loop and an outer loop. The inner loop

relates to the tutor’s behavior at each step of a complex task; the outer loop is responsible for choosing

tasks for a student. In fact, the inner and outer loop description applies more generally to adaptive

systems. Within adaptive systems, inner-loop behavior is responsible for guiding students through a task,

including providing hints and feedback for the student, diagnosing errors and adapting to different

methods of problem-solving that the student might employ. The outer loop helps the system adapt to the

student by assessing the student’s level of knowledge at a higher level. The outer loop sets appropriate

pacing for the student (for example, by assessing mastery and allowing or recommending that the student

progress to the next topic when master is obtained) and picks appropriate tasks for the student to complete

(typically aiming to select tasks that emphasize skills that are within the student’s zone of proximal

development). In this way, tutoring systems adapt both within-task and across tasks.

138

Product-lifecycle authoring introduces an additional form of adaptation, taking place in what could be

referred to as the far-outer loop. This loop encompasses changes to the tutoring system at a timescale

larger than the task level. These changes represent improvements to the system itself that are made based

on data collected from prior users of the system. The goal of a tool focused on authoring for the lifecycle

is to enable rapid and relatively inexpensive responses to data collected from the system, so that future

students using the system will have an improved experience. When considering such a system, we need to

consider the possible changes to the system that can result from this data collection and some models for

how to implement changes to the tutoring system itself.

Types of Data-Based Changes

Our first consideration for product-lifecycle authoring is the type of changes that we might make to

systems based on these data. We consider four types of changes: those affecting system parameters, those

focused on instructional design changes, those addressing content, and those affecting the ability of the

system to be personalized for different types of students. These types of changes differ in the extent to

which they require extensive changes to the system and the extent to which they employ human judgment

(and thus cannot be easily automated).

Parameter Changes

A common type of change to ITSs is to adjust the parameters that control how the system reacts to

students. For example, model-tracing tutors typically assess student knowledge with respect to discrete

skills, also known as knowledge components. The system’s task is to assess each student’s mastery of

each knowledge component. Many tutors perform this task through Bayesian knowledge tracing, which

employs four parameters for each knowledge component (Corbett and Anderson, 1995). Two of these

parameters represent estimates of knowledge: the probability that the student has mastered the knowledge

component prior to instruction and the probability that the knowledge component will be mastered, given

an opportunity (this parameter is basically controlling the ease of learning the knowledge component).

Since knowledge is not perfectly reflected in performance, Bayesian knowledge tracing also uses two

performance parameters: the probability that the student will guess the correct answer (i.e., answer

correctly without having mastered the underlying knowledge) and the probability that the student will

“slip” (i.e., answer incorrectly, even though the student does possess the requisite knowledge). Since each

of the four parameters is considered a probability, each can vary between 0 and 1, although there are

various reasons why particular areas of this four-dimensional problem space may not be used (Beck and

Chang, 2007; Ritter et al., 2009).

Since settings of these parameters control task selection and mastery determination, they are essential

components in implementing the outer loop of a tutoring system. Although the settings of these

parameters is crucial to proper behavior of the system, the parameters are typically based on the intuitions

of the developers in the initial release of a tutoring system. Once data are collected from students, best-

fitting values for these parameters can be found (Cen et al., 2007; Gonzalez-Brenes et al., 2014; Khajah et

al., 2014), and Cen et al. (2007) demonstrated that modifying the system to use the discovered parameters

can produce better outcomes.

Beyond fitting Bayesian parameters within knowledge components is the question of whether the task is

being modeled with the correct set of knowledge components. Decomposing a task into the knowledge

components that best explain learning is also typically done based on intuition (informed by cognitive

task analysis). Here, too, there is a need for empirical refinement. Koedinger et al. (2012) demonstrate

that models found through data-fitting provide significant improvements over the initial intuition-driven

139

model. Thus, authoring systems that manage changes to such parameters over time can provide significant

benefit to a widely used system.

Design Changes

Adjusting knowledge tracing parameters can correct inefficiencies in the way that the tutoring system

navigates the outer loop. If a deficiency in the system involves the inner loop (the nature of the task

itself), changes may require fundamental changes to the task model itself. Dickison et al. (2010) found

that parameter adjustments made on the basis of previously collected data correctly modeled a new

student cohort, except in the case of an instructional unit that had undergone design changes. Since design

changes can negate the validity of changes to knowledge tracing parameters, it is essential that authors

wishing to improve a system be able to understand whether improvements can be achieved through

parameter changes or if they require design changes. In a system maintained for any length of time, there

are always a long list of potential design changes to be made. Some are driven by customer requests;

others by technical changes. If changes are to be made on the basis of the potential for improvements in

the instructional effectiveness of the system, then a lifecycle authoring system needs to provide guidance

to authors that can help prioritize these improvements and predict their likely impact.

While it is difficult to provide general guidance on identifying design errors, Carnegie Learning’s

experience suggests a few heuristics that could be helpful in prioritizing design changes. Internally, we

use an “attention metric,” which combines several indicators of educational ineffectiveness, to which we

(as authors) must direct our attention. The most important relates to “wheel spinning” (Beck and Gong,

2013), the case where students fail to master a skill in what is considered a reasonable amount of time. A

pure mastery learning system will continue to try and instruct such a student, even if no progress is being

made. In our tutors, we terminate instruction on this topic after some period of time and notify a teacher

that the student has failed to master the topic. Instructional topics that produce a large number of such

notifications are strong candidates for redesign. In fact, parameter fitting on such units may be

counterproductive. If a particular unit is not producing improvements in performance, then fitting

parameters based on the data might lead to a near-zero probability of mastering the skill on an

opportunity, which would result in such a system wanting to present even more ineffective instruction to

students.

Another factor we have found useful in our “attention metric” concerns the way that teacher treat units of

instruction. Teachers have control over inclusion of units of instruction within a curriculum, and units that

are often excluded are good candidates for scrutiny. Similarly, teachers can manually skip students past

particular problems, and the record of the frequency of this kind of behavior can indicate that those

problems are perceived to be confusing or otherwise ineffective.

Content Changes

One form of task change within a tutoring system involves changes to the content presented within a task,

rather than the basic structure of the task. Such content changes could be driven by user feedback to the

authors (e.g., ratings of helpfulness or enjoyment of particular activities), or the desire to allow end-users

to customize their system (Heffernan & Heffernan, 2014), increase the number of task contexts, or

increase the variety of contexts.

Depending on the sophistication of the task model and architecture of the overall system, content

authoring might employ general tools that can easily be used by non-programmers, or they might employ

special-purpose tools, whether for programmers or not (Ritter et al., 1998). In a lifecycle authoring tool,

the particular concern for content is in managing the data about particular pieces of content. Such a

140

system needs to track what elements of content are being used and (if available), which receive high or

low ratings from users. A particular concern related to lifecycle content authoring is the issue of problem

morphs. Tutoring systems assume that problems that are modeled with the same knowledge components

and delivered with the same task model are educationally equivalent. A lifecycle authoring system needs

to provide tools to determine whether this assumption is justified. If some problems prove to be

unexpectedly difficult or easy, then either the task model or the knowledge component model will need to

be adjusted.

Personalization

A particularly compelling type of change to a tutoring system is one that personalizes the system such that

different students receive different educational experiences. Such personalization changes would be

warranted, for example, if data showed aptitude-treatment interactions: that a particular tutoring approach

worked well for students with certain characteristics but that a different approach worked best with

students possessing different characteristics. Many people have strong intuitions that aptitude-treatment

interactions are pervasive in education and, particularly, believe that learning styles reflecting a preferred

presentation mode (such as verbal vs. visual) reflect such interactions, but the evidence for this is weak

(Pashler, et al., 2009). More modest forms of personalization do seem to be effective (Ritter et al., 2014).

An important consideration for lifecycle authoring tools would be identifying potential opportunities for

treating individuals or classes of individuals differently within a tutoring system. Yudelson et al. (2014)

describe a technique for identifying whether a tutoring system should treat subclasses of students

differently for the purpose of knowledge tracing.

Models for Applying Changes

The previous section focused on the types of changes that we might want to make to a tutoring system,

based on data collected from that system. Another dimension to be considered in a lifecycle authoring

system is the model for approving and applying such changes to the system. We consider three types of

models. In the “manual” model, the data are analyzed and reviewed by authors before changes are made

to the system. In the “automated” model, the data are collected and analyzed by a stored set of

procedures, and the changes to the system are automatically applied. The “crowdsourced” model

combines aspects of the human judgment applied in the manual model and the programmed changes used

in the automated model. In this case, changes contributed by users can be automatically incorporated into

the system, making users authors. But the model might also have a publishing model where a central

authority approves changes or where users (or particular categories of users) approve changes or control

who has access to the changes. A key issue within each of these models is determining when our

confidence in the data currently collected justifies making changes to be seen for future users. Given the

concerns of personalization and, in some cases, uncertainty about how user populations may change over

time, this is a difficult statistical issue that has not received enough attention.

The Manual Change Model

The manual change model is a model of iterative change with humans (typically learning scientists) in the

loop. In this model, instruction is often instrumented to provide feedback about what elements of

instruction are most effective. Sometimes, A/B tests (randomized field experiments) are employed,

providing data directly relevant to future improvements; other times, more naturalistic data collection is

involved.

141

The Open Learning Initiative (oli.cmu.edu) courses are good examples of how manual iterative

refinement can produce more effective courseware (Thille, 2008). These courses collect extensive data,

from embedded tutors, manipulatives and other embedded activities that provide extensive information

about the effectiveness of various aspects of individual courses. In many cases, it can be relatively easy to

identify areas for improvement in a course, but there is often a large space of potential design

improvements available to remedy the flaws. Instead of relying solely on in-house expertise, the OLI

project aims to develop a community of practice, sharing results on elements of the courses and soliciting

ideas for improvement.

Improvements to Carnegie Learning’s geometry tutor represent another example of the manual change

model (Butcher and Aleven, 2008; Hausmann and Vuong, 2012). Over a period of several years, iterative

improvements in the design of a tutor teaching reasoning about angles in a geometric diagram were

conducted, focused on more closely following research on self-explanation and on the contiguity principle

(Clark and Mayer, 2011). The process involved a series of lab-based and small field design experiments,

which eventually led to large implementations and field evaluations. Results showed that students were

able to reach mastery in less time and with the need to complete fewer problems in the improved version

of the tutor.

The Automated Change Model

The manual change model is quite flexible, potentially leading to a wide variety of changes, but it is

labor-intensive and can take years of effort to produce improvements. The automated change model may

be more limited in its scope, but automated changes are able to be applied much more quickly.

The basic idea behind the automated change model is that one can pre-specify a design space of potential

approaches to instruction (or paramaterizations of approaches). The system is then able to explore the

design space, collecting data on what approaches work best.

Liu et al. (2014a) used Learning Factors Analysis (LFA; Cen, et al., 2007) to automatically discover

knowledge component models that best explained previously collected data from cognitive tutors. In this

process, the author specifies a set of knowledge components that might potentially represent relevant

learning factors. For example, in modeling the ability for students to take the area of geometric figures,

the orientation of a triangle (base parallel to the ground or not) may or may not cause difficulties for some

students. These skills become parameters for potential use in a predictive model. LFA is also able to

“merge” knowledge components to produce new parameters. For example, the LFA model discovered

that computing area “backwards” (calculating one of the linear measures, given the area) was a difficulty

factor for circles but not for rectangles. This parameter results from merging the potential knowledge

components related to particular shapes and to working backwards. In almost all cases, the models found

by LFA were superior to those developed by experienced developers, even after years of manual

refinement. While changes resulting from LFA have not yet been automatically applied to the tutoring

system, it would be straightforward to create a system that did automatically apply the results of such an

analysis. At this point, automatic refinement of this kind requires enough confidence in the technique. It is

likely that such confidence would result from continued demonstrations that such changes not only

produce improvements in model fits but that applying such improvements produce real-world

improvements. Some such randomized field trials are currently underway.

One approach that is inherently fully automated is the use of multi-armed bandit procedures (Liu et al.,

2014b). As with LFA, the multi-armed bandit approach starts with a specification of a design space for

the application. The approach typically works well with large spaces that can be parameterized. The

approach performs a search of the design space in the field, presenting different variants of the

142

educational system to different students. Designs (defined by sets of parameters) that work best (by

whatever metric is able to be used in the field) become probabilistically favored in selection for new

students. Eventually, the system converges on a design that works best for users. One important

consideration in this type of system include balancing the need for exploration of the design space and the

desire to exploit the parameters representing the most effective variant of the system. Implementations of

this kind of system must also be in contexts where it is reasonable to measure effectiveness quickly and

reliably.

One concern with automated change models, particularly in commercial systems, is maintaining some

control and knowledge over the changes made. If we are to rely on automated changes, we need to be

very certain that the changes made will result in better performance, not just for typical students but

across the whole range of students using the system.

The Crowdsourced Change Model

Adaptation to different student populations is a strength of the crowdsourced change model. In this

model, users (or some subset of users) are able to contribute to the improvement of the system, either by

creating new content or providing feedback on existing system content and features. Key to the

crowdsourced change model is the ability to create a community in which users feel rewarded for their

contributions. Variants of this model may be similar to the manual change model (in the case where

suggested changes are centrally curated) or the automated change model (in the case where user-

generated content is automatically provided to other users).

Razzaq et al. (2009) provide an example of a crowdsourced content authoring system. The ASSISTment

Builder is a content authoring system allowing end-users (particularly teachers) to extend ASSISTment

by writing new content. Their goal was to provide a system that is simple to use but also provides some

flexibility in allowing advanced users to variablize content, enabling users to create a large quantity of

items. This new content can be immediately provided to other users, resulting in something like an

automated improvement model. The system also provides a feedback mechanism for users, which

provides a basis for manual improvements in the system. Users are able to point out errors or contribute

suggestions for improvement in particular items.

Aleahmad et al. (2009) similarly describe an open content authoring system, grounded in creating a web-

based authoring community. A particular goal of this system was to encourage a wide variety of items,

which could enable the resulting system to better personalize content to address particular student

interests. The system also contemplated a rating and curation system that would allow the community to

vet content before it was presented to students.

The Lifecycle Authoring System and Implications for the Generalized

Intelligent Framework for Tutoring (GIFT)

If ITSs and other adaptive learning systems are to achieve wide adoption, they will need to be built with

the expectation that they can change over time. Lifecycle authoring systems allow these systems to

capitalize on one of their most important advantages: their ability to collect and make sense of data that

can result in improvement to the systems themselves. The design goals of the Generalized Intelligent

Framework for Tutoring (GIFT) architecture include consideration of the use of data to improve

instructional effectiveness (Sottilare & Holden, 2013), but much work remains to be done in identifying

commonalities in the way this may be done across different tutoring systems and formalizing these

commonalities into standard approaches to system improvement.

143

While different lifecycle authoring systems will take different approaches, all systems need to consider

two basic dimensions: the types of changes that they support and the model for applying such changes.

We would not expect a single system to be designed to support all types of changes and all models. Some

change models seem particularly appropriate for particular types of changes. For example, automated

change models seem particularly suited to parameter changes, since they require a description of the

search space. Crowdsourcing seems particularly suited to content changes, under the assumption that

content creation is a natural domain for end-users, particularly, users who are teachers. Design changes,

on the other hand, may require input from programmers, instructional designers and domain experts,

leading to the likelihood that such changes will be produced with a manual change process. Advance

planning for the types of changes expected to be made in adaptive systems and incorporation of

appropriate models for improvement will allow advanced adaptive instructional systems to become more

mainstream, leading to better educational outcomes.

References

Ainsworth, S., Major, N., Grimshaw, S. K., Hayes, M., Underwood, J. D., Williams, B. & Wood, D. J. (2003).

REDEEM: Simple Intelligent Tutoring Systems From Usable Tools. In T. Murray & S. Blessing & S.

Ainsworth (Eds.) Tools for Advanced Technology Learning Environments. (pp. 205- 232). Amsterdam:

Kluwer Academic Publishers.

Aleahmad, T., Aleven, V. & Kraut, R. (2009). Creating a corpus of targeted learning resources with a web-based

open authoring tool, IEEE Transactions on Learning Technologies, 2(1), 3-9.

Aleven, V., McLaren, B.M., Sewall, J., Koedinger, K.R.: The cognitive tutor authoring tools (CTAT): Preliminary

evaluation of efficiency gains. In Ikeda, M., Ashley, K.D., Tak-Wai, C., eds.: International Conference on

Intelligent Tutoring Systems, Springer (2006) 61–70

Beck, J.E. and Gong, Y. (2013). Wheel-Spinning: Students Who Fail to Master a Skill. In Proceedings of the 16th

International Conference on Artificial Intelligence in Education. Memphis, TN. pp. 431-440.

Beck, J. E. and Chang, K. M. (2007). Identifyability: A fundamental problem of student modeling. Proceedings of

the 11th International Conference on User Modeling, pp. 137-146.

Blessing, S.B. (2003) A Programming by Demonstration Authoring Tool for Model-Tracing Tutors. In Murray, T.,

Blessing, S.B. & Ainsworth, S. (Ed.), Authoring Tools for Advanced Technology Learning Environments:

Toward Cost-Effective Adaptive, Interactive and Intelligent Educational Software. (pp. 93-119). Boston,

MA: Kluwer Academic Publishers

Butcher, K. & Aleven, V. (2008). Diagram interaction during intelligent tutoring in geometry: Support for

knowledge retention and deep transfer. In C. Schunn (Ed.) Proceedings of the Annual Meeting of the

Cognitive Science Society, CogSci 2008. New York, NY: Lawrence Earlbaum.

Cen, H., Koedinger, K.R., Junker, B. (2007). Is Over Practice Necessary? Improving Learning Efficiency

with the Cognitive Tutor using Educational Data Mining. In Lucken, R., Koedinger, K. R. and Greer, J.

(Eds). Proceedings of the 13th International Conference on Artificial Intelligence in Education, pp. 511-

518.

Clark, R. C. & Mayer, R. E. (2011). E-Learning and the Science of Instruction: Proven Guidelines for Consumers

and Designers of Multimedia Learning (3rd ed.). San Francisco, CA: John Wiley & Sons.

Corbett, A.T., Anderson, J.R. (1995). Knowledge Tracing: Modeling the Acquisition of Procedural Knowledge.

User Modeling and User-Adapted Interaction, 4, 253-278.

Dickison, D., Ritter, S., Nixon, T., Harris, T.K., Towle, B., Murray, R.C.and Hausmann, R.G.M.: Predicting the

Effects of Skill Model Changes on Student Progress. Intelligent Tutoring Systems 2010: 300-302.

Koedinger, K. R., McLaughlin, E. A. & Stamper, J. C. (2012). Automated cognitive model improvement. Yacef, K.,

Zaïane, O., Hershkovitz, H., Yudelson, M., and Stamper, J. (eds.) Proceedings of the 5th International

Conference on Educational Data Mining, pp. 17-24. Chania, Greece.

Dickison, D., Ritter, S., Nixon, T., Harris, T.K., Towle, B., Murray, R.C., Hausmann, R.G.M. (2010). Predicting the

Effects of Skill Model Changes on Student Progress. In Intelligent Tutoring Systems (2), pp. 300-302.

González-Brenes, J.P., Huang, Y., Brusilovsky, P. (2014). General Features in Knowledge Tracing: Applications to

Multiple Subskills, Temporal Item Response Theory, and Expert Knowledge. The 7th International

Conference on Educational Data Mining (EDM 2014). London, England

144

Hausmann, R.G.M. & Vuong, A. (2012) Testing the Split Attention Effect on Learning in a Natural Educational

Setting Using an Intelligent Tutoring System for Geometry. In N. Miyake, D. Peebles & R. P. Cooper

(Eds.), Proceedings of the 34th Annual Conference of the Cognitive Science Society. (pp. 438-443).

Austin, TX: Cognitive Science Society.

Heffernan, N. & Heffernan, C. (2014) The ASSISTments Ecosystem: Building a Platform that Brings Scientists and

Teachers Together for Minimally Invasive Research on Human Learning and Teaching. International

Journal of Artificial Intelligence in Education.

Khajah, M., Wing, R. M., Lindsey, R. V. & Mozer, M. C. (2014) Incorporating latent factors into knowledge tracing

to predict individual differences in learning. In J. Stamper, Z. Pardos, M. Mavrikis & B. M. McLaren (Eds),

Proceedings of the 7th International Conference on Educational Data Mining (pp. 99-106).

 Koedinger, K.R., Stamper, J.C., McLaughlin, E.A. & Nixon, T. (2013). Using data-driven discovery of better

student models to improve student learning. In H.C. Lane, K. Yacef, J. Mostow & P. Pavlik (Eds.),

Proceedings of the 16th International Conference on Artificial Intelligence in Education, pp. 421-430.

Liu, R., Koedinger, K. R. & McLaughlin, E. (2014a). Interpreting model discovery and testing generalization to a

new dataset. Proceedings of the 6th International Conference on Educational Data Mining, London, UK.

Liu, Y., Mandel, T., Brunskill, E. and Popovic, Z. (2014b). Trading Off Scientific Knowledge and User Learning

with Multi-Armed Bandits. Proceedings of the 6th International Conference on Educational Data Mining,

London, UK.

Murray, T., Blessing, S. & Ainsworth, S. (Eds.) (2003). Authoring Tools for Advanced Technology Learning

Environments. Kluwer Academic/Springer Pub.: Netherlands.

Pashler, H., McDaniel, M., Rohrer, D. & Bjork, R. (2009). Learning styles: Concepts and evidence. Psychological

Science in the Public Interest, 9, 105-119.

Razzaq, L., Parvarczki, J., Almeida, S.F., Vartak, M., Feng, M., Heffernan, N.T. and Koedinger, K. (2009). The

ASSISTment builder: Supporting the Life-cycle of ITS Content Creation. IEEE Transactions on Learning

Technologies Special Issue on Real-World Applications of Intelligent Tutoring Systems. 2(2) 157-166.

Razzaq, L. & Heffernan, N. (2010). Open content Authoring Tools. In Nkambou, Bourdeau & Mizoguchi (Eds.)

Advanced in Intelligent Tutoring Systems.pp 425-439. Berlin: Springer Verlag.

Ritter, S., Anderson, J., Cytrynowicz, M., and Medvedeva, O. (1998) Authoring Content in the PAT Algebra Tutor.

Journal of Interactive Media in Education, 98 (9)

Ritter, S., Harris, T. H., Nixon, T., Dickison, D., Murray, R. C. and Towle, B. (2009). Reducing the knowledge

tracing space. In Barnes, T., Desmarais, M., Romero, C. & Ventura, S. (Eds.) Educational Data Mining

2009: 2nd International Conference on Educational Data Mining, Proceedings

Ritter, S. and Koedinger, K. R. (1996). An architecture for plug-in tutor agents. Journal of Artificial Intelligence in

Education, 7, 315-347.

Ritter, S., Sinatra, A. M. and Fancsali, S. E. (2014). “Personalized Content in Intelligent Tutoring Systems.” In

Design Recommendations for Intelligent Tutoring Systems, vol. 2, pp. 71-78. Army Research Laboratory.

Sottilare, R. A. and Holden, H. K. (2013). Motivations for a Generalized Intelligent Framework for Tutoring (GIFT)

for authoring, instruction and analysis. In AIED 2013 Workshop Proceedings, Volume 7, 1-9.

Thille, C. (2008). Creating open learning as a community based research activity. In Iiyoshi, T. & Kumar, V. (Ed.),

Opening Up Education: The Collective Advancement of Education through Open Technology, Open

Content, and Open Knowledge. Cambridge, MA. MIT Press.

VanLehn, K. (2006). The behavior of tutoring systems. International Journal of Artificial Intelligence and

Education, 16, 227–265.

Yudelson, M.V., Fancsali, S.E., Ritter, S., Berman, S.R., Nixon, T. and Joshi, A. (2014). Better data beats big data.

Proceedings of the 7th International Conference on Educational Data Mining

http://www.tommurray.us/atoolsbook/index.html
http://www.tommurray.us/atoolsbook/index.html
http://link.springer.com/chapter/10.1007%2F978-3-642-14363-2_20
http://oli.cmu.edu/wp-oli/wp-content/uploads/2012/05/Thille_2008_Building_Open_Learning.pdf

145

SECTION III

AUTHORING

AGENT-BASED

TUTORS

Keith Brawner, Ed.

146

147

CHAPTER 11 Authoring Agent-based Tutors
Keith W Brawner

US Army Research Laboratory

Introduction

The purpose of this introductory chapter is not to raise questions or present recommendations, but to

attempt minor summary of the conversations among the literature. Many of these written works have

revolved around the ideas of identification of authors, establishment of roles, reductions in complexity,

and automation. The artificial intelligence (AI) community has long desired to “democratize AI” through

the use of tools to encode knowledge in expert systems, neural networks, and other items. These efforts

have fallen somewhat short: AI for problem solving purposes remains in the hands of engineers,

scientists, and programmers. The field of intelligent tutoring systems (ITSs) has made somewhat better

progress but has started looking to the agent-based AI world for solutions, making this section timely and

relevant. Before addressing the topic of agents and their authoring, it is helpful to refresh the mental

model of tool software lifecycle.

The Birth of a Tool

Given that necessity is the mother of invention, it is no surprise that the ITS tools, thus far, have been

primarily crafted toward a single system, template, use case, or user category. The creation of a tool is

frequently the last portion of the development of a system, relegated to the end of a project along with

user manuals, training materials, and long-term supporting logistics. The reason for this is simple: tooling

occurs after machining.

There has been little research into ITS tools as a factor of two things. The first is byproduct of being late

in the developmental cycle, while the second is the multi-faceted nature of the tools. ITS authoring tools

naturally involve pedagogical strategy, learning knowledge modeling and assessment, content creation

and supplementation, and other items. Each of these items calls for a somewhat unique solution, and in

this section, I call for a science of the pedagogical authoring process, as it relates to pedagogical agent

creation (Shaffer, Ruis & Graesser, 2015).

The Life and Growth of a Tool

The life of a tool is naturally closely tied to the life of the system. At the time of system creation, there is

usually no tool to speed the process of development. Developers must handcraft each of the system parts,

edit configuration files by hand, and test various configurations for speed and effectiveness. After a

workable solution is found, the work of creating the ITS components can be offloaded to a knowledgeable

user with the appropriate background. This usually occurs with a simplistic tool, such as an extensible

markup language (XML) editor, interface specifier, or simple application programming interface (API)

specification. Projects such as the Generalized Intelligent Framework for Tutoring (GIFT) *AT editing

tools, and the AutoTutor Script Authoring Tool (ASAT) have reached these stages by XML editing

(Brawner & Sinatra, 2014) and script authoring (Nye, Hu, Graesser & Cai, 2014), respectively.

148

Assuming that the system survives long enough to be well used or profitable, such a knowledgeable user

usually has enough of a programming background to automate part of the process, program a workflow,

or otherwise decompose the authoring task into pieces. This allows the task to be performed by less

knowledgeable users such as undergraduate students or interns. Projects for authoring conversational

agent-based tutors such AutoTutor have recently reached this stage (Nye et al., 2015).

The Death of a Tool

Assuming the system survives long enough to reach a modicum of success, the authoring task is

decomposed into component parts and performed by more junior personnel. Such a task is time

consuming but uncomplicated, and automation techniques begin to become attractive time-saving items.

Projects such as SimStudent (MacLellan, Koedinger & Matsuda, 2014) allow mostly automated authoring

through a process of knowledge demonstration. With SimStudent, such knowledge demonstration can be

performed by any user with knowledge of the domain of instruction, but relies upon the extensive

architecture underpinning a simulation of the environment, measurement of actions, and tutoring system

interoperability. Each one of these items could potentially have a tool to aid a category of user in

assembling a system, if the situation is complicated enough to warrant it.

ITS Complicated

One of the themes that repeats itself through the ITS literature conversation is the simple fact that ITSs

are complicated. The word “complicated” is used as a proxy for expensive, time-consuming, difficult to

understand, and other themes. The construction of an ITS currently involves personnel with knowledge of

instructional design, learner modeling, a specific domain, sensors/interfaces, machine learning

interpretation of data streams, and the ability to create a student environment that is able to provide these

assessments and feedbacks. Another author in this section describes the process as requiring “deep and

broad knowledge to manage these constraints, accommodate tradeoffs, and negotiate incompatibilities”

(Shaffer et al., 2015).

One of the goals of the GIFT project is to simplify this expertise required through the creation of

interoperable “modules,” with each of them tasked with the functions above (Learner, Pedagogical,

Sensor, Domain, etc.). In this manner, the hope and plan is to create a module (or module plug-in) only

once, allow it to interoperate, and to extensively reuse it. Such a module could be a plan for instruction,

such as the Engine for Management of Adaptive Pedagogy (Goldberg et al., 2012), or a machine learning

process for interpreting sensor data from game environments and the Microsoft Kinect (Baker, DeFalco,

Ocumpaugh & Paquette). This type of solution, however, raises a new problem: that of generalization.

Generalization

The problem of generalization is a discussion that permeates all conversations where GIFT is involved.

The first book in the Design Recommendations for Intelligent Tutoring series attempted to summarize the

problem of generalizable models of student performance (Sottilare, Graesser, Hu & Holden, 2013), while

subsequent books have addressed domain-general models for instruction (Sottilare, Graesser, Hu &

Goldberg, 2014), and future books intend to address the topics of assessment and teams. In each meeting

to discuss each problem, the question of “how can X be done without explicit and complete knowledge of

Y?” is raised, where X and Y relate to any of the other modules.

149

ITSs, as a category, are intended to cut across all categories of training. ITS authoring, as a category, cuts

across all categories of modules and components. The unique challenges presented are how to construct

tools that generalize to the general purpose of the ITS. In this regard, the authors of this section present

solutions and recommendations for how this may be accomplished for agents (Cohn, Olde, Bolton,

Schmorrow & Freeman, 2015), in complex domains of instruction (Shaffer et al., 2015), during assessing

conversations (Zapata-Rivera, Jackson & Katz, 2015), and with pedagogical and authoring soundness

(Lester, Mott, Rowe & Taylor, 2015).

Agents

One of the reoccurring themes is that, as part of the natural process of replacing a human tutor with a

computer tutor, the computer tutor should be presented in the form of an agent. Agent-based software

technology has struggled with many of the same problems that ITS generalization has: domain-general

behaviors, user behavior recognition, user intention recognition, response planning, management of

specific domain knowledge, etc. (Allen et al., 2000).

The chapters in this section are especially relevant to the agent replacement conversation. The nature of

computer teaching agents is that they can teach more complex domain information, involve deeper

knowledge elicitation (Rus, Stefanescu, Niraula & Graesser, 2014), and generally improve learning

(Graesser, VanLehn, Rosé, Jordan & Harter, 2001). The task of creating such learning agents is difficult

and worthy of discussion in this chapter. The chapters within this section provide timely and relevant

descriptions of authoring tools for agent-based tutors and include descriptions of existing tools and

methods that uniquely support agent-based tutors; emerging technologies for agent-based tutors; and

recommendations for how GIFT should be enhanced to make authoring of agent-based tutors easier/more

efficient.

References

Allen, J., Byron, D., Dzikovska, M., Ferguson, G., Galescu, L. & Stent, A. (2000). An architecture for a generic

dialogue shell. Natural Language Engineering, 6(3&4), 213-228.

Baker, R. S., DeFalco, J. A., Ocumpaugh, J. & Paquette, L. Towards Detection of Engagement and Affect in a

Simulation-based Combat Medic Training Environment.

Nye, B., Hu, X., Graesser, A. & Cai, Z. (2014). Autotutor In The Cloud: A Service-Oriented Paradigm For An

Interoperable Natural-Language Its. Journal of Advanced Distributed Learning Technology, 2(6), pp49-63.

Brawner, K. & Sinatra, A. (2014). Intelligent Tutoring System Authoring Tools: Harvesting the Current Crop and

Planting the Seeds for the Future. Paper presented at the Intelligent Tutoring Systems.

Cohn, J., Olde, B., Bolton, A., Schmorrow, D. & Freeman, H. (2015). Adaptive and Generative Agents for Training

Content Development. In K. W. Brawner (Ed.), Design Recommendations for Intelligent Tutoring Systems:

Authoring Tools (Volume 3). Army Research Laboratory.

Goldberg, B., Brawner, K., Sottilare, R., Tarr, R., Billings, D. R. & Malone, N. (2012). Use of Evidence-based

Strategies to Enhance the Extensibility of Adaptive Tutoring Technologies. Paper presented at the The

Interservice/Industry Training, Simulation & Education Conference (I/ITSEC).

Graesser, A. C., VanLehn, K., Rosé, C. P., Jordan, P. W. & Harter, D. (2001). Intelligent tutoring systems with

conversational dialogue. AI Magazine, 22(4), 39.

Lester, J., Mott, B., Rowe, J. & Taylor, R. (2015). Design Principles for Pedagogical Agent Authoring Tools In K.

W. Brawner (Ed.), Design Recommendations for Intelligent Tutoring Systems: Authoring Tools (Volume 3).

Army Research Laboratory.

MacLellan, C. J., Koedinger, K. R. & Matsuda, N. (2014). Authoring Tutors with SimStudent: An Evaluation of

Efficiency and Model Quality. Paper presented at the Intelligent Tutoring Systems.

150

Nye, B. D., Yang, M., Hays, P., Silva-Lugo, R., Cai, Z., Rahman, M. F., . . . Graesser, A. C. (2015). Rapid, Form-

Based Authoring of Natural Language Tutoring Trialogs. Paper presented at the Generalized Intelligent

Framework for Tutoring (GIFT) Users Symposium (GIFTSym2).

Rus, V., Stefanescu, D., Niraula, N. & Graesser, A. C. (2014). DeepTutor: towards macro-and micro-adaptive

conversational intelligent tutoring at scale. Paper presented at the Proceedings of the first ACM conference

on Learning@ scale conference.

Shaffer, D. W., Ruis, A. R. & Graesser, A. C. (2015). Authoring Networked Learner Models in Complex Domains.

In K. W. Brawner (Ed.), Design Recommendations for Intelligent Tutoring Systems: Authoring Tools

(Volume 3). Army Research Laboratory.

Sottilare, R., Graesser, A., Hu, X. & Goldberg, B. (2014). Design recommendations for intelligent tutoring systems:

Instructional Strategies (Volume 2). www.gifttutoring.org: U.S. Army Research Laboratory.

Sottilare, R., Graesser, A., Hu, X. & Holden, H. (2013). Design Recommendations for Intelligent Tutoring Systems:

Learner Modeling (Volume 1). www.gifttutoring.org: U.S. Army Research Laboratory.

Zapata-Rivera, D., Jackson, T. & Katz, I. R. (2015). Authoring Conversation-based Assessment Scenarios. In K. W.

Brawner (Ed.), Design Recommendations for Intelligent Tutoring Systems: Authoring Tools (Volume 3).

Army Research Laboratory.

http://www.gifttutoring.org/
http://www.gifttutoring.org/

151

CHAPTER 12 Design Principles for Pedagogical Agent

Authoring Tools
James Lester, Bradford Mott, Jonathan Rowe and Robert Taylor

Center for Educational Informatics, North Carolina State University

Introduction

Pedagogical agents hold great promise for enhancing the learning experience of students within intelligent

tutoring systems (ITSs). There is mounting evidence that ITSs lead to improved student learning (Beal,

Walles, Arroyo & Woolf, 2007; Schroeder, Adesope & Gilbert, 2013) and in some cases, have been

found to be nearly as effective as one-on-one human tutoring (VanLehn, 2011). The timely and

customized advice of ITSs may be further enhanced by the addition of pedagogical agents embodied as

virtual characters that have the ability to motivate students while simultaneously providing

complementary feedback through deictic gestures, motions, and utterances (Lester, Voerman, Towns &

Callaway, 1999; Rus, D’Mello, Hu & Graesser, 2013). Advancing the case for employing pedagogical

agents in tutoring systems is the increase in availability of game engines and graphics hardware capable

of rendering lifelike virtual characters with significantly reduced development effort (Petridis et al.,

2012).

Despite the potential for increased student engagement and the reduced cost of creating lifelike virtual

characters, pedagogical agents have not yet achieved widespread adoption in computer-based learning

environments. A formidable and well-known barrier to building and widely deploying a pedagogical

agent is the complexity and expense associated with instilling the pedagogical agent with domain-specific

knowledge and tutoring strategies (Murray, 2003; Woolf, 2009). Furthermore, an additional complication

in creating an effective pedagogical agent is that the agent must present believable, lifelike behaviors such

that students feel they are observing and interacting with “a sentient being with its own beliefs, desires,

and personality” (Lester & Stone, 1997). Thus, a limiting factor in the widespread deployment of

pedagogical agents is the significant effort and pedagogical agent expertise required to codify knowledge

and behaviors from subject matter experts into the ITS.

An approach to solving this problem is improving the efficiency of codifying expert knowledge by

creating pedagogical agent authoring tools that are tailored for subject matter experts rather than

researchers. However, creating an effective authoring tool for subject matter experts poses two principal

challenges. First, it must facilitate the creation of curricular content for the learning environment by

subject matter experts who are not pedagogical agent experts and are often not software engineers.

Second, it must support the creation or modification of pedagogical agent behaviors without exposing the

complexity of the pedagogical agent itself to the subject matter expert. In practice, a majority of the

design and programming effort expended on pedagogical agents is developing the agent and the learning

environment itself. This often results in the authoring tool being treated as an afterthought, leaving little

time or resources to design and develop authoring tools that are suitable for subject matter experts. Based

on our experience developing a pedagogical agent authoring tool for educators, this chapter identifies

promising authoring tool principles and features that could improve the authoring efficiency of subject

matter experts. To conclude, we reason that the Generalized Intelligent Framework for Tutoring (GIFT)

(Sottilare, Brawner, Goldberg & Holden, 2012) could be used to provide a high-quality implementation of

these authoring tool design principles and, therefore, act as a force multiplier for creating new

pedagogical agent-based tutoring systems that use GIFT.

152

Related Research

Creating authoring tools for building ITSs is receiving ever-increasing attention from the research

community. With a goal of making ITS creation and authoring accessible to subject matter experts who

are not computer scientists, progress is being made in researching approaches to create authoring tools

(Susarla, Adcock, Van Eck, Moreno & Graesser, 2003; Jordan, Hall, Ringenberg, Cue & Rose, 2007) and

automate aspects of pedagogical agents such as dialogue (André et al., 2000; Si, Marsella & Pynadath,

2005; Piwek, Hernault, Prendinger & Ishizuka, 2007) or nonverbal behaviors (Lhommet & Marsella,

2013).

Authoring tools for conversation-based learning environments have focused on assisting non-technical

users in the creation of pedagogical agent dialogues. AutoTutor provides multi-agent conversational

interactions to tutor students using the discourse patterns of a human tutor. AutoTutor has been used

across multiple domains including computer literacy and physics (Graesser, Chipman, Haynes & Olney,

2005). To facilitate the application of AutoTutor to other domains, authoring tools have been developed

to aid subject matter experts in creating dialogue-based tutors, such as the AutoTutor Script Authoring

Tool (Susarla, Adcock, Van Eck, Moreno & Graesser, 2003) and AutoLearn (Preuss, Garc & Boullosa,

2010). Another example of an authoring tool for agent dialogue is TuTalk, which was created to support

the rapid development of agent-based dialogue systems by non-programmers (Jordan, Hall, Ringenberg,

Cue & Rose, 2007). This tool facilitates the authoring of domain knowledge and resources required by the

dialogue agent in the form of artificial intelligence (AI) planning techniques that address high-level goals

of the dialogue system. Similarly, an authoring tool has been created for the Tactical Language and

Culture Training System (TLCTS) that allows subject matter experts to create pedagogical dialogue for a

foreign language learning training system at reduced cost and time (Meron, Valente & Johnson, 2007).

Another approach to improving pedagogical agent authoring is to remove the need for authoring

altogether through the use of automation. In particular, automating the creation of pedagogical agents’

lifelike nonverbal behaviors eliminates a potentially significant amount of authoring effort. Cerebella is a

system that monitors an agent’s utterances (in both text and audio formats) and automatically generates

lifelike nonverbal behaviors such as averting gaze, raising an eye brow, or slumping shoulders (Lhommet

& Marsella, 2013). The automatically generated nonverbal behaviors inferred from the communicative

intent and underlying mental state of the agent can be used as an additional channel of communication

between the pedagogical agent and the student, increasing the agent’s believability as well as students’

engagement. The THESPIAN system reduces the effort to author pedagogical agents by facilitating the

creation of interactive pedagogical dramas (Si, Marsella & Pynadath, 2005). In THESPIAN, the learner

and the pedagogical agents interact with each other as characters within a story. THESPIAN accepts as

input a set of scripts that it uses to automatically generate and adjust agents’ goals to guide their behavior.

Another example of automating pedagogical agent authoring tasks is to convey domain knowledge to the

student through observations of simulated conversations and interactions between agents. The agent

dialogue, character selection, and content rendering tasks would be automatically performed by the

presentation system as described by André et al.(2000). In this approach, information is communicated by

decomposing knowledge into atomic information units that are then conveyed to the student through

verbal and nonverbal interactions between two or more agents.

Authoring of pedagogical agents can be accelerated by leveraging knowledge that has already been

recorded in other forms such as Wikipedia pages, PowerPoint presentations, dialogue scripts, or PDFs.

The Tools for Rapid Automated Development of Expert Models (TRADEM) project parses existing

domain content and automatically generates dialogue, questions, and a script that represents the order of

instruction based on the ordering of the original content (Robson, Ray & Cai, 2013). This system can be

used to create a minimal dialogue-based tutoring system where a pedagogical agent can ask questions and

153

evaluate student answers related to the original content without requiring a subject matter expert to

explicitly author the knowledge or assessments in the ITS (Brawner & Graesser, 2014). Text2Dialogue is

another system that can use existing knowledge represented as text files to produce dialogue that is acted

out by 3D virtual characters (Piwek, Hernault, Prendinger & Ishizuka, 2007). A significant difference

between this approach and the previously described presentation system developed by André et al.(2000)

is that Text2Dialogue can accept textual information as input without presentation goals being defined by

a subject matter expert, which means that dialogue may be generated from existing text files without

requiring annotation by a subject matter expert.

Even though the aforementioned research into implementing, augmenting, and eliminating the need for

pedagogical agent authoring tools holds great promise, there is still an immediate need for effective and

efficient tools that enable subject matter experts to codify knowledge and tutoring strategies as

pedagogical agents without requiring the subject matter experts to possess or acquire programming or

intelligent tutoring expertise.

Discussion

To address the immediate need for effective and efficient authoring tools, we present seven design

principles that are grounded in software engineering practice and have the potential to significantly

improve pedagogical agent authoring tools intended for subject matter experts. We illustrate our

discussion with the COMPOSER authoring tool, which was developed for non-technical subject matter

experts to author pedagogical agents. We describe our lessons-learned using COMPOSER to create a

pedagogical agent for a widely deployed ITS for upper elementary science education.

Design Principles for Pedagogical Agent Authoring Tools

To make pedagogical agent-based learning environments more widely available, authoring tools must be

designed and implemented that empower subject matter experts to quickly and efficiently populate the

domain knowledge and tutoring strategies used by the pedagogical agent. To this end, creating usable and

efficient authoring tools can be framed as a software engineering problem that may be addressed by

general software design principles. The principles we advocate are well established in software

engineering. Our contribution is discussing how to operationalize these principles in the context of

authoring pedagogical agents. Since the design and implementation of authoring tools directly impacts the

design and implementation of intelligent pedagogical agents (and vice versa), we recommend that the

following pedagogical agent authoring tool design principles be considered at the beginning of a project,

and leveraged in concert with the development of the learning environment, rather than leaving the tool

development for the end of the project, where the tool will be constrained by an existing pedagogical

agent implementation. In this section, we enumerate software design principles and features that should

be considered for inclusion in a subject matter expert-centered pedagogical agent authoring tool.

Adopt a Familiar User Interface Paradigm

From a usability standpoint, the most important feature of an authoring tool is its user interface (UI).

Ideally, a pedagogical agent authoring tool should present a UI that is familiar and intuitive for the type of

subject matter expert who is intended to use it. Instead of requiring the subject matter expert to conform

to unfamiliar ITS naming conventions and authoring workflow, the authoring tool should be modeled

after software that the subject matter expert is already comfortable using. For example, if the intended

user of the tool is a K-12 teacher, this type of user is likely very comfortable using Microsoft PowerPoint

to create presentations to be shown in the classroom. Likewise, if the type of subject matter expert is a

154

computer scientist, this user will be comfortable writing code and using an integrated development

environment (IDE), such as Eclipse. Of course, existing UIs and usage paradigms can (and should) be

improved upon; however, instead of starting from scratch when designing an authoring tool, modeling

upon an existing tool leverages decades of real-world usability and efficiency improvements.

Modeling a pedagogical agent authoring tool’s UI after an existing authoring tool, such as Microsoft

PowerPoint, does not imply that the tutoring knowledge constructs must be as simple as the content in a

typical PowerPoint presentation. This would indeed be challenging since tutoring systems are likely to

require authoring pedagogical strategies or annotating answer correctness, which are features that are not

afforded by the PowerPoint UI. Instead, this principle implies that the authoring tool should model the

existing tool by using similar naming conventions, presenting similar software features, and mimicking its

workflow. For example, a pedagogy-oriented authoring tool might represent blocks of curriculum

knowledge as “slides” in a PowerPoint-like authoring tool (Figure 1). Likewise, a slide might provide

Figure 1. Slide-based authoring paradigm illustrated by the COMPOSER authoring tool user interface

Authoring properties

Tags that represent skills

associated with this knowledge

(e.g., Next Generation Science

Standards codes)

Curriculum knowledge

represented as a slide

Pedagogical agent dialogue editor

Launches agent-specific

authoring window for

advanced users

155

static text or multimedia that is used to convey information to the student, as well as embedded

assessments that are used to gauge student competencies. Slides could be associated with production rules

for teaching the specific concepts and skills represented by the slide, while tags enable the pedagogical

agent to associate students’ performance with an overarching set of knowledge components. Without the

subject matter expert explicitly authoring it, the pedagogical agent could use this metadata and the student

model to determine the next slide to display to the student.

Include Standard Editing Features

Modeling a pedagogical agent authoring tool after a mature software package, such as Microsoft

PowerPoint, suggests the implementation of several software features that are expected and relied upon

by typical software users; however, these features are often nontrivial to implement and have profound

effects on how data are represented, stored, and manipulated within the authoring tool, which is likely to

affect how the data are represented in the ITS itself. For example, copy, cut, and paste features are

expected by users to be available on any data type that can be authored in a tool. This feature may require

deep or shallow copies of data models used to represent curriculum and pedagogical data while

maintaining relationships between the data. Similarly, the undo and redo features enable users to

experiment and quickly repair authoring mistakes. Undo and redo can drastically impact the design and

implementation of the authoring tool itself and, therefore, should not be left as a feature to be added at the

end of project when there is limited time to refactor data models or add revision tracking to the content

being authored.

Support Author Collaboration

A pedagogical agent authoring tool should implement features that allow multiple subject matter experts

to collaborate while authoring domain knowledge and pedagogical strategies. Collaboration has the

potential to increase both the quality and quantity of content available to the ITS. Users have come to

expect and rely upon collaboration features in other contexts. For example, at one extreme, multiple

authors can use web browsers to simultaneously edit a single Google document, presentation, or

spreadsheet. The authors can view each other’s modifications and chat with one another while editing.

Likewise, many content authoring tools enable change tracking to record which author made a change and

when, or allow an author to comment on a piece of content without changing it in the form of a note.

Implementing collaboration in an authoring tool will have significant impacts on the design of data

models, the architecture of the application, and user authorization in regards to who is allowed to access

which data. For example, storing domain knowledge and pedagogical strategies in a cloud-based server

and implementing a web browser-based authoring tool would simplify implementation of collaboration

features. Of course, this decision would need to be considered early in the design of the pedagogical agent

and the authoring tool since it would impact the architecture and implementation of the entire system.

Facilitate Rapid Iteration and Testing

To facilitate refining the domain knowledge and pedagogical agent behaviors, the authoring tool should

support a “rapid iteration” mode where small changes made in the authoring tool can be quickly seen and

interacted with in the context of the ITS. In this mode, the subject matter expert can ideally interact with

the pedagogical agent while editing content in real time or with only a minor delay. This feature allows

the subject matter expert to quickly confirm that content is presented in a visually appealing manner in the

learning environment and that the pedagogical agent behaves in a believable manner while the subject

matter expert is modifying properties or settings that influence the pedagogical agent’s behavior. This

feature could be implemented as a real-time connection to the ITS running as a separate application or the

ITS could be embedded in the authoring tool to provide a what you see if what you get (WYSIWYG)

156

experience. In either situation, the data models would be required to support incremental dynamic updates

and the ITS itself would have to respond to commands from the authoring tool such as navigating to

specific domain content or modify the current state of the pedagogical agent depending on the types of

edits the subject matter expert is making.

Accommodate Novice and Expert Authors

The pedagogical agent authoring tool should support editing methods that are specifically tailored to

novice and expert users rather than presenting a one-size-fits-all UI. For example, a novice user is likely

to be overwhelmed and discouraged by an authoring tool that exposes too many ITS-specific properties or

settings. Conversely, an expert will be less efficient and will be frustrated by a UI that repeatedly walks

through a series of basic steps. Therefore, for less frequently used authoring activities, or when authoring

complex knowledge representations or pedagogical agent-specific behavior, the authoring tool should

present a step-by-step wizard interface for novice users and a more direct authoring UI for expert users.

For example, when authoring rules to evaluate the answer to an essay question, a wizard UI might ask the

subject matter expert a series of questions that are used to generate a set of rules for evaluating the

answer. On the other hand, an expert user would have the option of bypassing the wizard and authoring

the rules directly. Interestingly, this design principle could be realized by embedding a pedagogical agent

in the authoring tool itself to assist the subject matter expert in authoring content.

Automate Complex and Tedious Tasks

Some aspects of authoring domain knowledge or pedagogical agent behavior may be too complicated,

labor intensive, or tedious for a subject matter expert to accomplish manually using a pedagogical agent

authoring tool. In these situations, the authoring tool should provide automated mechanisms for

generating curriculum content, pedagogical strategies, and pedagogical agent behaviors. This is where the

automatic agent behavior generation techniques, as illustrated by Cerebella (Lhommet & Marsella, 2013),

and automatic dialogue generation methods, as leveraged by THESPIAN (Si et al., 2005), can be used

within the pedagogical agent authoring tool to reduce the authoring load for a subject matter expert.

Another approach to simplify the authoring of knowledge and pedagogical strategies is to assist the

subject matter expert though the use of data mining techniques. Instead of authoring a pedagogical agent

with strategies for every conceivable situation, authoring effort could be placed on the most common

misconceptions or areas where students are showing weakness. In an educational data-mining study by

Merceron and Yacef, student data from a web-based learning environment was mined to inform teachers

about students who were at risk (Merceron & Yacef, 2005). Students were grouped into learner cohorts

using clustering techniques to identify students who were having difficulties. In a similar way, an ITS

could initially be deployed with curriculum content but a relatively primitive pedagogical agent. After

collecting student answers, the data could be mined to identify common misconceptions or domain

knowledge that may require additional scaffolding by the pedagogical agent. The authoring tool would

flag sections of the domain knowledge or identify broader concepts that the subject matter expert should

focus on improving. This would naturally lead to an iterative authoring process where the pedagogical

agent continues to evolve by focusing effort on the issues most relevant to students who are using the ITS.

Using this type of authoring assistance feature has the potential to dramatically reduce the amount of

authoring effort, because the subject matter expert is not required to exhaustively predict and annotate all

possible correct and incorrect answers. On the other hand, the initial iterations of the pedagogical agent

are unlikely to be particularly effective since they will have limited ability to provide remediation to

students who are having difficulty.

157

Avoid the Blank Page

Pedagogical agent authoring tools should assist the subject matter expert in getting started. Starting from

a blank page using an unfamiliar tool can be a daunting task for any author of any skill level. This is

particularly the case for someone who is authoring content for software as complex as a pedagogical

agent-based ITSs. Therefore, authoring tools should provide templates and sample systems that can be

used as starting points for authoring domain knowledge and pedagogical agent behaviors and dialogue. In

addition, allowing subject matter experts to easily share their work with others has the potential to create a

community that can evolve pedagogical agents by starting with another author’s agent and building upon

it rather than starting from scratch.

Importing existing knowledge that is already authored in the form of Microsoft Word documents, web

pages, PowerPoint presentations, databases, or text files is a powerful feature for authoring tools to assist

subject matter experts in quickly moving past the blank page. Taking it several steps further, automated

systems such as TRADEM (Robson et al., 2013) and Text2Dialogue (Piwek et al., 2007) import existing

knowledge and then automatically author agent dialogue, further reducing (or possibly eliminating) the

pedagogical agent authoring load on the subject matter expert.

Lessons Learned from the LEONARDO Digital Science Notebook

For the past four years, our laboratory has been developing a digital science notebook for upper

elementary science education, the LEONARDO CyberPad, which runs on the Apple iPad and within web

browsers on Windows and Mac OS X computing platforms. LEONARDO integrates a pedagogical agent

into a digital science notebook that enables students to graphically model science phenomena. With a

focus on the physical and earth sciences, the LEONARDO PadMate, a 3D embodied pedagogical agent,

supports students’ learning with real-time, problem-solving advice. LEONARDO’s curriculum is based on

the Full Option Science System (Mangrubang, 2004). Throughout the inquiry process, students using the

LEONARDO CyberPad are invited to answer multiple-choice questions, write answers to constructed

response questions, and create symbolic sketches of different types, including electrical circuits. To date,

LEONARDO has been implemented in over 70 elementary school classrooms across the United States.

Figure 2. The COMPOSER tool (left) and CyberPad (right) in rapid iteration editing mode

158

LEONARDO consists of three major components: the CyberPad digital science notebook, the COMPOSER

authoring tool, and a cloud-based server. Fourth and fifth grade elementary students learn about

magnetism, circuits, and electricity using the CyberPad software (Figure 2, right). Subject matter experts

use the COMPOSER (Figure 2, left) authoring tool to create curriculum content displayed in the digital

science notebook, as well as rules, dialogue, and gestures that drive the pedagogical agent, which is

embodied as a green alien within the CyberPad UI. The cloud-based server is used to store all curriculum

knowledge, tutoring rules, and student data. During the design and development of the COMPOSER

authoring tool, many of the principles for creating subject matter expert-centered authoring tools were

identified as necessary features or enhancements that would improve the productivity of subject matter

experts.

The LEONARDO project did not originally include the COMPOSER authoring tool in its work plan. The first

year of the project was spent designing and implementing a prototype of the CyberPad application to field

test with fourth and fifth grade students to assess the practicality and ergonomics of using iPads in

elementary school classrooms. During the first year, subject matter experts, who were science education

faculty and graduate students, used Microsoft Word to author all of the curriculum content and

pedagogical agent dialogue. The development team, who were computer science research staff and

graduate students, manually copied the text from the Microsoft Word document into multiple extensible

markup language (XML) documents. The XML documents were then embedded in the CyberPad iPad

application as fixed resources that were then installed on iPads. The agent dialogue and rules were coded

directly into the CyberPad’s source code. Needless to say, this approach to content authoring was highly

inefficient. It was labor intensive and error prone due to the need to repeatedly copy data by hand. In

addition, pedagogical agent rules, dialogue, and gestures were tightly coupled with the contents of the

XML documents making the entire system highly susceptible to syntax and typographical errors.

This initial approach to pedagogical agent authoring for the LEONARDO project had several significant

drawbacks: First, the subject matter experts did not have a means to visualize what the curriculum content

and pedagogical agent dialogue would look like when it was displayed in the CyberPad UI as they were

authoring content in Microsoft Word. Second, it was extremely slow to make small changes to the content

since it required a development team member to be available to (a) make the change in XML, (b) rebuild

the application, and (c) redeploy the CyberPad application to the iPads. Third, this dependency resulted in

frustration for the subject matter experts and development team members. As a result, the curriculum

content lacked polish, which is typically achieved by making many small changes after the original

content is created. Since making small changes was highly inefficient, these changes were not made due

to lack of resources and time. Using this approach to authoring content, 1 hour of instruction required

more than the estimated 300 hours of development time often cited for ITS authoring (Tom Murray,

2003).

Based on this initial authoring experience and future plans to more than triple the amount of curricular

content and pedagogical agent dialogue, it became imperative to design and implement the COMPOSER

authoring tool in the second year of the project. We started requirements gathering by identifying the

types of subject matter experts who would use the tool in the future: elementary school teachers,

education graduate students, and education faculty. We then proceeded to design COMPOSER’s UI by

reviewing authoring tools from other areas that our subject matter experts were comfortable using. This

included applications such as Microsoft PowerPoint, Google documents, and Edmodo. In the new system,

curriculum content, agent dialogue, and rules would be stored in a cloud-based server where it could be

directly accessed by both the COMPOSER tool and the CyberPad application. This approach formed the

basis for the authoring tool principles and features proposed in this chapter.

The COMPOSER authoring tool improved the authoring workflow for the LEONARDO project in years two

and three by decoupling content authors from the development team. Subject matter experts were

159

empowered to refine curriculum content and pedagogical agent behavior independently of the

development team. In addition, a familiar workflow and editing feature set further improved the

efficiency of subject matter experts. However, since authoring wasn’t considered in the initial design,

these improvements did come at a development cost of refactoring data models, logic, and storage to

make it possible to edit and track small discrete parts of the curriculum.

Recommendations and Future Research

Widespread development and deployment of pedagogical agents in ITSs depends on efficient transfer of

domain knowledge and pedagogical agent dialogue, strategies, and behaviors from subject matter experts

to the tutoring system. Authoring tools hold great promise to facilitate knowledge engineering. However,

it should be emphasized that authoring tools should be tailored to the subject matter expert using features

and workflows that have been proven effective by authoring software from non-ITS domains.

In future work, it will be important to investigate the addition of automation features to assist in the

authoring of pedagogical behaviors and tutoring strategies. In the near term, leveraging educational data

mining techniques to discover prevalent student behaviors, as well as misconceptions, from ITS datasets

could further enhance ITS authoring tools and identify parts of curricula that require additional

scaffolding. Future work should strive to immediately incorporate decades of software engineering

knowledge in the design and implementation of novice and expert UIs to simplify authoring complex

knowledge and underlying ITS mechanisms.

The design principles for pedagogical agent authoring tools presented in this chapter are not specific to

any given tutoring system. Since these authoring tool principles are broadly applicable across ITSs, GIFT

affords a unique opportunity to act as a authoring tool platform where many of these authoring tool design

principles could be implemented once and used by many tutoring systems. This would allow a single

high-quality authoring tool implementation to be established that could then be shared across multiple

tutoring systems, thereby reducing redundant authoring tool design and development effort across

multiple projects while simultaneously raising the quality of the authoring tools based on GIFT. It follows

that this approach has the potential to produce higher-quality pedagogical agent-based learning

environments more quickly and at reduced cost.

References

Beal, C. R., Walles, R., Arroyo, I. & Woolf, B. P. (2007). On-line tutoring for math achievement testing: A

controlled evaluation. Journal of Interactive Online Learning, 6(1), 43–55.

Brawner, K. & Graesser, A. (2014). Natural Language, Discourse, and Conversational Dialogues within Intelligent

Tutoring Systems: A Review. In R. Sottilare, A. Graesser, X. Hu & B. Goldberg (Eds.), Design

Recommendations for Intelligent Tutoring Systems (pp. 189–204).

Graesser, A. C., Chipman, P., Haynes, B. C. & Olney, A. (2005). AutoTutor: An Intelligent Tutoring System With

Mixed-Initiative Dialogue. IEEE Transactions on Education, 48(4), 612–618.

Jordan, P. W., Hall, B., Ringenberg, M., Cue, Y. & Rose, C. (2007). Tools for Authoring a Dialogue Agent that

Participates in Learning Studies. In R. Luckin, K. R. Koedinger & J. Greer (Eds.), Artificial Intelligence in

Education: Building Technology Rich Learning Contexts That Work (pp. 43–50). IOS Press.

Lester, J. C. & Stone, B. A. (1997). Increasing believability in animated pedagogical agents. In AGENTS ‘97

Proceedings of the First International Conference on Autonomous Agents (pp. 16–21).

Lester, J. C., Voerman, J. L., Towns, S. G. & Callaway, C. B. (1999). Deictic Believability: Coordinated Gesture,

Locomotion, and Speech in Lifelike Pedagogical Agents. Applied Artificial Intelligence, 13(4-5), 383–414.

Lhommet, M. & Marsella, S. C. (2013). Gesture with meaning. In Intelligent Virtual Agents (pp. 303–312). Springer

Berlin Heidelberg.

160

Mangrubang, F. R. (2004). Preparing elementary education majors to teach science using an inquiry-based

approach: The Full Option Science System. American Annals of the Deaf, 149(3), 290–303.

Merceron, A. & Yacef, K. (2005). Educational Data Mining: a Case Study. In AIED (pp. 467–474).

Meron, J., Valente, A. & Johnson, W. L. (2007). Improving the authoring of foreign language interactive lessons in

the tactical language training system. In Speech and Language Technology in Education (SLaTE2007) (pp.

33–36).

Murray, T. (2003). An Overview of Intelligent Tutoring System Authoring Tools: Updated analysis of the state of

the art. In T. Murray, S. Blessing & S. Ainsworth (Eds.), Authoring Tools for Advanced Technology

Learning Environments (pp. 493–546). Springer Netherlands.

Petridis, P., Dunwell, I., Panzoli, D., Arnab, S., Protopsaltis, A., Hendrix, M. & de Freitas, S. (2012). Game Engines

Selection Framework for High-Fidelity Serious Applications. International Journal of Interactive Worlds,

2012, 1–19.

Piwek, P., Hernault, H., Prendinger, H. & Ishizuka, M. (2007). T2D: Generating Dialogues Between Virtual Agents

Automatically from Text. In Intelligent Virtual Agents (pp. 161–174). Springer Berlin Heidelberg.

Preuss, S., Garc, D. & Boullosa, J. (2010). AutoLearn’s Authoring Tool: A Piece of Cake for Teachers. In

Proceedings of the NAACL HLT 2010 Fifth Workshop on Innovative Use of NLP for Building Educational

Applications (pp. 19–27). Association for Computational Linguistics.

Robson, R., Ray, F. & Cai, Z. (2013). Transforming Content into Dialogue-based Intelligent Tutors. Paper presented

at The Interservice/Industry Training, Simulation & Education Conference (I/ITSEC), Orlando, FL.

Rus, V., D’Mello, S. K., Hu, X. & Graesser, A. C. (2013). Recent advances in intelligent tutoring systems with

conversational dialogue. AI Magazine, 34(3), 42–54.

Schroeder, N. L., Adesope, O. O. & Gilbert, R. B. (2013). How Effective are Pedagogical Agents for Learning? A

Meta-Analytic Review. Journal of Educational Computing Research, 49(1), 1–39.

Si, M., Marsella, S. C. & Pynadath, D. V. (2005). THESPIAN: An Architecture for Interactive Pedagogical Drama.

In AIED (pp. 595–602).

Sottilare, R. A., Brawner, K. W., Goldberg, B. S. & Holden, H. K. (2012). A modular framework to support the

authoring and assessment of adaptive computer-based tutoring systems (CBTS). In Proceedings of the

Interservice/Industry Training, Simulation, and Education Conference.

Susarla, S., Adcock, A., Van Eck, R., Moreno, K. & Graesser, A. C. (2003). Development and evaluation of a lesson

authoring tool for AutoTutor. In AIED2003 supplemental proceedings (pp. 378–387).

VanLehn, K. (2011). The Relative Effectiveness of Human Tutoring, Intelligent Tutoring Systems, and Other

Tutoring Systems. Educational Psychologist, 46(4), 197–221.

Woolf, B. P. (2009). Building Intelligent Interactive Tutors: Student-centered strategies for revolutionizing e-

learning. San Francisco, CA: Morgan Kaufmann.

161

Chapter 13 Adaptive and Generative Agents for Training

Content Development
Joseph Cohn

1
, Brent Olde

2
, Ami Bolton

2
, Dylan Schmorrow

3
and Hannah Freeman

4

1
Office of the Secretary of Defense;

2
Office of Naval Research;

3
SOARTech;

4
Strategic Analysis, Inc.

Introduction

In this chapter, we provide a vision, based on our combined 40+ years of developing training and

education technologies, for the next stage in training system content development. While this vision is

informed by specific Defense needs gaps and requirements, it is developed in a manner that makes it

broadly applicable to a much wider range of training needs. Our vision treats training content as the

foundation upon which effective training systems are developed and addresses a deep limitation in how

content is developed is developed today. We believe that the limits on content development are a key

factor in preventing the development of large-scale adaptive training systems. Simply put, regardless of

how quickly and accurately a training system can diagnose a student’s performance deficits, the

effectiveness with which the training system can develop and enact remedial strategies relies wholly on

the depth and scope of the content from which specific instances of these strategies can be applied.

We envision an automated capability to generate new, context-appropriate training content with limited

human supervision, based on integrating training system authoring tools with expert system technologies

and using unbounded data sets. A critical enabler of this approach is the ability to deliver training through

student interactions with one or more agents within a simulated training environment. These agents will

accomplish three important training goals. First, by interacting with students in real time, these agents’

behaviors will provide an experiential type of learning, arguably one of the strongest types of learning

strategy. Second, by virtue of interacting with students, these agents will have the ability to assess student

performance against a set of training goals and objectives, and identify specific training deficits. Lastly,

using knowledge about the student’s current state and their desired end-state, these agents will have the

basic information necessary to generate new and appropriate behaviors—an entirely new form of

adaptive content that is not solely dependent on instructor forethought or scripting.

This new capability will replace hand-coded rule sets, automatically generating new and appropriate agent

behaviors from one or more data sources including data captured during live exercises; data captured

from experts operating their systems within a simulated environment; or data provided in a script-like

format. On the basis of one or more of these initial data sets, it should then be possible to reproduce the

behaviors, model them for more general uses, and extend those models to provide new behaviors in a

training environment. This approach will require integrating cognitive modeling approaches with machine

learning techniques to generate tactically authentic behaviors. Cognitive models provide a means of

formally representing the underlying behaviors of interest. Machine learning techniques provide a wide

range of inductive approaches to generalize modeled behaviors to new missions and contexts. Training

objectives, doctrine and tactics, techniques and procedures (TTPs) bound the initial cognitive models and

subsequent machine learning generalization to ensure that new behaviors are tactically authentic and also

responsive to training needs. The resultant behaviors can then be validated as part of a new training

scenario. The need for new approaches for delivering effective training is clear. Using live assets for

training exercises is becoming prohibitively costly, both due to reduced access to live training ranges

(Mehta, 2014) and range space for conducting live training exercises continues to be reduced (or

eliminated; Oslon, 2014). Increased operational tempos, and reduced manpower across the Services,

further limits access to training. Intelligent tutoring systems (ITSs) are meant to address these challenges

162

by providing tailored, adaptive training “on demand” but these approaches often struggle to show a

significant return on investment (O’Connor & Cohn 2010). On the one hand, the very best ITSs, which

mimic the very best student-instructor interactions, are still too costly to develop for large-scale use (Cohn

& Fletcher, 2010). On the other hand, more affordable ITSs offer only pre-scripted training or minimally

adaptive training, which while significantly lower in cost, is also less effective (Woolf, 2009).

Against this backdrop, new combat platforms, like unmanned systems and cyber combat systems, are

being procured to address a new set of threats and challenges to our Nation’s security. These platforms

will require training that is more focused on cognitive skills sets like problem solving, decision making,

multi- tasking, task switching, and mission management, rather than on physical skill sets. This training is

best delivered through interactive and adaptive approaches rather than less personal “one size fits all”

classroom approaches (Vogel-Wolcutt, 2013). O’Connor & Cohn (2010) and Cohn & Fletcher (2010)

suggest that if ITSs are the indicated solution, then key drivers in making this type of training affordable

lie in reducing the amount of effort needed to develop training content, while advancing the level of

training system adaptability.

State of the Art

Adaptive, generative, and modular agents provide a key tool for enabling ITSs, by providing a new

approach for developing and delivering content. In our view, content is the hub through which the spokes

of any training system must be connected. To that end, we explore not only current research in content

development, but, also, current research in other elements of adaptive training systems. Figure 1 provides

one representation of the various elements necessary for developing adaptive training tools, based in part

on Conati (1997), Woolf (2009) and Pardos et al.(2013), with details discussed below.

Figure 1: Elements that are critical to delivering effective instruction, mapped onto science and technology

efforts, indicated in “()”: understanding each student’s overall learning needs (Individual Student Model,

Student Monitoring), identifying specific approaches for addressing any learning gaps and building

instructional modules (Instructional Strategies and Instructor Actions), that deliver content using these

approaches (Content) through some hardware or software connection (Tutoring Environment, Interface).

163

Individual Student Models and Student Monitoring

Adaptive tutoring systems are meant to modify their instructional content and delivery to each individual

student’s learning needs (Jeremic et al.2012). This is best accomplished through a student model (Sison &

Shimura, 1998), which integrates into an executable representation as much information about the

individual student as can be reasonably and meaningfully captured, to provide to the tutoring system a

picture of the student’s current “state.” Yet, despite the strong development of numerous, different,

computational approaches to modeling student state, like Bayesian knowledge tracing (Corbett &

Anderson, 1995) and performance factors analysis (Pavlik & Koedinger, 2009), it is becoming

increasingly clear that current approaches may be reaching their upper limits accurately representing

individual student state (Pardos, et al.2013). A critical reason for this may be that information about the

student is often “latent” (Pardo et al.2013) or intangible, like meta-cognition, motivation, and affect

(Desmarais & Baker, 2012).

Instructional Strategies and Instructor Actions

While representing a student’s current learning needs and predicting their future ones is necessary for

effective adaptive training (Clemente, Ramírez & De Antonio, 2011), it is not sufficient. An adaptive

training system, like an expert instructor, must be able to tailor and deliver instruction in a way best suited

to match these learning needs. This includes identifying the different types of strategies that enable

effective instruction (see, for example, Lunenburg & Irby, 2011); establishing a framework for selectively

applying these strategies to different student styles, as well as different student levels of expertise (e.g.,

Koedinger, Corbett & Perfetti (2012)’s “Knowledge–Learning–Instruction Framework,”); and

developing a capability to computationally represent this framework in a way that can be integrated into

an adaptive training system.

Tightly linked to instructional strategies is the method by which these strategies are delivered—the

instructor actions that will impart information using one or more strategies. Simply requiring a training

system to deliver reinforcement says nothing about how that reinforcement should be delivered or the

form that such reinforcement should take. At their most fundamental, these actions should lead to

learning, “…the process by which long-lasting changes occur in behavioral potential as a result of

experience…” (Anderson, 2000). Learning, in turn, is enabled by activating the short- and long-term

memory systems (Anderson, 2000). Consequently, the delivery of these strategies should be done in a

way that durably establishes these memories in a way that also eases their retrieval. Recent work by

Rohrer & Pashler (2014), Pashler et al. (2007) and Karpicke & Roediger (2008) indicates that “enforced

retrieval” of information through a blend of studying, rehearsal, and testing can increase the ease with

which information is stored, maintained, and retrieved.

Content

The cost of developing content is a major challenge to building effective ITSs. One reason for the high

cost of content development is that it is expensive to create the corpus of knowledge that will inform

content. While there are some advances being made on this front, such as Robinson et al.’s (2012)

simulation based knowledge elicitation approach to elicit and model expert behaviors, this approach may

only shift the cost away from content development to environment development. A second reason for the

high cost of content development is that as more content is required for more complex adaptive systems,

the framework (ontology) into which this content is embedded may need to expand pseudo-exponentially,

with corresponding cost (Simperl & Mochol, 2006). Some interesting and new approaches for developing

content include crowdsourcing (Koedinger, McLaughlin & Stamper, 2012; Weld et al.2012) and “big

data” collection (Arroyo & Woolf, 2005) approaches, and the development of new types of knowledge

164

structures (Boyce & Pahl, 2007; Koenig, Lee, Iseli & Wainess, 2009) and associated techniques to

represent these data sets (Pardos & Heffernan, 2010).

Tutoring Environment and Interface

There are many examples of “training systems,” which, lacking the elements indicated in Figure 1, are

little more than practice platforms (Vogel-Walcutt, 2013). As Woolf (2009) suggests, training must be

delivered in an authentic and relevant fashion to be effective. This means that not only must the interface

to the system be “realistic” and transparent and the environment must be engaging, but the content must

also be delivered in a motivating and stimulating fashion. As a result, the veridicality of the training may

be significantly enhanced, leading to better, positive, learning transfer rates (Grossman & Salas, 2011).

Discussion

Our vision for adaptive training systems hinges on developing training content from as wide a range of

sources as possible, making this content adaptive to student needs in real time, and embedding this

content in agents that can deliver this training.

General Approach

The steps necessary to achieving this vision include the following (Figure 2):

 Develop the knowledge structures (ontologies) that will be used to capture source data.

 Define boundaries of behavior patterns that are of interest. This includes identifying what kind of

activities to look for in real entity behaviors.

 Find the behavior patterns of interest using the boundary definitions.

 Develop representative cognitive models from the behavior data.

 Apply doctrine training goals and objectives to define and constrain agent behaviors.

 Use machine learning techniques to generate novel, doctrinally accurate, agents.

Figure 2: General approach for developing adaptive and generative agents. Data are placed into an ontology

(left side). Boundary conditions are identified, based on doctrine or other sources (right side). The ontology

and the boundary conditions are merged using cognitive models, and machine learning techniques evolve and

adapt the represented behaviors to guide the agent (center) which is then integrated into the training system.
Source Office of Naval Research Fact Sheet Unmanned Aerial Systems Interface, Selection & Training Technologies Dynamic Adaptive & Modular entities for UAS (DyAdeM)

165

There are still challenges associated with applying these steps to specific training needs. As instructional

system developers look to use more and varied data sources, fundamentally new types of ontologies will

need to be developed to accommodate these data, which will certainly have a wide range of spatial and

temporal fidelity. Early efforts to build these blended types of ontologies have been used with some

success in the development of cognitive based control systems for autonomous systems (Stacy et al.,

2010) and are now being expanded to include much larger and more varied types of data, including

blending neural, behavioral, and machine-based sources (Cohn et al., 2015). Identifying boundaries for

behavior patterns and discovering behavior patterns of interest is in many ways a big data analytics

challenge, focusing on identifying an often minor signal against a backdrop of seemingly random “noise.”

Modeling and pattern recognition approaches developed in other contexts, such as those used in the

Office of the Secretary of Defenses’ Human Social Cultural Behavior Modeling Program (Boiney &

Foster, 2013), could provide a foundation from which to build these techniques. An equally challenging

problem is developing affordable methods for building executable representations (cognitive models)

from these data to generate in real time novel, contextually appropriate, and doctrinally accurate agent

behaviors to drive instruction. Today, building these behaviors requires significant time investment by

scenario authors (Koedinger, et al.2004). In the future, it will be critical to generate these models

autonomously from the source data.

Example Application

Unmanned aerial system (UAS) training represents a new and complex domain that will strongly leverage

modeling and simulation (M&S) solutions to develop embedded and emulated training environments, and

in which agent-delivered content will play a key role for delivering training. Because the kinds of tasks in

operating a UAS involve observing, tracking, and identifying many different types of entities (e.g., blue,

red, and white forces), ITS training for UAS operators requires the integration of hundreds, if not

thousands, of simulated entities into the overall training scenario. Currently, developing these entities

requires significant time and effort, and results in entities whose behaviors are strictly guided, scripted,

and limited based on pre-determined rules that define the entities’ behaviors over the course of the

training scenario. The net result is entities whose behaviors are not realistic, leading to reduced training

effectiveness, yet at the same time require significant effort to create, leading to prohibitively high

authoring costs.

Applying the process described in Figure 2 to this challenge allows us to automate the development of

new behaviors to drive a range of different types of simulated entities, providing an alternative, and

potentially more effective and less costly, solution. The process begins with automating the recognition of

live entity behaviors, captured from various UAS sensor data streams, and transforming those data into

digital representations (Figure 3a). This requires ontologies that can capture both discrete and continuous

data, across representations that can accommodate data with both high and low spatial and temporal

resolution. This provides the foundation from which to model and generate behaviors to drive simulated

entities. Next, the transformed data are bounded by user-specified parameters to create behavior

envelopes, which represent goals and associated constraints. This sets the conditions for developing rules

for generating new behaviors that are related to those captured from the live entity. During a training

exercise, student performance is monitored to detect when goals are either archived or potentially not

achieved, and when constraints are close to being violated. When these conditions are met, machine

learning algorithms are applied to generate new behaviors (Figure 3b).

166

Figure 3: (a) Automated activity recognition identifies behaviors of live entities (e.g., aircraft, vehicles, people)

to model using pattern recognition techniques applied to real sensor data received from UASs.

(b) Generalized behavior envelopes are then developed from these patterns to provide rules for generating

related behaviors. These rules are applied in response to student performance to deliver adaptive and

generative agent behaviors. Courtesy of Aptima Inc. and SOARTech

Recommendations and Future Research

Extending the Approach

The approach for developing adaptive and generative agents overlays nicely on the different elements that

comprise ITSs (Figure 1). The student models provide one of the functions that drive the agents to seek

new behaviors. Student performance is monitored and assessed, and the outcome of this assessment

provides the basis for either capturing new data or evolving current data sets into new behaviors that can,

in turn, help remediate the student. At the same time, these agents would be able to build, through

continuous interaction with each trainee, dynamic and highly individualized models that could capture

“missing” information, such as latent (Pardos 2013) or affective (Desmarais & Baker, 2012) behaviors.

How this information could be elicited remains to be determined, but one possible solution may lie in

recent advances in the development of classifiers for inferring cognition from brain activity. In these

efforts, individuals are shown a wide array of objects, of different categories, while simultaneously

having their brain activity captured through non-invasive techniques. Using machine learning routines, a

classifier can be built that can then scan brain activity when subjects view a new object and, with some

degree of accuracy, predict what sort of object an individual is looking at (Mitchell, et al., 2004).

Importantly, these classifiers appear to be transferrable to new categories of objects as well as to new

groups of individuals, while maintaining reasonable levels of predictive accuracy (Shinkareva et al.,

2008). In a similar manner, it might be possible to develop generalizable approaches to train classifiers to

detect certain kinds of latent and affective variables. Alternatively, it may be possible to leverage and

adapt machine learning approaches pioneered by the affective computing community (Picard, 1997),

which allow computer systems to adapt their actions to the affective state of the user, inferred through

facial feature recognition technologies. In both instances, a major leap that must be made is to move away

from using physiological or physical based data (brain data or facial expression data) and focus on

behaviors detected only through the student’s interface with the training system.

The resultant, data could support the development of models that would, in turn, guide the development

of content specific instructional strategies to address learning deficits. At the other end of the spectrum,

167

the behaviors that could be driven through this approach provide new opportunities to realize a range of

actions that the ITS can take to deliver instruction. Lunenburg & Irby (2011) identify a set of effective

strategies, like Set Induction, Stimulus Variation, Reinforcement, and Questioning. Precisely how these

strategies could be delivered using this approach also remains to be determined. Lastly, the current

approach is being developed for a specific application, UAS instruction, in which data naturally are

provided in digital format. Extending this approach to other domains in which the data are not inherently

digital, like math or science instruction, will require new approaches for capturing and eliciting data from

expert instructors.

Impact to the Generalized Intelligent Framework for Tutoring (GIFT)

GIFT already provides a strong foundation into which this approach may be integrated, with

modifications potentially required for only a few modules. The GIFT sensor module offers a way for new

data to be captured, although it would need to be extended to include large-scale ontologies and data from

non-traditional sensor sources. The GIFT learner module is analogous to the student modeling and student

monitoring elements (Figure 1), and may require only minor modifications to support the approach

proposed here, allowing it to boot-strap from the output of the agents. The GIFT pedagogical module

would similarly need to be modified to allow for instruction to be delivered via agents, as discussed

above.

References

Anderson, J. (2000) Learning and Memory: An integrated approach. Wiley

Baker, R. S. J. (2007). Modeling and understanding students’ off-task behavior in intelligent tutoring systems. In: M.

B. Rosson and D. J. Gilmore (eds.): Proceedings of the 2007 Conference on Human Factors in Computing

Systems, CHI 2007, San Jose, California, USA, April 28 - May 3, 2007. pp. 1059{1068.

Boiney, J. & Foster, D. (2013). Progress and Promise: Research and engineering for Human Social cultural Behavior

Capability in the U.S. Department of Defense. Accessed on 09 March 2015 from

http://www.mitre.org/publications/technical-papers/progress-and-promise-research-and-engineering-for-

human-sociocultural-behavior-capability-in-the-us-department-of-defense

Boyce, S. & Pahl, C. (2007). Developing domain ontologies for course content. Educational Technology & Society,

10 (3), 275- 288.

Clemente, J., Ramírez, J., & De Antonio, A. (2011). A proposal for student modeling based on ontologies and

diagnosis rules. Expert Systems with Applications, 38(7):8066-8078.

Corbett, A.T., Anderson, J.R., (1995). Knowledge Tracing: Modeling the Acquisition of Procedural Knowledge.

User Modeling and User-Adapted Interaction, 4, 253-278 to Performance Factors Analysis

Cohn, J.V. & Fletcher, D.F. (2010). What is a pound of training worth? Proceedings of the 31st Interservice/Industry

Training, Simulation and Education Conference, Orlando, FL.

Cohn, J.V., Stacy, W., Geyer, A., Squire, P. & O’Neill, E. (2015) Improving Human System Interactions Through a

Neural Cognitive Architecture: A shared context approach (In preparation for submission to Theoretical

Issues in Erognomic Sciences)

Desmarais, M.C & Baker, R.S.J.D. (2012). A Review of Recent Advances in Learner and Skill Modeling in

Intelligent Learning Environments. User Model User-Adapt International, 22:9-38.

Grossman, R. & Salas, E. (2011) The transfer of training: what really matters. International Journal of Training and

Development 15:2 1468-2419.

Karpicke, J.D.& Roediger, H.L.,III (2008): The critical importance of retrieval for learning. Science 15, 966–968.

Koedinger, K. R., Aleven, V., Heffernan, N., McLaren, B. & Hockenberry, M. (2004). Opening the door to non-

programmers: Authoring intelligent tutor behavior by demonstration. In J.C. Lester, R.M. Vicari & F.

Parguacu (Eds.) Proceedings of the 7th International Conference on Intelligent Tutoring Systems, 162-174.

Berlin: Springer-Verlag.

Koedinger, K.R.,Corbett, A.T.,& Perfetti,C.(2012).The knowledge-learning-instruction framework: Bridging the

science-practice chasm to enhance robust student learning. Cognitive Science, 36, 757–798.

http://www.mitre.org/publications/technical-papers/progress-and-promise-research-and-engineering-for-human-sociocultural-behavior-capability-in-the-us-department-of-defense
http://www.mitre.org/publications/technical-papers/progress-and-promise-research-and-engineering-for-human-sociocultural-behavior-capability-in-the-us-department-of-defense

168

Koedinger, K. R.; McLaughlin, E. A. & Stamper, J. C. (2012). Automated Student Model Improvement.

International Educational Data Mining Society, Paper presented at the International Conference on

Educational Data Mining (EDM) (5th, Chania, Greece, Jun 19-21, 2012).

Koenig, A. D., Lee, J. J., Iseli, M. R. & Wainess, R. A. (2009). A conceptual framework for assessing performance

in games and simulations. Proceedings of the Interservice/Industry Training, Simulation and Education

Conference, Orlando, FL.

Lunenburg, F. C. & Irby, B. J. (2011). Instructional Strategies to Facilitate Learning. International Journal of

Educational Leadership Preparation, 6(4), n4.

Mehta A. (2014) Under Budget Pressure US Air Force Looks to Live Virtual Constructive Training. Retrieved from

http://www.defensenews.com/article/20140520/TRAINING/305200048/Under-Budget-Pressure-US-Air-

Force-Looks-LVC-Training 18 Nov 2014
Mitchell, T. M., Hutchinson, R., Niculescu, R.S. Pereira, F. Wang, X., Just, M. & Newman, S. (2004). Learning to

Decode Cognitive States from Brain Images. Machine Learning, 57, 145–175.

O’Connor, P.E. and Cohn, J.V. (Eds.) (2010). Human Performance Enhancement in High-Risk Environments. Santa

Barbara, CA: Praeger Security International.

Olson, W. (2014). With deadline looming, agreement uncertain on Hawaii live-fire range Retrieved from

http://www.stripes.com/news/with-deadline-looming-agreement-uncertain-on-hawaii-live-fire-range-

1.284813 18 Nov 2014

Pardos, Z. A., Heffernan, N. T. (2010) Modeling Individualization in a Bayesian Networks Implementation of

Knowledge Tracing. In Proceedings of the 18th International Conference on User Modeling, Adaptation

and Personalization. pp. 255-266. Big Island, Hawaii.

Pashler,H. et al. (2007) Enhancing learning and retarding forgetting: choices and consequences.

Psychonom.Bull.Rev. 14, 187–193

Pavlik, P.I., Cen, H., Koedinger, K.R., 2009a. Learning Factors Transfer Analysis: Using Learning Curve Analysis

to Automatically Generate Domain Models. In: Proceedings of the 2nd International Conference on

Educational Data Mining, 121-130

Robinson, S., Lee, E.P.K. & Edwards, J.E. (2012). Simulation based knowledge elicitation: Effect of visual

representation and model parameters. Expert Systems with Applications, 39(9): 8479-8489

Rohrer, D. & Pashler, H. (2010). Recent research on human learning challenges conventional instructional strategies

Educational Researcher, 39(5) pp. 406-412.

Picard, R. W. (1997) Affective Computing, MIT Press, 0-262-16170-2, Cambridge, MA, USA.

Simperl, E.P.B & Mochol, M. (2006). Cost Estimation for Ontology Development In: Witold Abramowicz (ed.),

Business Information Systems, Proceedings of BIS 2006, Poznań, Poland Retrieved from http://page.mi.fu-

berlin.de/mochol/papers/BIS06.pdf 10 Nov 2014.

Shinkareva, S. V., Mason, R. A., Malave, V. L., Wang, W., Mitchell, T. M. & Just, M. A. (2008). Using fMRI brain

activation to identify cognitive states associated with perception of tools and dwellings. PLoS ONE, 3,

e1394

Stacy E.W., Cohn J.V., Geyer A., Wheeler T.A. (2010) Cognition-based control system for autonomous robots.

Poster: Human Factors and Ergonomics Society 54th Annual Meeting, San Francisco.

http://www.defensenews.com/article/20140520/TRAINING/305200048/Under-Budget-Pressure-US-Air-Force-Looks-LVC-Training
http://www.defensenews.com/article/20140520/TRAINING/305200048/Under-Budget-Pressure-US-Air-Force-Looks-LVC-Training
http://www.stripes.com/news/with-deadline-looming-agreement-uncertain-on-hawaii-live-fire-range-1.284813%2018%20Nov%202014
http://www.stripes.com/news/with-deadline-looming-agreement-uncertain-on-hawaii-live-fire-range-1.284813%2018%20Nov%202014
http://page.mi.fu-berlin.de/mochol/papers/BIS06.pdf%2010%20Nov%202014
http://page.mi.fu-berlin.de/mochol/papers/BIS06.pdf%2010%20Nov%202014

169

CHAPTER 14 Authoring Conversation-based Assessment

Scenarios
Diego Zapata-Rivera, Tanner Jackson, and Irvin R. Katz

Educational Testing Service

Introduction

At Educational Testing Service (Princeton, NJ), current research seeks to adapt technologies and

techniques originally developed for intelligent tutoring systems (ITSs) to create innovative forms of

assessment. This chapter focuses on one such project, working from the dialogue-based instruction of

Graesser and colleagues (Graesser, Person & Harter, 2001) to develop a series of “conversation-based

assessments” (CBAs). CBAs use dialogues between automated computer agents and test-takers to help

measure the level of a construct — knowledge and skill in a particular domain — that a test taker

possesses. To date, we have developed prototype CBAs each designed to measure a distinct skill such as

science inquiry (Zapata-Rivera, Jackson, Liu, Bertling, Vezzu & Katz, 2014), formulating and justifying

arguments (Song, Sparks, Brantley, Jackson, Zapata-Rivera & Oliveri, 2014), and reading, listening, and

speaking skills for English language learners (Evanini, So, Tao, Zapata, Luce, Battistini & Wang, 2014).

The assessment, rather than instructional, context for dialogues lead to unique challenges when designing

CBAs. To meet these challenges, we have built authoring tools to support the processes of designing and

developing automated conversations for assessment purposes. These tools include conversation-space

diagrams (Zapata-Rivera et al., 2014), an automated testing tool, and a version of the AutoTutor Script

Authoring Tool (Susarla, Adcock, Van Eck, Moreno & Graesser, 2003), which we call the AutoTutor

Script Authoring Tool for Assessment (ASATA).

Each task within a CBA is defined to measure a particular set of constructs; a conversation-space diagram

shows how evidence (test taker performance) of each construct is collected through various discourse

paths of the conversation. The diagram helps the designers to place recognizable discourse patterns in the

conversations to create authentic-seeming situations. These conversation-space diagrams lead directly to

dialogue scripts in ASATA and test-taker response “scripts” for the automated testing system. These

authoring tools have helped speed up the design and testing of CBAs.

Related Research

As the need for assessing more complex skills increases, more researchers are exploring the use of new

technologies to implement technology-enhanced assessments (TEAs) that can make use of multiple

sources of evidence to support claims about students’ skills, knowledge and other attributes (Invitational

Research Symposium on Technology Enhanced Assessments, 2012; Perrotta & Wright, 2010). Some of

these TEAs include the use of computer simulations (Bennett, Persky, Weiss & Jenkins, 2007; Clarke-

Midura, Code, Dede, Mayrath & Zap, 2011; Quellmalz et al., 2011) and games (Shute, et al., 2009;

Mislevy, et al., 2014). TEAs frequently involve the use of authoring tools to facilitate the design and

implementation process of these systems.

A variety of authoring tools have been implemented and evaluated for ITSs. These tools include authoring

tools for dialogue systems (Susarla, et al., 2003; Butler, et al., 2011), constraint-based tutors (Mitrovic,

Martin, Suraweera, et al., 2009), model-tracing cognitive tutors (Aleven, McLaren, Sewall & Koedinger,

170

2006, Blessing, Gilbert, Ourada & Ritter, 2009) and other problem-specific tutors (Blessing et al., 2009).

An overview of authoring tools in ITSs can be found in Murray (2003). Relevant research also includes

prior work on authoring tools for creating data collection instruments (Katz, Stinson & Conrad, 1997).

Although this prior work provides a guide, the intent of a conversation differs between an ITS and an

assessment, changing also the elements of a dialogue. When a conversation is part of an ITS, the primary

goal is instruction. Graesser’s dialogic framework consists of a computer agent asking a main question of

the human student, then following up with additional questions or prompts if the initial response is

incomplete. Different follow-up questions, prompts, or hints would be offered depending on the specific

way that the initial response is incorrect or incomplete. In the case of assessment, follow-up questions,

prompts, and hints take on a new meaning. Rather than guiding the student to a good answer to the main

question, the goal of the assessment is to make sure that any incompleteness in the initial answer reflects

that the student does not know the answer rather than the student simply did not express what he or she

knows. Of course, in an assessment, even if the student answered a question incorrectly or provided an

incomplete answer, the system would not attempt to teach, but rather create situations that help students

elaborate on their initial incomplete or incorrect responses. These sequences of interactions are recorded

(and later scored). Thus, compared with the original AutoTutor framework, the assessment focuses on

incompleteness and in drawing out additional information about student understanding.

Discussion

Traditional authoring tools for dialogue systems assume that authors are familiar with computer natural

language processing techniques (e.g., regular expressions and latent semantic analysis) and have some

computer programming skills (e.g., rule-based and constraint programming). Most of these tools have

been designed to be used by dialogue engineers who have years of experience designing, implementing,

and testing these types of systems. Even though assessment developers are highly skilled at developing

valid assessments using traditional task types, they are not familiar with the use of conversations as

assessment tasks and do not usually have programming experience. In addition, other team members such

as psychometricians, game programmers, research assistants, and research scientists do not necessarily

understand how these CBAs are created and scored.

In order to support the work of assessment developers, a different layer of authoring needed to be

explored. This layer includes support for assessment design concepts and processes (e.g., target

constructs, evidence identification, and scoring). Although we have tried several tools in the creation of

CBAs, such as text documents and chat-like tools to document how dialogue interactions are used to

gather evidence of target constructs, these tools quickly became cumbersome to use and did not include

all the elements required to develop assessment tasks. Conversation-space diagrams were created to

facilitate the authoring of conversational tasks. The next sections describe the process of authoring CBAs.

Authoring CBAs

Building on the principles of evidence-centered design (ECD; Mislevy, Steinberg & Almond, 2003), the

development process of these conversation-based tasks involves an iterative process that starts from a

clear definition of the construct, followed by the identification of the evidence (e.g., types of responses to

particular questions) required to support particular claims about what students know or can do in regards

to each target construct (Figure 1).

171

Figure 1. CBA development process

Scenes are designed in order to create the context where intended conversations can take place and the

evidence needed can be gathered. Scene design elements include the situation or context of the

conversation, main question, conversation moves/patterns, who asks each question, the type of responses

that are intended to be elicited, and how characters respond to each type of response. This information is

represented in a conversation space diagram (see the next section). A scoring model is also developed for

each particular conversation. The scoring model has two components: (1) path-based scoring (partial

credit scores per each relevant construct based on expert judgment) and (2) revised scores based on

additional evidence from human raters or other automated scoring engines. Conversation scripts are

implemented in ASATA based on these conversation space diagrams. These conversation scripts can be

tested within ASATA (text-based interface). Finally, a conversation prototype that includes all the

graphical components, interactive tasks (e.g., simulations) and conversations is produced and used to

collect assessment data. These data are used to refine the various elements of the system in an iterative

cycle.

Conversation Space Diagrams

Conversation diagrams have been designed to facilitate authoring of CBAs (see Figure 2). These

diagrams serve as communication tools to facilitate communication about task design among an

interdisciplinary group of experts that may not share the same location or have the same level of expertise

in particular area. Conversation space diagrams provide a common language for these experts to

collaborate in the CBA design and testing process.

Conversation space diagrams include the definition of the construct that is being assessed along with a

column for each virtual character/real student. Utterances and potential conversational branches are

displayed in the body of the diagram to form conversation paths (including sample user responses). These

paths may involve several turns (i.e., columns of the diagram) depending on the conversation. Paths

within a diagram can be used to represent several types of conversation moves/patterns (e.g., Comparison

172

-> Selection -> Agree/Disagree -> Why?; Define -> Explanation -> Scaffolding -> Rephrase; Irrelevant ->

Rephrase & Ask Again).

Interactions with characters are designed to provide opportunities for assessing the construct(s) of interest.

Each task includes an opening that sets the stage for the interactions with virtual characters and a closing

that concludes the current scene and connects it to the next one. Each scene includes a main question that

is directed to the student. Depending on how the student responds to this question, virtual characters react.

There is usually a predefined set of possible responses: (a) a correct response is usually connected to a

closing statement, (b) partially correct responses are handled in various ways depending on the nature of

the response (e.g., characters may ask for additional information, provide a hint, or restate the question),

(c) irrelevant responses are usually handled by a character showing lack of understanding and restating

the question, (d) no response usually involves a character asking “Are you still thinking?” and giving the

student additional time, if appropriate, and (e) meta-communicative responses (e.g., “What did you say?,”

“Please repeat”) and meta-cognitive responses (e.g., “I have no idea,” “I am not sure,” “I forgot”) are

handled by repeating the question or rephrasing it.

Each conversational script typically has up to three cycles or opportunities for students to answer different

types of questions related to the main question. If the student does not answer the question after the initial

attempt and follow-up prompts, then a character may provide a closing statement and move the

conversation along to the next scene.

Path information is based on expert judgment and is implemented using regular expressions and rules as

part of the script. Figure 2 shows sample closing statements including path-based scores for the target

constructs. Figure 3 (top) shows a sample rule telling the system that ClosingPath1 should be executed if

the student response is classified as Good. A fragment of a regular expressions for a good response is

displayed at the bottom of Figure 3. Path-based scores for target constructs are assigned at the closing

statement.

173

Figure 2. Fragment of a conversation space diagram for the Volcano scenario (Zapata-Rivera, et al., 2014).

Note: To allow exemplar text to be legible, the text in other boxes was purposefully obscured in this figure.

174

Figure 3. Sample rule and regular expression (fragment) in ASATA

AutoTutor Script Authoring Tool for Assessment (ASATA)

ASATA offers many features for creating a variety of conversation-based tasks. Dialogue engineers can

create, test, and revise conversations for tutoring and assessment purposes using the modules available in

ASATA.

ASATA provides conversation authors with a graphical interface that includes modules such as the

following:

 Agents this module is used to define agent characteristics such as name, title, gender, and canned

expressions for predefined categories of responses (e.g., meta-communicative responses);

 Speech Acts used to define regular expressions for general categories of responses;

 Rigid Packs used to represent non-interactive conversations among the agents (e.g., opening

and closing statements);

175

 Tutoring Packs determine how agents react to particular student responses, establish thresholds

for classification purposes, and contain linguistic information like regular expressions, text for

latent semantic analysis, expected answers, misconceptions, hints, and prompts;

 Rules Implement conversation sequences (paths); and

 a Testing module that uses a chat-like environment to display the internal state of the system

(e.g., rules fired and matching values) as the user interacts with each conversation.

ASATA shares many of the same features as ASAT. Many of the improvements made to ASAT have

been transferred to ASATA and vice versa. Figure 3 shows some of the components of ASATA.

Automated Testing

Testing CBA scripts can be a time-consuming process of manually entering possible student responses

and observing whether the conversation flows as expected. This process usually requires several iterations

of testing/refining, which becomes a bottleneck for the use of these systems in operational contexts. We

have developed an approach for automated testing of CBAs. This process makes use of sample responses

gathered from an interdisciplinary group of experts and allows for the creation of predefined response

categories that are represented in the form of a conversation diagram. This information is used to create

extensible markup language (XML)-based testing scripts that can evaluate individual responses and

complete sequences (and alternative sequences) of responses (paths). This process has already shown

value by reducing the number of iterations and testing time required in implementing CBAs. The next

section describes some of the results that have been achieved so far using various authoring and testing

tools.

Initial Results

We have implemented CBAs in various areas including English language learning, mathematics, science,

and argumentation during the last two years. Conversation space diagrams for these domains may share

similar components including path structure, conversation patterns, and graphical components (e.g.,

virtual characters and delivery environment). This helps in terms of reducing the cost of CBA

development and improving scalability. For example, it is possible to design a parallel version of a CBA

by reusing and adapting the elements from an existing one. We are currently testing a newly developed

isomorphic environment to an existing CBA and comparing them in terms of their psychometric and other

properties.

By using conversation space diagrams, we have been able to assign work that was done by scientists or

assessment developers to research assistants (e.g., modification of conversation based diagrams,

generation of additional materials, and testing), making better use of resources while still producing high

quality work.

We have collected data on the time required by our team to design and test CBAs across different target

domains. The development can be divided into three different stages based on various authoring tools

available for designing and testing CBAs. Initially, we used text documents and chat tools to create the

scripts before using ASATA to implement them and testing was done manually. Later, we started using

conversation-based diagrams design and ASATA and manual testing. Currently, we are using

conversation-based diagrams, ASATA, and automated testing. The introduction of automated testing of

scripts has made the process of detecting and fixing errors more efficient. Table 1 shows some indicators

of the development and testing process using various types of authoring tools. These data have been

176

collected at different stages of this work. The introduction of conversation based diagrams and automated

testing have increased the efficiency of the process. We continue to make improvements to these tools by

enhancing their usability and integration with other development tools.

Table 1. Development indicators for conversation-based assessments using various authoring tools.

Development Indicator

Authoring Tool

Text

Documents/Chat

tools + ASATA

Conversation Space

Diagrams +

ASATA

Conversational Space

Diagrams +

ASATA +

Automated Testing

Number of scripts

developed

2 8 ~20

Time designing and testing

a new script

4–8 weeks 1–4 weeks 1–2 weeks

Percentage of errors

identified before data

collection

20%–30% 40%–60% 60%–80%

Time correcting errors 1 week 2–4 days 1–2 days

Next Steps

The conversation space diagram and testing system are distinct components, separate from each other and

ASATA, the latter of which is the way that conversations are implemented. In our current work, we are

combining these three systems into an authoring tool that we call ASAT-V (“V” for visualization).

ASAT-V is a visual programming environment in which an author draws the conversation space diagram

and, for each node, specifies metadata (what is to be said by which agent, for example). Another user of

the system, the dialogue engineer, would add metadata associated with the technical aspects of the

conversation, such as regular expressions and other parameters to ensure that the conversation would

work correctly. The psychometrician might add in scoring metadata associated with scoring. Once the

diagram is created in ASAT-V, it produces files that can be read by the dialogue engine to execute a

dialogue, with no intermediary steps. Additionally, the ASAT-V will produce testing scripts and script

models (tailorable by the author) and execute those scripts to ensure that the conversation flows as

expected.

177

Recommendations and Future Research

Authoring tools such as conversation space diagrams and automated testing modules facilitate the

development and testing process of CBAs. Through our authoring tools, we have been able to reuse

domain-independent structures (e.g., conversation patterns), accelerate the development of CBAs, and

improve communication among the members of our development teams. Conversation-based diagrams

have also helped new members get familiar with these innovative assessment tasks and improved the

acceptance of a new assessment design paradigm. In addition, it has allowed for an effective allocation of

resources so people can do what they know best.

Some recommendations for the Generalized Intelligent Framework for Tutoring (GIFT; Sottilare,

Brawner, Goldberg, and Holden, 2012), and future ITS include the following:

 Develop integrated authoring tools that take into account the needs, knowledge, and attitudes of

particular team members.

 Keep important design information readily available throughout the development process (e.g.,

construct information for assessment tasks)

 Develop technical development infrastructure and representations to help integrate/reuse

components across different CBAs.

 Make use of automated testing tools to help speed-up the development and testing process of

conversation-based systems.

References

Aleven, V., McLaren, B.M., Sewall, J. & Koedinger, K.R. (2009). A New Paradigm for Intelligent Tutoring

Systems: Example-Tracing Tutors. International Journal of Artificial Intelligent in Education. Special Issue

on Authoring Systems, 19(2), 105-154.

Bennett, R. E., Persky, H., Weiss, A. & Jenkins, F. (2007). Problem-Solving in technology rich environments: A

report from the NAEP technology-based assessment project. NCES 2007-466, U.S. Department of

Education, National Center for Educational Statistics, U.S. Government Printing Office, Washington, DC.

Blessing, S. B., Gilbert, S. B., Blankenship, L. A. & Sanghvi, B. (2009). From sdk to xpst: A new way to overlay a

tutor on existing software. In Proceedings of the Twenty-second International FLAIRS Conference (pp.

466-467), Sanibel Island, FL. AAAI Press.

Blessing, S. B., Gilbert, S.B., Ourada, S. & Ritter, S. (2009). Authoring model-tracing cognitive tutors. International

Journal of Artificial Intelligent in Education. Special Issue on Authoring Systems, 19(2), 189-210.

Butler, H., Forsyth, C., Halpern, D., Graesser, A.C. & Millis, K (2012). Secret agents, alien spies, and a quest to

save the world: Operation ARIES! Engages students in scientific reasoning and critical thinking. In R. L.

Miller, R. F. Rycek, E. Amsel, B. Kowalski, B. Beins, K. Keith & B.Peden (Eds.)., Volume 1: Programs,

Techniques and Opportunities. Syracuse, NY: Society for the Teaching of Psychology.

Clarke-Midura, J., Code, J., Dede, C., Mayrath, M. & Zap, N. (2011). Thinking outside the bubble: Virtual

performance assessments for measuring complex learning. In M.C. Mayrath, J. Clarke-Midura & D.

Robinson (Eds.), Technology-based assessments for 21st century skills: Theoretical and practical

implications from modern research. Charlotte, NC: Information Age. 125-147

Evanini, K., So, Y., Tao, J., Zapata, D., Luce, C., Battistini, L. & Wang, X. (2014). Performance of a trialogue-based

prototype system for English language assessment for young learners. Proceedings of the Interspeech

Workshop on Child Computer Interaction (WOCCI 2014), Singapore, September 19, 2014.

178

Graesser, A. C., Person, N. K. & Harter, D. (2001) The Tutoring Research Group: Teaching tactics and dialogue in

AutoTutor International Journal of Artificial Intelligent in Education. 12, 257-279.

Katz, I., Stinson, L.L, and Conrad, F.G. (1997). Questionnaire designers versus instrument authors: Bottlenecks in

the development of computer administered questionnaires. Fifty-Second Annual Conference of the

American Association for Public Opinion Research, Norfolk, VA. 1029-1034.

Mislevy, R., Oranje, A., Bauer, M., von Davier, A., Hao, J., Corrigan, S., Hoffman, E., DiCerbo, K. & Michael, J.

(2014) Psychometric Considerations In Game-Based Assessment. Retrieved October 5, 2014, from

http://www.instituteofplay.org/wp-content/uploads/2014/02/GlassLab_GBA1_WhitePaperFull.pdf

 Invitational Research Symposium on Technology Enhanced Assessments. (2012). Center for K–12 Assessment &

Performance Management at ETS. Retrieved October 5, 2014, from

http://www.k12center.org/events/research_meetings/tea.html

Mitrovic, A., Martin, B., Suraweera, P., Zakharov, K., Milik, N., Holland, J. & McGuigan, N., (2009) ASPIRE: An

Authoring System and Deployment Environment for Constraint-Based Tutors, International Journal of

Artificial Intelligent in Education. Special Issue on Authoring Systems, 19(2), 155-183.

Murray, T. (2003) An Overview of Intelligent Tutoring System Authoring Tools: Updated Analysis of the State of

the Art. Authoring tools for advanced technology learning environments. 491-545.

Perrotta, C. & Wright, M. (2010) New Assessment Scenarios. Retrieved October 5, 2014, from

http://www.futurelab.org.uk/resources/new-assessment-scenarios

Quellmalz, E. S., Timms, M. J., Buckley, B. C., Davenport, J., Loveland, M. & Silberglitt, M. D. (2011). 21st

Century Dynamic Assessment. In M.C. Mayrath, J. Clarke-Midura & D. Robinson (Eds.), Technology-

based assessments for 21st century skills: Theoretical and practical implications from modern research.

Charlotte, NC: Information Age. 55-90.

Shute, V. J., Ventura, M., Bauer, M. I. & Zapata-Rivera, D. (2009). Melding the power of serious games and

embedded assessment to monitor and foster learning: Flow and grow. In U. Ritterfeld, M. J. Cody & P.

Vorderer (Eds.), Serious Games: Mechanisms and Effects. Philadelphia, PA: Routledge/LEA. 295-321.

Sottilare, R., Graesser, A., Hu, X., and Goldberg, B. (Eds.). (2014). Design Recommendations for Intelligent

Tutoring Systems: Volume 2 - Instructional Management. Orlando, FL: U.S. Army Research Laboratory.

ISBN 978-0-9893923-3-4. Available at: https://gifttutoring.org/documents/

Song, Y., Sparks, J., R., Brantley, J. W., Jackson, T., Zapata-Rivera, D. & Oliveri, M. E. (2014) Developing

Argumentation Skills through Game-Based Assessment. In Proceedings of the 10th Annual Game Learning

Society Conference, Madison, WI.

Susarla, S., Adcock, A., Van Eck, R., Moreno, K. & Graesser, A.C. (2003) Development and evaluation of a lesson

authoring tool for AutoTutor. In: Aleven, V., et al. (eds.) AIED 2003 Supplemental Proceedings, pp. 378–

387

Zapata-Rivera, D., Jackson, T., Liu, L., Bertling, M., Vezzu, M. & Katz, I. R., (2014) Science Inquiry Skills using

Trialogues. 12th International conference on Intelligence Tutoring Systems. 625-626.

179

Chapter 15 Authoring Networked Learner Models in

Complex Domains
David Williamson Shaffer

1
, A. R. Ruis

1
, and Arthur C. Graesser

2

1
University of Wisconsin–Madison,

2
University of Memphis

Introduction

Education leaders have called for a significant expansion in the use of computer games and simulations,

intelligent tutoring systems (ITSs), and other virtual learning environments in both formal and informal

learning contexts (Graesser, 2013; Honey & Hilton, 2011; Sottilare, Graesser, Hu & Holden, 2013). To

accomplish this will require that curriculum developers be able to author and customize such technologies

for integration into specific curricula, adaptation to local needs, and alignment with changing standards

(Clark, Nelson, Sengupta & D’Angelo, 2009; Honey & Hilton, 2011; Mitrovic et al., 2009). Research on

the development of ITSs has shown that anywhere from 100 to 1000 hours of authoring time are needed

to produce just 1 hour of instruction (Koedinger & Mitrovic, 2009). The substantial time commitment and

expertise required place significant limitations on the creation of sophisticated virtual learning

environments. “Our holy grail,” Vincent Aleven and colleagues have suggested, is “to create cost-effective

tools that non-programmers can use to create and deliver sophisticated tutors for real-world use” (Vincent

Aleven et al., 2009).

Prior studies on authorware development suggest that building such tools is both ambitious and

potentially transformative (Koedinger, Aleven, Heffernan, McLaren & Hockenberry, 2004; Murray,

Blessing & Ainsworth, 2003; Murray, 1999). Recent efforts to design authorware for sophisticated

systems has revealed the many difficulties involved in creating a platform that is rich in features but easy

to use. It is challenging for curriculum developers and instructors to use authoring tools effectively, and

adding additional intelligent features could make it even more challenging (Ainsworth & Grimshaw,

2004; Major, Ainsworth & Wood, 1997). Authoring tools must be able to account for essential

components, such as conversation management, semantic representations, production rules, pedagogical

strategies, and other technical modules (Vincent Aleven, Sewall, McLaren & Koedinger, 2006; Murray et

al., 2003; Woolf, 2010). The curriculum or learning modules created also need to fit theory-driven

constraints, discourse processes, cognitive science, and computer science, as well as the practical

constraints created by state standards, assessments, and education practices. Pedagogical authoring thus

requires deep and broad knowledge to manage these constraints, accommodate tradeoffs, and negotiate

incompatibilities.

The complexity inherent in the pedagogical authoring of virtual learning environments raises a key

question: Can authorware systems be designed that facilitate this process without requiring the

curriculum developer to have expertise in computer programming or educational software development?

While progress has been made toward this goal, most sophisticated authoring systems (there are many for

ITSs alone) are used primarily in research contexts. Those that have received broader usage, such as

Cognitive Tutor Authoring Tools (CTAT) and Authoring Software Platform for Intelligent Resources in

Education (ASPIRE), primarily support the development of modules that help students learn to solve

well-formed problems, such as those common in basic mathematics, computer science, or language

acquisition. One notable exception is the AutoTutor Script Authoring Tools (ASAT and ASAT-Lite),

which support intelligent conversational agents in any subject matter (Hu et al., 2009; Nye, Graesser &

Hu, 2015; Cai, Graesser & Hu, this volume). ASAT handles a single human learner who interacts with

180

one or more conversational agents. In this chapter, we discuss the potential to develop authorware for

virtual learning environments in which students work in small teams to solve complex, ill-formed

problems. In particular, we explore the parameters, affordances, and challenges of designing authoring

tools for Syntern, a platform for the development and deployment of virtual internships (Arastoopour,

Chesler & Shaffer, 2014; Bagley & Shaffer, 2009; Chesler et al., 2015; Chesler, Arastoopour, D’Angelo,

Bagley & Shaffer, 2013; Shaffer, 2007). Virtual internships are online learning environments that

simulate professional practica in complex science, technology, engineering, and mathematics (STEM)

domains.

Virtual internships are based on the theory of situated learning (Anderson, Reder & Simon, 1996; Lave &

Wenger, 1991; Sadler, 2009), which suggests that students learn complex thinking best when they have

an opportunity to take consequential action in a realistic setting. In STEM fields, this typically occurs in

the context of an internship or other professional practicum through a process of legitimate peripheral

participation, where novices learn to think like experts by working on problems similar in form to those

of the practice but with reduced intensity and risk (Lave & Wenger, 1991). What distinguishes an

internship from other learning environments is the combination of action, the ability to do authentic work,

and reflection-on-action (Schön, 1983, 1987; Shaffer, 2003), the opportunity novices have to think about

what went well, what did not, and why, and then discuss this with peers and mentors. Virtual internships

simulate the key features of a professional practicum, especially the close mentorship that is critical to

learning in professional contexts (Bagley & Shaffer, 2010; Nash & Shaffer, 2011, 2013; Nulty & Shaffer,

2008).

In a STEM virtual internship, students are presented with a complex, real-world problem for which there

is no optimal solution. Student project teams read and analyze research reports, perform experiments

using virtual tools and analyze the results, respond to the requirements of stakeholders and clients, write

reports and proposals, and present and justify their proposed solutions. During the virtual internship,

students communicate with one another using built-in email and instant message systems. They also

receive directions, feedback, and guidance from non-player characters (NPCs), such as their boss or

company stakeholders, whose actions are controlled by a combination of artificial intelligence (AI) and

human domain managers using scripted material in the simulation. Through flexible scripts and

automated processes, NPCs answer students’ questions, offer suggestions, guide reflective conversations,

facilitate student collaboration, and provide support. The goal of a virtual internship is to provide an

authentic simulation of the internships, practica, and cooperative research experiences with which STEM

professionals are trained in the real world.

In the virtual internship Nephrotex, for example, students work at a fictitious biomedical engineering

company, which has tasked them with designing a new ultrafiltration membrane for use in hemodialysis

equipment. To accomplish this task, students review technical documents, conduct background research,

and examine research reports based on actual experimental data. After these tasks are complete, they

develop hypotheses based on their research, test those hypotheses in the provided design space, and then

analyze the results, first individually and then in teams. Students also become knowledgeable about

consultants within the company who have a stake in the outcome of their designed prototypes. These

consultants value different performance metrics. For example, the clinical engineer is most interested in

biocompatibility and flux, and the manufacturing engineer values reliability and cost. During the last days

of the internship, interns present and justify their final design selections.

Our goal is to develop authorware that allows curriculum developers to design or modify STEM virtual

internships to address different audiences, topics, or purposes without requiring significant expertise in

computer programming or educational software development. We believe this is possible because (a) the

pedagogical foundation is well developed and the design space is constrained, reducing the specialized

knowledge required for pedagogical authoring; (b) the computational module for natural language

181

processing (NLP) is STEM domain general, so it does not require rewriting for new STEM virtual

internships; updates to the semantic coding system automatically propagate to the AI modules; and (c) the

Syntern platform has a modular design consisting of a core application programming interface (API) and

plug-ins, so each component may be added, removed, or modified without affecting other components.

Although we focus on the design of one particular system, the principles of authorware design are

applicable to learning environments in ill-formed domains more generally. Given the relatively small

body of research on the processes with which curriculum developers design content, however, we argue

that a key element of developing such authorware systems is to develop a science of the pedagogical

authoring process.

Related Research

In the past two decades, there has been a proliferation of sophisticated virtual learning environments in

STEM. There are now ITSs that can outperform human teachers on certain tasks, such as determining

student knowledge and identifying student misconceptions (Graesser, Conley & Olney, 2012; Woolf,

2010). STEM educational games, such as Quest Atlantis (Barab et al., 2009; Hickey, Ingram-Goble &

Jameson, 2009), River City (Dieterle, 2009; Ketelhut, Dede, Clarke-Midura & Nelson, 2006), SAVE

Science (Nelson, Ketelhut & Schifter, 2010), Operation ARA (Halpern et al., 2012), and Mission Biotech

(Sadler, Romine, Stuart & Merle-Johnson, 2013), have been shown to help students learn important

STEM concepts and engage more fully with material. And our own work on STEM virtual internships has

shown that computer simulations based on authentic STEM practices help students learn how to solve

problems in the ways that innovative STEM professionals do (Arastoopour et al., 2014; Bagley &

Shaffer, 2009; Chesler et al., 2015, 2013; Shaffer, 2007).

Despite these successes, use of such technologies in education is still quite modest. If ITSs, educational

games and simulations, and virtual internships are so effective, why have they not been more widely

incorporated into learning? There are numerous issues that contribute to this problem, but a key element

is that it is too difficult, too expensive, and too slow to create or modify sophisticated learning

technologies to fit the wide range of learners and learning contexts. Creating authorware that enables

curriculum developers to easily, cheaply, and quickly produce or modify learning technologies, while also

ensuring that the products are pedagogically sound, is thus a crucial requirement for scaling up the use of

such technologies in education. While this research and development effort is still in its early stages,

significant steps have been taken toward this goal.

A number of authorware systems have been developed that allow curriculum developers to construct

virtual learning environments in which students learn to solve problems in a variety of domains. Initial

research on CTAT, for example, found that an example-tracing approach to pedagogical authoring, which

requires no programming ability, cut authoring time by as much as 50% (Vincent Aleven, McLaren,

Sewall & Koedinger, 2006). CTAT is now perhaps the most widely used authoring system for ITSs, and

the gains in efficiency have improved as well. Large-scale CTAT-created tutors used in educational

settings have been built with fewer than 100 hours invested per hour of instruction produced. By

eliminating the need for programming assistance, CTAT can reduce overall development costs by a factor

of 4–8 (Vincent Aleven et al., 2009).

Similarly ASPIRE, an authorware platform for the creation of constraint-based ITSs, has been used to

create a wide range of learning technologies (Mitrovic, 2012; Mitrovic et al., 2009). ASPIRE is domain

agnostic, allowing curriculum designers in any field to author ITSs. This generality is a tremendous

advantage, but it also means that the learning curve is steep for new users and that best results have been

achieved by authors with more advanced technological abilities (Mitrovic, 2012).

182

Of course there are many other authoring tools, as well as other approaches to authorware design. But

there remains a fundamental challenge: in making the authoring process easier and faster, the more

advanced features of cognitive tutors are often lost. Example-tracing systems, for instance, significantly

reduce authoring time and require no programming skill, but the pseudo-tutors produced are not as

dynamic as those that expert programmers can build (Vincent Aleven, Sewall, et al., 2006; Koedinger et

al., 2004). As a result, most of the learning modules that have been produced with accessible authoring

tools help students learn to solve well-formed problems. But many problems with which innovative

professionals engage are ill formed, requiring the kinds of complex thinking that is beyond the capacities

of most systems to teach, unless the system has the capacity for natural language interaction and a

statistical representation of world knowledge (Graesser, D’Mello, et al., 2012; Halpern et al., 2012;

Hilton, 2008; McNamara, Levinstein & Boonthum, 2004; Rotherham & Willingham, 2009; VanLehn et

al., 2007). Given this issue, a key next step in the development of authorware is to enable curriculum

developers, even those with limited technological skill, and design virtual learning environments that

simulate realistic practices or allow students to solve ill-formed or non-routine problems.

Discussion

Virtual internships, and the Syntern platform with which they are developed and deployed, have three key

features that make it possible to develop authorware for curriculum developers who have limited

technological skill: (1) the design space is constrained, (2) the NLP components are STEM domain

general, and (3) the system is modular. Although virtual internships simulate ill-formed domains and

problems, these three elements reduce the scope and complexity of the pedagogical authoring

environment, allowing us to design authoring tools that can scaffold the curriculum development process.

Of course, this limits the range of virtual learning environments that a curriculum developer will be able

to design, but it also ensures that the final product will be functional, pedagogically and structurally

sound, and able to accurately simulate non-routine problem solving in a practice-based context. In what

follows, we first describe the existing Syntern platform. Then, we outline the design of an authorware

system for Syntern virtual internships, and in doing so, we discuss our approach to studying the

pedagogical authoring process itself. Although we focus on one specific system, the principles of

authorware design that we discuss are generalizable to learning environments in ill-formed domains as a

whole.

Syntern, a Modular Development and Deployment Platform for Virtual Internships

The Syntern virtual internship platform (Figure 1) is comprised of six distinct structural elements, which

when combined produce (a) an online user experience that authentically simulates real-world STEM

practices, and (b) a log file that records all the actions and interactions of students and domain managers

in the system for subsequent analysis:

(1) Frameboard. The Syntern frameboard contains the content for each STEM virtual internship and

determines the sequence and structure of activities in the virtual environment. For example,

virtual internships consist of a progression of rooms. Each room consists of three related and

sequential activities: (a) an introduction, in which interns receive a specific task from their

supervisor via email; (b) a sandbox, which contains the tools and resources interns need to

complete the task; and (c) one or more deliverables, or the work output that the supervisor has

asked interns to submit, including a notebook entry documenting their work. The frameboard is

structured as a series of possible actions that the computer-generated NPCs use to interact with

students in the internship. The Syntern system tracks students’ progress through the internship

and presents the human domain manager with context-appropriate choices for NPC action,

183

including grading rubrics for deliverables that students complete, response options for student

questions, and guide questions for reflective discussions.

(2) Workbench. The workbench provides actual or simulated tools from the STEM domain that help

students solve problems in the field. In the urban planning virtual internship Land Science, for

example, students use a geographic information system to model the effects of land-use changes

on various social, economic, and environmental indicators.

(3) Templates for Automated Mentoring. Syntern uses NLP algorithms to automatically deliver some

content from the frameboard (such as task assignments from the supervisor). During team

meetings, for example, in which student project teams discuss their recent activities with the NPC

mentor and plan their next steps, the system can use the AutoReflect template to determine when

student responses achieve a pre-defined learning objective. This helps the domain manager decide

whether to revoice the response(s) and move on to a new topic or send a follow-up question to

provide further scaffolding. In an engineering design simulation, for example, students may graph

data to get a better sense for how various design choices affect certain performance metrics. After

this activity, one question the NPC mentor may ask during the team meeting is: Based on your

surfactant graph, how did the surfactants perform relative to one another? Because no one

surfactant performs best on all performance metrics in this particular case, the target student

response would be something like: No surfactant performed best on all the design attributes. The

AutoReflect template uses an automated coder (see component five, below) to code student

discourse in real time, alerting the domain manager when a student response achieves this goal.

Of course, questions, targets, and coding criteria must be defined in advance, which requires

experience in both curriculum design and educational technology development.

(4) Assessment Rubrics. The frameboard contains an assessment rubric for every deliverable in the

virtual internship. Assessment criteria are linked to pre-composed responses from the NPC

supervisor. A custom NLP module uses a range of syntactic and semantic criteria, including word

count, sentence complexity, and a domain-specific coding scheme, to determine whether a

deliverable is above threshold, meaning it clearly meets evaluation criteria established by the

rubric. Deliverables that are above threshold are automatically approved by the Syntern system,

and the appropriate response from the NPC supervisor is sent. Deliverables that are not clearly

above threshold are tagged by the system for manual evaluation by the domain manager using the

assessment rubric.

(5) Domain Coder. The automation of functions in a virtual internship is made possible by a domain

coder that uses a combination of keywords and regular expressions to code chat messages, emails,

notebook entries, and students’ actions in the system for specific attributes of the domain.

(6) Application Programming Interface. The API ensures that all Syntern elements integrate

seamlessly and allows for easy addition, modification, or removal of modules. The API is

comprised of six core components (Figure 1). The Java 7 Hub governs basic operations and links

content, assessment, and the user experience. The R Project for Statistical Computing (R)

supports NLP and learning analytics tools. The MySQL database holds content from the

frameboard and records the actions of students and domain managers during the virtual

internship. The NLP module uses R and the domain coder to analyze student and mentor

interactions in the system. The learning analytics module evaluates coded discourse, deliverables,

and other activity in the system to determine whether pre-defined learning objectives have been

met. The WorkPro graphical user interface (GUI) simulates an online productivity suite through

which students access resources and tools and interact with NPCs and their project team. The API

thus ensures integration of the frameboard (curriculum content), workbench, automated

184

mentoring templates, assessment rubrics, and domain coder and provides the core architecture

needed to produce a coherent user experience from them.

Figure 3. The existing Syntern virtual internship system and the eight components of the Internship-inator

authorware platform.

With these components, Syntern recreates the key elements of an internship experience in an online

environment. The frameboard and the STEM workbench provide students with the ability to take

consequential action; the frameboard, mentoring templates, and learning analytics (using the assessment

rubrics, domain coder, and NLP) support reflection-on-action; and the learning analytics, user experience,

and log files enable the iterative development of virtual internships.

The Internship-inator, an Authoring System for Syntern Virtual Internships

A key challenge for the development of authorware that would enable curriculum developers to design

STEM virtual internships for the Syntern platform is that we lack a science of the pedagogical authoring

process. In what follows, we describe plans for the Internship-inator, an authorware system for the

Syntern platform. Our goal is not only to design a functional authorware system but to use both the design

process and the resulting tools to study the pedagogical authoring process. Of course, studying one

particular authoring context with a relatively small number of curriculum developers will not support

185

generalization to all pedagogical authoring contexts, but this research will suggest useful directions for

future work.

Developing authorware for the Syntern platform thus merits a systematic investigation of the curriculum

design process and requires iterative prototyping and refinement of the authoring tools. We conceive of

this project as a form of design research (Brown, 1992; Cobb, Confrey, Lehrer & Schauble, 2003;

Confrey, 2006; Kelly, Lesh & Baek, 2008), where initial hypotheses about authorware design, Syntern

modularity, and pedagogical authoring are revised by subsequent research in each area. To do this, we

will work with a core network of early-adopters: STEM curriculum developers who will help us create

initial prototypes of the Internship-inator, use the system to modify and design virtual internships, and

create support materials. To minimize development time and make evidence-based design decisions, we

will develop different components of the authorware system as standalone modules (described in detail

below) and employ a Wizard of Oz (Dow et al., 2005) approach. Rather than building a complete version

of each component initially, we will build a minimum viable version of each tool. Specifically, we will

only automate those processes that need to be run in real time during the content-development process.

Wherever possible, we will use members of the development team to perform functions of the tool in its

early stages, and later build automated systems to replicate and replace the work of these human experts.

Throughout these iterative design cycles, we will collect three kinds of data in order to study the

pedagogical authoring process: (1) focus groups and interviews conducted with the early adopters before

and during the design process and after they have used authorware prototypes will help us understand

their approach to curriculum development, the supports they need to use the authorware effectively, and

their preferences for features, user experience, and so forth; (2) the Internship-inator will document in log

files the actions and interactions of early-adopters while using the authoring tools, giving us a rich record

of authoring behavior for further analysis; and (3) pre/post tests and log files from implementations of

virtual internships modified or created by curriculum developers will provide rich information about the

quality of the learning simulations produced with the Internship-inator. Evaluation of the pedagogical

authoring process will thus encompass investigation of both technology use (e.g., the human-computer

interaction process) and the quality of the content produced.

Collecting these data will allow us to address fundamental research questions about pedagogical

authoring: Are some components of the authorware system more useful for editorial versus creative use?

Are some components used more (or easier to use) in conjunction with others? Which aspects of the

system influence whether, how, and to what extent curriculum developers use different authoring

components? And so forth. For example, we can look at the pattern of use of different authoring

components, including the order in which components are accessed, the frequency and duration of use,

and other log file data, combined with focus groups, to better understand how to sequence and scaffold

the authoring tools within the system to align with pedagogical authoring practices.

We conceive of the Internship-inator as a suite of eight online authoring tools (see Figure 1). For

analytical purposes, we divide the system into content components (the Frameboard-inator and

Workbench-inator), automation components (the Reflect-inator, Assess-inator, Code-inator, and Mentor-

inator), and support components (the Guide-inator and Collaborate-inator).

Content Development Components

(1) Frameboard-inator. The Frameboard-inator will enable STEM content developers to create or

modify content for a virtual internship, including the structure and sequence of activities,

assignments (such as readings or videos), assessments and rubrics, and other content that students

or domain managers will need during the virtual internship. A key challenge is ensuring that

STEM content developers include all of the information that the Syntern system needs to make

186

the content function. Thus, the Frameboard-inator will require a GUI that indicates (a) what kinds

of content are required to make each element of the simulation function, and (b) what kinds of

content are acceptable for different portions of the simulation. For example, every room in a

virtual internship begins with an email from the supervisor NPC describing the activities to

follow. Emails have specific properties in the system, so the Frameboard-inator GUI will need to

indicate to the curriculum developer that (a) an email is required to begin a room and (b) what the

constituent components of an email are.

(2) Workbench-inator. The Workbench-inator will provide mechanisms through which curriculum

developers can include problem-solving tools, such as AutoCAD or Matlab, in a virtual

internship. Open-source or editable tools, such as Geogebra or Google Maps, can be connected to

the Syntern API if the curriculum developer has programming expertise. For tools that are not

open-source but that store their output in one of Syntern’s supported file types (including XML,

JSON, YAML, HTML, CSV, TXT, and Properties), the Workbench-inator will provide an

interface that lets the developer tag elements of the file as Syntern readable. (This will also work

in a more limited way for graphics files in JPG, GIF, or PNG format for content such as location,

date, and time.) Finally, the Syntern system will allow students in a simulation to upload any file

as a deliverable. As long as the domain managers have the appropriate program to read the file,

they will be able to assess it using the system’s rubrics. In the first two cases (open source

program or output), the Syntern system would be able to apply automated assessment rules to the

deliverables created. In the third case (proprietary tool or output), the system will store and track

the file, but a human would have to assess its content.

Automation Components

(1) Reflect-inator. The AutoReflect template makes it easier for domain managers to control

reflective conversations between students and NPC mentors by identifying a set of reflection

topics and, for each topic, specifying (a) a set of prompting questions for the NPC to use, (b) a set

of NLP rules and other components to identify possible appropriate responses to the topic, and (c)

a pre-scripted revoicing of the key ideas about the topic that students should be able to articulate.

While prompting questions (a) and a revoicing (c) are relatively easy for curriculum developers to

construct, NLP rules and other components for identifying candidate answers (b) will be more

difficult. The Reflect-inator will scaffold the construction of these NLP components. For

example, curriculum developers could enter hypothetical answers from students (as well as

incorrect answers, if desired), and from the set of answers and non-answers, the Reflect-inator

would abstract a matching NLP rule. Because of the limited context of students responding to a

specific question in a reflective meeting taking place at a specific point in a specific STEM

simulation, we have found empirically that relatively simple rules can distinguish appropriate

responses from inappropriate responses. We therefore hypothesize that a limited set of model

responses will be sufficient for the system to extract functional rules.

(2) Assess-inator. Assessment rubrics in the Syntern system can automatically determine whether

certain student deliverables are acceptable. The system uses a custom NLP algorithm that

involves three computations: (a) a word type count (the number of unique words used), (b) a

domain code count, and (c) a measure based on four measures from the text analysis program

Linguistic Inquiry and Word Count (Pennebaker, Booth & Francis, 2007). We are also currently

exploring including latent semantic analysis of deliverables to further refine the accuracy of the

automated scoring algorithm (Graesser, Penumatsa, Ventura, Cai & Hu, 2007). The current

algorithm uses six thresholds, which determine whether the deliverable is accepted automatically

or sent to the domain manager for further evaluation. We hypothesize that, as a result, a relatively

small number of sample answers will be required for the Assess-inator to automatically compute

187

appropriate values for these thresholds. The Assess-inator will initially set all thresholds to zero—

which means all deliverables will be reviewed by hand. Log files created when the simulation is

run will include real examples of deliverables and the domain manager’s determination of

whether or not they are acceptable. The Assess-inator will then use these data to adjust the

thresholds automatically and with each subsequent iteration, the Assess-inator can automatically

refine the adjustments over time.

(3) Code-inator. The domain coder uses a combination of keywords and regular expressions to

interpret student-generated chats, emails, notebook entries, and actions in the Syntern system. The

resulting codes are then used by components of the system to automate responses to student

verbal contributions and actions. The domain coder can achieve the level of semantic accuracy

needed to create believable responses because the domain of possible speech acts and actions in the

virtual internship is limited (Graesser & McNamara, 2012; Grishman & Kittredge, 1986; Richard &

Lehrberger, 1982; Rupp, Gustha, Mislevy & Shaffer, 2010). Curriculum developers, however, will

not be able to easily create appropriate sets of keywords and expressions.

(4) We have already developed a tool, the HandCoder/AutoCoder, to create codesets for virtual

internships. This tool takes either manufactured or real examples from the target context (that is,

the STEM virtual internship) and uses a coding loop to create a set of keywords and expressions.

In the coding loop, a user codes a subset of examples from the target context for a given domain

code. These are compared to the existing codeset, and the user is able to adjust the codeset based

on the discrepancies. Further excerpts are hand-coded, and the process is repeated until the

desired level of agreement is reached—typically Cohen’s kappa > 0.69, which is excellent for

automated coding. Two key features support the rapid identification of an appropriate codeset: (a)

the system computes changes in the level of agreement on the fly as keywords are added or

removed from the codeset, and (b) a custom-written algorithm computes the confidence interval

for the level of agreement, thus reducing the number of coded excerpts needed to establish an

acceptable level. This system has been used in several different domains to establish coding

schemes, and we hypothesize that it can be easily adapted for use by curriculum developers.

(5) Mentor-inator. The frameboard for a Syntern virtual internship contains scripted responses from

NPCs that the domain manager can send to students. The Mentor-inator will automatically extend

the range of scripted material by (a) providing an interface through which curriculum developers

can easily add custom responses from previous runs to the frameboard, and (b) updating the

interface through which domain managers access scripted content so that they can manage the

larger number of scripted responses. To do this, the Mentor-inator will automatically extract

composed responses from the log file. Responses that were used multiple times will be

automatically added to the frameboard. Responses that appear only once will be presented with

their surrounding context to the curriculum developer, who can decide whether to include them as

scripts in future implementations.

Support Components

(1) Guide-inator. The Guide-inator will provide templates for curriculum developers to use in

creating support materials for virtual internships, along with an Internship-inator user guide. The

Guide-inator will be designed as a comprehensive interface to the Internship-inator and Syntern

systems, integrating design, support, curricular, and implementation materials for curriculum

developers.

(2) Collaborate-inator. The Collaborate-inator will provide a social networking component to the

Internship-inator system. Curriculum developers and educators will be able to create individual

188

accounts on the system, which will (at their discretion) be linked to their email or other social

media tools. The Collaborate-inator will facilitate content-focused exchanges about the

Internship-inator, Syntern system, and virtual internships. Users will be able to comment on and

link to content directly from the system. The result, we hypothesize, will be a self-sustaining

community of STEM content developers who can share virtual internship designs, curricula, and

experiences. By providing critical feedback and input on one another’s designs, support materials,

and implementation practices, the Collaborate-inator will provide the “real world tips” that our

focus groups suggest education professionals want to supplement formal information about such

systems.

(3) We hypothesize that this suite of authoring tools will enable curriculum developers to design and

modify virtual internships without needing programming experience or extensive training. The

pedagogical framework, the mode of communication (email and chat), and the structure of the

intervention are all relatively fixed, which makes it easier to scaffold the design process and

ensure that the product is pedagogically and structurally sound. The NLP computational module

is STEM domain general, so the semantic coding system can be automatically updated; this

reduces the need for curriculum developers to have expertise in instructional technology design.

The modular design of the Internship-inator has several advantages. First, it will allow curriculum

developers to develop simulations quickly for testing. For example, a functional virtual internship

could be developed from scratch using only the Frameboard-inator; the resulting simulation

would not have automated features, but those could be incorporated more gradually. The initial

time commitment can thus be relatively low if a curriculum developer wants to experiment with

virtual internship design or content. Second, the Internship-inator will allow curriculum

developers to make precise modifications to virtual internships, such as adding resources or

workbench tools, altering scripted content, or expanding the codeset, without altering the rest of

the simulation. Lastly, the system will accommodate different design processes: there isn’t a

single, linear progression that all curriculum developers must follow. Of course, that can be a

disadvantage as well, as it may make the learning curve steeper, but we believe this is a useful

trade-off because it will allow curriculum developers to use the tools in the ways that best fit their

specific needs and design approach.

Recommendations and Future Research

Designing authorware that makes the creation of virtual learning environments easier, cheaper, and faster

is critical for expanding the use of ITSs, educational games, and virtual internships. Most authorware

design research, however, has focused on the technological challenges. We suggest that developing a

science of pedagogical authoring is an equally important but largely neglected aspect of this problem.

Just as there are established sciences that systematically investigate the processes that underlie learning,

writing, design, problem solving, and other human achievements, there needs to be a comparable science

of creating advanced learning environments with authoring tools. This science would need to (a) track the

behavior of authors; (b) identify technological features that promote or impede authors’ progress and the

quality of the final products; (c) collect verbal protocols on the design processes of the authors while

authoring material; (d) modify the features of authoring tools as data are collected; (e) formulate a testable

theory of the authoring process; and (f) identify characteristics of authors that predict authoring quality.

The current lack of a science of the authoring process explains in part why most authoring is

accomplished by experts.

Designers of authoring tools generally agree that it is important to document the many versions of

authored content over time (i.e., the authoring process) and analyze the trajectory of changes: To what

extent are the authors using particular components of the authorware? To what extent are particular

189

learning principles instantiated in the materials that end up being designed? What components are

frequently deleted or modified? But such questions have yet to guide the development of a science of

pedagogical authoring. A key goal of the Internship-inator project is to contribute to the foundation of

such a science. By tracking the actions of curriculum developers who use the authoring tools (log files)

and developing a community of users (Collaborate-inator) from whom we can obtain feedback, we will be

able to study systematically the processes at work in pedagogical authoring.

Our vision is compatible with the Generalized Intelligent Framework for Tutoring (GIFT) architecture

both pragmatically (scaling up) and technically. Scholars are aware of the challenges involved in scaling

up and having an architecture that can handle different media. This level presents no significant problems.

We do see two efforts needed to expand GIFT. First, there needs to be a mechanism to handle groups,

teams, and other collaborations that go beyond the individual learner. The main technical challenge is

organizing the database, grouping individuals, and making systematic claims about individuals, groups,

and organizations. The data stream needs to be time stamped and populated with adequate metadata to

handle multiparty and sometimes multiteam interactions. Second, there needs to be a systematic facility

for handling the authoring analytics. We need to store data on multiple versions of software content and

track the authoring process. This is required to build a science of the pedagogical authoring process.

We have made considerable progress in the design of authorware for sophisticated virtual learning

environments, and there are many projects currently underway that are likely to continue and even

accelerate this progress. To improve uptake of such environments, however, we must develop authorware

that can be used successfully beyond the research context. Aleven and colleagues suggest that our Holy

Grail is to create cost-effective, user-friendly authorware; we suggest that our El Dorado is to develop a

science of the pedagogical authoring process.

Acknowledgements

This work was funded in part by the MacArthur Foundation, the National Science Foundation (DRL-0918409, DRL-

0946372, DRL-1247262, DRL-1418288, DUE-0919347, DUE-1225885, EEC-1232656, EEC-1340402, and REC-

0347000), the Institute of Education Sciences (R305H050169, R305C120001), the Office of Naval Research, and

the Army Research Laboratory. The opinions, findings, and conclusions do not reflect the views of the funding

agencies, cooperating institutions, or other individuals.

References

Ainsworth, S. E. & Grimshaw, S. K. (2004). Evaluating the REDEEM authoring tool: Can teachers create effective

learning environments? International Journal of Artificial Intelligence in Education, 14, 279–312.

Aleven, V., McLaren, B. M., Sewall, J. & Koedinger, K. (2009). A new paradigm for intelligent tutoring systems:

Example-tracing tutors. International Journal of Artificial Intelligence in Education, 19(2), 105–154.

Aleven, V., McLaren, B. M., Sewall, J. & Koedinger, K. R. (2006). The cognitive tutor authoring tools (CTAT):

Preliminary evaluation of efficiency gains. In M. Ikeda, K. D. Ashley & T.-W. Chan (Eds.), Intelligent

Tutoring Systems (pp. 61–70). Berlin, Germany: Springer.

Aleven, V., Sewall, J., McLaren, B. M. & Koedinger, K. R. (2006). Rapid authoring of intelligent tutors for real-

world and experimental use. In R. K. Kinshuk, P. Kommers, P. A. Kirschner, D. Sampson & W. Didderen

(Eds.), Proceedings of the 6th IEEE International Conference on Advanced Learning Technologies (ICALT

2006) (pp. 847–51). Los Alamitos, CA: IEEE Computer Society.

Anderson, J. R., Reder, L. M. & Simon, H. A. (1996). Situated learning and education. Educational Researcher,

25(4), 5–11.

Arastoopour, G., Chesler, N. C. & Shaffer, D. W. (2014). Epistemic persistence: A simulation-based approach to

increasing participation of women in engineering. Journal of Women and Minorities in Science and

Engineering, 20(3), 211–234.

190

Bagley, E. A. & Shaffer, D. W. (2009). When people get in the way: Promoting civic thinking through epistemic

game play. International Journal of Gaming and Computer-Mediated Simulations, 1(1), 36–52.

Bagley, E. A. & Shaffer, D. W. (2010). Stop talking and type: Mentoring in a virtual and face-to-face environmental

education environment. International Journal of Computer-Supported Collaborative Learning.

Barab, S. A., Scott, B., Siyahhan, S., Goldstone, R., Ingram-Goble, A., Zuiker, S. & Warrant, S. (2009).

Transformational play as a curricular scaffold: Using videogames to support science education. Journal of

Science Education and Technology, 18(3), 305–320.

Brown, A. L. (1992). Design experiments: Theoretical and methodological challenges in creating complex

interventions in classroom settings. Journal of the Learning Sciences, 2(2), 141–178.

Chesler, N. C., Arastoopour, G., D’Angelo, C. M., Bagley, E. A. & Shaffer, D. W. (2013). Design of professional

practice simulator for educating and motivating first-year enginnering students. Advances in Engineering

Education, 3(3), 1–29.

Chesler, N. C., Ruis, A. R., Collier, W., Swiecki, Z., Arastoopour, G. & Shaffer, D. W. (2015). A novel paradigm

for engineering education: Virtual internships with individualized mentoring and assessment of engineering

thinking. Journal of Biomechanical Engineering, 137(2).

Clark, D. B., Nelson, B., Sengupta, P. & D’Angelo, C. M. (2009). Rethinking science learning through digital

games and simulations: Genres, examples, and evidence. Proceedings of the National Academies Board on

Science Education Workshop on Learning Science: Computer Games, Simulations, and Education.

Washington, D.C.: National Academies Press.

Cobb, P., Confrey, J., Lehrer, R. & Schauble, L. (2003). Design experiments in educational research. Educational

Researcher, 32(1), 9–13.

Confrey, J. (2006). The evolution of design studies as methodology. In R. K. Sawyer (Ed.), The Cambridge

handbook of the learning sciences (pp. 135–152). New York, NY: Cambridge University Press.

Dieterle, E. (2009). Neomillennial learning styles and River City. Children, Youth and Environments, 19(1), 245–

278.

Dow, S., MacIntyre, B., Lee, J., Oezbek, C., Bolter, J. D. & Gandy, M. (2005). Wizard of Oz support throughout an

iterative design process. Pervasive Computing, 4(4), 18–26.

Graesser, A. C. (2013). Evolution of advanced learning technologies in the 21st century. Theory into Practice,

52(S1), 93–101.

Graesser, A. C., Conley, M. W. & Olney, A. (2012). Intelligent tutoring systems. In K. R. Harris, S. Graham, T.

Urdan, A. G. Bus, S. Major & H. L. Swanson (Eds.), APA educational psychology handbook, Vol. 3:

Application to learning and teaching (pp. 451–473). Washington, D.C.: American Psychological

Association.

Graesser, A. C., D’Mello, S. K., Hu, X., Cai, Z., Olney, A. & Morgan, B. (2012). AutoTutor. In P. McCarthy & C.

Boonthum-Denecke (Eds.), Applied natural language processing: Identification, investigation, and

resolution (pp. 169–87). Hershey, PA: IGI Global.

Graesser, A. C. & McNamara, D. S. (2012). Automated analysis of essays and open-ended verbal responses. In H.

Cooper, P. M. Camic, D. L. Long, A. T. Panter, D. Rindskopf & K. J. Sher (Eds.), APA handbook of

research methods in psychology, Vol. 1: Foundations, planning, measures, and psychometrics (pp. 307–

325). Washington, D.C.: American Psychological Association.

Graesser, A. C., Penumatsa, P., Ventura, M., Cai, Z. & Hu, X. (2007). Using LSA in AutoTutor: Learning through

mixed initiative dialogue in natural language. In T. K. Landauer, D. S. McNamara, S. Dennis & W. Kintsch

(Eds.), Handbook of latent semantic analysis (pp. 243–262). Mahwah, NJ: Erlbaum.

Grishman, R. & Kittredge, R. (1986). Analyzing language in restricted domains: Sublanguage description and

processing. Hillsdale, NJ: Erlbaum.

Halpern, D. F., Millis, K., Graesser, A. C., Butler, H., Forsyth, C. & Cai, Z. (2012). Operation ARA: A

computerized learning game that teaches critical thinking and scientific reasoning. Thinking Skills and

Creativity, 7, 93–100.

Hickey, D., Ingram-Goble, A. & Jameson, E. (2009). Designing assessment and assessing design in virtual

educational environments. Journal of Science Education and Technology, 18(2), 187–209.

Hilton, M. (2008). Research on future skills demands: A workshop summary. Washington, D.C.: National

Academies Press.

Honey, M. A. & Hilton, M. H. (2011). Learning science: Computer games, simulations, and education. Washington,

D.C.: The National Academies Press.

191

Hu, X., Cai, Z., Han, L., Craig, S. D., Wang, T. & Graesser, A. C. (2009). AutoTutor Lite. In Proceedings of the

2009 conference on Artificial Intelligence in Education: Building learning systems that care: From

knowledge representation to affective modelling (p. 802). Amsterdam, Netherlands: IOS Press.

Kelly, A., Lesh, R. A. & Baek, J. Y. (2008). Handbook of design research methods in education. New York, NY:

Routledge.

Ketelhut, D. J., Dede, C., Clarke-Midura, J. & Nelson, B. (2006). A multi-user virtual environment for building

higher inquiry skills in science. American Educational Research Association Annual Conference. San

Francisco, CA.

Koedinger, K., Aleven, V., Heffernan, N., McLaren, B. & Hockenberry, M. (2004). Opening the door to non-

programmers: Authoring intelligent tutor behavior by demonstration. In V. Aleven, J. Kay & J. Mostow

(Eds.), Intelligent tutoring systems (pp. 162–174). Berlin, Germany: Springer.

Koedinger, K. & Mitrovic, A. (2009). Preface: Authoring intelligent tutoring systems. International Journal of

Artificial Intelligence in Education, 19(2), 103–104.

Lave, J. & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge, MA: Cambridge

University Press.

Major, N., Ainsworth, S. E. & Wood, D. . (1997). REDEEM: Exploiting symbiosis between psychology and

authoring environments. International Journal of Artificial Intelligence in Education, 8, 317–40.

McNamara, D. S., Levinstein, I. B. & Boonthum, C. (2004). iSTART: Interactive strategy training for active reading

and thinking. Behavioral Research Methods, Instruments, and Computers, 36(222-33).

Mitrovic, A. (2012). Fifteen years of constraint-based tutors: What we have achieved and where we are going. User

Modeling and User-Adapted Interaction, 22(1-2), 39–72.

Mitrovic, A., Martin, B., Suraweera, P., Zakharov, K., Milik, N., Holland, J. & McGuigan, N. (2009). ASPIRE: an

authoring system and deployment environment for constraint-based tutors. International Journal of

Artificial Intelligence in Education, 19(2), 155–188.

Murray, T. (1999). Authoring intelligent tutoring systems: An analysis of the state of the art. International Journal

of Artificial Intelligence in Education, 10, 98–129.

Murray, T., Blessing, S. & Ainsworth, S. (2003). Authoring tools for advanced technology learning environments:

Toward cost-effective adaptive, interactive and intelligent educational software. Berlin, Germany:

Springer.

Nash, P. & Shaffer, D. W. (2011). Mentor modeling: The internalization of modeled professional thinking in an

epistemic game. Journal of Computer Assisted Learning, 27(2), 173–189.

Nash, P. & Shaffer, D. W. (2013). Epistemic trajectories: Mentoring in a game design practicum. Instructional

Science, 41(4), 745–771.

Nelson, B. C., Ketelhut, D. J. & Schifter, C. (2010). Exploring cognitive load in immersive educational games: The

SAVE Science project. International Journal of Gaming and Computer-Mediated Simulations, 2(1), 31–39.

Nulty, A. & Shaffer, D. W. (2008). Digital zoo: The effects on mentoring on young engineers. In International

Conference of Learning Sciences. Urecht, Netherlands.

Nye, B. D., Graesser, A. C. & Hu, X. (2015). AutoTutor and family: A review of 17 years of natural language

tutoring. International Journal of Artificial Intelligence in Education, in press.

Pennebaker, J. W., Booth, R. J. & Francis, M. E. (2007). LIWC2007: Linguistic inquiry and word count. Austin,

TX: LIWC.net.

Richard, K. & Lehrberger, J. (1982). Sublanguage: Studies on language in restricted semantic domains. Berlin:

Walter de Gruyter.

Rotherham, A. J. & Willingham, D. (2009). 21st century skills: The challenges ahead. Educational Leadership, 9,

16–21.

Rupp, A. A., Gustha, M., Mislevy, R. & Shaffer, D. W. (2010). Evidence-centered design of epistemic games:

Measurement principles for complex learning environments. Journal of Technology, Learning and

Assessment, 8(4), 4–47.

Sadler, T. D. (2009). Situated learning in science education: Socio-scientific issues as contexts for practice. Studies

in Science Education, 45(1), 1–42.

Sadler, T. D., Romine, W. L., Stuart, P. E. & Merle-Johnson, D. (2013). Game‐based curricula in biology classes:

Differential effects among varying academic levels. Journal of Research in Science Teaching, 50(4), 479–

499.

Schön, D. A. (1983). The reflective practitioner: How professionals think in action. New York, NY: Basic Books.

Schön, D. A. (1987). Educating the reflective practitioner. San Francisco, CA: Jossey-Bass.

192

Shaffer, D. W. (2003). When Dewey met Schön: Computer-supported learning through professional practices.

World Conference on Educational Media, Hypermedia, and Telecommunications. Honolulu, HI.

Shaffer, D. W. (2007). How computer games help children learn. New York, NY: Palgrave Macmillan.

Sottilare, R., Graesser, A. C., Hu, X. & Holden, H. (2013). Design recommendations for intelligent tutoring systems:

Learner modeling. Orlando, FL: Army Research Laboratory.

VanLehn, K., Graesser, A. C., Jackson, G. T., Jordan, P., Olney, A. & Rosé, C. P. (2007). When are tutorial

dialogues more effective than reading? Cognitive Science, 31(1), 3–62.

Woolf, B. P. (2010). Building intelligent interactive tutors: Student-centered strategies for revolutionizing e-

learning. Burlington, MA: Morgan Kaufmann.

193

SECTION IV

AUTHORING

DIALOGUE-BASED

TUTORS

Art Graesser, Ed.

194

195

CHAPTER 16 Authoring Conversation-based Tutors
Arthur Graesser

University of Memphis

Introduction

Conversation-based intelligent tutoring systems (ITSs) attempt to help students learn by holding a

conversation in natural language. Most of the systems consist of dialogues between the human learner and

the computer tutor, who take turns in the conversation. Two or more agents can also hold conversations

with a learner. For example, in trialogues the learner interacts with two agents, such as a tutor and a peer,

or two peers. Trialogues allow the ITS to exhibit conversation skills, for the learner to view, in addition to

advancing the learning of the subject matter. Most of these dialogue-based ITSs also have external media,

such as a picture, table, diagram, or interactive simulation. The designers of conversation-based ITSs need

to worry about the coordination and timing of the conversational turns among the learners, agents, and

dynamic external media. Designers of these ITSs also need to worry about what each agent looks like. An

agent can vary from a minimalist depiction of the human persona (such as a chat message) to a very

realistic depiction, such a fully embodied avatar in a virtual world.

The core of the conversation-based ITSs resides in natural language, discourse, and communication.

There are three basic tasks in these conversation systems: (1) interpret the meaning of the learner’s

language and discourse, (2) assess how these verbal contributions might update the student model on

knowledge, skills, and strategies, and (3) generate tutor dialogue moves that advance the pedagogical

agenda. The authoring tools need incorporate components that accommodate all of these tasks in addition

to creating the agent persona and external media. This is particularly difficult because most designers of

curricula with subject matter expertise have never been trained on the mechanisms that underlie language,

discourse, and communication; instead most of their training is on the subject matter, pedagogy, and

curriculum.

Conversation-based ITS are not able to interpret and intelligently respond to any verbal expression that a

human expresses. One reason is because much of natural language is fragmentary, vague, imprecise,

ungrammatical, and filled with spelling errors. A second reason is that the computer can effectively

handle only input that matches content that it anticipates ahead of time, such as expected good answers,

bad answers, and misconceptions that the author specifies in the curriculum. In essence, the ITS computes

semantic matches between student verbal input and the expected content in the curriculum and student

model. Advances in computational linguistics and statistical models of world knowledge have

impressively increased the accuracy of the semantic matches. However, the author or automated

components need to specify how the expected content is represented; this requires expertise in

computational linguistics, cognitive science, corpus analysis, and perhaps other fields if these

representations are anything other than natural language. In an ideal world, there would be a large suite of

automated utilities in the authoring tool to minimize the burden on the author. But most systems in

current practice require methodical annotation of the curriculum content for semantic match

computations.

The authors need to create the tutorial dialogue moves that get launched under specific conditions in

response to the learner’s contributions. Most conversation-based ITSs have production rules that declare

what an agent says under particular conditions. For example, the tutor agent gives positive feedback

(“That’s correct”) after the learner’s verbal contribution has a high semantic match to a good answer. Or

the tutor agent generates a hint if the semantic match is close but not quite high enough. Unfortunately,

196

computer science expertise is normally needed to set up the production rules in the production systems

that intelligently generate the agents’ discourse moves. The rules get particularly tricky when there are

many conditions to check, when there are links to dynamic external media, and when the timing of

discourse move production is important. Again, one option is for the author to specify this content

meticulously. Visualizations such as Excel tables and chat maps can sometimes help the author. Another

approach is to copy previous production systems that are successful and modify them for specific content.

More advanced methods include machine learning and crowd sourcing methodologies to minimize the

burden on the author.

Chapters

The chapter by Cai, Graesser, and Hu describes its AutoTutor Script Authoring Tool (ASAT) that is used

to develop content for AutoTutor. AutoTutor helps students learn subject matters (e.g., science,

technology, engineering and mathematics (STEM) topics) and skills (e.g., comprehension, scientific

reasoning) by holding a conversation in natural language with conversational agents. The conversations

often refer to components in external media, such as pictures, diagrams, video, and virtual reality

scenarios. Agents can converse with each other in addition to the human learner. The ASAT tool needs to

specify the characteristics of the expected learner input (ranging from mouse clicks to natural language),

the alternative messages produced by the agents under particular conditions, the external media, and the

flow of the conversation. The AutoTutor Conversation Engine (ACE) is responsible for evaluating the

student input, updating the learner’s performance scores, selecting a new set of conversational messages,

and sending all of this back to the learning system. The learner’s verbal input is compared with expected

input through semantic matching algorithms that can accommodate language that is often ungrammatical,

vague, imprecise, and filled with spelling errors. This chapter describes some new visualization tools in

ASAT-V that help the author create the content and production rules in such complex and multifaceted

conversations.

The chapter by Ward and Cole describes the processes and tools for authoring content in an ITS called

My Science Tutor (MyST). This virtual science tutor engages children in spoken dialogues to help them

construct explanations of science phenomena that are presented in illustrations, animations, and

interactive simulations in a curriculum that incorporates science standards (Full Option Science System).

The chapter describes an iterative process of recording, annotating, and analyzing logs of natural language

from sessions with students, which, in turn, update the automated tutor model. A major challenge in all

conversational systems lies in representing and extracting the semantics of student language, which, in

turn, guides selecting tutor actions. The chapter describes some computational linguistics tools, natural

language corpora, and machine learning methods that help the author create content for new material.

In the chapter by Johnson, there is a focus on virtual role-play simulations in which learners perform roles

similar to what they would perform in real life. Virtual role play is a category of training that is

particularly well suited to interpersonal skills. It has been applied to training foreign language, cross-

cultural skills, negotiation, motivational interviewing, and customer service. Processes and tools are

described for creating such simulations. The development process has distinct phases, including

background sociocultural research, instructional design, scenario authoring, media production, and quality

assurance. The authoring tools need to handle the creation of agents, social scenarios, conversational

discourse, and other dimensions of a rich social environment. Johnsons authoring tools are selected or

developed to handle all phases and attributes of these simulations. Multiple types of expertise are needed

in those who author these learning environments so it is unlikely that a single author could handle all

dimensions of these simulations. Expertise in the natural language component is distinctively different

than the other levels, but one important message is that cultural sensitivity must be integrated with the

language and dialogue.

197

The chapter by Olney, Brawner, Pavlik, and Koedinger describes some new trends in the authoring

process that can potentially improve the quality, speed, and cost of ITS authoring. These new alternatives

have additional layers of automation that attempt to reduce some of the authoring tasks, and in some

cases, make the authoring tasks invisible. For example, instead of an author hand-authoring a production

system (i.e., what should the computer do when there are different student inputs), in systems like

SimStudent the author tutors a machine learning system that learns the production system from scratch. In

the BrainTrust system for conversational tutoring, novices do some authoring, the computer generates

additional expressions automatically, and other novices check the work to ensure quality. In advanced

component-based authoring, previous components from a learning registry are reused and new

combinations of components are assembled; these candidate learning objects can be modified to fit

constraints of a new application. In these examples, content can be more quickly authored by interacting

with a simulation, generating content automatically, reusing content from previous applications, and

crowd sourcing. These new approaches are promising because expertise in authoring and subject matter

knowledge is typically limited and also requires exceptional analytical skills in more complex learning

environments.

Implications for the Generalized Intelligent Framework for Tutoring (GIFT)

The four chapters provide both general and specific recommendations for GIFT’s suite of authoring tools

for conversation-based tutors. GIFT has already developed one conversation-based tutor when it used the

AutoTutor-Lite authoring tool to integrate AutoTutor with Physics Playground, a learning environment

with multimedia, animation, and game features. This is an important beginning, but GIFT will need to be

expanded to build the more complex conversation-based ITS that have been covered in this section.

One issue periodically raised addresses the degree or depth of integration between the language/discourse

components and the subject matter knowledge/skills to be mastered. Should there be independent

components, loose coupling, or tight integration? The different approaches have implications for the

authoring tools in addition to the information that ends up being stored in the learner model (as in TinCan,

the Learner Record Store, or other GIFT solutions). A tight integration will result in a more complex

authoring tool and student model that incorporates language-discourse-knowledge-skill configurations. A

tight integration allows new discoveries in data-mining explorations to improve the conversation-based

ITS. However, it will also end up being more complex to author, more difficult to specify production

rules, and a more detailed inventory of learning objects, all of which aggravates the analytical challenges

for the author.

A second major issue addresses how GIFT can incorporate a suite of visualization tools, lexicons,

corpora, and other facilities that are routinely used in computational linguistics. For example, the projects

of AutoTutor (Cai et al.) and Virtual Role-Play Simulation (Johnson) both desired a chat map

visualization facility in the authoring tools. The authoring tools in all of the projects in this section would

benefit from standard computational linguistics resources, such as the WordNet lexicon, corpora in the

Linguistic Data Consortium, frequently used syntactic parsers, regular expression generators, and

machine learning tools for natural language. These would need to be integrated in the authoring tool so

the author can quickly test the fidelity of a candidate linguistic or symbolic expression being annotated.

Agent tool kits would be needed to quickly test out how an agent’s spoken message, facial expression, or

message is rendered. World knowledge representations, such as latent semantic analysis and semantic

networks, are also periodically needed. GIFT needs to expand its library of facilities in computational

linguistics, discourse, agent technologies, and world knowledge representations.

A third issue is to find ways for GIFT to automate aspects of the authoring process. The reuse of existing

successful components, modules, and lessons is encouraged by everyone and fits perfectly with the GIFT

198

philosophy. So relevant existing components need to be discovered for a particular lesson and then reused

and repurposed on the spot. A good authoring tool would essentially be good at modding a similar lesson.

Some deep thought is needed on how to expand GIFT to include the SimStudent, BrainTrust, and crowd-

sourcing approaches to iteratively improve the quality of the authored content, as was discussed in the

Olney et al. chapter, and to some extent, in the chapter by Ward and Cole.

199

CHAPTER 17 ASAT: AutoTutor Script Authoring Tool
Zhiqiang Cai, Arthur Graesser, and Xiangen Hu

University of Memphis

Introduction

AutoTutor is a class of intelligent tutoring systems (ITSs) that helps students learn by holding a

conversation in natural language (Graesser et al., 2004, 2012; Nye, Graesser & Hu, in press). AutoTutor’s

intelligent conversation framework has been integrated into many learning systems that range from

tutorial dialogues on science, technology, engineering, and mathematics (STEM) topics (such as

computer literacy, and physics) to trialogues (i.e., two agents and a human) on critical thinking and

reading comprehension (Graesser, Li & Forsyth, 2014; Millis et al., 2011; Halpern et al., 2012; Forsyth et

al., 2013). Examples of trialogues under construction

(https://www.youtube.com/channel/UCGoWLJj6BXZ6X2KIRLYrgZw) can be viewed for a more

concrete illustration of the nature of these conversations. AutoTutor is an advanced conversation

framework that can be used to generate conversation scripts and be integrated into most learning systems.

AutoTutor takes the learner’s typed verbal contributions, speech, and actions as input and accommodates

events in different media to trigger or change paths of conversations. It also sends commands to the

learning system for execution, such as presenting pictures and launching scenarios (Cai, Feng, Baer &

Graesser, 2014).

There are many steps in composing an AutoTutor conversation with one or more computer agents and a

human learner. Authoring an AutoTutor conversation includes preparing spoken contributions for each

computer agent, specifying conditions at which a speech is delivered, determining the points at which

human learners’ responses and/or environmental events are expected, formulating scores that can be used

to track learners’ performance, designing pedagogical strategies, creating commands that make changes to

learning system parameters, and so on (Cai, Hu & Graesser, 2013). Because of this complexity, an

AutoTutor script authoring process usually requires collaborative work by domain experts, language

experts, learning experts and software developers. Domain experts use the tool to construct learning

content in terms of agent questions and expected learner responses. Language experts revise the content

of the dialogue moves to accommodate targeted learners and their possible responses. Learning experts

design student models and pedagogical models. Software developers specify interaction constraints and

develop interactive media units.

The AutoTutor Script Authoring Tool (ASAT) is a tool we developed to facilitate the process of authoring

AutoTutor content. In this chapter, we present ASAT-V, the visualized version of ASAT. ASAT-V uses

graphical shapes to represent agents’ spoken contributions, questions, answers, world events, and system

actions. Semantic cues and student performance scores are stored in shape data. Conversation rules are

represented by directional connections from shape to shape. Pedagogical strategies are represented by

partial flowcharts, which can be reused. The tool also integrates utility modules to help authors validate,

test and refine scripts. In this chapter, we first give an overview of the AutoTutor framework and the

major components that make AutoTutor work. We then describe ASAT-V and the AutoTutor shapes that

are used to compose visual scripts. The chapter ends with suggestions for developing conversation

modules and authoring tools for ITSs.

https://www.youtube.com/channel/UCGoWLJj6BXZ6X2KIRLYrgZw

200

AutoTutor Framework

AutoTutor provides a framework to integrate intelligent conversations into learning systems. A learning

system can start an AutoTutor conversation session by loading an AutoTutor script to the AutoTutor

Conversation Engine (ACE). ACE sends messages to the learning system, including agent spoken

utterances and system commands. An AutoTutor conversation usually starts with spoken turns by

computer agents, together with background changes on the computer screen, such as page turning, video

playing, image changing, and text highlighting. At particular points, the system stops and waits for the

learner’s input, in the form of speech, text, or action. The learner’s input is then sent by the learning

system to ACE. ACE is responsible for evaluating the input, setting learner’s performance scores,

selecting a new set of conversational messages, and sending all of them back to the learning system. The

process repeats until the conversation session ends.

An example illustrates this process. Suppose a learning system is showing a video to a learner to review a

lesson about the use of punctuations. While the video is playing, a tutor agent is talking about the video.

The video pauses at a certain time and the tutor asks the learner questions about the learning material. The

learning system starts this process by loading a script to ACE. After the script is successfully loaded,

ACE sends to the learning system the following actions to execute:

(1) System : LoadVideo : https://www.youtube.com/watch?v=wTs6Q8Cs5AY

(2) System : SetPauseTime : 00:00:30

(3) System : StartVidio

(4) Tutor : Speak: Now, let us have a review of lesson 5. In this lesson, we learn about the use of

punctuations. Please watch this video carefully and pay attention to how punctuations help

reading.

When the learning system gets these four actions from ACE, the system first loads the video from the

given URL. Then the system sets a timer for 30 seconds and starts to play the video. The tutor talks while

the video is playing. Notice that ACE may send many different types of actions to the learning system.

The learning system is responsible for interpreting the actions. AutoTutor authors have to collaborate with

learning system developers on what actions are executable and how they should be executed.

When the video pauses at the specified time, the learning system sends to ACE a message that the video is

paused. ACE then makes decisions on what to do next and sends a new set of actions to the learning

system:

(1) Tutor : Speak : OK. This video talked about punctuation definition signals. What are they?

(2) System : WaitForInput : 20

The learning system then delivers the speech and waits 20 seconds for the learner to enter a response.

Suppose the learner entered “They are dashes and commas.” The response then is sent to ACE. ACE then

analyzes the response and figures out that the response is a partial answer. ACE then sends out a new set

of actions:

(1) Tutor : Speak : Wonderful! You got some of them. Can you say more?

https://www.youtube.com/watch?v=wTs6Q8Cs5AY

201

(2) System : WaitForInput : 20

This process continues until the conversation session ends.

The above example involves the conversation engine ACE, the conversation script, and semantic analysis.

In order to understand the authoring process of AutoTutor conversation, it is important to know the

following main features in AutoTutor framework.

Script

An AutoTutor script defines all elements in a conversation session, including agents, commonly used

speech acts, spoken messages of agents, questions, answers, and so on. Conversation rules are also

specified in the script, which is implemented in ASAT-V by connecting script shapes with single

directional lines.

Natural Language Input Assessment

Evaluating natural language input in AutoTutor is accomplished in two steps. The first step is to

determine the type of speech act of the learner input, such as definitional question (“What is X?”), yes/no

question (“Is X?”), request (“Can you show me another page?”), meta-cognition (“I have no idea about

that.”), meta-communication (“Can you repeat that?”), statement, and so on (Samei, Li, Keshtkar, Rus &

Graesser, 2014). The second step is to identify semantic units in the input and match the input with

prepared target units. For example, if the input is a definitional question, then AutoTutor will find for

what concept the learner needs a definition. If the input is an answer to a question an agent asked,

AutoTutor will match the input with prepared answers to the question. AutoTutor uses two ways to

accomplish semantic matching. One is using regular expression matching. A regular expression is simply

a string pattern that is used to check whether or not a target string has matches to the pattern. For

example, if the expected answer is “they are dashes and commas,” the regular expressions could be

{“\bdash”, “\bcomma”}, where “\b” indicates “word boundary”. For each target answer, a set of regular

expressions is created to represent the key parts of the answer. The proportion of matched regular

expressions is used as regular expression matching score as part of the semantic evaluation. Another one

is latent semantic analysis (LSA) (Hu et al., 2007, Cai et al., 2011). LSA represents the meaning of text

units by vectors of statistical semantic features. The cosine value between two vectors (the student input

and an expected answer, both in natural language) is used as another part of semantic evaluation.

Student Models and Pedagogical Models

Student models keep track of students’ performance. The data from student model are used by

pedagogical model for tutoring strategy selection. What should be used as variables for student modeling

is still an unanswered question (Graesser, 2013). AutoTutor allows authors and learning system designers

to create customized variables to track students’ learning process and performance. The customized

student model is implemented as a set of name-value pairs, together with a few functions to do score

operations, such as initializing scores, adding scores, etc. The tutoring strategies in AutoTutor are

implemented as conversation patterns, such as vicarious learning, expectation-misconception tailored

tutoring, teachable agent, etc. (Cai et al., 2014). In ASAT-V, conversation patterns are implemented as

partial flowcharts, which can be reused in script authoring.

202

Communication between AutoTutor Conversation Engine and Learning Systems

When AutoTutor conversation is integrated into a learning system, the conversation engine needs to

communicate with the learning system constantly. The conversation engine needs to know what is

happening in the learning environment in order to choose the next step to move on. In the example above,

when the video is paused, a “video paused” message is sent from the learning system to the conversation

engine and the conversation engine decides that the next step is to ask the learner a question. AutoTutor

allows learning system to send messages about what happens in the learning system as “world events.”

World events are simply labels that are pre-negotiated between learning system developers and AutoTutor

rule designers. In the example above, “VideoPaused” could be a label that is used to indicate the pause of

any video in the learning environment. The learning system always sends such a world event to

AutoTutor engine when a video is paused. It is up to the rule designer to decide what to do with this

event. Therefore, a world event list needs to be shared by the learning system developers and AutoTutor

rule designers, so that the system developers know what can be sent and the rule designers know what can

be expected.

ACE: AutoTutor Conversation Engine

ACE is a web service that interprets AutoTutor scripts and communicates with learning systems. ACE is

currently implemented as a RESTful web service, which can be easily integrated into any system.

With the above features, AutoTutor is capable of taking care of the conversation part of learning systems.

However, authoring AutoTutor scripts is never an easy task. The AutoTutor research group at University

of Memphis has worked for more than a decade to develop tools to help the script authoring process.

ASAT-V, a visualized authoring tool, is the latest development.

ASAT-V

ASAT-V is a windows desktop application that requires .Net Framework 4.5 and Microsoft Visio 2013.

This tool is used to define computer agents, view Visio flowcharts, and test scripts.

Figure 1 shows a screen shot of ASAT-V. On the menu strip, there are only two menu items. The “FILE”

menu is used for creating a new project or open an existing project. A project is a set of Visio flowcharts.

Developers can select “Sample Project” in the File menu to open the sample project. The sample project

folder is in the installation directory of ASAT-V. Authors can make a new copy of the sample project

folder to start a new project. The “HELP” menu is used to access an online help document, which is

updated when new release of the tool comes out.

The left panel of the tool is a list box that contains the flowchart names of the opened project. Authors can

click an item to select a flowchart to work on.

The right panel contains six tab pages, labeled as “Visio,” “Shape Data,” “Question,” “Test,” “Agent,”

and “Speech Acts,” respectively. “Visio” page contains a standard Visio Viewer that displays a selected

Visio flowchart. This page is connected to Visio 2013. When editing is needed, an author can press the

Visio editing button to open the Visio script in Visio 2013. The flowchart shown in Figure 1 contains

different Visio shapes (circles, rectangles, lines, etc.). In addition to the look of each shape, each shape

type contains a set of attributes that are specifically defined in ASAT-V. We explain the data defined for

every shape type in later sections. The tab page “Shape Data” lists all shapes in the selected script and

displays the associated data of a selected shape. Authors can review the data shape by shape and see if

there is any error. The tab page “Questions” is actually created for answer evaluation. The questions in a

203

selected flowchart are listed in this page. When a question is selected, all prepared answers associated

with the selected question are then displayed. There is an input box on the page for an author to type in an

answer to the question and see how much an answer can match each prepared answer. Authors can use

this tab page to set the thresholds for semantic assessment. The “Test” page is for script testing. Authors

can simulate a student’s interaction to a selected script by submitting expected textual responses or world

events to find out if the system performs as desired. The “Agent” page defines computer agents. An

author can find all defined agents in a dropdown menu. When an item in the menu is selected, the

information about the selected agent will be displayed and can be edited. New agents can be added by

typing in the text field of the dropdown menu. The tab page “Common Speech Acts” defines commonly

used speech acts using regular expressions. The definition of agents and speech acts are for all flowcharts

in a selected project. Therefore, the agents and speech acts are not defined in any of the flowcharts.

Figure 4. ASAT-V

In the next section, we describe all AutoTutor shapes, their text and data fields, and their use in

constructing the scripts. Although these shapes are currently implemented in Visio 2013, it is possible to

implement them in other drawing tools that store accessible shape data.

Autotutor shapes

Figure 2 shows an AutoTutor script flowchart drawn in Visio 2013. The flowchart is an AutoTutor

conversation pattern called “Greeting.” The conversation begins with a greeting “Hello!” from a teacher.

Then the system waits for user’s response. If the user says anything, the teacher says, “Terrific! We’ve

connected.” The conversation then ends. If the user is silent, the teacher says, “Are you there, user?” Then

the system waits for the user to respond. If the user is silent again, the teacher says, “Too bad.” Then the

conversation ends.

204

Figure 2. Script flowchart for Greeting

As one can see in Figure 2, the conversation script is represented by connected Autotutor shapes. An

AutoTutor shape refers to a visual shape and its associated data. Every shape has a type name and a text

field. Any text inside a pair of brackets is considered commentary text and is ignored by ACE in the

interpretation. Currently, ten shape types have been defined for AutoTutor script. Figure 3 shows these

ten shapes as the AutoTutor stencil in Visio 2013. We explain these shapes below in more detail.

End Shape

Figure 3. AutoTutor stencil in Visio 2013

Start Shape

A Start shape represents the beginning of a conversation. The text should be “Start.” Although, the text

field of this shape is not really used in the script interpretation, using an explicit “Start” helps to make the

Figure 5. AutoTutor Script Flowchart

205

flowchart clear. No shape data are defined for Start shape. Each script should have one and only one Start

shape, which should point to at least one other shape. Usually, Start is the first shape to put to a script

flowchart.

An End shape represents an end of a conversation. A script must have at least one End shape. Multiple

End shapes are allowed. The text field of the End shape helps to indicate the ending path of a

conversation. Therefore, the text on different End shapes can be different, such as “End-1,” “Good-End,”

“A-End,” etc. “Score” is the only data field in an End shape. Authors may specify this score for a shape in

a flowchart to indicate the learner’s performance at the specific ending.

Agent Shape

AutoTutor agents are not defined in the flowchart, as we already explained earlier. However, we created

Agent shape type for authors to put agent names together with a script flowchart to show what agents are

used in the flowchart. Agent shape is not required in a script and will not be interpreted by ACE. The

agents used in the flowchart are defined in the Agent tab page of ASAT-V.

Speech Shape

The Speech shape represents the conversational contribution of an agent. The text field is the text form of

the speech content, together with optional commentary note in brackets. While the commentary note is

arbitrary, it is recommended that, for a Speech shape, the note contains the agent information, such as

“Teacher,” “Peer Student,” etc. The text form of the speech content can be displayed to the learner. There

are two data fields in Speech shape. One is “Agent.” The value of “Agent” field is an ID created separately

(see section ASAT-V). The other data field is “Speech.” The value of this field is optional. Authors may

use this field for one of the two different purposes: (1) to create a tagged speech string for on-the-fly

speech generation or (2) to store a label or URL of a stored speech. The stored speech could be recorded

human speech or a pre-generated speech from a text-to-speech (TTS) engine. If the speech data are

empty, the displayable text can be used to generate speech. When a conversation moves to this shape, the

agent will deliver the speech. Once the speech is done, the flow moves to the next shape.

Question Shape

The Question shape has the same data fields as the Speech shape. However, this shape is always followed

by answer shapes or transition shapes (see below). When the conversation moves to this shape, whether or

not the question shape will be asked depends on if there is a good answer of the question that has already

been answered by the learner. If the learner has already answered the question, this shape will not be

selected and the conversation will move to other paths. One important issue for authors to keep in mind is

that, alternative paths should be available when a question shape is not selected, so that the conversation

always has a path to go.

Answer Shape

The Answer shape represents a possible answer that a learner may give to a preceding question. The text

field of this shape is a sample answer of the type. There are several data fields in Answer shape, as

described below:

206

 AnswerType: Answer type can be any arbitrary string. However, there are a few reserved types,

including “Good,” “Bad,” “Irrelevant,” “Undetermined,” and “Blank.” These types have special

interpretations in ACE and should be used correctly.

o A “Good” answer (Figure 4) is a correct and complete answer to the question. If this

answer is matched with the learner’s previous input, then the question associated with

this answer will not normally be asked because the content is already covered. If, for

some reason, one wants to ask the question anyway, that can be accomplished by not

specifying any answer with the type as “Good.”

Figure 4. Data for the Answer shape

o A “Bad” answer represents a typical bad answer that a learner may usually give. In

addition to help determining the conversation path, “Bad” answer also helps to determine

whether or not an answer is “Irrelevant” or “Undetermined.”

o An answer is “Irrelevant” if it does not match any “Good” answer or “Bad” answer.

o An answer is “Undetermined” if it matches at least one “Good” answer and one “Bad”

answer.

o “Blank” answer is an answer without any word.

 RegEx: The value of this field is a set of regular expressions. Each regular expression represents

the string pattern of a part of the answer. This field is used to assess a learner’s answer by regular

expressions. The proportion of the matched regular expressions is the learner’s regular expression

match score.

 RegExThreshold: This field is a value between 0 and 1, indicating the minimum regular

expression score for an answer to be considered matched by regular expression.

207

 LSAThreshold: This filed is a value between 0 and 1, indicating the minimum LSA match value

for an answer to be considered matched by LSA. The LSA score is computed by comparing a

learner’s answer to the answer in the text field and the “Sample” fields (see below) of the answer

shape. The largest cosine value of all comparisons is taken as the final LSA match score.

 Score: This field is a number to indicate a score that a learner should receive if this answer is

matched by a regular expression or LSA.

 SampleN: The sample fields (Sample1, Sample2, …) are possible answers of this type. These

samples are used to compute LSA scores. The number of sample answers is not limited and an

author can put as many samples as desired. The samples may come from real student responses

after the script has been used. In this way, AutoTutor can learn from learners and improve its

performance over time.

 ResponseType: The response type could be “Global” or “Local.” This is used in nested

questions. Usually, an answer to a main question or problem to solve is “Global” and an answer

to a hint or prompt is “Local.”

Event Shape

Event shape is used to integrate AutoTutor conversation with external environment. This shape is used

when an external event is expected. An external event can be an action from the learner, such as a mouse

click, a choice selection, etc. It can also be a system event, such as a scenario is loaded, a certain time has

elapsed, and so on. Event shape data has an “Agent” field and a “Score” field. “Agent” indicates the

source of the event, from learner or system. “Score” is a performance score assigned to the learner when

this event is matched. The text filed of this shape is the label of the event. When the label of any external

event matches the text field of the shape, this event is considered matched.

Action Shape

The Action shape is used to send a sequence of actions to the system. There is only one “Name” field in

the shape data. Authors can put a sequence of lines in the text field of the shape. Each line is of the form

“Agent:Act:Data.” An example line could be “System:Wait:30,” meaning that the system should wait for

30 seconds. When this shape is encountered, ACE will send all actions to the external environment for

execution. Authors have to negotiate with external environment developers to get a list of executable acts

and associated data.

Transition Shape

The Transition shape does not have any data field. However, it plays a very important role in simplifying

the structure of the flowchart. What an author should know is that all Transition shapes with the same text

are considered “identical” in the flowchart. For example, in Figure 2, two shapes point to the “Greeting”

shape and the “Greeting” shape points to two other shapes. If there is another Transition shape in the

flowchart with the same text “Greeting,” then that shape will also be considered as connected with those

four shapes in the same way.

208

Connector Shape

The Connector shapes connect other shapes together to form a conversation flowchart. A connector shape

is a single directional line that connects two shapes, indicating a move from one shape to another shape. A

Connector shape has three data fields: “Priority,” “Frequency,” and “MaxVisit”. These three fields play

important roles in controlling the conversation flow. We explain each of them in detail below:

 Priority: Priority is a positive integer (1,2,3,…) indicating the priority of a path. A value 1

indicates the highest priority. A shape may point to multiple shapes. ACE will consider the paths

according to the priority. For example, in Figure 2, the Transition shape “Greeting” points to two

shapes, an answer shape “Hi!” and an event shape “Silence.” The connector to “Hi!” has a

priority 1 and “Silence” has a priority 2. When ACE selects a path from “Greeting,” it will first

match the answer shape “Hi!” If the learner greets back, that path will be selected. Otherwise, it

will consider the event “Silence.”

 Frequency: This field is a positive number. This number is used to set a selection probability for

paths of same priority. The selection probability of a path is the frequency of that path divided by

the sum of frequencies of all possible paths coming out from the same shape. Paths will be

randomly selected with the given probability distribution.

 MaxVisit: This field is a positive number, indicating the number of times a path can be chosen.

This value is used to terminate a loop. For example, in Figure 2, the connector from the “Silence”

shape to the question shape “Are you there, _user_?” has MaxVisit = 1. Therefore, that path can

be selected for only once. Otherwise, the system may keep asking “Are you there, _user_?”

forever if the user keeps silent.

The above shapes are used to compose AutoTutor script flowcharts. With the help of the Transition

shape, flowcharts can be drawn on multiple pages and connected by common Transition shapes. Step-by-

step tutorials are available. Authors can click on the “Help” menu on ASAT-V to access online tutorials.

While currently these shapes are implemented in ASAT-V as Visio shapes, they can be implemented in

any drawing tools that has the following features:

 Shapes can be customized;

 Each shape can be associated with a set of customized properties;

 Shapes can be connected by connector shapes to form flowcharts;

 One complete flowchart can be split into multiple pages; and

 The flowcharts can be exported as xml files.

Conclusion

As a generalized intelligent framework for tutoring, GIFT needs to include intelligent conversations.

Unfortunately, creating intelligent conversations is a very complex process. AutoTutor conversation

framework makes it possible to seamlessly integrate conversations into learning systems. When authoring

conversations, the most challenging task is to set up conversation rules. The visualized authoring tool,

ASAT-V, makes the rules visible and greatly reduces the complexity of the authoring process. Thus,

209

visualized conversation authoring tools like ASAT-V are important components of GIFT framework. To

close this chapter, we give the following list of suggestions on general intelligent conversation modules

and authoring tools for intelligent conversations:

(1) Conversation modules should have good communication channels with learning systems.

(2) Conversation modules should have flexible student model so that student’s learning process and

performance can be easily integrated into the conversation.

(3) Conversation modules should have fast and high quality natural language processing (NLP)

support. It is the best that the conversation module allows NLP plug-ins.

(4) Conversation script authoring should have graphical rule editing tools.

(5) Conversation authoring tools should have good validation and test utility.

References

Cai, Z., Graesser, A. C., Forsyth, C., Burkett, C., Millis, K., Wallace, P., Halpern, D. & Butler, H. (2011,

November). Trialog in ARIES: User Input Assessment in an Intelligent Tutoring System. In W. Chen & S.

Li (Eds.), Proceedings of the 3
rd

 IEEE International Conference on Intelligent Computing and Intelligent

Systems (pp.429-433). Guangzhou: IEEE Press.

Cai, Z., Forsyth, C. M., Germany, M. L., Graesser, A. C. & Millis, K. (2012). Accuracy of tracking student’s natural

language in OperationARIES!: A serious game for scientific methods. In S. A. Cerri & B. Clancey

(Eds.), Proceedings of the 11th International Conference on Intelligent Tutoring Systems (ITS 2012) (pp.

629-630). Berlin: Springer-Verlag.

Cai, Z., Hu, X. & Graesser, A. C., (2013, November). ASAT: AutoTutor script authoring tool. Paper presented at the

meeting of the Society for Computers in Psychology, Toronto, CA.

Cai, Z., Feng, S., Baer, W. & Graesser, A. C. (2014). Instructional strategies in trialog-based intelligent tutoring

systems. In R. Sottilare, A. C. Graesser, X. Hu & B. Goldberg (Eds.), Design Recommendations for

Intelligent Tutoring Systems: Adaptive Instructional Strategies (Vol.2)(pp. 225-235). Orlando, FL: Army

Research Laboratory.

Forsyth, C. M., Graesser, A. C., Pavlik, P., Cai, Z., Butler, H., Halpern, D. F. & Millis, K. (2013). OperationARIES!

methods, mystery and mixed models: Discourse features predict affect in a serious game. Journal of

Educational Data Mining, 5, 147-189.

Gholson, B. & Craig, S. D. (2006). Promoting constructive activities that support vicarious learning during

computer-based instruction. Educational Psychology Review, 18, 119-139.

Graesser, A. C. (2013). A guide to understanding learner models. In R. Sottilare, A. C. Graesser, X. Hu & H. Holden

(Eds.), Design Recommendations for Intelligent Tutoring Systems: Learner Modeling (Vol.1)(pp. 3-6).

Orlando, FL: Army Research Laboratory.

Graesser, A. C., D’Mello, S. K., Hu, X., Cai, Z., Olney, A. & Morgan, B. (2012). AutoTutor. In P. M. McCarthy &

C. Boonthum (Eds.), Applied natural language processing and content analysis: Identification,

investigation and resolution (pp. 169-187). Hershey, PA: IGI Global.

Graesser, A. C., Li, H. & Forsyth, C. M. (2014). Learning by communicating in natural language with

conversational agents. Current Directions in Psychological Science, 23, 374-380.

Graesser, A. C., Lu, S., Jackson, G. T., Mitchell, H. H., Ventura, M., Olney, A. M. & Louwerse M. M. (2004).

AutoTutor: A tutor with dialogue in natural language. Behavior Research Methods, Instruments &

Computers, 36, 180-193.

Graesser, A. C., Wiemer-Hastings, K., Wiemer-Hastings, P., Kreuz, R. & the Tutoring Research Group (1999).

AutoTutor: A simulation of a human tutor. Journal of Cognitive System Research, 1, 35-51.

Halpern, D. F., Millis, K., Graesser, A. C., Butler, H., Forsyth, C. M. & Cai, Z. (2012). Operation ARA: A

computerized learning game that teaches critical thinking and scientific reasoning. Thinking Skills and

Creativity, 7, 93-100.

210

Hu, X., Cai, Z., Wiemer-Hastings, P., Graesser, A. C. & McNamara, D. S. (2007). Strengths, limitations, and

extensions of LSA. In T. K. Landauer, D. S. McNamara, S. Dennis & W. Kintsch (Eds.), Handbook of

latent semantic analysis (pp. 401-426). Mahwah, NJ: Lawrence Erlbaum.

Hu, X., Morrison, D. M. & Cai, Z. (2013). On the use of learner micromodels as partial solutions to complex

problems in a multiagent, conversation-based intelligent tutoring system. In R. Sottilare, A. C. Graesser, X.

Hu & B. Goldberg (Eds.), Design Recommendations for Intelligent Tutoring Systems: Adaptive

Instructional Strategies (Vol.2)(pp. 97-110) . Orlando, FL: Army Research Laboratory.

Millis, K, Forsyth, C. M., Butler, H., Wallace, P., Graesser, A. C. & Halpern, D. F. (2011) Operation ARIES! A

serious game for teaching scientific inquiry. In M. Ma, A. Oikonomou & J. Lakhmi (Eds.), Serious games

and edutainment applications (pp.169-196). London, UK: Springer-Verlag.

Nye, B. D., Graesser, A. C. & Hu, X. (in press). AutoTutor and family: A review of 17 years of natural language

tutoring. International Journal of Artificial Intelligence in Education.

Samei, B., Li, H., Keshtkar, F., Rus, V. & Graesser, A. (2014) Context-based Speech Act Classification in

Intelligent Tutoring Systems. In S. Trausan-Matu, K. Boyer, M. Crosby & K. Panou (Eds.), Proceedings of

the 12th International Conference on Intelligent Tutoring Systems (pp. 236 241). Berlin: Springer.

211

Chapter 18 Constructing Virtual Role-Play Simulations
W. Lewis Johnson, Ph.D.

Alelo Inc.

Introduction

Virtual role-play simulations are interactive simulations in which learners perform roles similar to what

they would perform in real life. They are populated with virtual role players, i.e., non-player characters

that fill out the roles in the simulation and interact with learners much as people typically do in real-life

situations. Virtual role play is an important category of training that is particularly well suited to

interpersonal skills. It has been applied to foreign language education (Johnson, 2010), cross-cultural

skills training (Johnson et al., 2011), negotiation skills training (Kim et al., 2009), motivational

interviewing (Radecki et al., 2013), and other clinical skills. Role-play scenarios are employed in sales

and customer service training (Simmons, 2010). The impact of virtual role play is likely to grow as easy-

to-use tools for creating such simulations become more widely available. It thus has a potentially

important role to play as part of the Generalized Intelligent Frameworks For Tutoring (GIFT).

Virtual role play is inspired by training with live role players. In the military, it is common to employ

people as role players in training exercises, acting as civilians and combatants, for example, see Wilcox

(2012). Such training can be highly effective but unfortunately the costs involved in employing role

players and the logistics involved in staging live exercises limit their use. Sometimes military members

must play supporting roles in these training exercises, acting as foreign civilians or opposing forces, so

they are supporting the exercise instead of receiving training themselves. Medical education also makes

use of live role players in the form of standardized patients, actors trained to behave as if they have a

particular medical condition (Barrows, 1993). Such training can be valuable but is limited by the

availability of suitably trained actors. Role play is also very common in sales training (Robinson, 1987),

but trainees often do not like it because it is not conducted in a way that is supportive and conducive to

learning (Sandler Training, 2014). Best practices call for sales managers to role play the customer in such

training episodes; this limits role play to times when busy sales managers are available to engage in

training sessions.

Some researchers are seeking to make role-play training more convenient by moving interaction with live

role players into virtual worlds. For example the Otago Virtual Hospital lets learners practice their clinical

skills in a virtual world, interacting with simulated patients played by clinicians (Loke et al., 2012). Such

training offers added convenience, but it still depends upon the availability of skilled role players to

control the patient avatars in the virtual world. Virtual role play with virtual humans has no such

constraint; trainees can practice as much as they want, whenever they want.

Alelo has been heavily involved in virtual role-play training since its inception. It draws on an extensive

body of research in supporting technologies such as pedagogical agents (Johnson & Lester, in press). The

development team at Alelo has broad experience in creating virtual role-play content for a variety of user

groups. For example Alelo’s Virtual Cultural Awareness Trainers (VCATs) have been developed to teach

about culture in over 80 countries. Users of Alelo courses number in the hundreds of thousands. This

gives us practical insights into the issues involved in creating, validating, and delivering virtual role-play

training at scale.

This chapter provides an overview of the key capabilities of virtual role-play training systems, using

deployed training systems as examples. This motivates the requirements for authoring tools. This is

212

followed by a discussion of authoring processes for creating and validating virtual role-play content.

Authoring tools should be designed with these processes in mind. Next is an overview of available tools

for authoring virtual role-play content. These include tools for creating simple role-play scenarios, tools

for authoring complex role-play simulations, and emerging tools that empower trainers to construct and

customize role-play training content themselves. Finally there is a discussion of future directions for this

work and its implications for GIFT.

Examples of Virtual Role-Play Technologies

Figure 1 shows two example usage scenarios for virtual role play. These particular examples are intended

to help learners develop their Chinese conversational skills. A common use case is shown on the left,

where the learner has an on-screen avatar who interacts with on-screen virtual role players. If the user’s

computer or mobile device supports speech input, as in this example, the training system can employ

speech understanding technology so that the virtual role players understand what the learner says and

respond accordingly. This results in an engaging, immersive experience in which learners must apply

their communication skills much as they would in real-life situations.

Figure 1. Learners can participate in a virtual role-play exercise by speaking and choosing actions for an on-

screen avatar (left) or speaking directly with the virtual role player (right).

Advances in sensor technologies make it possible for learners to interact directly with virtual role players,

instead of through an avatar. When integrated into lifelike robots, as in Figure 1 right, the virtual role

player can interact with learners in the real world. This increases the realism of the role-play experience,

particularly if the interface incorporates proximity sensors and gesture recognition to support mixed-

initiative multimodal communication. In practice, similar software architectures can be used in both cases

to control the virtual role players.

Mobile devices are also increasingly attractive as platforms for virtual role play (Johnson et al., 2012).

Advances in the computing power of mobile devices make it possible to deliver interactive virtual role

players on tablets and smart phones, for anywhere, anytime training. Mobile devices are increasingly

equipped with cameras and other sensors that facilitate natural interaction between learners and virtual

role players.

213

Techniques for Effective Use of Virtual Role Play

When used properly virtual role play offers a training experience that is realistic and similar to real-life

interaction, but is in many ways actually superior to practice in real life. The example shown in Figure 2,

taken from Alelo’s VCAT Taiwan course, is a case in point. Here the learner is playing the role of an

American officer on assignment in Taiwan. The learner has been invited to a formal banquet hosted by his

Taiwanese counterpart. It is important that the learner make a good impression and avoid doing

something embarrassing or culturally inappropriate. For example, many toasts tend to be exchanged at

such dinners. How can one follow proper etiquette for exchanging toasts without getting drunk in the

process? Virtual role play offers an alternative to learning the hard way by making mistakes in real-life

high-stakes situations. In this example, the learner’s avatar, on the left, has offered a toast saying, “Drink

as you like.” This gives the learner the option of offering the toast with his teacup instead of a shot glass,

as his host on the right does. If the learner says or does something inappropriate, the virtual role players

will react to it, so learner can see the consequences of mistakes. But since the training module is just a

simulation the negative consequences of mistakes are minimal. The learner can practice multiple times

until becoming comfortable saying and doing the right things at the right times. Alternative training

media such as guidebooks may give learners a general understanding of the culture, but do not help

learners acquire the skills they need for such situations.

Figure 2. Virtual role play lets learners practice high-stakes interactions in a safe environment.

The following are some techniques for employing virtual role play that maximize its effectiveness.

Authoring tools and technologies for virtual role play should support these techniques to help developers

and trainers make best use of this innovative instructional technology.

Intelligent tutoring technology, in the form of virtual coaches, can monitor learner performance in role-

play simulations, provide feedback, and ensure that learners draw the right lessons from the practice

experience. Figure 3 illustrates the VCAT’s Virtual Coach, Erika, in action. In this example, the learner

has expressed dislike for a dish that sounded unappealing, namely, sea cucumber. The Virtual Coach

advises the learner to show appreciation and interest in the dishes that his host has offered. Such feedback

can be very important in cross-cultural communication, where learners sometimes are not even aware

when they make cultural mistakes.

214

Figure 3. A Virtual Coach provides scaffolding and feedback on the learner’s performance.

When tasks become particularly complex, involving a variety of skills, it can be beneficial to break a task

a part into component skills and role play them separately in a part-task training approach. VCATs and

other Alelo courses use this approach to reinforce individual communication skills, as shown in Figure 4.

Here the learner is practicing offering compliments to his host. Learners can practice individual responses

by selecting from menus of options, as in this case, or speaking their response into a microphone.

Figure 4. Learners can practice individual communication skills in a part-task training approach.

To encourage ongoing practice and provide an appropriate level of challenge, simulations can be made to

vary both in terms of amount of scaffolding and degree of difficulty of the interactions. The Tactical

215

Interaction Simulator (TI Simulator) (Emonts et al., 2012) illustrates both dimensions of variability, as

shown in Figure 5. The avatar in these examples is an Australian soldier on a peacekeeping mission in

East Timor. The screenshots in the figure illustrate two different simulations of a clearance operation, in

which the learner is supposed to keep civilians clear of hazardous areas. In the left screenshot, the learner

is provided with a high degree of scaffolding, including a transcript of the dialogue, possible courses of

action, and possible ways of expressing these courses of action in Tetum (the language spoken in East

Timor). In the example on the right, the scaffolding is removed and the learner is expected to engage in

conversation unassisted.

Figure 5. The Tactical Interaction Simulator can be played at a low level of difficulty and a high level of

scaffolding (left), or a high level of difficulty and a low level of scaffolding (right).

The left example, in which the civilians are hostile, is at a low level of communicative difficulty all the

learner can do in this case is to tell the civilians to calm down and call the police. The right example, in

which the civilian is initially cooperative, is linguistically more difficult the learner must explain calmly

why the civilian cannot enter the restricted zone and avoid raising tensions. These examples illustrate how

virtual role-play simulations, if designed properly, can support learners at a variety of skill levels and

encourage learners to practice and try alternative courses of action until they have fully mastered the

target skills.

These examples also illustrate that virtual role play involves nonverbal communication as well as verbal

dialogue. The body language of the virtual role players can communicate their emotions and attitudes in

ways that their verbal responses may not. Conversely, virtual role play can enable learners to practice

their nonverbal communication and use of body language. If the computing device has suitable sensors, it

can track the learner’s body language directly. If not, the learner can use menus or interface gestures to

control the body movements of his avatar.

Virtual role-play simulations can serve multiple purposes and phases of training: walkthroughs, practice,

and assessment. In walkthrough scenarios, the learner may have little or no mastery of the target skills

and so the system provides a high degree of scaffolding and helps the learner walk through the scenario to

get a feel for how to perform the task. The left screenshot in Figure 4 is an example of such a walkthrough

 one doesn’t need to know much Tetum to complete this simulation, although the score one

receives depends upon how much Tetum is used. Practice simulations help learners develop their skills

and involve progressively less amounts of scaffolding and higher levels of difficulty. In assessment

simulations, scaffolding is withheld and learners must demonstrate that they can complete the task

unassisted.

216

In summary, below is a list of desirable characteristics for virtual role play, as illustrated in these

examples:

 Engaging, immersive experiences that simulate real-world interactions.

 Support for multiple computing devices and interface modalities.

 Support for speech recognition and other sensors for more realistic interaction.

 Nonverbal as well as verbal communication.

 Alternative courses of action, to promote replayability.

 Support for walkthroughs, practice, and assessment.

 Virtual coaching support.

 Part-task training of component skills.

 Varying levels of scaffolding.

 Varying levels of difficulty.

Role-Play Training and Scenario-Based Training

Virtual role-play training is a related to scenario-based training. Scenarios and stories are used widely in

training, and authoring tools are available to support their development. However, scenarios in general are

much simpler than virtual role-play simulations, and so are the authoring tools used to create them.

Figure 6 shows an example scenario created by Van Nice (2014), created using Articulate Storyline

(Articulate Global, 2015). In this approach to scenario-based training, each character in the scenario

appears as a drawn or photographic character, in a sequence of still poses. The non-player character poses

a question, presented on the screen. The learner chooses from a small set of multiple-choice answers. The

non-player character then responds to the learner’s choice, and the system gives feedback on that choice.

217

Figure 6. This example scenario was created using the Articulate Storyline authoring tool.

Scenarios such as this are useful for some purposes such walkthroughs. Current authoring tools make it

possible to create such scenarios without any programming. However, they lack many of the

characteristics discussed in the previous section, and this limits their utility. In particular, scenarios tend

to limit learners to a small set of choices, as in this example. They are limited to a single question-

response pair, as in this case, or a linear sequence of inputs and responses. This limits their replayability.

Simulations in contrast support a range of possible inputs, responses, and outcomes, and so are more

suitable for ongoing practice and sustainment. The challenge for role-play authoring tools is to make it

easy to create such simulations with little or no programming.

Authoring Processes

Authoring virtual role play is not simply the application of a tool; it is a process. It can involve multiple

stages, with different participants involved at each stage. This is true for any significant intelligent

tutoring development effort, but it is especially true for virtual role-play authoring, because it can involve

people with different skill sets. Authoring tools must be designed to support the intended process,

participants, and roles.

Figure 7 shows one example development process, used to develop VCAT courses. Development

proceeds in six distinct phases, from background sociocultural research through instructional design,

scenario authoring, media production, and quality assurance. Each phase of authoring involves distinct

activities and skill sets, and consequently, different authoring capabilities. The course also goes through

an approval process with the client, which also involves multiple phases. Authoring tool features can vary

depending upon the stage.

218

Figure 7. This example authoring process involves multiple phases and roles, both for the system developer

and for the client.

Below are examples of some process issues that a good virtual role-play authoring toolset should support

in order to create product-quality virtual role-play training systems:

 Domain model validation. The role-play simulation must reflect an accurate understanding of

how the target skills are performed in real life. This is important when the training author and the

subject matter experts are different people, or when multiple subject matter experts are required.

Otherwise there is a risk that the course author will create content that appears to be correct but in

fact is inaccurate. This is a critical issue for cultural awareness courses such as VCATs, which

incorporate expertise in culture as well as military operations. For VCATs, we cross-validate

cultural content from multiple sources to ensure that the final content correctly reflects the target

culture.

 Team collaboration and workflow. Role-play simulation development often requires

multidisciplinary teams. Authoring tools should support sharing among team members.

 Courseware quality assurance. The tools should support thorough testing and validation to

ensure that the resulting content is free of mistakes. Again, VCATs provide a good case in point.

Errors can creep in in the domain model, the instructional design and content, the artwork, and

the interaction behavior.

Virtual Role-Play Authoring Tools

Currently, few authoring tools are generally available for creating virtual role-play simulations. Virtual

role-play developers such as SIMmersion (2013) and Kognito Interactive (Boyd, 2015) create simulations

using in-house tools and methods; they do not make these tools available to others and publish few details

about them. Scenario editors such as Articulate Storyline (Articulate Global, 2015) and Video RolePlay

(Rehearsal Video Role-Play, 2015) make it easy to create simple scenarios but are not designed to support

the creation of rich role-play simulations.

Page-based Authoring Tools

Most scenario authoring tools use a page metaphor, similar to slides in PowerPoint. The author creates a

set of pages, where the virtual role player and learner’s dialogue choices are bits of artwork embedded in

the page. The dialogue progresses by jumping from page to page.

219

SkillStudio, the authoring toolset offered by Skillsoft, has support for creating role-plays (Skillsoft

Ireland Limited, 2013). SkillStudio does not give users the option of creating new role-plays, but it

permits users to edit existing role-plays developed by Skillsoft.

Skillsoft role-plays are composed of pages showing an image of a character saying something to the

learner and a list of multiple-choice responses to select from, similar to the example in Figure 6.

SkillStudio supports single-path role-plays and multiple-path role-plays. In single-path role-plays, there is

only one correct choice in each turn of the role-play, and learner is constrained to follow the correct path.

In multiple-path role-plays, each choice leads to a new dialogue page, each of which, in turn, leads to a

set of successor pages. This results in a tree of pages. Skillsoft role-plays can be played in either Explore

Mode or Summary Mode. Explore Mode is a kind of walkthrough mode in which the learner can explore

the outcome of each option before making a choice. Summary Mode is a kind of assessment mode, in

which the learner must make an immediate choice at each step in the role-play. Learners receive a

cumulative score based on number of correct choices they make over the course of the role-play.

One limitation of the Skillsoft approach is that it offers the learner a limited range of options at each

decision point. Each learner action is selected from a small list of choices, so learners learn to recognize

appropriate responses instead of coming up with their own responses. Single-path role-plays constrain

learners to follow a linear script. Multiple-path role-play trees offer more options, but they are not

scalable. The number of pages is exponential in the depth of the tree. Realistic role-plays involving a

series of conversational turns and a range of options become very large and time-consuming to produce.

ZebraZapps (Lee, 2013) is a more recently released authoring tool that supports the creation of role-

plays as well as other interactive eLearning media. As in SkillStudio authors can author role-plays by

creating a set of pages showing a picture of a character saying something and a set of multiple-choice

options. The author can specify go-tos between pages, so that when the learner selects a choice it causes

the course to jump to another page. The properties of graphical objects in the page, as well as the go-tos

between pages, are presented in a table to facilitate editing.

ZebraZapps role-play applications do not require quite as many pages as SkillSoft role-plays, since

authors can use go-tos to merge paths and share pages across paths. But since each simulation state is a

separate page, dynamic simulations inevitably require large numbers of pages. Large numbers of go-tos

result in complex control structures that are hard to follow and difficult to maintain.

Dialogue Authoring Tools

Dialogue authoring tools differ from the above tools in that there is an explicit model of the dialogue that

the character is engaging in, independent of the screen artwork. Dialogue authoring tools are designed to

enable authors to define complex dialogues with interactive characters. Some dialogue authoring tools are

emerging that are designed specifically to create role-play simulations.

ChatMapper (Urban Brain Studios, 2014) is a general-purpose authoring tool for nonlinear dialogue.

Authors can create dialogue trees and specify conditions under which branches are activated. It can thus

be used to create complex simulations. Dialogues are compiled into the Lua scripting language (Lua,

2014), a commonly used scripting language in games. The ChatMapper editor has a built-in conversation

simulator, which makes it easy for developers to test dialogues as they are developing them. Although

ChatMapper is very flexible, it only takes care of authoring dialogue logic. Constructing complete role-

play simulations with capabilities listed above, such as spoken dialogue, scaffolding, etc., inevitably

requires additional Lua scripting and programming.

220

The USC Institute for Creative Technologies (ICT) has developed a series of experimental authoring tools

for role-play development. For example the Tactical Questioning authoring tool (Gandhe et al., 2009)

been used to create virtual role players for a system that trains tactical questioning skills. It supports a

model of dialogue in which the virtual role player responds to questions posed by the trainee, and

sometimes engages in subdialogues to negotiate with the trainee for compensation in return for the release

of information. In this approach, the author creates a model of information that the virtual role player

knows and can talk about. This includes information about objects, people, and places. The author then

defines dialogue acts that the player and virtual role player can engage in concerning this information.

Dialogue acts include questions, assertions, offers, threats, offers, and insults, as well greetings and

closings to start and end the conversation. Dialogue moves are specified as state transition networks, in

which the author can specify conditions under which transitions may occur. Conditions may include the

emotional state of the character and character’s willingness to comply and cooperate, which, in turn, are

influenced by what the learner has said previously in the dialogue. The system uses statistical language

processing techniques for natural language understanding as well as natural language generation to map

between English text utterances and dialogue acts. The authoring tool enables the author to train the

natural language processor by selecting which dialogue act to map to a given text utterance. Ghandhe et

al. (2009) report that the developers used the Tactical Questioning authoring tool to create the first

character, Hassan, after which two subject matter experts without previous experience building dialogue

systems used the tool to author dialogue for two additional characters.

More recent ICT authoring tool named Situated Pedagogical Authoring (SitPed) uses the ChatMapper

tool to create branching dialogue and incorporates a character simulator so that authors can test and

annotate dialogue as they create it (Lane et al., in press). It also provides authors a tool for annotating

dialogue texts to indicate how well they exhibit the skills being taught in the simulation. An evaluation of

SitPed was conducted in 2014, and at the time of this writing, the results of this evaluation are still being

analyzed.

Alelo has a suite of tools for creating training content employing virtual role play (Johnson & Valente,

2008). Alelo uses these in house and also makes them available to third parties. For example, the Danish

Simulator (Dansksimulatoren, 2015), an award-winning game for learning Danish language and culture,

was developed using Alelo’s tools and platform. The toolset supports development teams throughout the

authoring process, from background sociocultural research through building complete training systems.

The tools and supporting methodology have enabled Alelo to deliver a wide range of effective culture and

language training courses, which have a consistently high level of quality.

The core tools in the Alelo authoring toolset are Xonnet and Tide. Xonnet supports web-based authoring

by teams of authors, operating on content stored in a central learning content management system. It

provides content management functions necessary for collaborative authoring such as checking in and

checking out of content. Tide is used to design and construct the virtual role-play content elements within

each course. Other tools in the toolset edit and manage the media assets comprising simulations, such as

character animations and voice recordings. Content is specified in a device-agnostic fashion so that it can

run on personal computers and mobile devices, in web browsers, immersive games, mixed-reality

environments, and even mobile robots. For each hardware/software configuration, Alelo has developed a

content player capable of delivering content on that device and software platform.

To understand how authoring works one needs to know something about how the Alelo architecture

controls the behavior of virtual role players (Johnson et al., 2012). Each virtual role player has a “brain”

(decision engine) that controls a “body” (character persona and sensing-action layer) that operates within

the simulated world or real-world environment. When the virtual role player is interacting with a trainee,

the sensing-action layer receives inputs from the speech recognizer, user interface, other sensors, and the

virtual-world simulation, and relays them to the decision engine to determine what the character should

221

do in response. The decision engine interprets the inputs in the context of the culture, current situation,

and dialogue history to determine what act the trainee is performing. Acts are similar to the dialogue acts

in Ghandhe et al.’s (2009) formulation, but also subsume nonverbal communication and other actions. For

example in the VCAT Taiwan simulations the trainee’s avatar might extend his hand in order to share

hands or raise his glass to offer a toast. The decision engine interprets such behaviors as acts with

communicative intent and chooses an action to perform in response. The decision engine is able to

recognize a variety of possible acts, affording the trainee a range of possible courses of action. The

decision engine then chooses what action to perform in response, and realizes that as a combination of

speech and gesture for the sensing-action layer to perform.

Each virtual role-player model can incorporate a set of dynamic variables that represent the attitudes of

the virtual role player toward the trainee. Trust and rapport are typically the most important variables.

These can change over the course of the encounter in reaction to the trainee’s actions and can influence

what actions the virtual role player will take. In many of the simulations Alelo creates the trainee must

first establish trust and rapport in order to accomplish the mission.

The job of Tide is to enable authors to create content that conforms to this architecture, enables the virtual

role player to interpret the trainee’s actions, and responds accordingly. For each encounter or scene,

authors create an act library, which is the inventory of acts that the trainee or the virtual role player may

perform during the encounter or scene. These can vary from simulation to simulation, but in practice

authors reuse elements of previous act libraries when developing new act libraries. Authors also create

utterance libraries, which consist of example utterances that express the meaning of the acts in the target

language. To increase the coverage of utterances in the utterance library, authors can use a templatizer

tool, based on the work of Kumar et al. (2009), to generalize utterances into utterance patterns that match

a variety of utterances.

Tide provides an interactive diagramming tool for specifying interactive dialogues. Dialogues are

depicted as directed acyclic graphs containing nodes representing acts, utterances, and nonverbal

behaviors. Transitions may be conditioned on certain predicates becoming true, e.g., a character’s trust

level exceeding a certain threshold. Authors can also create subdialogues that are activated and

deactivated during the course of the dialogue. Through these simple mechanisms authors can create

complex dialogues with a variety of alternative paths. A testing function enables authors to execute a

dialogue within the editor to validate the dialogue logic. This helps with the problem of quality assurance

of the simulation content.

As authors create dialogues they incorporate assessment and feedback. Learner responses are scored and

contribute to an overall assessment of the trainee’s performance in the simulation. Some feedback, what

we call organic feedback, is incorporated into the responses of the virtual role player and thus becomes an

organic part of the simulation. For example, the virtual role player might take offence at the trainee’s

statement or display facial expressions that indicate discomfort or disapproval. Such feedback is powerful

and effective because learners can immediately see the consequences of their actions. Other feedback

takes the form of corrective and explanatory feedback to be provided by the Virtual Coach. The author

supplies the feedback at authoring time, and it is up to the run-time content player to determine whether to

present that feedback to the learner, based upon the chosen level of scaffolding or upon learner request.

Alelo tools are used to create role-play simulations that serve as walkthroughs, practice sessions, or

assessments. They include single conversational turns for part-task training, as well as extended

exchanges of several minutes in duration. Hundreds or even thousands of simulations have been authored

to date using these tools.

222

Empowering Trainers Using Role-Play Configuration Tools

Current dialogue authoring tools reduce the amount of programming required to create role-play

simulations. However to promote adoption of the virtual role-play approach at a really large scale, it is

important that we empower trainers so that they can create their own virtual role-play simulations. This

goal of empowering trainers is one of the next big challenges for adaptive intelligent tutoring systems

(ITSs) generally, including the tools described in this volume. Visionaries such as Sottilare (2013) have

called for interfaces to ITSs that teachers and instructors can use. However, there are just a few instances

to date, such as ASSISTments (Heffernan & Heffernan, 2014) that teachers or trainers have used to any

significant extent to create their own content. Alelo has developed a new product named VRP
®
 MIL

(Stuart, 2014) that is specifically designed to meet this need in the area of virtual role play.

VRP MIL was developed to meet the needs of military training organizations that wish to organize

training exercises for their units at simulation training centers. Simulation training centers are equipped

with computers for virtual training and staffed with personnel who are skilled in running training

exercises using this equipment. The simulation center staff is permanently resident at the training center,

while the units continually rotate through the center as part of their preparation for deployment.

When a unit wishes to organize a training program, the training officer associated with the unit typically

works with the simulation center staff to define a series of training exercises for the unit to perform. The

training officers are experts in training but may have little knowledge of simulation technology. It is up to

the simulation center staff to quickly put together training simulations that meet the training officer’s

requirements. A common request from the training officer is training scenarios at varying levels of

difficulty. The training officer might start with a training exercise at a high level of difficulty knowing

that the trainees will likely fail the exercise in order to motivate the trainees to improve. The trainer will

then undertake another exercise at a low level of difficulty, in which the trainees will likely succeed. They

then undertake additional exercises at progressively higher levels of difficulty until the exercises again

reach a high level of difficulty. By this point, the trainees have progressed to the point where they can

successfully complete the mission with full confidence in their skills.

When the training is preparation for overseas deployments, a key challenge is providing training that

accurately reflects the culture of the region of deployment. Unfortunately, the training officers and

simulation staff may not have detailed knowledge of the target culture. Cultural subject matter experts, if

available, may not have much knowledge of military missions or simulation technology. Moreover, if

they are available they may not have accurate knowledge of the culture of the specific region; if they have

been out of the country for an extended period, their knowledge may not be up to date.

VRP MIL helps trainers and simulation staff to overcome these challenges and quickly create training

simulations that are culturally accurate and appropriate for the intended training objectives. It provides

trainers with a library of reusable virtual role players, each intended to perform a designated role in

training simulations. Example roles include local leaders, guards and sentries, shopkeepers, and passers-

by on the street. Instead of authoring content from scratch using authoring tools, trainers populate the

virtual training world with virtual role players and configure them to meet their needs. The behavior of

each virtual role player has been validated beforehand as culturally accurate, ensuring that the resulting

training simulation is also culturally accurate. VRP MIL is built as a plug-in that integrates into the

popular VBS simulation-based training tool (Bohemia Interactive Simulations, 2015), which already

provides users with tools for constructing virtual worlds and populating them with buildings, vehicles,

and other entities.

We have developed the VRP MIL framework and a basic library of virtual role players (VRPs), and now

plan to extend it with form-based interfaces for providing the necessary configuration parameters.

223

Configuration parameters will include the level of difficulty interaction with the VRP, as well as specific

topics that the VRP is prepared to discuss with the trainee. This fits well with the way the military

currently defines roles for live role players in training exercises. These configuration parameters will then

be automatically inserted into the dialogue model to generate the target behavior. Authoring tools will still

be used to create the VRP models, but this way each VRP model will undergo much broader use.

Simulation center staff will have the option to use the authoring tools themselves to add adapt and extend

the VRP library.

VRP MIL underwent a successful trial evaluation in February 2015 at the NATO Joint Force Training

Centre in Bydgoszcz, Poland, with NATO units preparing to travel to Afghanistan on training and support

missions. From there, we anticipate its adoption by NATO member nations and allied nations preparing

for overseas coalition operations.

Conclusions and Future Directions

Virtual role play is becoming an increasingly important training method for intelligent learning

environments. It is being applied to an ever-broadening range of education and training applications,

particularly for cross-cultural communication. Progress in authoring tool development for this class of

applications has made this possible. Emerging developments such as role-play configuration tools are

likely to further accelerate the expansion and large-scale adoption of this technology.

Dialogue authoring tools for role-play simulations are in some ways similar to tutorial dialogue authoring

tools such as AutoTutor’s authoring tools (Nye et al., 2014) or TuTalk (Jordan et al., 2007), and there is

much that we can learn from these tools. However role-play simulations have their own unique

characteristics that warrant their own class of authoring tools.

Role-play authoring tools have been most successful when they take into account the tasks and roles of

the people using the tools, and the processes by which content is developed. This is an important general

lesson for authoring tools for adaptive ITSs. The clearer understanding we have of our intended users the

better a job we can do of addressing their needs.

As we have seen, existing page-based authoring tools are quite capable of creating simple role-play

scenarios. These tools are very widely available, and many training developers are familiar with their use.

Virtual role-play and associated tools are most likely to be adopted when they offer clear and compelling

advantages over existing methods, especially in skill development, authentic assessment, and promoting

behavior change. There is a general lesson here for authoring tools for the adaptive ITSs of GIFT.

Researchers in adaptive ITSs often wonder why their technologies are not being adopted more widely.

Existing authoring tools are quite capable of creating simple versions of various types of learning

environments, and trainers are unlikely to switch to new tools if they do not see a compelling advantage.

The general architecture for GIFT, as described in Sottilare (2012), needs to be clarified so that it

accommodates the instructional interaction typical of virtual role-play simulations. According to the GIFT

architecture the tutor-user interface and the training app client are separate, and interact with users

separately. However, as we have seen, assessment and feedback are often tightly integrated into virtual

role-play simulations, and feedback is an organic part of virtual-role-player behavior. If the GIFT

architecture is to support virtual role play it should support such integrated interaction.

Virtual role-play systems can collect valuable, accurate data about trainee performance. There is an

opportunity to capture and exploit this data as part of the GIFT architecture. One way of doing this via the

TinCan API. Once data are captured via TinCan and stored in a Learner Record Store (LRS), it is possible

224

to analyze these data and develop more granular models of learner skills, which in turn can be used to

tailor training. If these are integrated with job performance data, it would provide a method for providing

just-in-time training and promoting behavior change on the job.

There is a need in virtual role-play systems for flexible domain models of dialogue that can be used in a

variety of ways. In live role-play training exercises, it can be useful to switch roles, so that the trainee can

better understand the perspective of the other person. For virtual role-play systems to have similar

flexibility, they require dialogue models that capture the interaction while being agnostic as to which roles

are played by the learners and which are played by the virtual role players. This is very consistent with the

GIFT approach of modeling domain expertise independent of specific instructional use.

Looking ahead, speech recognition will continue to improve. Sensor and interface technologies will

increase in performance and reduce in cost. This will make it easier to deliver virtual role-play training

and assessment in a wider range of domains, to a wider range of organizations. Techniques that have been

developed and proven in military training can be applied to a wide range of domains in training,

development, and behavior change for a wide range of organizations. Many of these currently rely on

traditional methods and informal observation of performance. There are many opportunities to achieve

radical improvements in training and performance development, through virtual role-play methods that

employ realistic models of skill and provide accurate assessments of performance.

References

Articulate Global (2015). Storyline 2: Create interactive e-learning, easily. Retrieved Feb. 19, 2015 from

https://www.articulate.com/products/storyline-why.php.

Barrows, H.S. (1993). An overview of the uses of standardized patients for teaching and evaluating clinical skills.

Academic Medicine, (1993), 443-451.

Bohemia Interactive Simulations (2015). VBS3: The future battlespace. Retrieved Feb. 19, 2015 from

www.bisimulations.com/virtual-battlespace-3.

Boyd, P. (2015). Dooplo - Kognito’s human interaction platform. Retrieved Feb. 19, 2015 from

http://patboyd.com/site/projects/kognito-platform.

Dansksimulatoren (2015). Dansksimulatoren revolutionizing language learning. Retrieved Feb. 19, 2015 from

www.dansksimulatoren.dk.

Emonts, M., Row, R., Johnson. W.L., Thomson, E., Joyce, H. de S., Gorman, G. & Carpenter, R. (2012). Integration

of social simulations into a task-based blended training curriculum. In Proceedings of the 2012 Land

Warfare Conference. Canberra, AUS: DSTO.

Gandhe, S., Whitman, N., Traum, D. & Artstein, R. (2009). An integrated authoring tool for tactical questioning

dialogue systems. In 6th Workshop on Knowledge and Reasoning in Practical Dialogue Systems, Pasadena,

California. 2009. Retrieved Feb. 19, 2015 from

http://people.ict.usc.edu/~traum/Papers/krpd09authoring.pdf.

Heffernan, N. & Heffernan, C. (2014). The ASSISTments Ecosystem: Building a platform that brings scientists and

teachers together for minimally invasive research on human learning and teaching. International Journal of

Artificial Intelligence in Education 24(4), 470-497.

Johnson, W.L. (2010). Serious use of a serious game for language learning. International Journal of Artificial

Intelligence in Education, 20(2), 175-195.

Johnson, W.L., Friedland, L., Schrider, P., Valente, A. & Sheridan, S. (2011). The Virtual Cultural Awareness

Trainer (VCAT): Joint Knowledge Online’s (JKO’s) solution to the individual operational culture and

language training gap. In Proceedings of ITEC 2011. London: Clarion Events.

Johnson, W.L., Friedland, L., Watson, A.M. & Surface, E.A. (2012). The art and science of developing intercultural

competence. In P.J. Durlach & A.M. Lesgold (Eds.), Adaptive Technologies for Training and Education,

261-285. New York: Cambridge University Press.

Johnson, W.L. & Lester, J.C. (in press). Twenty years of face-to-face interaction with pedagogical agents.

International Journal of Artificial Intelligence in Education.

225

Johnson, W.L. & Valente, A. (2008). Collaborative authoring of serious games for language and culture.

Proceedings of SimTecT 2008.

Jordan, P., Hall, B., Ringenberg, M., Cue, Y. & Rosé, C. (2007). Tools for authoring a dialog agent that participates

in learning studies. In R. Luckin et al. (Eds.), Artificial Intelligence in Education, 43-50. Amsterdam: IOS

Press.

Kim, J.M., Hill, R.W. Jr., Durlach, P.J., Lane, H.C., Forbell, E., Core, M.G., Marsella, S. Pynadath, D.V. & Hart, J.

(2009). BiLAT: A game-based environment for practicing negotiation in a cultural context. International

Journal of Artificial Intelligence in Education, 19, 289-308.

Lane, H.C., Core, M.G. & Goldberg, B.S. (in press). Lowering the skill level requirements for building intelligent

tutors: A review of authoring tools. In R. Sottilare, A. Graesser, Xiangen Hu & K. Brawner (Eds.), Design

Recommendations for Adaptive Intelligent Tutoring Systems: Authoring Tools (Volume 3). Orlando, FL:

U.S. Army Research Laboratory.

Lee, S. (2013). Build a role play in a day with ZebraZapps. Retrieved Feb. 19, 2015 from

http://vimeo.com/80417830.

Loke, S.-K., Blyth, P. & Swan, J. (2012). Student views on how role-playing in a virtual hospital is distinctly

relevant to medical education. Proceedings of ascilite 2012. Retrieved Feb. 19, 2015 from

http://www.ascilite.org/conferences/Wellington12/2012/pagec16a.html.

Lua (2014). Lua: The programming language. Retrieved Feb. 19, 2015 from www.lua.org.

Nye, B.D., Graesser, A.C. & Hu, X. (2014). AutoTutor and family: A review of 17 years of natural language

tutoring. International Journal of Artificial Intelligence in Education 24 (2014), 427-469.

Radecki, L., Goldman, R, Baker, A., Lindros, J. & Boucher, J. (2013). Are pediatricians “game”? Reducing

childhood obesity by training clinicians to use motivational interviewing through role-play simulations with

avatars. Games for Health Journal, 2(3), 174-178.

Rehearsal Video Role-Play (2015). Rehearsal features. Retrieved Feb. 19, 2015 from

http://www.videoroleplay.com/features.

Robinson, L.J.B. (1987). Role playing as a sales training tool. Harvard Business Review, May-June 1987, No.

87310. Cambridge, MA: Harvard Business Publishing.

Sandler Training (2014). A better way to role play. Retrieved on Feb. 19, 2015 from http://www.sandler.com/blog/a-

better-way-to-role-play/.

SIMmersion (2013). Technology: Ground-breaking technology lets SIMmersion deliver effective communication

training to learners of all kinds. Retrieved Feb. 19, 2015 from http://simmersion.com/Technology.aspx.

Simmons, T.G. (2010). Using virtual role-play to solve training problems: How do you train employees to think on

their feet? eLearn magazine, June 2010. Retrieved Feb. 19, 2015 from

http://elearnmag.acm.org/archive.cfm?aid=1821985.

Skillsoft Ireland Limited (2013). Roleplays. Retrieved Feb. 19, 2015 from

http://documentation.skillsoft.com/en_us/sstudio/index.htm#17853.htm.

Sottilare, R.A. (2012). A modular framework to support the authoring and assessment of adaptive computer-based

tutoring systems. Paper presented at the Interservice/Industry Training, Simulation & Education

Conference (I/ITSEC), Orlando, FL.

Sottilare, R.A. (2013). Pushing and pulling toward future ITS learner modeling concepts. In R. Sottilare, A.

Graesser, X. Hu & H. Holden (Eds.), Design recommendations for intelligent tutoring systems, 195-198.

Orlando, FL: U.S. Army Research Laboratory.

Stuart, S. (2014). Using video games to prepare for the culture shock of war. PC.com, Nov. 24, 2014. Retrieved Feb.

19, 2015 from http://www.pcmag.com/article2/0,2817,2472395,00.asp.

Urban Brain Studios (2014). Chat Mapper 1.7 documentation. Retrieved Feb. 19, 2015 from

http://www.chatmapper.com/documentation.

USC ICT (2013). Situated pedagogical authoring for virtual human-based training. Retrieved on Feb. 19, 2015 from

http://ict.usc.edu/wp-content/uploads/overviews/Situated%20Pedagogical%20Authoring_Overview.pdf.

Van Nice, J. (2014). Toolbox Tip: Creating scenarios in Articulate Storyline No programming necessary.

Retrieved Feb. 19, 2015 from https://www.td.org/Publications/Blogs/Learning-Technologies-

Blog/2014/08/Creating-Scenarios-in-Articulate-Storyline.

Wilcox, A. (2012). Somali-Americans assist reserve Marines with pre-deployment training. The Daily News

 Jacksonville, NC, Dec. 13.

226

Chapter 19 Emerging Trends in Automated Authoring
Andrew M. Olney

1
, Keith Brawner

2
, Phillip Pavlik

1
, Kenneth R. Koedinger

3

1
University of Memphis;

2
US Army Research Laboratory;

3
Carnegie Mellon University

Introduction

Traditional intelligent tutoring systems (ITS) are specialized feats of engineering: they are custom-made

to implement a theory of learning, in a particular domain, within a specific computer environment. There

are many ways to describe or categorize authoring tools used to make ITSs (Murray, 2004). This chapter

considers authoring tools primarily in terms of intelligent tutor paradigms. Three popular ITS paradigms

are dialogue-based tutors (Nye, Graesser & Hu, 2014), constraint-based tutors (Mitrovic, 2012), and

model-tracing tutors (Anderson et al., 1995). These paradigms may be distinguished along two abstract

axes, as shown in Figure 1. The axes reflect how the learning task is defined and how student progress in

the task is measured.

Figure 6. Tutoring paradigms arranged by orientation (path vs. constraint) and

comparison to ideal answer (direct vs. indirect).

The horizontal axis indicates whether the paradigm is primarily path-oriented or constraint-oriented. A

path-oriented paradigm conceives the learning task as a sequence of steps that lead to a solution. For

example, the instructional theory behind model-tracing tutors can be expressed within the knowledge-

Dialogue-
based

Model-
Tracing

Constraint-
based

?

Constraint-

oriented

Path-

oriented

Direct comparison to ideal answer

Indirect comparison to ideal answer

228

learning-instruction (KLI) framework (Koedinger, Perfetti & Corbett, 2012). Critical to the KLI

framework are the ideas that (a) most of our knowledge in any area of expertise (e.g., grammar, algebra,

design) is in the form of procedural skills, which are learned by induction from experience and feedback,

and (b) two forms of instruction that best facilitate such learning are problem solving practice with as-

needed feedback on student errors and as-needed examples of correct behavior (next step hints). The key

is to engage the learner in the process of doing, that is, engaging in the target activity, and provide

personalized tutoring support for the learner that adapts to their particular needs. Tutoring support is

achieved by the use of a model of desired or correct performances and of particularly common undesired

or incorrect performances. This direct comparison against a model (which includes ideal answers) also

situates model-tracing on the vertical axis. Each student’s actions are traced against this model such that

feedback can be generated when undesired performance is observed and next-step hints can be generated

when students are stuck. In both cases, the emphasis is on minimal intervention (Anderson et al., 1995) in

order to maximize student active and constructive involvement in the thinking and learning process.

Conversely, a constraint-oriented paradigm conceives of the learning task as attaining a solution state

irrespective of the path that led to it. Both dialogue-based and constraint-based paradigms share this

property but they differ in many respects, most notably in how they represent knowledge and compare the

student answer to an ideal answer. Dialogue-based tutors are typically frame-filling systems (McTear,

2002) that fill slots in a frame in any order. For example, given the physics question, “If a lightweight car

and a massive truck have a head-on collision, upon which vehicle is the impact force greater, and why?”,

a dialogue-based system might have the slots [The magnitudes of the forces exerted by A and B on each

other are equal] and [If A exerts a force on B, then B exerts a force on A in the opposite direction]. If a

user says, “the forces are equal,” the system would recognize that the first slot is filled and follow up with

a question to fill the second slot like, “What can you say about the direction of the forces?” The slots are

known as expectations, or expected components of the ideal answer (Graesser, D’Mello, et al., 2012), and

the follow-up questions used to fill out the frame are aligned with models of naturalistic human tutoring

(D’Mello, Olney & Person, 2010; Graesser & Person, 1994; Graesser, Person & Magliano, 1995; Person,

Graesser, Magliano & Kreuz, 1994) plus ideal pedagogical strategies in some versions. Dialogue-based

systems determine whether a slot, or expectation, is filled by directly comparing the student’s answer to

an ideal answer, typically using methods like latent semantic analysis (Landauer, McNamara, Dennis &

Kintsch, 2007) and other semantic matching algorithms. Dialogue-based tutors can be considered as a

very narrow form of constraint-based tutors where the constraints are defined by whether all slots are

filled, i.e., all expectations are met.

Constraint-based tutors operationalize constraints as consisting of a relevance condition (R) and a

satisfaction condition (S) (Ohlsson, 1992). The constraint is only applicable when the relevance condition

is met, at which point the satisfaction condition defines what conditions the student’s solution must meet

in order to be correct. Only solutions that violate no constraints are correct. Constraints therefore do not

specify a path or set of paths to a solution but rather define a space of correct solutions (Ohlsson &

Mitrovic, 2007). For example, a constraint for fraction addition might have the relevance conditions

problem statement: a/b + c/d and student solution: (a+c)/n with satisfaction condition b=d=n: the solution

is correct only when the denominators of the problem statement and student solution are equal (Ohlsson,

1992). Constraints are well suited for design tasks and tasks that are ill defined precisely because they

allow solutions to be recognized without requiring them to be enumerated by the author. With regard to

the vertical axis, constraint-based tutors do not directly compare a solution to an ideal solution but instead

compare indirectly via preserved and violated constraints.

The characterization presented in Figure 1 is undoubtedly an over-simplification of the differences

between these tutoring paradigms because they differ on so many other dimensions. Moreover, they share

more features than Figure 1 represents, because path-oriented tutors can relax ordering restrictions and

constraint-oriented tutors can incorporate path-like ordering restrictions. However, from an authoring tool

229

standpoint, the above depiction highlights some of the key authoring problems faced by each paradigm.

Model-tracing tutors require a model to trace, commonly in the form of sequences of steps and production

rules that require next-step hints. Dialogue-based tutors require a set of expectations and associated

follow-up questions (e.g., hints or prompts) when the expectations are unfulfilled. Constraint-based tutors

require a set of constraints and associated feedback for their violations.

This chapter discusses several emerging approaches to ITS authoring that attempt to go beyond the

typical human-created practice and automate more of the authoring process than has been previously

attempted. Efforts are currently being undertaken in order to ease this burden from the authors in the form

of programming by tutoring, automated concept map generation, metadata tagging, extensive content

reuse, and continual refinement. With respect to Figure 1, the chapter emphasizes automated authoring in

the model-tracing and dialogue-based traditions (see Mitrovic et al., 2006 and Mitrovic et al., 2009 for

discussion of automated authoring of constraint-based tutors).

Related Research

Advanced Authoring for Model-Tracing Tutors

This section focuses on authoring tools for model-tracing tutors. The instructional approach in such tutors

is to provide students with one-on-one tutoring support as they work on problem or activity scenarios of

varying complexity. They do so within rich interface tools or simulation environments, for example,

solving a physics problem using tools for drawing and annotating a free body diagram, and for writing

and solving equations (e.g., VanLehn, 2006); solving a real-world quantitative reasoning problem (e.g.,

which cell phone plan to choose) using tools for creating tables, graphs, and equations (e.g., Koedinger et

al., 1997); designing an efficient system using a thermodynamics simulation (see Fig. 26 in Aleven et al.,

2009); and making an English grammar choice using a pop-menu (Wylie, Koedinger & Mitamura, 2010).

Effective and efficient authoring depends on how completely, accurately, and quickly an author can

specify a sufficiently complete set of desired and common undesired student actions. This set of

reasonable actions was traditionally specified in a general artificial intelligence (AI) rule-based system

(cf., Anderson et al., 1995). For example, in a production system, each production rule is annotated with

instructional messages, such as (a) next-step hints in the case of productions that represent desirable

student actions and (b) error feedback messages in the case of productions that represent common student

errors or underlying misconceptions. One successful alternative to production system authoring is to

concretely enumerate, for each problem scenario, every action along all reasonable solution paths. This is

the “example-tracing” approach taken in the Cognitive Tutor Authoring Tools (CTAT) (Aleven, Mclaren,

Sewall & Koedinger, 2009), a complete tutor-authoring suite that has been used to create several dozen

ITSs.

A second alternative to hand-authoring production systems is to have the author tutor a machine learning

system that learns the production system (largely) from scratch. This is the approach taken by SimStudent

(Matsuda, Cohen & Koedinger, 2015). SimStudent learns problem-solving skills from the two kinds of

instruction that are arguably the most powerful in human skill acquisition: learning from examples and

learning from (feedback on) doing (e.g., Gick & Holyoak, 1983; Roediger & Butler, 2011; Zhu & Simon,

1987). Figure 2 shows an example of SimStudent being tutored on algebra equation solving. An example

of an acquired production rule (in the JESS language) from the first author demonstration is shown on the

right. SimStudent has three online learning mechanisms that focus on learning (1) information retrieval

paths (clauses of the IF-part of the production that identifies where in the interface relevant information

may lie), (2) preconditions on actions (clauses of the IF-part that constrain when the production is

appropriate), and (3) action plans (compositions of functions that compute appropriate actions). The

230

newest addition to SimStudent is a representation learning mechanism that learns the general structure of

declarative memory structures, which are the basis for both the operation and learning of production rules

(Li, Matsuda, Cohen & Koedinger, 2015).

Figure 2. After using CTAT to create an interface (shown at top) and entering a problem (“2x=8”), the author

begins teaching SimStudent either by giving yes-or-no feedback when SimStudent attempts a step or by

demonstrating a correct step when SimStudent cannot (e.g., “divide 2”). SimStudent induces production rules

from demonstrations (example shown on right) for each skill label (e.g., “divide” or “div-typein” shown on

left). It refines productions based on subsequent positive (demo or yes feedback) or negative (no feedback)

examples.

The use of SimStudent as authoring tool is still experimental, but there is evidence that it may accelerate

the authoring process and that it may produce more accurate cognitive models. In one demonstration,

Matsuda et al. (2015) explored the benefits of a traditional programming by demonstration approach to

authoring in SimStudent versus a programming by tutoring approach, whereby SimStudent asks for

demonstrations only at steps in a problem/activity where it has no relevant productions and otherwise it

performs a step (firing a relevant production) and asks the author for feedback as to whether the step is

correct/desirable or not. They found that programming by tutoring is much faster, 13 productions learned

with 20 problems in 77 minutes versus 238 minutes in programming by demonstration. They also found

that programming by tutoring produced a more accurate cognitive model whereby there were fewer

productions that produced overgeneralization errors. Programming by tutoring is now the standard

approach used in SimStudent and its improved efficiency and effectiveness over programming by

demonstration follow from having SimStudent start performing its own demonstrations. Better efficiency

is obtained because the author need only respond to each of SimStudent’s step demonstrations with a

single click, on a yes or no button, which is much faster than demonstrating that step. Better effectiveness

is obtained because these demonstrations better expose overgeneralization errors to which the author

231

responds “no” and the system learns new IF-part preconditions to more appropriately narrow the

generality of the modified production rule.

In a second demonstration of SimStudent as an authoring tool, MacLellan, Koedinger & Matsuda (2014)

compared authoring in SimStudent (by tutoring) with authoring example-tracing tutors in CTAT.

Tutoring SimStudent has considerable similarity with creating an example-tracing tutor except that

SimStudent starts to perform actions for the author, which can be merely checked as desirable or not,

saving the time it otherwise takes for an author to perform those demonstrations. That study reported a

potential savings of 43% in authoring time by using SimStudent to aid in creating example-tracing tutors.

A third demonstration by Li, Stampfer, Cohen, and Koedinger (2013) evaluated the empirical accuracy of

the cognitive models that SimStudent learns as compared to hand authored cognitive models. The

accuracy of a cognitive model in this demonstration was measured by the so-called “smooth learning

curve” criteria (Martin, Mitrovic, Mathan & Koedinger, 2011; Stamper & Koedinger, 2011) that tests how

well a cognitive model predicts student performance data over successive opportunities to practice and

improve. Across four domains (algebra, fractions, chemistry, English grammar), Li et al.(2013) found that

the cognitive model acquired by SimStudent produced cognitive models that typically produced better

predictions of learning curve data (in 3 of 4 cases). More ambitious attempts to improve and evaluate

SimStudent as a tutor authoring aid are underway. SimStudent and other means for AI-driven

enhancement of ITSs, including data-driven hint generation and Markov decision process algorithms to

optimize tutor action choices, are discussed in Koedinger et al. (2013).

Advanced Authoring for Dialogue-Based Tutors

In dialogue-based ITSs (Graesser et al., 2005; Olney et al., 2012, Rus et al., 2014), the computer attempts

to tutor the student by having a conversation with them. These ITSs present similar challenges in ITS

authoring as those without natural language dialogue, but there are greater dialogue-authoring demands

than typical ITSs. The dialogue is typically authored by a subject matter expert (Graesser et al., 2004),

though attempts have been made to semi-automate the process by automatically generating questions and

representations that a subject matter can select or modify (Olney, Cade & Williams, 2011; Olney,

Graesser & Person, 2012). However, both manual and semi-automated approaches have a common

weakness: a shortage of motivated experts. In other words, experts are scarce, and it is uncommon for

experts to volunteer their time to author ITS content. Without willing experts to use an authoring tool, an

authoring tool will remain unused.

Our recent work addresses the shortage of motivated experts by considering expertise and motivation

independently. Expertise may be approximated by allowing novices to do the authoring but then having

other novices check the work to ensure quality. Motivation may be addressed by disguising the authoring

task as another task in which novices are already engaged. We combine these two approaches in the

BrainTrust system. In order to enhance motivation, BrainTrust leverages out-of-class reading activities,

specifically online reading activities using eTextbooks through providers like CourseSmart
1
, as

opportunities for ITS authoring. As students read online, they work with a virtual student on a variety of

educational tasks related to the reading. These educational tasks are designed to both improve reading

comprehension and contribute to the creation of an ITS based on the material read. After reading a

passage, the human student works with the virtual student to summarize, generate concept maps, reflect

on the reading, and predict what will happen next. The tasks and interaction are inspired by reciprocal

teaching (Palincsar and Brown, 1984), a well-known method of teaching reading comprehension

strategies. Thus the key strategies to enhance motivation are leveraging a reading task to which the user

has already committed, a teachable agent that enhances motivation (Chase et al., 2009), and a

collaborative dialogue that increases arousal (D’Mello et al., 2010).

1
 http://www.coursesmart.com/

232

The virtual student’s performance on these tasks is be a mixture of previous student answers and answers

dynamically generated using AI and natural language processing techniques. As the human teaches and

corrects the virtual student, they, in effect, improve the answers from previous sessions and author

dialogues and a domain model for the underlying ITS. The process of presenting previously proposed

solutions to a task for a new set of users to improve upon has been called “iterative improvement” in the

human computation literature (von Ahn, 2005; Chklovski, 2005; Cycorp, 2005). These methods often use

a simple heuristic that if the majority of evaluating users agrees a solution is correct, then the solution is

correct, a process sometimes referred to as “majority voting.” However, even simple tasks, such as

determining if an image includes the sky, can have non-agreeing “schools of thought” who systematically

respond in opposing ways (Tian & Zhu, 2012). Therefore it is preferable to use Bayesian models of

agreement jointly to determine the ability of the user (and their trustworthiness as teachers) as well as the

difficulty of the items they correct (Raykar et al., 2010). Although Bayesian approaches of this kind are

an emerging research area, they are being actively pursued by the massive open online course (MOOC)

community, because peer-grading is an important component of scaling MOOCs to many thousands of

students (Piech et al., 2013).

Because BrainTrust activities are designed to facilitate learning (both of the content and of reading

comprehension strategies) while preserving motivation, not all of the BrainTrust activities directly relate

to the authoring of an ITS. In fact, the primary task that relates to ITS authoring is the construction of

concept maps, as show in Figure 2. Concept maps can be used to generate exercises and questions in a

dialogue-based ITS (Olney, Cade & Williams, 2011; Olney, Graesser & Person, 2012). They can also be

used to generate rather trivially direct instruction, e.g., “attitudes are made of emotions and beliefs,” as in

Figure 2. With a small amount of additional information, such as the overall gist of a text passage,

concept maps can also be used to generate larger summaries or “ideal answers” (Graesser et al., 2005). In

the example given, the gist is “attitudes and attitude change,” and using this gist, a concept-map driven

summary can be topicalized so that “attitudes” are the key concept rather than another node.

Topicalization is important because non-hierarchical concept maps can be read in any order, but a given

text passage can only be read in the linear order in which it was written.

233

Figure 7. BrainTrust during a concept map activity

Advanced Component-Based Authoring

The previous sections describe efforts to automate authoring of a particular ITS component, such as the

model in model-tracing tutors. However, there are also emerging technologies that facilitate the reuse and

dynamic configuration of existing components, which allow for a different kind of automated authoring.

Instead of authoring the components, these technologies attempt to dynamically assemble components for

a particular learning objective. An outline of these technologies is presented in this section as a possible

path forward to completely remove ITS expertise required in component-based authoring. In short, the

steps to this process, addressed in further detail below, are the following:

(1) Gather content.

(2) Make the content discoverable.

(3) Make the content customizable.

(4) Generate additional tutoring-type information.

(5) Perform delivery for both information and practice sessions.

(6) Perform ITS-standard tasks (learner modeling, experience tracking, etc.); not discussed here.

(7) Repeat: perform pedagogical selection/adaption (steps 1–6).

234

With regards to gathering (1) of content, the Internet presents a wealth of information, but little of it is

relevant to educational goals. There are a few such efforts that attempt to make learning-specific

resources available: the Learning Registry (Jesukiewicz & Rehak, 2011), Gooru Learning

(GooruLearning, 2014) and, to a lesser extent, the Soldier-Centered Army Learning Environment

(Mangold, Beauchat, Long & Amburn, 2012). Fundamentally, each of these has faced the problem of

indexing learning content for gathering purposes. The Learning Registry adopts a solution of maintaining

separately developed, but interlinked, content repositories while making indexing information available.

Gooru instead allows for a centrally managed cloud of content, indexed in the same fashion as a search

engine.

Continuing with the Internet analogy, search engines make content discoverable through indexing and

cross-referencing. Each of the two main learning architectures must make the content discoverable (2) for

a given topic in order for it to be used. Gooru Learning takes a traditional web approach of using

community-curated metadata tags, while the Learning Registry has a project to automate the generation of

these tags using a project called “Data for Enabling Content in Adaptive Learning Systems (DECALS)”

(Veden, 2014). Both approaches make use of metadata-based descriptions of the content in order to drive

content selection, in approaches inspired by search engines. The content is made customizable (3) through

the editing access from the Gooru platform, or a Sharable Contend Object Reference Model (SCORM)

editing and packaging standard (Initiative, 2001) is made available through the Re-Usability Support

System for eLearning (RUSSEL) for management of repurposing courses, documents, and multimedia

(Eduworks Corporation, 2014). Such systems allow content to be found via search of metadata attributes

(e.g., reading level, interactivity index, etc.) and customized for the user.

Generating tutoring-type information (4) is discussed in the previous sections, but simply involves the

supplementation of a piece of content with learning-relevant information. One such example of a process

involves the generation of a concept map of the key topics contained within the indexed material. Such a

concept map can then be used grouping of learning content, with underlying content used for the

supplementation of additional learning-relevant items. Examples of such machine-generated learning-

relevant information include topic sequencing (Robson, Ray & Cai, 2013), question generation for

learning assessment (Olney, Graesser & Person, 2012), hint generation for student help during learning,

or other supplemental information.

Content delivery (5) is both an easy and a difficult problem. Both Gooru and the Generalized Intelligent

Frameworks For Tutoring (GIFT) support delivery via a web browser, which can easily deliver the

majority of modern content. Difficulty stems from more complex SCORM objects, executable programs,

3D simulations, or other items. RUSSEL makes use of human authoring of Gagne’s 9 events (Gagné &

Gagn , 1985), while GIFT automates the process of authoring through the Rule/Example/Recall/Practice

quadrants of Merril’s Component Display Theory (Wang-Costello, Tarr, Cintron, Jiang & Goldberg,

2013). The potential to automate the delivery of content based on searchable metadata parameters is one

of the key services missing from most of the instructional architectures, but has great potential for content

to reach a wide audience quickly.

With the difficult problem of content delivery, the user may be given a simulated environment to practice

their obtained knowledge. The integration of intelligent tutoring technologies into systems of practice is

not an easy problem, but it is one that is commonly addressed. This integration is a frequent and standard

use of the GIFT and Cognitive Tutor systems (e.g., Aleven et al., 2009; Ritter & Koedinger, 1997).

However, the current adaptive content (hints, prompts, pumps, etc.) is hand-generated. It may be possible

to use the generated tutoring-style information from the previous sections of this work to assist within the

practice environment, and eschew the need for expert authoring. As an example, the ordering-based hint

“you should multiply before you add” can be generated from the content and used to populate the practice

environment.

235

The above sequence of technologies has the potential to create an adaptive learning system without

human intervention. Even substantially diminishing the human workload required would represent a

significant savings of time. As part of this overall vision, learning content can be found on the Internet,

indexed and sorted into repositories, tagged with searchable metadata information, supplemented with

tutoring information, and delivered via browser. The combination of these technologies can allow an

instructional system to use an instructional template (e.g., “Rule” content), define user characteristics

(e.g., low motivation), match it with intended metadata (e.g., animated/interactable), query a learning

system for the appropriate content on the subject (e.g., 4
th
 grade history), and deliver it to the student.

Such a combination averts the problem of authoring by reusing existing ITS components for a particular

learning objective.

Closing the Authoring Loop: Continuous Feedback and Improvement

Many ITSs have a number of free parameters that must be fixed during the authoring process. For

example, in dialogue-based systems, the author must decide how “correct” a student answer should be in

order to be counted correct, e.g., must it be exactly the same as the ideal answer or can it be “close

enough.” Once fixed, these parameters usually remain fixed until the ITS is overhauled or re-

parameterized with new data.

However, ideally, we would close the loop and an ITS would be “self-updating” such that the parameters

of the theory of learning would be automatically adjusted to be more optimal as more students used the

system. While automated authoring of content involves creating exercises for students to interact with,

automated improvement in the pedagogical interactions means modifying the learner model used for

pedagogical decision making. For example, a self-updating system may be able to make use of

information on population dynamics to provide a “best guess” for model parameters of an unseen student.

Such guesses could be updated based upon their effect on learning among groups, allowing broader

applicability of the ITSs.

To do such continuous improvement will require a flexible model that characterizes the student learning

in the domain. Flexible implies that the model will behave in multiple different ways, depending on how

it is configured with parameters or mechanisms. For example, a model might characterize the different

outcomes for the student from success and failure with a practice problem. This model can be flexible in

its representation of the effect of the success and failure if the model allows this difference to vary, for

example, by quantifying success and failure effects numerically. Similarly, a model might characterize

forgetting, but again a flexible representation of forgetting would specify that it might range from none at

all to very fast depending on some numerical parameter. Again, the model allows for continuous variation

in the model space.

Given such a flexible model, one can configure a system with only preliminary settings for the different

flexible mechanisms. Following this initial cold start, the system would be designed to be self-tuning,

such that the model continuously improves both for groups of students and individual students connected

in a server-client architecture. While the network communication and mathematical complexity of this

proposal makes it challenging, the possibility for better effectiveness with students in ITSs may also be

large. It should also be noted that similar, but conceptually much simpler, A/B tests are now commonly

used in industry (e.g., deciding how many search results to put on a page). In the next few paragraphs, we

sketch the outlines for such a system.

The system would be controlled by a central server that receives data from the individual clients in order

for the server to reestimate parameters. These group estimates of parameters would then be offered to

existing and new clients. This system would allow for all the students’ data to be quickly analyzed by the

236

server to see if the default parameters resulted in a good fit or if they needed to be adjusted. Adjustments

would be gradual. Default parameters would thus incrementally evolve on the server for the task,

depending on the clients. These default parameters mean that the system will adapt to different contexts

of use. For example, a poor performing school district might give rise to parameters that reflect higher

forgetting than a better funded district. An adapted system would be expected to promote better learning,

since the accuracy of the model effects the accuracy of pedagogical decision making.

In addition to this tracking at the server level, the individual student models would be adjusted at the

client level as well. For example, a low performing student might find the task hard, since the system

would have adapted to the average student. The client level tracking would correct this inaccuracy very

quickly, since the client data would weigh heavily on the model parameters provided by the server. In

fact, the server level tracking would function more as a seed for new students than having active effects

on a student, minute to minute, supplied by the client level model.

Such capabilities are currently possible but have not been explored greatly. Some systems have been

constructed which illustrate this client level tracking of the student model. For example, in the FaCT

system experimental software (Pavlik Jr. et al., 2007), the model that controls student actions can be

configured to automatically take optimization steps every N number of student practices. After N

practices, any particular parameter can be optimized one step either up or down by a specific increment

(the step size). This is accomplished by computing the log-likelihood of model fit for the parameter

above, below and at the current value. The step size can be specified to determine how fast adaptation

occurs. If adaptation occurs too quickly with too little data, pedagogical decisions may fluctuate too

wildly.

One problem with this strategy is that often there is not enough variability in the data due to the

consistency of the pedagogical decisions. For example, the FaCT system tries to balance correctness and

spacing, and generally recommends practice at around 95% correct. Unfortunately, this means that there

is little variability in the conditions of the data collection with which to improve the model. One solution

to this is to embed small experiments in the tutored practice in order to better measure the parameters in

the individual student’s model. These embedded randomized trials might be delivered at much wider

spacing than the tutor selected items, making them more difficult. Efforts like this to create varying

conditions in the tutor data may be necessary to make sure that automated adjustment systems have some

variability in the data in order to identify the parameters being optimized as being unique from the other

parameters.

Discussion

The new approaches to authoring discussed in this chapter overlap in the problems they are trying to

solve. Firstly, there must be content that the user will interact with, whether it is digital characters,

simulated environments, or static webpages. This content is usually authored by a subject matter expert

(SME) or an instructional design expert (ISD). SimStudent, BrainTrust, and component-based authoring

all try to ease the burden of authoring content while still keeping a human “in the loop.”

Secondly, adaptive tutoring systems must have something to adapt to, usually through the modeling of

expert and learner knowledge. While this content has traditionally been authored by an SME, SimStudent

and BrainTrust speed the authoring of both these models simultaneously, because they compare student

actions to an ideal, or expert, answer. Component-based authoring can make use of diverse student

models, and a system with continuous improvement and feedback re-parameterizes the student model

making best use of the learner data collected to date.

237

Thirdly, adaptive tutoring systems must contain instruction and feedback to give to the student when

diagnosed with a deficiency in a proficiency. These items consist of hints, scenario adaptations, texts,

summaries, or other items in response to student actions. There are several efforts at authoring tools

which attempt to automate this process. SimStudent uses author demonstrations and collects feedback

from the author on the steps SimStudent performs to learn production rules that can be employed to check

student solution progress and to generate next step hints when a student is stuck. BrainTrust uses the

question-generation technology previously developed for Guru and uses concept maps to generate various

kinds of question, e.g., hints, prompts, verification, as well as direct instruction. Similar reusable

components are being developed for concept maps and question generation (Robson, Ray & Cai, 2013).

Naturally, all of the items of the ITS system must be delivered through an actual system, which is usually

developed through the programming of a simulation or conversational interaction. Both SimStudent and

BrainTrust assume specific systems, namely, they produce expert models to be used in existing model-

tracing and dialogue-based systems. To create other modules (e.g., interface and tutoring modules), other

tools (e.g., CTAT) or other system-level programming may be necessary. In contrast, component-based

authoring addresses programming more comprehensively by attempting to dynamically assemble systems

out of existing components with no additional programming.

The above discussion is summarized in Table 1. Both SimStudent and BrainTrust address the majority of

authoring needs but do not squarely address system-level programming. If SimStudent is used as a

module within CTAT, then systems-level programming support is provided through the remainder of the

CTAT suite. CTAT provides non-programmer authoring tools for interface development and algorithms

(model tracing and knowledge tracing) that provide adaptive tutoring support when given the production

rules that SimStudent automatically learns. Component-based approaches and continuous improvement,

as presented in this chapter, most directly address the authoring needs of programming and assessment,

respectively. However, each approach is quite general and could be applied to other authoring needs.

238

Table 1 Authoring roles addressed by emerging approaches discussed in this chapter.

Authoring Need Human role SimStudent BrainTrust Component-

based

Continuous-

improvement

Content SME & ISD

Assessment SME & ISD

Instruction/Feedback SME & ISD

Programming Programmer

Note. SME: Subject Matter Expert; ISD: Instructional Design Expert

As this chapter has focused on emerging areas of research, it is perhaps no surprise that these areas are

operating somewhat in their own silos, motivated by authoring problems in their own ITS traditions.

Perhaps a total integration of these approaches may not be possible, given the differences discussed in the

introduction and depicted in Figure 1. To that end, it may be preferable for these emerging areas to

continue to develop following their own needs, but also more broadly to the needs of their tutoring

paradigm, namely, model-tracing, dialogue-based, and constraint-based. If general tools can be made for

these quadrants, then in time it may be possible to assemble an integrated suite of tools that, once a

paradigm has been selected, afford the greatest degree of automation possible so that ITS learning

objectives may be authored completely, accurately, and quickly.

Finally, Figure 1 has an empty quadrant corresponding to path-oriented tutors that indirectly compare

student activities to an ideal answer. Whether existing ITS research can properly be located in this

quadrant is unclear, but there are several possibilities that may have implications for tutoring in ill-defined

domains (Fournier-Viger, Nkambou & Nguifo, 2010; Lynch et al., 2006). In particular, it may be that

tutors using case-based reasoning (CBR), such as those used for tutoring the law (Aleven, 2003), fall into

this quadrant, because they are both path-oriented and only indirectly compare student input to an expert

solution. CBR compares the current situation to previous situations (i.e., cases) and adapts solutions from

previous situations to the current problem (Leake, 1996). From this standpoint, CBR may be viewed as

representing solution paths in cases, but these paths are ultimately fragments that might be generalized or

recombined in a new situation. Comparison to an ideal answer may be indirect because comparison may

apply not only to the final solution (as in constraint-based tutoring), but also to whether the solution made

use of the same cases and in the same way. If so, then CBR tutors may be an area of research that is

currently underdeveloped and amenable to further research in automated authoring.

Recommendations and Future Research

Based on our findings, we can make several recommendations for GIFT and future ITSs. First, the four

quadrants of ITS research described in Figure 1 should continue to be developed, with an end goal that

the resulting authoring tools may ultimately form a suite of tools that could generally be applied to any

problem in their respective tutoring paradigm. As discussed above, however, these approaches are largely

building models and do not implement systems-level programming. To assemble new systems from

scratch, GIFT should also encompass component-based authoring. This implies that tools operating in the

four quadrants should output reusable components, but it further implies that these components must be

discoverable and customizable. Finally, we argue that all future ITSs should implement continuous

improvement so that the tutor can better adapt to an individual or specific population. As described in this

chapter, continuous improvement best aligns with improving of learner models based on interaction data,

but it is also conceivable to implement continuous improvement generally for content, assessment, and

instruction.

239

Very impressive performance support tools for ITS authoring already exist (Aleven et al., 2009) and the

research described in this chapter does not propose to replace these tools in the near future. Instead, we

recommend that such tools continue to incorporate improvements in automated authoring in the research

we describe, so that ITS learning objectives may be authored completely, accurately, and quickly. Indeed,

it may be the case that some tasks supported by such performance support tools, such as drag-and-drop

editors for building ITS graphical interfaces, may never be completely automated. We anticipate that the

current generation of ITS authoring tools will instead continue to be enriched by new advances in

automated authoring, which will ultimately lower the cost and increase the adoption of ITS.

References

Aleven, V. (2003). Using background knowledge in case-based legal reasoning: A computational model and an

intelligent learning environment. Artificial Intelligence, 150(1–2), 183–237. doi:10.1016/S0004-

3702(03)00105-X

Aleven, V., Mclaren, B. M., Sewall, J. & Koedinger, K. R. (2009). A new paradigm for intelligent tutoring systems:

Example-tracing tutors. International Journal of Artificial Intelligence in Education, 19(2), 105-154.

Anderson, J. R., Corbett, A. T., Koedinger, K. R. & Pelletier, R. (1995). Cognitive tutors: Lessons learned. The

Journal of the Learning Sciences, 4 (2), 167-207.

Chase, C.C., Chin, D.B., Oppezzo, M.A. & Schwartz, D.L. (2009). Teachable Agents and the Protégé Effect:

Increasing the effort towards learning. Journal of Science Education and Technology, 18(4), 334-352.

Chklovski, T. (2005). Collecting Paraphrase Corpora from Volunteer Contributors. In Proceedings of the 3rd

International Conference on Knowledge Capture (pp. 115–120). New York, NY, USA: ACM.

doi:10.1145/1088622.1088644

Cycorp. (2005). Factory. http://game.cyc.com/. Accessed: 7/23/12.

D’Mello, S. K., Hays, P., Williams, C., Cade, W., Brown, J. & Olney, A. M. (2010). Collaborative Lecturing by

Human and Computer Tutors. In Intelligent Tutoring Systems (pp. 178–187). Berlin: Springer.

Eduworks Corporation. (2014). Re-Usability Support System for eLearning (RUSSEL). from

https://github.com/adlnet/RUSSEL

Fournier-Viger, P., Nkambou, R. & Nguifo, E. M. (2010). Building Intelligent Tutoring Systems for Ill-Defined

Domains. In R. Nkambou, J. Bourdeau & R. Mizoguchi (Eds.), Advances in Intelligent Tutoring Systems

(pp. 81–101). Springer Berlin Heidelberg. Retrieved from http://link.springer.com/chapter/10.1007/978-3-

642-14363-2_5

Gagné, R. M. & Gagn , R. M. (1985). Conditions of learning and theory of instruction. New York: Holt, Rinehart

and Winston.

Gick, M.L. & Holyoak, K.J. (1983). Schema induction and analogical transfer. Cognitive Psychology, 15, 1-38.

GooruLearning. (2014). http://www.goorulearning.org. Retrieved 10/6/2014, 2014

Graesser, A. C., Chipman, P., Haynes, B. & Olney, A. M. (2005). AutoTutor: An Intelligent Tutoring System with

Mixed-Initiative Dialogue. IEEE Transactions on Education, 48(4), 612– 618.

Graesser, A. C., D’Mello, S. K., Hu, X., Cai, Z., Olney, A. & Morgan, B. (2012). AutoTutor. In P. McCarthy & C.

Boonthum-Denecke (Eds.), Applied Natural Language Processing: Identification, Investigation, and

Resolution. (pp. 169–187). Hershey, PA: IGI Global.

Graesser, A. C. & Person, N. K. (1994). Question Asking during Tutoring. American Educational Research Journal,

31, 104-137.

Graesser, A. C., Person, N. K. & Magliano, J. P. (1995). Collaborative dialogue patterns in naturalistic one-to-one

tutoring. Applied Cognitive Psychology, 9, 1-28.

Initiative, A. D. L. (2001). Sharable Content Object Reference Model (SCORM™). Advanced Distributed Learning,

http://www. adlnet. org.

Jesukiewicz, P. & Rehak, D. R. (2011). The Learning Registry: Sharing Federal Learning Resources. Paper

presented at the Interservice/Industry Training, Simulation & Education Conference, Orlando, FL.

Koedinger, K. R., Anderson, J. R., Hadley, W. H. & Mark, M. A. (1997). Intelligent tutoring goes to school in the

big city. International Journal of Artificial Intelligence in Education, 8, 30-43.

Koedinger, K.R., Brunskill, E., Baker, R.S.J.d., McLaughlin, E.A., Stamper, J. (2013). New potentials for data-

driven intelligent tutoring system development and optimization. AI Magazine, 34(3).

240

Koedinger, K.R., Corbett, A.C. & Perfetti, C. (2012). The Knowledge-Learning-Instruction (KLI) framework:

Bridging the science-practice chasm to enhance robust student learning. Cognitive Science, 36 (5), 757-798.

Landauer, T. K., McNamara, D. S., Dennis, S. E. & Kintsch, W. E. (2007). Handbook of latent semantic analysis.

Lawrence Erlbaum Associates Publishers.

Leake, D. B. (1996). Case-Based Reasoning: Experiences, Lessons and Future Directions (1st ed.). Cambridge,

MA, USA: MIT Press.

Li, N., Matsuda, N., Cohen, W. & Koedinger, K.R. (2015). Integrating representation learning and skill learning in a

human-like intelligent agent. Artificial Intelligence.

Li, N., Stampfer, E., Cohen, W. & Koedinger, K.R. (2013). General and efficient cognitive model discovery using a

simulated student. In M. Knauff, N. Sebanz, M. Pauen, I. Wachsmuth (Eds.), Proceedings of the 35th

Annual Conference of the Cognitive Science Society. (pp. 894-9) Austin, TX: Cognitive Science Society.

Lynch, C., Ashley, K., Aleven, V. & Pinkwart, N. (2006). Defining ill-defined domains; a literature survey. In

Proceedings of the Workshop on Intelligent Tutoring Systems for Ill-Defined Domains at the 8th

International Conference on Intelligent Tutoring Systems (pp. 1–10). Retrieved from

http://people.cs.pitt.edu/~collinl/Papers/Ill-DefinedProceedings.pdf#page=7

MacLellan, C.J., Koedinger, K.R., Matsuda, N. (2014) Authoring Tutors with SimStudent: An Evaluation of

Efficiency and Model Quality. Proceedings of the 12th International Conference on Intelligent Tutoring

Systems. Honolulu, HI. June 5-9, 2014.

Mangold, L. V., Beauchat, T., Long, R. & Amburn, C. (2012). An Architecture for a Soldier-Centered Learning

Environment. Paper presented at the Simulation Interoperability Workshop.

Martin, B., Mitrovic, T., Mathan, S. & Koedinger, K.R. (2011). Evaluating and improving adaptive educational

systems with learning curves. User Modeling and User-Adapted Interaction: The Journal of Personalization

Research (UMUAI), 21(3), 249-283. [2011 James Chen Annual Award for Best UMUAI Paper]

Matsuda, N., Cohen, W. W. & Koedinger, K. R. (2015). Teaching the Teacher: Tutoring SimStudent leads to more

Effective Cognitive Tutor Authoring. International Journal of Artificial Intelligence in Education, 25, 1-34.

McTear, M. F. (2002). Spoken dialogue technology: enabling the conversational user interface. ACM Computing

Surveys (CSUR), 34, 90-169.

Mitrovic, A. (2012). Fifteen years of constraint-based tutors: what we have achieved and where we are going.User

Modeling and User-Adapted Interaction, 22, 39-72.

Mitrovic, A., Suraweera, P., Martin, B., Zakharov, K., Milik, N., Holland, J. (2006). Authoring constraint-based

tutors in ASPIRE. In Ikeda, M., Ashley, K., Chan, T.-W. (eds.), Proceedings of ITS 2006. LNCS, vol.

4053, pp. 41–50.

Mitrovic, A., Martin, B., Suraweera, P., Zakharov, K., Milik, N., Holland, J., McGuigan, N. (2009). ASPIRE: an

authoring system and deployment environment for constraint-based tutors. International Journal of

Artificial Intelligence in Education, 19(2), 155–188.

Nye, B. D., Graesser, A. C. & Hu, X. (2014). AutoTutor and Family: A Review of 17 Years of Natural Language

Tutoring. International Journal of Artificial Intelligence in Education, 24(4), 427–469.

doi:10.1007/s40593-014-0029-5

Ohlsson, S. (1992). Constraint-based student modelling. International Journal of Artificial Intelligence in

Education, 3, 429-447.

Ohlsson, S. & Mitrovic, A. (2007). Fidelity and Efficiency of Knowledge Representations for Intelligent Tutoring

Systems. Technology, Instruction, Cognition and Learning (TICL), 5, 101-132.Olney, A. M., Graesser, A.

C. & Person, N. K. (2012). Question generation from concept maps. Dialogue & Discourse, 3(2), 75-99.

Olney, A. M., Cade, W. & Williams, C. (2011). Generating Concept Map Exercises from Textbooks. In Proceedings

of the Sixth Workshop on Innovative Use of NLP for Building Educational Applications (pp. 111–119).

Portland, Oregon: Association for Computational Linguistics. Retrieved from

http://www.aclweb.org/anthology/W11-1414

Olney, A. M., D’Mello, S., Person, N., Cade, W., Hays, P., Williams, C., Graesser, A. (2012). Guru: A Computer

Tutor That Models Expert Human Tutors. In S. Cerri, W. Clancey, G. Papadourakis & K. Panourgia (Eds.),

Intelligent Tutoring Systems (Vol. 7315, pp. 256–261). Springer Berlin / Heidelberg.

Olney, A. M., Person, N. K. & Graesser, A. C. (2012). Guru: Designing a Conversational Expert Intelligent Tutoring

System. In P. McCarthy, C. Boonthum-Denecke & T. Lamkin (Eds.), Cross-Disciplinary Advances in

Applied Natural Language Processing: Issues and Approaches (pp. 156–171). Hershey, PA: IGI Global.

Palinscar, A. S. & Brown, A. L. (1984). Reciprocal teaching of comprehension-fostering and comprehension-

monitoring activities. Cognition and instruction, 1(2), 117-175.

241

Pavlik Jr., P. I., Presson, N., Dozzi, G., Wu, S.-m., MacWhinney, B. & Koedinger, K. R. (2007). The FaCT (Fact

and Concept Training) System: A new tool linking cognitive science with educators. In D. McNamara & G.

Trafton (Eds.), Proceedings of the Twenty-Ninth Annual Conference of the Cognitive Science Society (pp.

1379–1384). Mahwah, NJ: Lawrence Erlbaum.

Person, N. K., Graesser, A. C., Magliano, J. P. & Kreuz, R. J. (1994). Inferring what the student knows in one-to-

one tutoring: The role of student questions and answers. Learning and Individual Differences, 6, 205–229.

Piech, C., Huang, J., Chen, Z., Chuong Do, Andrew Ng & Daphne Koller. (2013). Tuned Models of Peer

Assessment in MOOCs. In D’Mello, S. K., Calvo, R. A. & Olney, A. (Eds.), Proceedings of the 6th

International Conference on Educational Data Mining (pp. 153–160).

Raykar, V. C., Yu, S., Zhao, L. H., Valadez, G. H., Florin, C., Bogoni, L. & Moy, L. (2010). Learning From

Crowds. Journal of Machine Learning Research, 11, 1297–1322.

Ritter, S. & Koedinger, K. R. (1996). An architecture for plug-in tutoring agents. In Journal of Artificial Intelligence

in Education, 7 (3/4), 315-347. Charlottesville, VA: Association for the Advancement of Computing in

Education.

Robson, R., Ray, F. & Cai, Z. (2013). Transforming Content into Dialogue-based Intelligent Tutors. Paper presented

at the The Interservice/Industry Training, Simulation & Education Conference (I/ITSEC), Orlando, FL.

Roediger, H.L. & Butler A.C. (2011). The critical role of retrieval practice in long-term retention. Trends in

Cognitive Science 15:20–27

Rus, V., Stefanescu, D., Niraula, N. & Graesser, A. C. (2014). DeepTutor: Towards Macro- and Micro-adaptive

Conversational Intelligent Tutoring at Scale. In Proceedings of the First ACM Conference on Learning @

Scale Conference (pp. 209–210). New York, NY, USA: ACM. doi:10.1145/2556325.2567885

Stamper, J.C. & Koedinger, K.R. (2011). Human-machine student model discovery and improvement using data. In

G. Biswas, S. Bull, J. Kay & A. Mitrovic (Eds.), Proceedings of the 15th International Conference on

Artificial Intelligence in Education, pp. 353-360. Berlin: Springer.

Tian, Y. & Zhu, J. (2012). Learning from Crowds in the Presence of Schools of Thought. In Proceedings of the 18th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 226–234). New

York, NY, USA: ACM. doi:10.1145/2339530.2339571

VanLehn, K. (2006). The behavior of tutoring systems. International Journal of Artificial Intelligence in Education,

16(3), 227-265.

Veden, A. (2014). Data for Enabling Content in Adaptive Learning Systems (DECALS). from

https://github.com/adlnet/DECALS

Von Ahn, L. (2005). Human Computation (Doctoral thesis). Carnegie Mellon University.

Wang-Costello, J., Tarr, R. W., Cintron, L. M., Jiang, H. & Goldberg, B. (2013). Creating an Advanced

Pedagogical Model to Improve Intelligent Tutoring Technologies. Paper presented at the The

Interservice/Industry Training, Simulation & Education Conference (I/ITSEC).

Wylie, R., Koedinger, K. R. & Mitamura, T. (2010). Analogies, explanations, practice: Examining how task types

affect second language grammar learning. In V. Aleven, J. Kay & J. Mostow (Eds.), Proceedings of the

International Conference on Intelligent Tutoring Systems (pp. 214-223). Heidelberg, Berlin: Springer.

Zhu, X. & Simon, H. A. (1987). Learning mathematics from examples and by doing. Cognition and Instruction,

4(3), 137-166.

242

243

CHAPTER 20 Developing Conversational Multimedia

Tutorial Dialogues
Wayne Ward

1,2
 and Ron Cole

1

1
Boulder Language Technologies;

2
University of Colorado

Introduction

This chapter describes an approach to authoring intelligent tutoring systems (ITSs) used in My Science

Tutor (MyST). This virtual science tutor engages children in spoken dialogues in which they learn to

construct explanations of science phenomena presented in illustrations, animations, and interactive

simulations. Tutorials are developed through an iterative process of recording, annotating, and analyzing

logs from sessions with students, and then updating tutor models. This approach has been used to develop

over 100 tutorial dialogue sessions, of about 15 minutes each, in 8 areas of elementary school science.

Summative evaluations indicate that students are highly engaged in the tutoring sessions and achieve

learning outcomes equivalent to expert human tutors (Ward et al., 2011; 2013).

This chapter describes the process of developing conversational science tutors that use visual media and

the infrastructure supporting the development. A particular focus is the development of models for

representing and extracting the semantics that provide the basis for selecting tutor actions based on

interpretations of student answers. While initial evidence suggests that MyST tutorials can improve

students’ motivation and science learning (Ward et al., 2011; 2013), the potential of these systems to

transform learning and education is limited by the amount of effort required to develop them. A major

focus of our current research, discussed in this chapter, is to motivate and demonstrate the feasibility of an

approach to authoring conversational tutoring systems that substantially reduces the effort and data

required to develop dialogues for each new science domain.

Related Research

Research in ITSs addresses a critical need to provide teachers and students with accessible, inexpensive

and reliably effective tools for improving young learners’ interest in science, as well as their ability to

learn science and participate productively in classroom science activities. The 2009 National Assessment

of Educational Progress (NAEP 2009) reports that fewer than 2% of 4
th
, 8

th
, and 12

th
 grade students

demonstrated advanced knowledge of science, and over two-thirds of all students in these grades were

scored as not proficient in science. Analyses of NAEP scores in reading, math, and science over the past

20 years indicate that this situation is not improving, and is actually worsening. The gap between English

learners and English-only students, which is over one standard deviation lower for English learners, has

increased rather than decreased over the past 20 years.

ITSs aim to enhance learning by providing students with individualized and adaptive instruction similar

to that provided by a knowledgeable human tutor. These systems support conversational interaction with

users through either typed or spoken input with the system presenting prompts and feedback via text,

human voice, or an animated pedagogical agent (Graesser et al., 2001; D’Mello et al., 2011; Rus et al.,

2013; Graesser et al., 2014). Advances in ITSs during the past 15 years have resulted in systems that

produce learning gains equivalent to human tutoring, which is widely regarded as the most efficient and

effective form of learning. A review by Van Lehn (2011) compared learning gains with human tutoring

244

and ITSs that required students to engage in problem solving and construct explanations. When compared

to students who did not receive tutoring, the effect size of human tutoring across studies was d=0.79

whereas the effect size of tutoring systems was d=0.76. Van Lehn concluded that ITSs “are nearly as

effective as human tutoring systems.” (Van Lehn, 2011, pg. 197). A recent meta-analysis by Ma et al.

(2014) indicated that ITSs produce significant effects across a wide range of subjects at all education

levels relative to large group instruction, non-ITS computer-based instruction, or textbook or workbooks,

and no differences between human tutoring and learning using ITSs (Ma, et al., 2014).

Research in argumentation and collaborative discourse acknowledges the strong influence of the theories

of Vygotsky (1978, 1987) and Bakhtin (1975; 1986), who argue that all learning occurs in and is shaped

by the social, cultural, and linguistic contexts in which they occur. Roth (2013, 2014) provides an

excellent integration of Vygotsky’s and Bakhtin’s theories and their relevance to research on

collaborative discourse. He argues that, when considered in the context of the basic tenets of their

theories, “currently available analyses of science classroom talk do not appear to exhibit sufficient

appreciation of the fact that words, statements, and language are living phenomena, that is, they

inherently change in speaking” (Roth, 2014). Vygotsky argued that scientific vocabulary and concepts

could only be learned through deliberate instruction in an academic setting, as opposed to the more ad-

hoc manner in which vocabulary and concepts are learned in everyday conversation. Consistent with this

view, the 2007 NRC report emphasizes that scientific inquiry and discourse is a learned skill, so students

need to be involved in activities in which they learn appropriate norms and language for productive

participation in scientific discourse and argumentation (Duschl et al., 2007).

The past decade has seen a remarkable growth in publications investigating scientific discourse and

argumentation. Kuhn (2010) notes that argumentation has become widely advocated as a framework for

science education. The idea that argumentation has become both a reform movement and framework for

science education is supported by growing evidence of substantial benefits of explicit instruction and

practice on the quality of students’ argumentation and learning (Chin & Osborne, 2010; Kulatunga &

Lewis, 2013). Evidence from these studies indicates that argumentation can be improved by providing

professional development to teachers or knowledgeable students (Bricker & Bell, 2009; Bricker & Bell,

2014; deJong, 2013; Berland, 2009), explicitly teaching students the structure of good arguments, and

providing students with scaffolds during argumentation that helps them provide evidence for their own

arguments and critiquing other’s arguments (Kulatunga et al., 2013; Kulatunga and Lewis, 2013).

In the remainder of this chapter, the type of interaction used by MyST is described along with the

semantic representation used to support the interaction. The process for developing tutorials is explained

with a focus on creation and refinement of the model for extracting semantic representations from spoken

student responses. A new approach is then presented for developing more robust semantic parsers for the

domain with significantly reduced developer effort.

Discussion

The Nature of Tutorial Dialogues between Students and Marni in MyST

Since 2007, our research has focused on development of MyST, an ITS designed to improve science

learning of 3
rd

, 4
th
 and 5

th
 grade children through spoken dialogues with Marni, a virtual science tutor.

Because many elementary school children have difficulty reading at grade level, we decided to develop

tutoring systems in which students use speech to converse with a virtual tutor. Students in our study

received eight to ten weeks of classroom instruction in one of four areas of science—measurement, water,

magnetism and electricity, or variables—using the Full Option Science System (FOSS, 2014). Over the

course of each FOSS module instruction, students conducted 16 science investigations in small groups.

245

Students made written entries and drawings in science notebooks about their predictions, observations and

explanations of the science encountered in each investigation. Shortly after each investigation, students

engaged in spoken dialogues for 15 to 20 minutes with the virtual tutor Marni or with an expert human

tutor. In these dialogues, the human or virtual tutors asked open-ended questions about the science

encountered in the classroom science investigations. The tutors asked students questions about science

presented in illustrations, animations, or interactive simulations to scaffold learning and help them

construct accurate and complete explanations. Analyses of dialogues indicate that, during a dialogue of

about 15 minutes, tutors and students produced about the same amount of speech, around 5 minutes each.

The main result of the summative evaluation was that, relative to students in classrooms who did not

receive supplemental tutoring, students who were tutored by Marni and by human tutors achieved

equivalent learning gains, with moderate to strong effect sizes. Surveys indicated that over 70% of

students tutored by Marni reported that they were more excited about studying science in the future.

Details of these experiments are reported in Ward et al. (2011, 2013).

It is noteworthy that tutoring by both human and virtual tutors produced significant learning gains,

relative to students who did not receive tutoring, given that all students in the study received classroom

instruction using a highly respected inquiry-based learning program (FOSS, 2014) that is used by over 1

million K-8 students annually in the US. These results are consistent with a meta-analysis by Chi (2009),

which indicates that students whose instruction involves interactive tasks that include collaborative

discourse and argumentation learn more than students whose learning involves constructive tasks, (e.g.,

classroom investigations and written reports) or active tasks (e.g., classroom Science Investigations).

Chi’s synthesis of research indicates the critical importance of having students talk about and explain

science to optimize learning in inquiry-based programs.

When using MyST, the student’s computer shows a full screen window that contains the virtual tutor

Marni (a 3D character), a display area for presenting information and a display button that indicates the

listening status of the system. The agent’s lips and facial movements are synchronized with her speech,

which is recorded by an experienced science tutor, the voice talent whose phrasing and prosody imbues

Marni with the personality of a sensitive and supportive tutor. Spoken dialogues involve Marni asking

open-ended questions about science presented in illustrations, silent animations and interactive

simulations. Interactive simulations allow students to use a mouse to manipulate variables and observe the

effects, such as adding additional winds of wire to an electromagnet core and observing the effect on the

number of washers picked up. The pedagogical role of these media types are discussed in detail in Ward

et al. (2011). Figure 1 shows a screen shot of the student’s screen for the example interactive.

Figure 1: The student screen contains the avatar Marni, a display area, and a listening indicator.

246

A typical sequence of actions for the tutor would be to introduce a Flash animation (“Let’s look at this.”),

display the animation, and then ask a question (“What’s going on there?”). Depending on the nature of the

question and the media, the student may interact with content in the display area, watch a movie, or make

passive observations. Students wear high quality headphones with a noise-cancelling microphone. When

ready to speak, the student holds down the space bar. As the student speaks, the audio data are sent to the

speech recognition system. When the space bar is released, the word string produced by the speech

recognizer is parsed to produce a set of semantic parses. The set of parses is pruned using session context

information to a single best interpretation., The new information is added to the session context and a new

set of tutor actions is generated. The actions are executed and the system again waits for a student

response.

The focus of the MyST system is to elicit explanations of science concepts from students. Each 15 to 20

minute MyST dialogue session functions as an independent learning activity that provides, to the extent

possible, the scaffolding required to stimulate students to think, reason, and talk about science during

spoken dialogues with the virtual tutor. The goal of these multimedia dialogues is to help students

construct explanations that express their ideas. The dialogues are designed so that over the course of the

conversation with Marni, the student is able to reflect on their explanations and refine their ideas in

relation to the media they are viewing or interacting with, leading to a deeper understanding of the science

they are discussing. It is necessary to design dialogues that (1) engage students in conversations that

provide the system with the information needed to identify gaps in knowledge, misconceptions, and other

learning problems; and

(2) guide students to arrive at correct understandings and accurate explanations of the scientific processes

and principles. A related challenge is to decide when students need to be provided with specific

information (e.g., a narrated animation) in order to provide the foundation or context for further

productive dialogue. Students sometimes lack sufficient knowledge to produce satisfactory explanations,

and must therefore be presented with information that provides a supporting or integrating function for

learning, such as brief multimedia presentation that explains the key concepts the student was attempting

to explain.

MyST tutorials are characterized by two key features: the inclusion of media throughout the dialogue and

the use of open-ended questions related to the phenomena and concepts presented via the media. Follow-

on questions attempt to build on things the student said. For example, an initial classroom investigation

about magnets has students move around the classroom exploring and writing down what things do and

do not stick to their magnets. The subsequent multimedia dialogue with Marni begins with an animation

that shows a magnet being moved over a set of identifiable objects, which picks up some of the objects

but not others. Marni then says: “What’s going on here?” If the student says: “The magnet picked up

some of the objects,” Marni might say: “Tell me more about the types of objects magnets pick up.”

Each tutorial session in MyST is designed to cover a few main points (typically two to four) in a 15 to 20-

minute session with a student. The tutorial dialogue is designed to get students to articulate concepts and

be able to explain processes underlying their thinking. Tutor actions are designed to encourage students to

share what they know and help them articulate why they know what they know. For the system (Marni),

the goal of a tutorial session is to elicit responses from students that show their understanding of a

specific set of points, or more specifically, to entail a set of propositions. Marni attempts to elicit the

points by encouraging self-expression from the student. Many dialogue moves are adapted from

principles of questioning the author (QtA) (Beck & McKeown, 2006). Much use is made of open-end

questions such as “What do you think is going on here?” One of the developers of QtA, Margaret

McKeown, worked closely with our development team during development of MyST dialogues. Dr.

McKeown analyzed annotations of sessions with human tutors trained in QtA dialogue moves, and

provided feedback that were used to improve subsequent dialogues. Analysis of MyST dialogues (Ward

et al., 2011; 2013) reveals that concepts expressed by students are recognized at about 85% accuracy. The

247

system fails to recognize about 15% of the concepts correctly expressed by the student. MyST does not

tell students that they are wrong, but simply moves on to other propositions if the student expressed

understanding, or continues to discuss the current topic otherwise. This strategy provides for graceful

dialogues when concept recognition errors occur.

Semantic Representation

The MyST dialogue model is based on representing what students are saying about attributes of entities

and how entities and events in the domain are related. MyST uses the Phoenix system for natural

language processing and generating tutor moves. Phoenix represents the propositions being discussed as

semantic frames with role labels similar to other semantic parsing systems such as FrameNet (Baker et al.,

1998) and PropBank (Palmer et al., 2005), but uses role labels specific to the domain of Science. Roles

represent how entities are related to each other and to predicates (usually a verb or nominalization).

Semantic frames are used to represent role sets important for the domain. The following example of a

statement describing movement would be extracted as follows:

 Electricity flows from the negative terminal through the bulb and to the positive terminal.

o Frame: DescribeMovement

o Predicate: Move

o Theme: Electricity

o Source: Terminal.negative

o Goal: Terminal.positive

o Path: Bulb

Other examples of frames important in science discourse are the following:

 Grass is a producer.

o Frame: ClassMembership

o Member: Grass

o Class: Producer

 The bulbs are not shining because the pathway for electricity to flow has been broken.

o Frame: CausalRelation

o Result:

o Theme: Bulb

o State: Off

o Cause:

248

o Predicate: Interrupted

o Theme: Pathway

Student responses are extracted by the system into semantic frames. Tutor next moves are selected by

comparing the frames extracted from student responses to reference frames representing correct role

assignments. The following sections explain how role extraction is accomplished and how the extracted

frames are used in generating tutor moves.

Defining and Extracting Semantic Frames

The first step in developing a MyST tutorial dialogue is to define the topics to be covered. The

specification of tutorial semantics begins with creating a narrative. The tutorial narrative is a set of natural

language statements that express the concepts to be discussed in as simple a form as possible. These do

not represent the questions that the system asks, but are the set of points that the student should express.

The narrative represents what an ideal explanation from a student would look like. The narrative

statements are manually annotated to reflect the desired semantic parse. An example annotation is as

follows:

 The current flows from the minus terminal to the plus.

o Theme: [Electricity] (The current)

o Predicate: [Move] (flows)

o Source: from the [_negative] (minus terminal)

o Goal: to the [_positive] (plus)

o Which results in the extracted frame:

o Theme: Electricity

o Predicate: Move

o Source: negative

o Goal: positive

These parsed statements define the domain of the tutorial. After enumerating the concepts to be discussed,

the visuals to be used to illustrate scientific vocabulary, materials, and phenomena and are defined. A

short narrative is written and parsed for each of the media files to be used in the tutorial. The Phoenix

compiler is used to compile the annotated narratives into recursive transition networks that are used by the

parser to extract text into semantic frames.

Student responses are also parsed into the same semantic representations as the narratives. The initial

patterns are created from the narratives and have all of the roles and entities that will be discussed, but

only a few ways of expressing them. Over the course of development, the patterns must be expanded to

cover the various ways students articulate their understandings of the science concepts. In developing the

MyST system, project tutors were asked to type simulated student input. These inputs were annotated and

added to the training data for the extraction patterns. Once the initial components for a tutorial have been

249

specified, the task becomes to obtain coverage in the extraction patterns of all of the ways in which the

semantics are expressed by students. As the system is used, it logs all transactions and records student

speech. When tutorials are deployed for live use, all session data are uploaded to a server each night. The

data are processed automatically to assess system confidence in the interpretation of student responses.

Using an active learning paradigm, low confidence sessions are selected for transcription and annotation.

Once annotated, the data are added to the training set and system models (acoustic models, language

models and extraction patterns) are retrained. Periodically, data are sampled for test sets and a learning

curve is plotted for each module. All elements of this process are automatic except for transcription and

annotation.

Generating Tutor Moves

The virtual tutor has a set of resources to conduct the session dialogue; synthesized prompts, recorded

prompts, narrations, static visuals, silent animations, narrated animations, and interactive simulations. The

tutor model controls how the resources for each tutor turn are selected. Features used for move selection

include a semantic representation of the last prompt, whether the student reply was responsive to the

prompt, and a comparison between the extracted representation from student responses and the reference

representation from the narrative. These features generally express whether each target frame role (a)

hasn’t been addressed, (b) has been prompted for but not answered, (c) has been expressed incorrectly, or

(d) has been expressed correctly. Boolean expressions of features are used to select the next tutor move.

Tutor moves are sequences of the basic tutor actions: speak(play a recorded audio file), synthesize(a

specified word string), flash(execute Flash application), and play(static media file or recorded video).

Production rules in the form of Boolean expressions of features are associated with a sequence of actions

to be taken by the tutor if the rule evaluates true. Some example pattern-action rules are as follows:

last student response indicated boredom

Response == “boredom”

 Action: “synth(So, I have to be entertaining every minute? You try it some time.)”

Got it all right, give positive feedback and re-state

Origin == Reference:Origin AND Destination == Reference:Destination

 Action: “synth(Excellent observations!);

 synth(So, electricity is flowing from the negative end of the battery

 and back to the positive end of the battery)”

origin wrong

Origin != Reference:Origin

 Action: “synth(Let’s take a look at something together. Look at the flow of electricity.

 What do you notice about which end the electricity is flowing away from?)”

Templates are created for interaction types to make authoring of dialogue interactions more efficient. For

example, when discussing word definitions, set membership, and causal relations, very similar dialogue

sequences are used regardless of specific content. This is especially true of the introductory parts of each

concept, where very open-ended prompts are used. Tell types of moves introduce a concept and present a

narrated animation. Elicit type moves might make an opening statement to segue into a concept, present a

silent animation and ask “What’s going on here?” Elicitation of explanation of a causal relationship might

use a scenario using and interactive simulation. Ask “What do you think would happen if …”, then have

the student try it in the simulation and then explain their observation.” The specific predicates and entities

are different, but the interaction pattern is very similar.

250

During initial development and testing of dialogues, synthetic speech is used in the virtual tutor to allow

easy modification. The application could use synthesis in field use, but we generally choose to have

prompts recorded by a voice talent before students engage with Marni. This is a viable option since

prompts for a session are known in advance and we have an efficient procedure for recording them.

System tools generate the set of sentences to be recorded and a recording application is provided to

efficiently manage recording and verifying each prompt, as well as the accuracy of the alignment of the

speech to the movements of Marni’s lips and associating each audio file with the word string. The tools

also automatically produce a task control file where all synth(word string) actions have been replaced

with play(recorded file) actions.

Summary of Current MyST Tutorials Dialogue Development Process

The primary activities involved in the development of MyST tutorial sessions are developing Flash

media; authoring feature expressions and associated action sequences; and annotating data for extracting

semantic representations. Templates of interaction types are used to reduce the effort of creating new tutor

models. An efficient process is in place for collecting and annotating data and re-training system models.

Fifty tutorial sessions were developed in four months by a small team (one project manager, two digital

artists, and two linguistics students).

That optimistic assessment notwithstanding, substantial effort is required to develop and tune multimedia

conversational tutorials. Less expensive media can be substituted for Flash animations, but the media is so

integral to the presentation that we feel the expense justified. The other labor-intensive effort is the

annotation of extraction patterns. The next section details a proposal for reducing the data and effort

required for training the semantic extraction model.

Applying Linguistic Resources to Semantic Extraction

One of the more costly and time-consuming aspects of developing a tutorial with this model is achieving

good coverage in the extraction patterns used in parsing. The semantics of the domain are constrained, but

student responses can vary greatly in the ways they choose to express concepts and terms. An efficient

process is in place for collecting data and training the system, but the first time the system sees a construct

it has not seen before, it does not extract it correctly. It still takes time, effort, and data to get good

coverage of student responses.

The patterns are used to extract (and normalize) entities into semantic roles, and thus represent both

patterns for entity recognition and higher-level patterns assigning the entities to roles. Entity patterns

represent the set of phrases considered to be an acceptable synonym for a term. Electricity could be

expressed as electricity, energy, power, current, or electrical energy. Coverage of term synonyms from

annotated data is achieved fairly quickly and easily and can be done by most anyone familiar with the

domain. The larger problem is the patterns discriminating between possible role assignments. Not only is

there more disfluency and variability here, annotating them is a more difficult task for someone not

trained to do it.

One possibility for increasing robustness of extraction patterns and reducing data (and effort) needed to

achieve coverage for role assignment is to use output from a domain-independent semantic role labeling

(SRL) system to help with role assignment. The Proposition Bank (PropBank) provides a corpus of

sentences annotated with domain-independent semantic roles (Palmer, et al.). PropBank has been widely

used for the development of machine learning based SRL systems. Pradhan et al. (2005) used the

representation in open domain question answering and Albright et al. (2013) extended PropBank for

processing clinical narratives. The idea is not to try to use PropBank output directly to produce the

251

extracted representations, but to map PropBank SRL output onto MyST frames domain-specific entity

patterns will still need to be applied to produce the canonical extracted form, but this is a much simpler

task than role assignment and one more suited to non-linguists.

An initial investigation has been conducted to examine how well the semantic frames used in MyST can

be produced from PropBank roles. Many of the roles can be mapped directly, such as class membership.

In some cases, such as causal relations between two events, several PropBank predicates are involved in

producing the MyST frame. PropBank parses are oriented around a predicate and separate parses are

produced for each predicate. These need to be unified to produce the MyST frame. An example of a

Propbank parse that maps directly is as follows:

All metals are conductors

 PropBank MyST

 Predicate: are Frame: ClassMembership

 A1: metals Member: metals

 A2: conductors Class: conductors

And an example of one that is not so direct is:

When the switch is closed electricity flows

 PropBank MyST

Predicate: flow Frame: CausalRelation

A1: electricity Cause: SwitchState: closed

TMP: when the switch is closed Result: ElectricalFlow: on

The MyST patterns produce the SwitchState: closed and ElectricalFlow: on elements. The mapping issue

is that Propbank treats When the switch is closed as a temporal expression while the MyST frame treats it

as a pre-condition (the Cause role covers both cause and pre-condition concepts). As the number of

frames in a MyST tutorial is small, generally less than 20, rule based mapping of Propbank predicates and

roles to MyST frames seems feasible.

In MyST, many different related predicates share the same frame. Students could say electricity flows,

goes, runs, races, zooms, or circles, and the important elements are what is moving, from where, to

where, irrespective of the choice of verb. The goal is to map PropBank predicates that share similar role

sets onto a common MyST frame to provide general ways of talking about the event participants e.g., a

set of patterns for talking about roles in motion events. The following two sentences describe motion in

two very different domains, but use the same semantic frame for representing the meanings:

Electricity is flowing from the negative terminal to the positive.

Predicate: Move

Theme: Electricity

Source: from the negative terminal

Goal: to the positive

The clouds are blowing from the west to the east.

Predicate: Move

Theme: clouds

Source: from the west

Goal: to the east

252

In MyST, the recognition and clustering of predicates is done by the extraction patterns. As an example,

the predicate term Move might have synonyms, move, flow, and circle around. This gives no guidance of

what to do when a new predicate is encountered. For example, suppose a student says Electrons are

zipping around in a circle, and the system has never encountered the word zipping. The extraction

patterns do not indicate that zipping is a form of movement. A saving grace of the system is that a

predicate is not required to extract into a frame. The system produces the set of possible extracted frames

and uses context to disambiguate between competing alternatives. As long as the role assignments are not

ambiguous (as in Source and Goal) it is often able to perform the semantic frame extraction correctly.

Sometimes however, extraction patterns for roles do not cover the construction used by the student.

Incorporating PropBank parses offers the possibility to save considerable annotation effort by doing role

assignment in a domain-independent way so that extraction patterns are mostly only required to add

structure to and normalize entities. It is expected that some MyST frames might not have a useful

mapping from PropBank roles and will still require extraction patterns, but that most can be mapped from

PropBank. At the current time, there is no quantitative data to support this, only a pilot investigation.

Adapting PropBank to Domain and Genre

Even though PropBank uses a domain-independent representation, machine learning based systems

trained on it will necessarily be learning aspects of the topic and genre used in the training data. Initial

PropBank training data were sentences taken from the Wall Street Journal and the Brown Corpus, both

fluent written text. When PropBank-trained SRL systems were applied to clinical narratives in the

medical domain, both the genre of dictated notes and idiosyncratic word usage in the medical domain

were very different from the original training data, which lowered performance (Albright et al., 2013).

Parser performance was enhanced significantly by annotating a modest amount of data in the new domain

with PropBank labels.

None of the available PropBank corpora are a good match to either topic or genre for children’s

conversational speech on science. There currently is no large corpus available that is appropriate for

training PropBank parsers for spoken dialogue based science tutorials for children. Boulder Language

Technologies is beginning the work of annotating data collected in the MyST project to provide such a

resource, representing over 1000 hours of speech from over 1200 elementary school students.

Recommendations and Future Research

While most of the mechanisms in the MyST framework are similar to capabilities that are already

contained in the Generalized Intelligent Frameworks For Tutoring (GIFT), we believe that the extraction

and use of domain-specific sematic roles can provide complementary information to the current set of

features being used. The functions for annotating data, training extraction patterns, and extracting

semantic frames could easily be integrated into the GIFT framework and the features derived from them

made available as additional information within the current framework. The tools for selecting data for

new annotations to add to the training data and evaluating component performance can be used to expand

the representation as the systems evolve over time.

Boulder Language Technologies will make all of the components of the MyST system available for

research use, including the Bavieca Automatic Speech Recognition engine, Phoenix Natural Language

Processing engine, and a character animation system. Many of these components are trained from data,

and both supervised and unsupervised training can improve the models. Many projects have benefitted

from the sharing of data within a research community. An example is the Linguistic Data Consortium,

which serves as a repository and distribution center for corpora. The availability of corpora reduces the

entry barrier to new research efforts to improve the technology. When corpora are available, common

253

tasks can be defined and common evaluations conducted to accelerate progress in the field. The

availability of data tends to attract new researchers. We recommend that providing methods for sharing

data by GIFT users, including common annotation guidelines and assessment conventions, be considered.

References

Albright, D., Lanfranchi, A., Fredriksen, A., Styler, W., Warner, C., Hwang, J., Choi, J., Dligach, D., Nielsen, R.,

Martin, J., Ward, W., Palmer, M., Savova, G. (2013). Towards comprehensive syntactic and semantic

annotations of the clinical narrative. JAMIA, 20(5), 922-930.

Baker, C., Fillmore, C. & Lowe, J. (1998). The Berkeley FrameNet project. In Proceedings of the COLING-ACL,

86-90.

Bakhtin, M. (1975). The dialogic imagination. Austin, TX, University of Texas Press.

Bakhtin, M. (1986). Speech genres and other late essays. Austin, Tx, University of Texas Press.

Beck, I. & McKeown, M. (2006). Improving comprehension with Questioning the Author: A fresh and expanded

view of a powerful approac., New York: Scholastic.

Berland, L. & Reiser, B. (2009). Making sense of argumentation and explanation. Science Education(93), 26.

Bricker, L. & Bell, P. (2009). Conceptualizations of argumentation from science studies and the learning sciences

and their implications for the practices of science education. Science Education, 82, 473-498.

Bricker, L. A. & Bell, P. (2014). What comes to mind when you think of science? The perfumery!: Documenting

science-related cultural learning pathways across contexts and timescales. Journal of Research in Science

Teaching, 51(3), 260-285. doi: 10.1002/tea.21134.

Chi, M.T.H. (2009) Active-contructive-interactive: a conceptual framework for differentiating learning activities.

Topics in Cognitive Science, 1:73-105.

Chin, C. & Osborne, J. (2010). Students’ questions and discursive interaction: Their impact on argumentation during

collaborative group discussions in science. Journal of Research in Science Teaching, 47(7), 883-908. doi:

10.1002/tea.20385.

deJong, L., Zacharia (2013). Physical and virtual laboratories in science and engineering education. Science,

340(305).

Duschl, R. (2008). Science education in three-part harmony: Balancing conceptual, epistemic, and social learning

goals. Review of Research in Education, 32, 268-291.

Duschl, R., Schweingruber, H. & Shouse, A. (2007). Taking science to school: Learning and teaching science in

grades K-8: National Academy Press.

Erduran, S. & Aleixandre, M. (2008). Argumentation in science education: perspectives from classroom-based

research: Springer.

Graesser, A. C., VanLehn, K., Rosé, C. P., Jordan, P. W. & Harter, D. (2001). Intelligent tutoring systems with

conversational dialogue. AI Magazine, 22(4), 39-51.

Kelly, G., Regev, J. & Prothero, W. (2008). Analysis of lines of reasoning in written argumentation. In S. Erduran &

M. P. Jimenez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based

research. New York: Springer.

Kuhn, D. (1993). Science as argument: Implications for teaching and learning scientific thinking. Science Education,

77(3), 319-337.

Kuhn, D. (2010). Teaching and learning science as argument. Science Education, 94, 810–824.

doi:10.1002/sce.20395.

Kulatunga & Lewis. (2013). Exploration of peer leader verbal behaviors as they intervene with small groups in

college chemistry. Chemistry Education Research and Practice, 14, 576-588.

Kulatunga, U., Moog, R. S. & Lewis, J. E. (2013). Argumentation and participation patterns in general chemistry

peer-led sessions. Journal of Research in Science Teaching, 50(10), 1207-1231. doi: 10.1002/tea.21107

Lehrer, R., Schauble, L. & Lucas, D. (1998). Supporting development of the epistemology of inquiry. Cognitive

development of mental representation - theories and applications, 23, 512-529.

Lehrer, R., Schauble, L. & Petrosino, A. J. (2001). Reconsidering the role of experiment in science education. In K.

Crowley, C. Schunn & T. Okada (Eds.), Designing for science: Implications from everyday, classroom, and

professional settings (pp. 251-277). Mahwah, NJ: Erlbaum.

254

Lester, J. C., Converse, S. A., Kahler, S. E., Barlow, S. T., Stone, B. A. & Bhogal, R. S. (1997). The persona effect:

affective impact of animated pedagogical agents. Paper presented at the Proceedings of the SIGCHI

conference on Human factors in computing systems, Atlanta, Georgia.

Ma, W., Adesope, O., Nesbit, J. & Liu, Q. (2014) Intelligent tutoring systems and learning outcomes: A meta-

analysis. (2014). Journal of Educational Technology, 106, 901-918.

McNeill, K. L. (2011). Elementary students’ views of explanation, argumentation, and evidence, and their abilities

to construct arguments over the school year. Journal of Research in Science Teaching, 48(7), 793-823. doi:

10.1002/tea.20430

McNeill, K., Lizotte, D., Krajcik, J. & Marx, R. (2006). Supporting students’ construction of scientific explanations

by fading scaffolds in instructional materials. Journal of the Learning Sciences, 15(2), 153-191.

Mostow, J. & Aist, G. (2001). Evaluating tutors that listen: an overview of project LISTEN. In K. Forbus & P.

Feltovich (Eds.), Smart machines in education (pp. 169-234). MIT Press.

NAEP (2009), National and state reports in science The nations report card: National assessment of educational

progress from http://nces.ed.gov/nationsreportcard

Naylor, S., Keogh, B. & Downing, B. (2007). Argumentation and primary science. Research in Science Education,

37(17), 39.

Nussbaum, E., Sinatra, G. & Poliquin, A. (2008). Role of epistemic beliefs and scientific argumentation in science

learning. International Journal of Science Education, 30, 1977-1999.

Osborne, J., Erduran, S. & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of

Research in Science Teaching, 41(10), 994-1020.

Palmer, M., Gildea, D. & and Kingsbury, P. (2005). The proposition bank: An annotated corpus of semantic roles.

Computational Linguistics, 31(1), 71-106.

Pradhan, S., Hacioglu, K., Krugler, V., Ward, W., Martin, J., & Jurafsky, D. (2005). Support vector learning for

semantic argument classification. Machine Learning, 60(1), 11-39.

Roth, W.-M. (2013). An integrated theory of thinking and speaking that draws on Vygotsky and Bakhtin/Vološinov.

Dialogical Pedagogy, 1, 32–53.

Roth, W.-M. (2014). Science language Wanted Alive: Through the dialectical/dialogical lens of Vygotsky and the

Bakhtin circle. Journal of Research in Science Teaching, 51, 1049–1083. DOI: 10.1002/tea.21158

Sampson, V. & Clark, D. (2008). Assessment of the ways students generate arguments in science education: Current

perspectives and recommendations for future directions. Science Education, 92(3), 447-472.

Sampson, Grooms, J. & Walker, J. (2009). Argument-Driven Inquiry: A way to promote learning during laboratory

activities. The Science Teacher, 76(7), 42-47.

Schworm & Renkle. (2007). Learning argumentation skills through the use of prompts for self-explaining examples.

Journal of Educational Psychology, 99(2), 285-296.

Simon, S., Erduran, S. & Osborn, J. (2006). Learning to teach argumentation: Research and development in the

science classroom. International Journal of Science Education, 235-260.

VanLehn, K. (2011). The relative effectiveness of human tutoring, intelligent tutoring systems and other tutoring

systems. Educational Psychologist, 46(4), 197-221.

Voss, J. & Means, M. (1991). Learning to reason via instruction in argumentation. Learning and instruction, 1(337-

350).

Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA:

Harvard University Press.

Vygotsky, L.S. (1987) Thinking and Speech. In R.W. Rieber & A.S. Carton (Eds.) The collected works of L.S.

Vygotsky, Vol. 1, Problems of general psychology. (N. Minick, Trans.) (pp.39-285) New York: Plenum

Press.

Ward, W., Cole, R., Bolanos, D., Buchenroth-Martin, C., Svirsky, E., van Vuuren, S., Weston, T. & Zheng, J.

(2011), My science tutor: A conversational multi-media virtual tutor for elementary school science. ACM

Transactions on Speech and Language Processing, 7(4).

Ward, W., Cole, R., Bolaños, D., Buchenroth-Martin, C., Svirsky, E. & Weston, T. (2013), My science tutor: A

conversational multimedia virtual tutor. Journal of Educational Psychology, 105, 1115-1125.doi:

10.1037/a0031589

Wise, B., Cole, R., Van Vuuren, S., Schwartz, S., Snyder, L., Ngampatipatpong, N., Pellom, B. (2005). Learning to

read with a virtual tutor: foundations to literacy. In C. Kinzer & L. Verhoeven (Eds.), Interactive Literacy

Education, Lawrence Erlbaum, Mahwah,NJ

Zohar, A. & Nemet, F. (2002). Fostering students’ knowledge and argumentation skills through dilemmas in human

genetics. Journal of Research in Science Teaching, 39(1), 35-62. doi: 10.1002/tea.10008.

http://nces.ed.gov/nationsreportcard

255

SECTION V

INCREASING INTEROPERABILITY AND

REDUCING WORKLOAD AND

SKILL REQUIREMENTS

FOR AUTHORING

TUTORS

Robert Sottilare, Ed.

256

257

CHAPTER 21 Approaches to Reduce Workload and

Skill Requirements in the Authoring of

Intelligent Tutoring Systems
Robert A. Sottilare

US Army Research Laboratory

Introduction

The effectiveness of intelligent tutoring systems (ITSs) as an instructional tool makes them an attractive

choice for one-to-one instruction as compared to traditional classroom training (VanLehn, 2011;

VanLehn, et al., 2005; Lesgold, Lajoie, Bunzo & Eggan, 1988). Limiting factors in their adoption are

workload and skill requirements. Even for well-defined domains, the authoring process for ITSs is both

complex and time consuming. A major goal for the Generalized Intelligent Framework for Tutoring

(GIFT; Sottilare, Brawner, Goldberg & Holden, 2012; Sottilare, Holden, Goldberg & Brawner) is to

integrate tools and methods that reduce the time/cost, workload, and skill requirements to author adaptive

tutoring systems.

The ITS community has identified several goals associated with ITS authoring processes (Murray, 1999;

Murray, 2003; Sottilare and Gilbert, 2011; Sottilare, Goldberg, Brawner, and Holden, 2012; Sottilare,

2013; and Sottilare, 2015). We have organized these goals into four key categories. The chapters in this

section reinforce these goals across various authoring systems and various ITS genres. Research is needed

to discover and innovate authoring tools and methods to accomplish the following:

 decrease the effort required by the author

 decrease the knowledge required by the author

 support the organization of domain knowledge

 enable rapid evaluation of prototypes

Tools and Methods to Decrease Authoring Burden

Aleven, McLaren, Sewall, and Koedinger (2006) asserted that it takes approximately 200–300 hours of

development time to author 1 hour of adaptive instruction. Sottilare (2015) indicated that the progress of

authoring system capabilities may have reduced this burden to about 100–200 hours, but this is still far

from being practical for teachers/instructors and course managers who may need to develop new content

on a weekly or perhaps daily basis. To be agile in meeting changing demands to update domain

knowledge, the goal for authoring 1 hour of adaptive instruction should about 4 hours (threshold) with an

objective of 1 hour.

To meet this lofty goal, we have identified two supporting objectives:

 create community-based standards for interoperability

258

 create tools to automate large portions of the authoring process and remove the human author

from the process

Creating Community-Based Standards for Interoperability

By either creating or adopting existing interoperability standards for ITSs, we will increase opportunities

for reuse of essential ITS elements and drive the community’s need for authoring down, thereby reducing

the authoring burden. In previous sections of this volume, ITS genres (e.g., model tracing, agent-based,

and dialogue-based) are examples authoring tools with academic, commercial, and governmental origins.

While there are many more authoring tools, below are four toolsets with active user bases:

 Cognitive Tutor Authoring Tools (CTAT) produces cognitive modeling and example-tracing

tutors; developed by Carnegie-Mellon University.

 Authoring Software Platform for Intelligent Resources in Education (ASPIRE) Authoring

Tools produces constraint-based online tutors; developed by the University of Canterbury (New

Zealand).

 AutoTutor Script Authoring Tools (ASAT) produces dialogue-based tutors; developed by the

University of Memphis.

 Generalized Intelligent Framework for Tutoring (GIFT) produces various types of tutors;

developed by the US Army Research Laboratory (ARL).

We recommend decreasing the effort to author ITSs by establishing and documenting standards for

processes, tools, and integration of components. Features for some existing authoring tools such as those

listed above may be ready-made candidates for ITS standards. Templates for the development of domain

models and content may also reduce the effort required to author ITSs.

While we may never reach a single standard ITS, it is possible and beneficial for the community to rally

around interoperability standards for integration, modular components, and metadata. Interoperability

standards will support rapid integration of standalone training and education platforms (e.g., serious

games, virtual simulations, presentation content, and other domain knowledge) with ITSs to promote

multi-domain training platforms with tailored tutoring. Interoperability standards may also allow for

movement of modular domain knowledge from one tutoring platform to another. Metadata standards may

also allow for easier curation (search, retrieval, and archiving) of domain knowledge.

Finally, we advocate the use of web services as a standard to support integration with external

capabilities. Web service calls are data driven and therefore largely domain-independent. For example, in

recent releases of GIFT, ARL implemented calls to external AutoTutor web services. Web services

available through GIFT support AutoTutor dialogue-based tutoring including latent semantic analysis

(LSA) of text to support near-real-time analysis of learner essay responses; conversational dialogues

based on LSA assessments; interfaces to animated agents (e.g., commercial virtual humans); and various

other tutoring and delivery style mechanisms. The use of web services reduces the author’s workload by

reducing integration effort to service calls by the ITS.

Automating the Authoring Process

By understanding, modeling, and then automating authoring processes, we can lower the authoring load

and knowledge required to author ITSs. A design goal for GIFT is to be able to provide authoring tools

259

suitable for domain experts who may lack computer programming and instructional design skills. Two

emerging technologies include automated integration for serious games and ITSs and automated

authoring of expert models.

As mentioned previously, the opportunity to automate the integration of games and tutors will combine

the higher levels of engagement found in serious games with the effective instructional techniques found

in ITSs. The goal is to reduce authoring by automating the process of developing middleware to link

serious games and ITSs. Since games can be used across multiple scenarios and training domains,

providing an integrated game-based tutor will increase reuse and reduce authoring load.

A second category of emerging technologies is data-mining tools to develop an ITS expert model based

on the analysis of text-based sources (e.g., how to manuals or web content). These tools reduce time and

skill, and thereby the cost to develop domain models, an essential part of the ITS domain, without human

knowledge of the domain. The accuracy of these current data-mining tools is a limiting factor with respect

to the amount of authoring saved.

Chapter 27 (Domeshek, Jensen, and Ramachandran) discusses the concept of bootstrapping to support

automated authoring. Bootstrapping includes “incremental rule condition generalization and student

action templates created by demonstration and generalization.” An example of bootstrapping includes

SimStudent (MacLellan, Stampfer Wiese, Matsuda & Koedinger, 2015), which collect learner behaviors

and trends to support development of automated learner analytics (e.g., misconception libraries and expert

models).

Decreasing the Skill Requirements for Authoring

Today, ITSs are built by highly skilled, multidisciplinary teams, which may include computer scientists,

instructional designers, human factors psychologists, learning specialists, and domain experts. In order to

reduce the skills required by ITS authors, some of the knowledge, skills, and best practices of these

interdisciplinary team members must be represented in the authoring process by artificial intelligence

methods. Default decisions are represented in the authoring process to accommodate novices or more

experienced author preferences. For example, a novice may author a problem-based course and the

selection of problems may be random and driven by metadata representing each problem’s complexity.

During instruction this can be used by the domain model to select problems of appropriate complexity

without the author’s specification of problem order.

Another authoring tool design goal is to create artificially intelligent job aids (e.g., TurboTax) to guide the

author through the process and thereby reduce their cognitive load during authoring. For example, authors

who move from model-tracing to dialogue-based tutors might have a job aid to support their transition.

Authoring tool user interfaces must be able to recognize the level of experience in using the tool and how

long since they last used it. Decreasing levels of scaffolding by the job aid should be experienced by the

author as they become more knowledgeable.

Regardless of the approach, usability is a key to supporting efficient authoring. Understanding the

capabilities and limitations of authors is vital. In Chapter 22, Aleven, Sewall, Popescu, van Velsen, and

Demi advocate a use-driven development process consistent with human-computer interaction and user-

centered design principles. In this approach, user experiences drive development priorities. In Chapter 23,

Sinatra, Holden, Ososky, and Berkey discuss usability considerations and the effect of user roles. Chapter

24 (Gilbert and Blessing) examines user experience to describe the design of authoring tools including the

need for multiple representations of domain knowledge to align with the mental models of the author.

260

Popular approaches to reducing required knowledge for authoring are reviewed in Chapter 25 (Lane,

Core, and Goldberg). These include such as programming by demonstration, visualization tools, and what

you see is what you get (WYSIWYG) authoring. Chapter 27 (Domeshek, Jensen, and Ramachandran)

discusses user-friendly tools that allow subject matter experts or instructional designers to create complex

knowledge components.

Supporting the Organization of Domain Knowledge

While it may not be feasible to have a totally generalized set of authoring tools for all disciplines, it may

be possible to tailor authoring tool interfaces to meet the needs of specific user disciplines (e.g.,

instructional designers, course managers, researchers, and domain experts) and authoring tasks (e.g.,

domain knowledge organization, development of directed graphs for course, and assessments). Tools to

aid the user in organizing their knowledge for quick recall and application can result in large authoring

time savings. Authoring tools to support curation, which includes the search, retrieval, organization, and

storage of domain knowledge, are critical to efficient development of ITSs. The ability to add metadata

tags to knowledge components will aid in their organization and retrieval.

A significant element of domain knowledge is formed by defining objectives, measures, standards, and

assessments for each concept to be learned. Chapter 26 (Goldberg, Hoffman, and Tarr) examines

processes in GIFT to author adaptation through a data-driven approach which requires significant domain

knowledge. As tutors expand into new domains (e.g., psychomotor and social domains), the challenge

will be to organize domain knowledge for efficient authoring. Chapter 28 (Sottilare, Ososky, and Boyce)

provides insight into the development of measures and challenges to authoring in the psychomotor

domain (e.g., sports and marksmanship).

Enabling Rapid Evaluation of Prototypes

Our fourth goal is to enable rapid prototyping of adaptive tutoring systems and allow for rapid

design/evaluation cycles of prototype capabilities. Decreasing the time required to evaluate prototypes

will result in a more efficient model-test-model cycle and support more efficient authoring of new system

capabilities (Murray, 1999; Murray, 2003; Sottilare, 2015). To this end, we recommend development of a

standard testbed methodology as designed in GIFT (Sottilare, Goldberg, Brawner & Holden, 2012). The

designers of GIFT have adapted their testbed methodology from Hanks, Pollack, and Cohen (1993).

Elements, models, and methods within the learner module (e.g., transient states, cumulative states, and

enduring traits), pedagogical module (e.g., instructional strategies), domain module (e.g., instructional

tactics), and user interface (e.g., source of feedback) may be used to compare and contrast effect with

alternatives.

Challenges and Best Practices

A model of domain knowledge complexity and its significant dimensions are needed to compare and

contrast authoring tools and their performance. It is currently difficult to compare authoring systems of

different genres (e.g., dialogue-based tutors vs. cognitive tutors) based on differences and overlapping

functions within these ITS genres. It is also difficult to compare 1 hour of adaptive instruction when the

density of adaptive strategies and tactics needed varies from domain to domain. Finally, it is essential to

expand ITS domains beyond problem-centric tutors to more situated tutoring domains (e.g., scenario-

based instruction). Authoring in various task domains (cognitive, affective, psychomotor, and social) also

presents challenges in comparing the efficiency of authoring. Until a community-based standard

261

definition of domain knowledge complexity is agreed upon, we should restrict our comparisons to

authoring systems within the same genre and task domain.

In response to this need, we put forward a recommended best practice for authoring comparison to

identify domain knowledge density. We see domain knowledge density as a function of the number

learning concepts, their associated measures and assessments, and the number of problems and their

adaptations (e.g., problem steps) or in the case of situated tutors, scenario variables. Scenario variables

include components within the scenario that can change in response to learner needs (e.g., boredom may

require an increase in challenge level). Scenario density contributes to domain knowledge complexity and

all density factors should be normalized to a one hour scale. Other suggested best practices are called out

in subsequent chapters in this section which will allow us to compare authoring capabilities.

References

Aleven, V., McLaren, B., Sewall, J. & Koedinger, K. (2006). “The Cognitive Tutor Authoring Tools (CTAT):

Preliminary Evaluation of Efficiency Gains” In Proceedings of the 8th International Conference on

Intelligent Tutoring Systems, 2006, 61-70.

Hanks, S., Pollack, M.E. and Cohen, P.R. (1993). Benchmarks, Test Beds, Controlled Experimentation, and the

Design of Agent Architectures. AI Magazine, Volume 14 Number 4.

Lesgold, A.M., Lajoie, S., Bunzo, M. & Eggan, G. (1988). Sherlock: A coached practice environment for an

electronics trouble shooting job. LRDC Report. Pittsburgh, PA: University of Pittsburgh, Learning

Research and Development Center.

MacLellan, C., Stampfer Wiese, E., Matsuda, N., and Koedinger, K. (2015). SimStudent: Authoring Expert Models

by Tutoring. In R. Sottilare (Ed.) 2nd Annual GIFT Users Symposium (GIFTSym2), Pittsburgh,

Pennsylvania, 12-13 June 2014. Army Research Laboratory, Orlando, Florida. ISBN: 978-0-9893923-4-1.

Murray, T. (1999). Authoring intelligent tutoring systems: An analysis of the state of the art. International Journal of

Artificial Intelligence in Education, 10(1):98–129.

Murray, T. (2003). An Overview of Intelligent Tutoring System Authoring Tools: Updated analysis of the state of

the art. Authoring tools for advanced technology learning environments. 2003, 491-545.

Sottilare, R. and Gilbert, S. (2011). Considerations for tutoring, cognitive modeling, authoring and interaction design

in serious games. Authoring Simulation and Game-based Intelligent Tutoring workshop at the Artificial

Intelligence in Education Conference (AIED) 2011, Auckland, New Zealand, June 2011.

Sottilare, R., Brawner, K., Goldberg, B. & Holden, H. (2012). The Generalized Intelligent Framework for Tutoring

(GIFT). US Army Research Laboratory.

Sottilare, R., Goldberg, B., Brawner, K. & Holden, H. (2012). A modular framework to support the authoring and

assessment of adaptive computer-based tutoring systems (CBTS). In Proceedings of the

Interservice/Industry Training Simulation & Education Conference, Orlando, Florida, December 2012.

Sottilare, R., Holden, H., Goldberg, B. & Brawner, K. (2013). The Generalized Intelligent Framework for Tutoring

(GIFT). In Best, C., Galanis, G., Kerry, J. and Sottilare, R. (Eds.) Fundamental Issues in Defence

Simulation & Training. Ashgate Publishing.

Sottilare, R. (2015). Examining Opportunities to Reduce the Time and Skill for Authoring Adaptive Intelligent

Tutoring Systems. In R. Sottilare (Ed.) 2nd Annual GIFT Users Symposium (GIFTSym2), Pittsburgh,

Pennsylvania, 12-13 June 2014. Army Research Laboratory, Orlando, Florida. ISBN: 978-0-9893923-4-1.

VanLehn, K., Lynch, C., Schulze, K., Shapiro, J. A., Shelby, R., Taylor, L., et al., (2005). The Andes physics

tutoring system: Lessons learned. International Journal of Artificial Intelligence and Education, 15(3), 147–

204.

VanLehn, K. (2011): The Relative Effectiveness of Human Tutoring, Intelligent Tutoring Systems, and Other

Tutoring Systems, Educational Psychologist, 46:4, 197-221.

263

Chapter 22 Reflecting on Twelve Years of ITS Authoring Tools

Research with CTAT
Vincent Aleven, Jonathan Sewall, Octav Popescu, Martin van Velsen, Sandra Demi, and Brett Leber

Human-Computer Interaction Institute, Carnegie Mellon University

Introduction

In this chapter, we reflect on our 12+ years of experience developing and using the Cognitive Tutor

Authoring Tools (CTAT), by now a mature and widely used suite of ITS authoring tools. A key reason to

create ITS authoring tools is to make ITS development easier, easier to learn, and more cost-effective, so

that, ultimately, more ITSs can help more students learn. CTAT is no exception; it was created with these

goals in mind. It has gone far in meeting these goals (for a recent update, see Aleven et al., under review),

even if there is also substantial room for next steps, greater generalization, and a wider use base. Our

reflections center around generalized architectures for tutoring systems –architectures that support

relatively easy plug-and-play compatibility of ITS components or whole ITSs.

We identify eight themes that emerge from our experience with CTAT. We expect our reflections on

these themes will have relevance to a substantial range of ITS authoring tools and generalized

architectures, not just CTAT and the Generalized Intelligent Framework for Tutoring (GIFT) (Sottilare,

Brawner, Goldberg, and Holden, 2012). These themes touch on issues such as use-driven development of

authoring tools to make sure they address users’ goals and needs, the importance of describing ITSs in

terms of their tutoring behaviors, advantages of of supporting both programmer and non-programmer

options within a single ITS authoring tool suite, the versatility of solution space graphs within the process

of authoring an ITS, three aspects of interoperability that an ITS authoring tools or a generalized ITS

architecture should support, and finally, a discussion of how different classes of likely authors of ITSs in

the near future might have different goals and needs, and what this implies for tool development. Along

the way, we reflect on the degree to which CTAT could be viewed as a generalized architecture for

tutoring and how it might be generalized further. We hope our thoughts can inform useful discussion

within the field regarding ITS authoring tools and generalized ITS architectures.

A reader wanting get a quick summary might read the section “Overview of CTAT” and then the brief

summaries marked “Recommendations for GIFT:” at the send of each section. These suggestions are

meant to be relevant not just to GIFT, but to a wide range of ITS authoring tools and ITS architectures.

Overview of CTAT

CTAT is a suite of ITS authoring tools and, at the same time, a factored architecture for developing and

delivering tutors. Tutors built with CTAT provide various forms of step-level guidance for complex

problem solving activities as well as individualized task selection based on a Bayesian student model.

CTAT supports multiple ways of authoring tutors, with multiple technology options for the tutor front-

end and the same for the tutor back-end. CTAT supports deployment of tutors in a wide range of

configurations and delivery environments. To support this range of authoring and delivery options, it has

aspects of a generalized tutoring architecture, which we highlight below.

CTAT is a key component of a more encompassing infrastructure for ITS research and development,

together with two other main components, the TutorShop and DataShop (Koedinger et al., 2010). In this

infrastructure, CTAT provides tools for authoring tutor behavior as well as run-time support for tutors.

264

The TutorShop is a web-based learning management system geared specifically toward tutors. Besides

offering learning management options (e.g., reports presenting tutor data to teachers), it supports a

number of ways of deploying tutors on the Internet. DataShop is a large online repository for educational

technology data sets plus a broad suite of analysis tools, designed for use by researchers and geared

towards data-driven refinement of knowledge component models underlying tutors (Aleven & Koedinger,

2013).

CTAT supports two tutor technologies: Using CTAT, an author can create an example-tracing tutor using

non-programmer methods (Aleven, McLaren, Sewall, & Koedinger, 2009) or can build a rule-based

Cognitive Tutor either through AI programming (Aleven 2010) or using a non-programmer module called

SimStudent (Matsuda, Cohen, & Koedinger, 2005, 2015). In a nutshell, an author starts by identifying an

appropriate task domain and appropriate problem types for tutoring, carries out cognitive task analysis to

understand the concepts and skills needed for competence in this task domain as well as how students

learn them, designs and builds a problem-solving interface for the targeted problem type, and authors a

domain model for the given tutor, either in the form of generalized examples (for an example-tracing

tutors) or a rule-based cognitive model (for a Cognitive Tutor). An author can build a tutor interface using

an off-the-shelf tutor interface builder (for Flash, Java, or HTML5) combined with tutor-enabled

components that come with CTAT. Once a tutor interface is ready, an author creates and edits the domain

knowledge that the tutor will help students learn, using a variety of tools, depending on the tutor type.

Obtaining the desired tutor behavior across a range of tutor problems and solution strategies is usually an

iterative process with multiple edit-test-debug cycles. An easy way to deploy CTAT tutors is to upload

them to the TutorShop. This makes them available via the Internet, where they can be used in conjunction

with the learning management facilities of the TutorShop. Other delivery options are available as well.

Among CTAT tutors, example-tracing tutors are by far the more frequently authored tutor type.

Figure 1: Authoring an example-tracing tutor with CTAT

265

When authoring an example-tracing tutor, an author edits the tutor’s domain knowledge using a tool

called the Behavior Recorder, shown in Figure 1 (Aleven et al., 2009; Koedinger, Aleven, Heffernan,

McLaren, & Hockenberry, 2004; Koedinger, Aleven, & Heffernan, 2003). This knowledge takes the form

of generalized examples captured as behavior graphs, with multiple strategies and common errors

recorded as paths in the graph. The Behavior Recorder provides many options for creating, editing and

generalizing a behavior graph, so it supports the desired tutor behavior. It also lets an author attach hints,

error messages, and knowledge component labels. In addition it supports a variety of useful tutor-general

functions (i.e., functions shared between example-tracing tutors and Cognitive Tutors), such as cognitive

task analysis, solution space navigation, and semi-automated regression testing. These domain-general

functions are discussed further below.

Figure 2: Authoring a rule-based Cognitive Tutor with CTAT

When authoring a rule-based model for a Cognitive Tutor, the second type of tutor that CTAT supports,

an author uses tools for editing, testing, and debugging a cognitive model (Aleven 2010), as illustrated in

Figure 2 These models are written in Jess, a standard production rule language (Friedman-Hill 2003). The

tools used include an external editor (Eclipse with a plug-in for Jess editing) as well as the following

CTAT tools: the Behavior Recorder for cognitive task analysis, solution space navigation, and testing, a

working memory editor for inspecting/editing the contents of working memory, two diagnostic tools for

debugging cognitive models, the conflict tree and why not window, and a Jess Console that provides a

low-level command-line interface to the Jess interpreter. Most of these tools are specific to CTAT and are

not available in standard production role developments. A controlled evaluation study shows these tools

can substantially reduce the number of edit-test-debug cycles needed for cognitive model development

(Aleven, McLaren, Sewall, & Koedinger, 2006). SimStudent, a machine learning module integrated with

CTAT, supports a second, non-programmer, way of authoring a rule-based cognitive model for use in a

Cognitive Tutor (MacLellan, Koedinger, & Matsuda, 2014; Matsuda et al., 2005, 2015). It supports

programming-by-tutoring, in which it automatically induces rules from author-provided examples

(behavior graphs) and author feedback. In this chapter, however, we focus primarily on example-tracing

tutors.

266

A key difference between example-tracing tutors and model-tracing tutors is that example-tracing tutors

are practical only for problem types that have no more than a moderately-branching solution space
1
,

whereas rule-based cognitive tutors can handle problems even with very large solution spaces (e.g.,

Waalkens, Aleven, & Taatgen, 2013). In practice, we have found that this constraint is met often,

although not always (Aleven et al., under review). For example, model tracing may be more appropriate

for computer programming and equation solving. There can be other reasons as well to prefer a rule-based

tutor to an example-tracing tutor. With a rule-based tutor, it can be easier to create small variations of the

same tutoring behavior within a problem, as might be useful in a research study. Also, sometimes the

development team may include one or more people who are very facile with production rule writing.

It is important to point out, however, that in task domains where both approaches are applicable (i.e., no

more than a moderately-branching solution space), example-tracing tutors and Cognitive Tutors can

support the exact same tutoring behavior. If that seems a bold claim, consider that when the tutor interface

for a certain problem type is kept constant, the tutor author has no choice but to author a domain model

that captures all reasonable student strategies within the given interface, whether it be rule-based or

example-based domain model. Otherwise, the tutor may flag as incorrect certain correct student behavior,

namely, correct behavior not captured in the domain model, clearly an undesirable situation. Given a

domain model that captures the same solution paths, the same essential tutoring behaviors are supported

within the system’s “inner loop” (VanLehn 2006), namely, immediate feedback, on-demand next step

hints, error-specific feedback messages. In the outer loop, the system supports individualized task

selection through Bayesian Knowledge Tracing and Cognitive Mastery (Corbett, McLaughlin, &

Scarpinatto, 2000; Corbett & Anderson, 1995).

CTAT strengths are that it is a mature set of ITS authoring tools that support both non-programmer and

programmer options to tutor authoring. The non-programmer approach is easy to learn and has turned out

to be useful in a wide range of domains. It may be fair to say that a wider range of tutors has been built

with CTAT than with any other ITS authoring tool. It appears to make tutor authoring 4-8 times as cost-

effective (Aleven et al., 2009). CTAT’s programmer approach can be used to build tutors for task

domains in which CTAT’s non-programmer approach is infeasible. CTAT-built tutors support complex

problem solving with the full range of step-by-step guidance and problem selection options identified by

VanLehn (2006) in his thoughtful cataloging of tutor behaviors
2
. It builds on and generalizes from the

experience of developing Cognitive Tutors. CTAT has been shown to be quite general, with tutors built

for many domains covering a range of pedagogical approaches, including guided invention (Chase,

Marks, Bernett, & Aleven, under review; Roll, Aleven, & Koedinger, 2010), collaborative learning (Olsen

et al., 2014), simulation-based learning (Aleven, Sewall, McLaren, & Koedinger, 2006; Borek, McLaren,

Karabinos, & Yaron, 2009), learning from erroneous examples (McLaren et al., 2012), and game-based

learning (Forlizzi et al., 2014). Some of these systems required custom modifications of the tool, which

does not, however, undercut the usefulness of having a tool. Many of these tutors been used in classrooms

and other educational settings, as evidence of their robustness. Of these tutors, Mathtutor (Aleven,

McLaren, & Sewall, 2009) and the Genetics Tutor (Corbett, Kauffman, MacLaren, Wagner, & Jones,

2010) have seen substantial use over the years. In many studies, CTAT tutors were shown to help students

learn including the Fractions Tutor (Rau, Aleven, & Rummel, 2013, 2015; Rau, Aleven, Rummel, &

Pardos, 2014) and Lynnette (Long & Aleven, 2013, 2014; Waalkens et al., 2013), each of which been

used in an elaborate sequence of research studies. CTAT has been used primarily by researchers,

including researchers from outside of our own institution. A Google users group sometimes helps each

other on the forum – members of the CTAT staff also answer queries.

1
 Sometimes, example-tracing tutors can handle a large solution space by collapsing multiple paths into a single one,

using CTAT’s formula language to express how steps depend on other steps.

2
 There is one exception: CTAT does not support end-of-problem reflective solution review.

267

CTAT’s limitations are that it has a built-in pedagogical model for step-level problem-solving support,

with little to no support for authoring custom tutoring strategies. Even so, a number of tutors have been

developed with CTAT that support pedagogical approaches other than step-based problem solving, as

mentioned above. Further, CTAT does not support natural language interactions. So far, CTAT have been

primarily researchers; CTAT has not been used by teachers to author tutors for their students. Although

many tutors have been built, only a small number of CTAT tutors are in regular, widespread use in

schools or other educational institutions. As a final limitation, there is room for improvement, for

example, if the authoring of very simple interactive activities were simpler and CTAT offered more

options for interoperability.

Themes Regarding ITS Authoring Tools

In the remainder of this chapter, we highlight a number of key themes that emerge from the work on

CTAT that might be applicable to other ITS authoring tool projects, including GIFT.

Use-driven Development of ITS Authoring Tools

A key goal for projects that create ITS authoring tools is to create useful, usable, and efficient tools that

authors can use to create effective, efficient, and enjoyable learning experiences for students. To achieve

this goal within the CTAT project, we have consistently followed a use-driven design approach, in line

with many approaches to Human-Computer Interaction and User-Centered Design. Given that it is

difficult to know up front exactly what tool functionality will be most useful and how users will use the

tools, it is important to learn from users and to let the needs and experiences of actual tool users guide

tool development priorities. To this end, we have promoted use of CTAT from day one and worked hard

to hear about and learn from the experiences and needs of actual tool users. We then applied what we

learned as we iteratively improved and extended the tools. This approach has been exceedingly helpful,

while also being humbling at times.

The use-driven design approach requires having a base of motivated users. We have invested in building a

community of users; in part this can be achieved by making sure the tool is genuinely useful for a wide

range of users. In addition, we have worked hard to help CTAT users and potential CTAT users in all

stages of their projects, through workshops, summer schools, a website with tutor examples,

documentation and tutorials (http://ctat.pact.cs.cmu.edu), and an online user group

(https://groups.google.com/group/ctat-users), and also by having an organization that can provide

consulting, can host tutors on the Internet (e.g., in the TutorShop), and sometimes even can make custom

changes to the tools. We have oftentimes “eaten our own dog food,” meaning that as tool developers we

have used CTAT in tutor development projects such as Mathtutor, the Fractions Tutor, AdaptErrEx, the

Genetics Tutor, and a host of others (Aleven et al., 2009; Corbett et al., 2010; McLaren et al., 2012; Rau

et al., 2013; Rau et al., 2014).

We have found it to be important to take active steps to gather information from users, such as wish lists

and feedback regarding their experiences with the tools. To do so, we have frequently polled users,

closely consulted with users, and solicited feature requests when planning new CTAT releases. We

frequently asked users about their likes and dislikes in questionnaires at the end of courses or summer

schools and summer schools on ITSs that we taught. At times, we have also solicited feedback from

experienced users. Second, we have often consulted with external researchers who used the tools in their

research projects and learned from this experience. Oftentimes, these researchers got started with the tools

when they visited our summer school. Finally, when planning releases, we often solicited requests for

new features from researchers we knew were using the tools.

268

We made sure that the information we gained from users actually influenced our tool development

agenda, both when planning new releases and when implementing new features out-of-cycle, in-between

CTAT releases. For example, user requests for new tool features or tool modifications were the main way

in which we prioritized new development. This kind of principled prioritization is very important, because

we always had many more ideas for possible tool extensions than we had capacity to implement. Such is

the nature of ITS authoring tools. Another useful criterion for feature prioritization was affordability:

How often will authors use the new feature in the process of creating a tutor and how much more efficient

will it make their work?

If there is a downside to use-driven tool development, it may be that it could inadvertently lead to gearing

the tool towards the needs of certain groups of users at the expense of others, for example, groups that are

more easily accessible or are more vocal. CTAT and the TutorShop have been honed as they were used to

support ITS research in schools and other educational settings. Thus, they are somewhat geared towards

educational researchers as a target group. Possibly, working with other potential users, such as teachers,

instructors, and professional e-learning developers, may turn up additional requirements for the tool that

would make it more useful for those groups. In spite of this caveat, the use-driven tool development

approach has served CTAT well.

Recommendations for GIFT: Practice use-driven tool development by promoting tool use, learning

from user experiences, and letting user experiences be a key factor when setting development priorities.

Since different users have different needs and these needs are not always what the tool developers assume

they are, this approach may help substantially in creating authoring functionality that is well aligned with

users’ needs and supports cost-effective tutor development.

Discuss ITSs and authoring tools in terms of their tutoring behavior

In discussions about ITS authoring tools, the question often comes up, what kind of tutor can authors

build with this particular toolkit? Oftentimes, the answer is couched in terms of the underlying

technology, for example, constraint-based tutors v. example-tracing tutors v. model-tracing tutors. As a

contrasting perspective, following VanLehn (2006) we have often found it useful to focus on the behavior

of tutoring systems. VanLehn cogently argues that, although there is a bewildering variety in ITS

architectures, there is much greater regularity in the behavior of systems. In this behavior, we can discern

meaningful dimensions for comparison. For example, many ITSs can fruitfully be viewed as providing

step-level guidance as students work through challenging problem scenarios; step-level guidance can be

broken down further, as illustrated in VanLehn’s cataloguing of inner loop behaviors. This viewpoint

extends to authoring tools: It is fruitful to discuss and compare ITS authoring tools in the first place in

terms of the tutoring behaviors that can be created with these tools. VanLehn provides a foundational

taxonomy of tutoring behaviors that is helpful in this regard.

This is not to say that ITS architecture is unimportant and should not be discussed. Quite the contrary,

architecture is important, in particular in discussions about component re-use and interoperability.

Ultimately, however, architecture is a means to an end; it is about how to realize particular tutoring

behaviors in software that support effective student experiences and/or learning outcomes. Discussions

about technology or architecture can be more focused when it is clear what tutoring behaviors are

supported and whether the systems or architectures being compared support the same set of behaviors or

different sets of behaviors. Sometimes, the same behaviors can be realized with different technologies.

For example, among CTAT-using projects we know of two instances where tutors originally developed as

rule-based Cognitive Tutors were later re-implemented, without loss of tutor behavior, as example-tracing

tutors: the Mathtutor and Genetics Tutor projects, discussed above (Aleven et al., under review). At other

times, more complex behaviors require a more complex architecture (e.g., Waalkens et al., 2013).

269

Sometimes, connections between architecture and behavior are not dictated by the architecture. For

example, Cognitive Tutors typically provide instant feedback on problem-solving steps (Anderson,

Corbett, Koedinger, & Pelletier, 1995) and constraint-based tutors typically provide feedback on demand

(Mitrovic et al., 2006). It appears, however, that this difference is not dictated by their main architectural

difference, the use of a rule-based model versus a constraint-based model. It is a pedagogical choice by

their developers.

In comparisons of tutor types (e.g., Kodaganallur, Weitz, & Rosenthal, 2005; Mitrovic, Koedinger, &

Martin, 2003), for example regarding authoring efficiency, it is important to take into account differences

in tutor behaviors. Suppose it was found in a well-executed empirical study that building tutors with tool

A is more efficient that with tool B. What do we conclude? It depends on the sets of tutoring behaviors

that the respective tools support. Maybe tool A supports only simple tutors, whereas B supports many

sophisticated tutoring behaviors. Conversely, perhaps tool A is more efficient and supports a wider range

of tutoring behaviors than B.

While VanLehn’s (2006) taxonomy of tutoring behaviors is very useful, it may be time to update it with a

fine-grained set of categories. We see some further distinctions both for the inner loop (i.e., within-

problem guidance offered by the tutoring system) and the outer loop (i.e., between-problem pedagogical

decisions). For example, inner loops can differ vastly in their complexity (e.g., in whether they can

recognize alternative strategies for solving the same problem or even in whether they support multi-step

problems or only single-step problems). These distinctions are not made in VanLehn’s taxonomy, but are

likely to be useful in comparing tutors and tools and in thinking about ITS architectures (e.g., (Waalkens

et al., 2013). Also, tutors both in their inner loop and outer loop also differ substantially in the range of

student characteristics they adapt to (student knowledge growth, affect, and so forth). VanLehn’s

taxonomy is agnostic to these differences as well. A slightly more fine-grained taxonomy may be helpful

especially as the number of tools for building online instruction, including “learning by doing” or

“activities,” is likely to grow enormously in the years to come.

Recommendations for GIFT: Clarify the tutoring behaviors supported in GIFT tutors in terms of

VanLehn’s (2006) taxonomy; this clarification will make it easy to understand for ITS researcher and

developers to understand what kinds of tutors can be built with GIFT and where the strengths and

limitations are of the GIFT authoring environment. Indicate where VanLehn’s taxonomy needs to be

extended or needs to be more fine-grained, based on the experience developing GIFT and developing

tutors with GIFT. That is, clarify what features authorable within GIFT tutors are missing from

VanLehn’s (2006) taxonomy or are more naturally described at a slightly finer grain size than is currently

done in this taxonomy. A more elaborate, fine-grained taxonomy will benefit the GIFT and ITS

communities as it may help support meaningful discussion characterizing tutors and authoring tools in

terms of behavior.

Support Both Non-Programmer and Programmer Options for Authoring

The experience with CTAT provides a perspective on the value of integrating, within a single ITS

authoring tool suite, multiple authoring methods and ITS technologies – and by extension, of the value of

certain ways of making tools interoperable. As mentioned, CTAT supports both programmer and non-

programmer options to tutor authoring. Example-tracing tutors can be authored without actual coding,

through drag-and-drop interface building and programming-by-demonstration. By contrast, creating rule-

based cognitive models requires AI programming in the Jess production rule language
3
. As an additional

3
 As mentioned, with SimStudent, rule-based models can be created without programming, an approach to tutor

authoring that may well have a bright future.

270

way in which programming can be used when creating a CTAT tutor, an author can program custom

behaviors either in the tutor interface, the tutor’s domain model, or in the tools themselves. For example,

when using a Flash interface, an author could program custom behaviors in Actionscript without changing

CTAT. When building an example-tracing tutor, the author can write functions in Java or Javascript to

augment CTAT’s formula language, without changing CTAT proper. Likewise, when creating a rule-

based model, an author can write functions in the Jess language, again without altering CTAT proper.

Providing multiple tutor paradigms within a single tool suite has substantial benefits. It makes it easier for

an author, authoring team, or organization to select the option (i.e., tool and tutoring paradigm) that best

fits the requirements for a given project, without having to switch to a different tool suite. The simpler

and more efficient paradigm (e.g., example-tracing tutors) could be used for simpler tutor problems, the

more complex paradigm (e.g., Cognitive Tutors) only when the situation calls for it. Alternatively, the

simpler and more efficient paradigm could be used to create quick prototypes, say with less than complete

within-problem guidance, and the more complex technology for the full-blown tutor. Even within a given

tutor development project, a different technology could be used for different tutor units or tutor problems.

Also, in the course of a project, it may sometimes be useful to switch from one technology to the other,

for example, as the project team’s understanding of the task domain for which tutoring is provided

evolves. (Examples are discussed below.) What stays constant across these options, ideally, is not just the

tool suite but also the delivery options. To the extent that the different tutoring options share tools within

the tool suite, authors need to learn fewer tools (e.g., in CTAT, the interface builder and some of the

Behavior Recorder functionality are shared across tutor types). Similarly, to the extent that the tools have

been designed to support a similar tutor development process across tutor technologies, there is less to

learn for an author. Finally, it may be substantially easier, given a single tool suite, to create tutors with a

consistent look and feel and interaction style, even when – within the tool suite – a different technology is

used for the tutor front end or back end. The different tutor types may be consistent in other ways as well,

such as the logging format, the information they communicate to the LMS, and the underlying

implementation language (useful when authors want to modify the tool itself).

These potential advantages have been illustrated in CTAT to a degree. In practice, CTAT’s non-

programmer option (example-tracing tutors) has been far more popular than we anticipated. By now many

more example-tracing tutors have been built with CTAT than rule-based tutors (perhaps 50 times as

many). The relative popularity of example-tracing tutors may reflect the fact they are easier to learn and

more cost-effective (4-8 times more so, compared to historic estimates of tutor development (Aleven et

al., 2009). It may also reflect the fact that CTAT’s primary audience so far has been educational

researchers or researchers in the learning sciences, who often are not programmers. Finally, in many

domains, there is a substantial range of pedagogically-desirable problems with moderately branching

solution spaces – which are within the realm of example-tracing tutor development. The same

phenomenon seems to be true as well in some non-CTAT ITSs such as ASSISTMents (Heffernan &

Heffernan, 2014) and Wayang Outpost, (Arroyo et al., 2014), which have limited capacity to support

multiple solution paths within any given problem.

Some projects with CTAT illustrate the utility of having multiple tutor options within a single tool suite.

Two major ITS projects transitioned from rule-based cognitive tutor technology to example-tracing tutor

technology, both supported by CTAT, namely, Mathtutor (Aleven et al., 2009) and the Genetics Tutor

(Corbett et al., 2010). In both instances, the main reason for switching was that example-tracing tutors

can easily be made accessible over the Internet. In both instances, a large number of tutor units could be

re-implemented as example-tracing tutors while duplicating the tutor behavior, although a small number

of tutor units could not (i.e., required a rule-based model), due to having a large solution space. These two

conversion projects are the main reason for the claim above that there is a large class of pedagogically-

desirable problems that does not have a large solution space. For example, the Mathtutor problems were

created based on a principled pedagogy (Koedinger, 2002), not because they were amenable to

271

development as example-tracing tutors. In a third project, the converse happened: We originally built the

Lynnette equation-solving tutor as an example-tracing tutor, but later re-implemented it as a rule-based

Cognitive Tutor, so as to have greater flexibility in recognizing student strategies (Long & Aleven, 2014).

These three projects illustrates that one advantage of offering multiple tool options within a given tool

suite, is that it facilitates the transition from one tutor type to the other.

A key idea behind both CTAT and GIFT is to support multiple ITS technologies with associated

authoring tools within an integrated development infrastructure. It is interesting to consider how much

further that idea might be pushed within CTAT. It may well be very useful to integrate more tool/tutor

options, both at the high end and the low end of complexity of tutoring behavior. At the low end, an

author may want to create, for example, multiple choice questions, perhaps with a small amount of

adaptivity depending on student answers. CTAT does not support this simple authoring task in a simple

way. If a tool could be integrated with CTAT that makes the authoring of simple activities more cost-

effective, this tool could serve as a gentle introduction and a gentle slope towards authoring more

complex activities. Likewise, towards the high end of complexity, one could foresee integrating

conversational agents (Adamson, Dyke, Jang, & Rosé, 2014; Kumar & Rose, 2011; Rus, D’Mello, Hu, &

Graesser, 2013; VanLehn et al., 2007) and other types of ITSs, such as constraint-based tutors (Mitrovic

& Ohlsson, 1999). These higher-end options may contribute to making more effective tutors with greater

impact on student learning, within the same tool suite. Greater integration therefore is a worthy goal; it

raises interesting interoperability questions, discussed below.

Recommendations for GIFT: Continue to work on creating a generalized architecture and on

accommodating a wide spectrum of tool options. A key advantage of doing so is that GIFT have more

options to match the tool with the particular educational objectives that they are authoring for, which may

lead to greater cost-effectiveness or greater effectiveness (e.g., stronger learning outcomes by students),

or both.

Recordable and Editable Behavior Graphs as a Central Representational Tool

In CTAT, behavior graphs are a central representational tool. Behavior graphs and the associated

Behavior Recorder tool serve many useful functions within CTAT. In this section, we focus on the tutor-

general authoring functions of behavior graphs, as opposed to their role of capturing domain knowledge

in example-tracing tutors, which is specific to one tutor type. These tutor-general functions include aiding

in cognitive task analysis, planning of the development of a tutor’s domain model, recording of solution

paths for use during testing, navigation within the solution space of a tutor problem (somewhat akin to

book marking), and semi-automated testing. In CTAT, these functions have proven to be useful during the

development process of both example-tracing tutors and Cognitive Tutors, evidence that they are general

across tutor types. It seems likely that these Behavior Recorder functions could be equally useful in the

development of other tutor types and in other ITS authoring tools.

A behavior graph captures problem-specific problem-solving behavior targeted in the instruction – that is,

problem-solving behavior that the tutor will help students learn. Behavior graphs capture step-by-step

solutions to problems, where appropriate with multiple paths within any given problem
4
. They may also

capture common errors that students make, marked as such by the author. A given behavior graph is

4
 Behavior graphs do not capture pedagogical knowledge, they capture ways in which tutor problems can be solved

(i.e., problem-solving knowledge). A recent chapter by Pavlik, Brawner, Olney, and Mitrovic (2013) likens behavior

graphs to “programmed instruction.” This analogy is inaccurate in that the graphs in programmed instruction capture

pedagogical decisions but behavior graphs capture problem-solving knowledge (see also Aleven et al., under

review).

272

specific to a given problem and a given tutor interface. CTAT’s Behavior Recorder tool makes it easy to

create and edit behavior graphs. To record a graph, all an author needs to do is demonstrate the behaviors

in the interface. Behavior graphs are well-aligned with a variety of theoretical frameworks on ITSs,

including the notion that ITSs capture complex, multi-step problems solving with multiple strategies

within a given problem, Anderson et al.’s (1995) notions of making thinking visible and reducing

cognitive load by supporting step-by-step reasoning with feedback, and with VanLehn’s (2006) notion of

step-based tutoring.

With respect to the tutor-general functions of behavior graphs, first, behavior graphs are a tool for

cognitive task analysis in support of tutor design and curriculum design. A behavior graph can help a tutor

author identify strategies, common errors, and knowledge components, perhaps aided by student data
5
.

That is, after creating one or more behavior graphs, an author may consider what knowledge is involved

in each step in the given graph and which steps may involve the same knowledge components. This in

turns may help an author think about how to structure the tutor’s domain knowledge model (e.g., a rule-

based model in the case of a Cognitive Tutor) and possibly even in planning how to implement it, for

example by considering which sequence of problems should drive development or which paths in a graph

should be implemented first. Knowledge component analysis aided by behavior graphs may also help in

making decisions about curriculum and structuring problem sets, for example, decisions about the order in

which to introduce new knowledge components. A graph may even prompt re-thinking and re-designing

of a tutor interface. For example, when certain steps in a graph turn out to involve multiple knowledge

components, an author may decide to break down the step into smaller steps in the tutor interface. These

functions are not specific to any given type of tutors, because the only assumption that is made is that

mapping out the solution space of a problem is useful. Hand-drawn behavior graphs were used in the

process of developing rule-based Cognitive Tutors prior to CTAT. Behavior graphs have also long been

used as tools by cognitive scientists (e.g., (Newell & Simon, 1972)).

A second key function of behavior graphs and the Behavior Recorder is to aid testing, both the frequent

within-problem testing that happens during development as well as regression testing when a domain

model has been modified or re-structured in some way. Importantly, a behavior graph makes it easy for

an author to navigate the solution space of a given problem during the development of the tutor’s domain

model. By clicking on a state in the behavior graph, an author can advance the tutor to the given state,

which saves time during testing and debugging, compared to having to enter the steps manually in the

interface. For example, in Cognitive Tutor development, when testing the rules for step 17 in a problem,

there is no need, after each edit, to enter steps 1 through 16 by hand in the interface. The savings add up

especially if one considers that often multiple edit-test-debug cycles are needed.

In addition, after more extensive edits to a tutor’s domain model (e.g., a rule-based cognitive model), the

graph for a given problem can be used as a semi-automated test case for regression testing, as it captures

problem-solving steps that the tutor should recognize as correct. In CTAT, graphs can be used for this

purpose by issuing the CTAT command “Test Cognitive Model on All Steps.” CTAT reports on whether

the tutor is capable of recognizing as correct, all solution paths captured in the behavior graph and

recognizing as incorrect, the various errors captured (and marked as such) in the behavior graph. A useful

idea that we never came around to implementing is to support batch regression testing in CTAT, by

having the tool test a tutor’s domain model on a large collection of behavior graphs all at once.

5
 Although automated or semi-automated approaches to constructing or refining cognitive models from data are

becoming more powerful and prevalent (e.g., Aleven & Koedinger, 2013), we nonetheless continue to recommend

collecting some data early on during the process of tutor development, before log data can be collected for these

(semi-)automated approaches. These data could include for example think-aloud protocols of novices and

intermediates in the domain solving tutor problems on paper (Baker, Corbett, & Koedinger, 2007; Lovett 1998).

273

Finally, as perhaps an unexpected twist on tutor-general use of behavior graphs, example-tracing tutors,

which use behavior graphs as their main representation of domain knowledge, could be used as early

(throw-away) prototypes of other types of (more sophisticated) tutors, such as rule-based Cognitive

Tutors built with CTAT. In fact, in the early days of CTAT, when we started to create the example-

tracing technology, we originally conceived of example-tracing tutors in this manner.

In sum, behavior graphs serve many useful tutor-general functions in CTAT and could conceivably do so

in other authoring tools as well, if/when the Behavior Recorder were integrated with these tools. We offer

some thoughts on how this might be done below. More generally, behavior graphs can be viewed as

unifying different tutoring technologies, not just example-tracing tutors and Cognitive Tutors but also, for

example, constraint-based tutors (Mitrovic & Ohlsson, 1999) and ASSISTMents (Heffernan & Heffernan,

2014), since solving problems of moderate to somewhat high complexity is common to all.

Recommendations for GIFT: Integrate the Behavior Recorder so behavior graphs can aid in the

development of GIFT tutors. This integration will make the tutor-general Behavior Recorder authoring

functionality (support for cognitive task analysis, solution space navigation, testing, and early

prototyping) available for GIFT authoring, potentially making it more efficient.

Support for Interoperability through the Tool/Tutor Communication Interface

A key requirement for creating a generalized architecture for ITS research and development, such as

CTAT and GIFT, is interoperability and re-use of ITS components. By component interoperability we

mean that it is relatively easy to use different instantiations of the same functional module within the

overall architecture. Therefore, a key issue is: how can we define useful functional modules and interfaces

between these modules that allow for general plug-and-play compatibility? Such compatibility has many

advantages. For example, it would make it much easier to assemble an ITS out of components as building

blocks and would facilitate research into how best to implement or combine typical ITS modules. In this

section we focus on one particular form of interoperability that has been central in Cognitive Tutors and

has been adopted in CTAT right from the start, adherence to Ritter and Koedinger’s (1996) tool/tutor

interface. It is not a new idea but one whose proven usefulness may not be widely known.

The main idea is to concentrate tool/interface functionality on the one hand and tutor functionality on the

other in separate modules, and define a messaging protocol (or API) between these two modules (Ritter &

Koedinger, 1996). By the tool/interface Ritter and Koedinger mean what in CTAT is called the “tutor

interface” and what also has been called the “environment module” in older ITS literature, that is, the

interface or environment in which the student solves problems with guidance from the tutor. The

tool/interface is conceptualized not merely as an interface (i.e., a GUI in which to enter problem-solving

steps), but more broadly as a tool that is useful in the given task domain, capable of calculations and

inferences that are useful for practitioners, such as a spreadsheet or simulator. The pedagogical goal is

often not that students learn to do themselves what the tool does for them, but rather that they learn to use

the tool as tool or learn from applying the tool (e.g., concepts or processes in a simulator). The tutor

component is the rest of the tutoring system, with its outer loop and inner loop functionality, in

VanLehn’s (2006) terms. The tutor’s responsibility is to guide students with respect to their current

problem-solving goals, using the available tools, in a way that helps learning. In practice, it is not always

easy to draw a clear line between tool and tutor functionality; nonetheless, the separation of tool and tutor

is very useful.

The main driver behind Ritter and Koedinger’s (1996) separation was to provide tutoring within a number

of existing problem-solving environments, while re-using the existing tutoring technology, the Cognitive

Tutor, without modification. For example, they developed prototypes that provide tutoring within Excel

274

and Geometer’s Sketchpad, hooked up a simulator and argument diagramming system (Koedinger,

Suthers, & Forbus, 1999), and in a later project provided tutoring within Excel (Mathan & Koedinger,

2005). They were able to hook up the tutor backend without modification (though they needed to develop

a new cognitive model for the given task domain) and with relatively minimal changes to the problem-

solving environments. This same idea is also being pursued in other ITS authoring tool efforts, such as

xPST (Blessing, Devasani, & Gilbert, 2011).

CTAT implements and rigorously adheres to its own version of the tool/tutor interface, documented at

http://ctat.pact.cs.cmu.edu/index.php?id=tool/tutor. The tool/tutor interface has been highly useful over

the lifespan of the project. First and foremost, CTAT has long offered multiple options for the tutor

module and the tool module (i.e., the tutor back end and front end, respectively). CTAT supports

example-tracing tutors and Cognitive Tutors as tutor back end (“tutor engines” in CTAT parlance) and

Java, Flash, and HTML5/Javascript as interface technologies. Due to the tool/tutor interface, these options

are interoperable: each tutor option can be combined with each tool option. Therefore, an author can

select the interface option that best supports the intended student interactions, without being constrained

in the choice of tutor engine. Conversely, an author can select the tutor engine option that best matches

the domain, without being forced into a specific interface option. Also, having multiple interface options

helps deliver tutors on multiple platforms and has made it possible, over the years, to support the use of a

range of different off-the-shelf interface builders (DreamWeaver, Netbeans, IntelliJ, Eclipse, and Flash).

As a second main advantage, CTAT tutors have been built for a number of external problem-solving

environments, such as a thermodynamics simulator called CyclePad (Aleven et al., 2006), a chemistry

simulator called the Vlab (Borek et al., 2009), and most recently, Google sheets. A third advantage is that

adherence to the tool/tutor communication protocol has the useful side effect that it implements a logging

capability, as it is the message traffic between tool and tutor that is being logged. Finally, and perhaps

most importantly, the tool/tutor separation has helped us keep up with developments in web technologies.

Over the years, we have moved from Java (still supported), to Actionscript 2, to a new look-and-feel in

Actionscript 2, to Actionscript 3, and to HTML5/Javascript. Due to the rigorous tool/tutor separation in

the CTAT architecture, these conversions (though extraordinarily labor-intensive) were at least somewhat

manageable, as the tutor back-end was not affected.

CTAT uses Ritter and Koedinger’s tool/tutor messaging protocol with a few small extensions. For

example, we added untutored actions –student actions in the tutor interface that the tutor module needs to

know about but does not need to respond to right away, in contrast to the more typical tutored student

actions. For example, in the Fractions Tutor (Rau et al., 2013), built with CTAT, untutored actions are

used in an interactive interface component for representing fractions as circles. A student may partition a

circle into a number of equal pieces equal to the denominator. Oftentimes, this action can be untutored –

no need for the tutor to provide feedback until the student submits the fraction. However, if the student

asks for a hint before submitting the fraction, the hints can be more apropos if they can take into account

into how many pieces the circle has been divided. We are also considering broadening the tool/tutor

interface such that the state of the tool or a tool component can be communicated to the tutor. This

facility may support tutoring in dynamic environments such as games and simulations.

A limitation of the tool/tutor approach to ITS component interoperability may be that it can be fruitful to

distinguish more components within an ITS architecture than just a tool and a tutor component. For

example, it may be helpful to break down the tutor component into various subcomponents, such as a

learner model, pedagogical module, and so forth. Other possibilities may include supporting Ritter’s

notion of multiple tutor agents (Ritter, 1997), separating the inner loop and outer loop (as is done in

CTAT, see below), or standardizing the API between the student model and other tutor components. A

further limitation may be that the tool/tutor interface does not capture a number of other desirable aspects

of interoperability, such as interoperability with tutor-general authoring tools such as the Behavior

Recorder (see above) or with LMSs and platforms for e-learning or MOOCs (see below).

275

Recommendations for GIFT: Support a version of Ritter and Koedinger’s (1996) tool/tutor interface

within GIFT. Implementing the tool/tutor interface could bring the same advantages to GIFT that it has

had for CTAT, for example, the mixing and matching of a tool/interface module and a tutor engine,

assuming multiple options would be offered for each. Supporting the tool/tutor interface may also

facilitate hooking up external components, such as simulations or problem-solving environments. Further,

supporting the tool/tutor interface could make it possible to hook external tutor engines into GIFT, if they

were made to adhere to the tool/tutor protocol. Generally, these options would enhance the utility of GIFT

as a generalized ITS architecture and would be a significant step forward for ITS research and

development.

Interoperability with External Tools and Services

In this section, we consider a different from of interoperability, namely, interoperability with external

tools and services that are useful or necessary when ITSs are used in real educational settings.

Specifically, we look at interoperability with ITS logging services (namely, DataShop, Koedinger et al.,

2010) and interoperability with LMSs, MOOC platforms, and other courseware. These aspects of

interoperability have to some degree been realized in CTAT. The integration with DataShop has proven

its value many times.

First, a key form of interoperability in CTAT and many other ITSs is interoperability with tutor log

services and related analysis tools for tutor log data. Tutor log data is an invaluable resource for research

and development of tutors. For example, it can be used to gain detailed insight into a tutor’s effectiveness,

to analyze and refine a tutor’s knowledge component model (e.g., Aleven & Koedinger, 2013; Koedinger,

Stamper, McLaughlin, & Nixon, 2013), generate hints (Stamper, Eagle, Barnes, & Croy, 2013), or

support re-design of a tutor unit that results in more effective or efficient student learning (Cen,

Koedinger, & Junker, 2007; Koedinger et al., 2013). This form of data-driven refinement of ITS is well

on its way to becoming standard practice in ITS research and development. All CTAT tutors log in

DataShop format, without special measures by the author. DataShop provides a web-based data repository

plus analysis tools (learning curves, error reports, model fitting to evaluate knowledge component models,

etc.). It has also become an important source of data sets for secondary analysis, for example by

researchers in the EDM community. The log data is essentially a dump of the tool-tutor message stream

(see the previous section; see https://pslcdatashop.web.cmu.edu/dtd).

Second, it is important for ITSs to be interoperable with standard e-learning platforms, MOOC systems,

and LMSs, for example, to support automated tutoring at scale and in online courses. An easy and general

path towards such integration may be to make tutors adhere to existing e-learning interoperability

standards, such as SCORM (Sharable Content Object Reference Model, http://www.adlnet.gov/scorm/)

and LTI (Leaning Tools Interoperability, http://www.imsglobal.org/lti/). First, we have extended CTAT

so that tutors built in CTAT can be saved in SCORM 1.2 compliant form. The SCORM 1.2 format is

sufficient for embedding CTAT tutors in for example Moodle, a widely used (open-source) e-learning

platform (Rice 2011). Our students have implemented a range of prototypes of Moodle courses with

embedded CTAT tutors. Second, CTAT tutors are now LTI 1.1-compliant. We have used this form of

integration to field a simple CTAT tutor in an EdX MOOC “Data Analytics for Learning,” by Ryan

Baker, Carolyn Rose, and George Siemens (fall 2014). This pilot study demonstrates the feasibility of the

technology integration (Aleven et al., 2015). In this form of integration, in contrast to the SCORM

integration, CTAT tutors are served from the TutorShop, meaning its functionality (e.g., teacher reports

and individualized problem selection based on a learner model). The downside is that we are not taking

advantage of the MOOC’s servers’ ability to support very large numbers of learners, unless the TutorShop

is installed on these servers.

276

Additional steps are needed for tutor use in existing MOOCs and e-learning platforms to be fully robust,

scalable, and effective. For example, ITSs produce a wealth of analytics – how can we make more

learning analytics available in the LMS and its dashboard? How can we embed adaptive problem

selection in LMS? These key functions are not available in standard LMSs. Different approaches are

needed in the LTI versus the SCORM integration. One approach would be for existing LMSs or MOOC

platforms to better accommodate tutors, perhaps through plugins. A related idea is to keep the TutorShop

in the loop, as it is in our initial CTAT/EdX integration, and to make it possible for the MOOC or external

LMS to better take advantage of TutorShop functionality.

Recommendations for GIFT: (1) Support DataShop logging in GIFT, perhaps as one of multiple possible

logging options. Having GIFT tutors log in this format will make it easy to make GIFT datasets available

in DataShop to the EDM community and will make it possible to analyze GIFT data sets using the

DataShop tools (e.g., the tools for KC model analysis and refinement). (2) Make it possible to deploy

tutors in existing LMSs, perhaps through SCORM or LTI integration. This may well be an important step

in order for GIFT to be adopted in higher education. In general, the more delivery options GIFT can

support, the more widespread the tool may become.

Other Potentially Useful Forms of ITS Component Interoperability

We briefly mention two additional issues regarding interoperability that may be useful in ITS

architectures, and consider their potential costs and benefits. The first interoperability issue is inner/outer

loop separation. To recall, under VanLehn’s (2006) definitions, in ITSs the inner loop is responsible for

within-problem guidance, the outer loop is responsible for problem selection and other between-problem

pedagogical decisions. Currently, the CTAT/TutorShop architecture separates the inner loop and the outer

loop; all communication between them goes through the student model. A key question is whether and

why this separation is useful.

Before we answer this question, let us first briefly elaborate on how the inner loop, outer loop, and

student model are implemented in CTAT/TutorShop. The inner loop (also referred to as tutor engine or

tutoring service, with example tracing and model tracing as options) provides within-problem guidance,

with step-level correctness feedback, hints, and error messages. The inner loop is also responsible for

updating the student model, in line with VanLehn’s (2006) notion. The student model captures a

student’s mastery of targeted knowledge components (see e.g., Aleven & Koedinger, 2013). The inner

loop computes these mastery estimates using the Bayesian knowledge-tracing algorithm (Corbett &

Anderson, 1995). In addition, the inner loop generates a fair amount of student history information,

essentially raw data about past performance. Both the student model and the student history are stored in

the TutorShop database. The student history is used primarily for report generation in the TutorShop. The

outer loop offers various task selection options, namely, adaptive problem selection or Cognitive Mastery

(Corbett et al., 2000), fixed problem sequence, or random. The adaptive option makes use of the mastery

estimates in the student model to select problems that require unmastered knowledge components. As

mentioned, the inner loop and outer loop communicate solely through the student model. CTAT also

offers some ways in which authors can use the student model information in the inner loop to

individualize instruction, although this is a relatively new feature that has not been used in classrooms.

The main advantage of the inner/outer loop separation is that the different inner and outer loop options

can be used in mix-and-match manner, as the student model (the communication between the loops) does

not change. For the inner loop, an author can choose between example tracing and model tracing as

options. For the outer loop, the TutorShop offers a choice (for any given problem set) between adaptive

problem selection, fixed problem sequence, or random. The student model is the same, regardless of these

choices. Also, somewhat philosophically, defining the student model as the information (and exactly the

277

information) that is shared between the inner and outer loop seems right to us – if nothing else, it offers

useful clarity and modularity. We do not see any downside to the inner/outer loop separation based on our

specific experiences with the CTAT/TutorShop architecture.

A limitation of the CTAT/TutorShop architecture is that while an author can select different outer loop

options, there are no facilities for authoring new outer loop options. For example, an author may want to

implement a problem selection method based on factors other than knowledge component mastery, for

example, metacognition (Aleven, Roll, McLaren, & Koedinger, 2010), affect (D’Mello & Graesser,

2014), effort (Arroyo et al., 2014), or interest (Walkington 2013). As another example, an author may

want to apply game design principles, such as varying the challenge level based on the need to

decompress every once in a while. Also, an author may want her tutor to jump back, when appropriate, to

pre-requisite units. And so forth. Currently, new outer loop options can be created only through code

modification of the TutorShop, but there is no API documentation or easy access to relevant parts of the

code to facilitate this. Outer loop authoring is likely to lead to the requirement that the author has more

control over the content of the student model and the methods for updating (whether in the inner loop or

outer loop). Thus, in a generalized tutoring architecture, it seems important to support authoring options

for outer loop task selection, student model, and methods for updating it.

Recommendations for GIFT: Describe how the inner and outer loop are related; what information do

they share and how is this information passed back and forth? Describe inner and outer loop options that

are supported as-is by the tool suite; describe the process and tools for authoring outer loops, student

model, and student model updates. Describing the inner loop and outer loop options will make it easier

for potential authors to understand GIFT’s capabilities. It may also help ITS researchers and developers

understand to what degree the separation of inner loop and outer loop, with the student model as

communication, generalizes.

Who is the Author?

In this final section, we offer some speculative thoughts as to the degree to which different categories of

potential ITS authors might have different needs, calling for different tool features. Our thoughts on this

issue are no doubt colored by our specific experience: Although over the years we have interacted with

many different CTAT users, CTAT has been widely used primarily educational researchers.

We see four broad classes of users for ITS authoring tools. The first category of authors are researchers of

various kinds, including students, faculty, and professional researchers in areas such as education,

ITS/AIEd, other kinds of educational technology, machine learning and educational data mining, and so

forth. A second category of authors are teachers and instructors, in primary, secondary, and post-

secondary education. These users want to create tutors for use in their own courses, perhaps helped by

tech-savvy research assistants. The third category are professional e-learning developers, of which by

now a very wide variety exists, in industry, government, the military, higher education, and even in

primary and secondary education. A fourth category of authors may be volunteers who contribute their

time and acquired ITS authoring ingenuity to websites where ITSs are freely available (e.g., Assistments

(Razzaq et al., 2009), Mathtutor (Aleven et al., 2009)) and perhaps other institutions using ITSs. As

mentioned, CTAT has been used mainly by the first category of users. The ASSISTMents authoring tools

have been used mainly by the second (teachers) and to a lesser degree by the fourth (volunteers), the

Carnegie Learning tools by the third (professionals) (Blessing, Gilbert, Ourada, & Ritter, 2009). To

simplify the discussion, it may make sense to distinguish between only two classes of users, occasional

authors (categories 1, 2, and 4) versus professional authors (category 3). Let us consider the assumed

goals and needs of these two groups of ITS authors.

278

Our professional author might have a master’s degree from an educational technology program and may

have some knowledge of the research literature around ITSs as well as the use of data analytics in

education. She may have some programming experience though not a strong CS background. Professional

authors may often be driven by the goal to make their company’s e-learning product better. Although

ITSs have a proven track record in improving student learning (Ma, Adesope, Nesbit, & Liu, 2014; Pane,

Griffin, McCaffrey, & Karam, 2013; Steenbergen-Hu & Cooper, 2013, 2014; VanLehn 2011), research-

based evidence may not (yet?) be a strong factor in the market place, nor is being able to say that a

product has intelligent tutoring technology embedded in it. The main draw for professional authors may

therefore be the support for personalization and adaptivity that ITSs offer. Some professional authors may

be interested in trying to document learning gains attributable to the use of ITS technology in their

products, at least if the tool makes that very easy to do.

We might surmise further that professional authors often cover whole courses or whole curricula. When

they consider adding ITS technology to an existing course, they may have data up front that could help

them in identifying where the course is not effective and where an ITS might help strengthen it. They

likely have time to invest in learning the ins and outs of the tool. Although for all categories of users, it is

important that the initial cut at the tutors they build are very effective, professional authors may have

greater latitude than other authors to iterate on the tutors that they author with the tool, informed by

analytics obtained from the tutors. For professional authors, the ITS authoring tool may be one of a range

of tools that they use in their daily practice. They have high expectations with respect to robustness and

functionality offered, but are not scared away by having to download and install software. More than

other categories of authors, they have knowledge of instructional design and research-supported learning

principles that they can bring to bear as they design tutors. Importantly, professional authors are typically

bought in to a specific e-learning platform, whether proprietary or publicly available. Thus, the tutors they

author must be compatible with and easily deployed within this platform. They also need to have a look

and feel that is compatible with that of the company’s platform.

Occasional authors are a very diverse group. The often have the goal of making make a difference in the

education of their own students, of students in the organization in which they are volunteering, or of

students in general (e.g., by doing research on tutors). Occasional authors are driven by various specific

needs: they may have observed a particular learning hurdle within their own course that their students

have a hard time clearing. They may want to be able to spend less time grading homework for their

students and more time providing timely feedback or discussing specific challenges, informed by a clear

picture of what students are already good at and where the remaining learning hurdles are. They may want

to make sure their students do well on standardized tests. ITS analytics and reports can provide that

information (e.g., (Arroyo et al., 2014; Kelly et al., 2013; Segedy, Sulcer, & Biswas, 2010)). They may

have been tasked to address a particular learning issue on the website to which they are contributing as

volunteer. They may see a good opportunity to address an educational research question in the context of

an existing ITS or by building a new one, typically for challenging subject matter. For them, ITS

development may be a point solution to a specific educational problem, often a hard educational problem.

They may have found the tool online or heard about the tool and want to try it out.

Occasional authors want to get started with the tool really quickly, without having to invest much time in

installation and configuration. They want to have their tutors online, accessible to students, really quickly.

They are willing to watch some YouTube videos showing how best to use the tool. Some occasional

authors may even be willing to attend a week-long summer school but many others prefer to learn by

themselves, in their own time and on their own schedule. Occasional authors do not have an e-learning

platform in which to deploy their tutors. Therefore, the ITS authoring environment must provide seamless

integration between authoring and deployment.

279

Should ITS authoring tool developers try to cater to these categories of authors within a single ITS

authoring tool? In our opinion this is an important unresolved issue in the field of AIEd. It can be

difficult, within a single tool, to make authoring simple artifacts really simple while also offering the

possibility to author very complex artifacts. Generalized ITS authoring architecture, such as GIFT or

CTAT, may be a good way of approaching this challenge, as a range of tools could be plugged in.

Recommendations for GIFT: Support a range of authors. Keep on generalizing!

Conclusions

We presented eight themes that emerge from our 12+ years of experience building CTAT, using CTAT,

and assisting others as they use CTAT. CTAT has been used by over 600 authors to build a wide and

diverse range of tutors. The themes are meant to be relevant not just to CTAT and GIFT; they touch on a

range of issues that are relevant to other ITS authoring tools and ITS architectures as well.

First, in our experience, the use-driven development of authoring tools is key to ensuring that the tools

address users’ main goals and needs. This strategy entails learning from users’ experiences, being driven

by their needs when prioritizing development, providing services to help users get started with the tools,

and supporting them through education, consulting, an online discussion forum, and tutor hosting

services. Second, it is often useful to describe and compare ITS authoring tools in terms of the tutoring

behaviors that they support, following a recommendation by VanLehn (2006). For example, clarity

regarding which tutoring behaviors are supported may facilitate discussions about authoring efficiency

and interoperability. Third, supporting both programmer and non-programmer ITS authoring within a

single ITS authoring tool suite can be advantageous. It enables the ITS author to use a simpler tool to

build simpler tutors and more complex tools to build more complex tutors, while staying within the same

tool suite. Fourth, solution space graphs (or behavior graphs, as they are called in CTAT) can be used to

support a variety of authoring functions that may be useful across a range of ITS authoring tools. Fifth,

tool/tutor separation as defined by Ritter and Koedinger (1996) supports a form of ITS component

interoperability that has proven to be useful in multiple projects. It involves separating the tutor front end

(“tool”) and back end (“tutor”) with standardized communication between them. In CTAT, this separation

has multiple advantages. It makes it possible for an author to mix and match front-end and back-end

technology options and to provide tutoring within existing interfaces or simulators, after doing the

programming necessary to make them adhere to the tool/tutor messaging protocol. Further, this separation

has greatly facilitated keeping the tools up-do-date with changing web technologies. Sixth, it is useful if

an ITS authoring tool can be interoperable with existing components such as tutor log analysis services

(e.g., DataShop) and standard MOOC or e-learning platforms (e.g., EdX or Moodle). Instrumenting ITS

authoring tools so they support for DataShop logging, a general format for ITS log data makes it possible

to use the DataShop analysis tools for knowledge modeling and iterative tutor improvement, and make

tutor data sets available to the EDM community for secondary analysis. Further, making ITS authoring

tools adhere to e-learning standards such as SCORM and LTI facilitates the use of tutors in many contexts

and may help spread ITS technology. Seventh, it may be useful to explore advantages of inner loop and

outer loop, with the learner model as communication between them. Eighth, different categories of ITS

authoring tool users have different needs; specific ITS authoring tools may need to target particular

categories, although generalized architectures with pluggable tools can cater to a very broad audience.

We hope our thoughts can inform useful discussion within the field regarding ITS authoring tools and

generalized ITS architectures. Interoperability and generalized architectures may be key in making ITS

technology spread.

280

Acknowledgments

CTAT has been and continues to be a team effort. Ken Koedinger and Bruce McLaren have been

influential in shaping CTAT in addition to the co-authors. The research was funded by the National

Science Foundation, the Grable Foundation, the Institute of Education Sciences, and the Office of Naval

Research. We gratefully acknowledge their contributions.

References

Adamson, D., Dyke, G., Jang, H., & Rosé, C. P. (2014). Towards an agile approach to adapting dynamic

collaboration support to student needs. International Journal of Artificial Intelligence in Education, 24(1),

92-124. doi:10.1007/s40593-013-0012-6

Aleven, V. (2010). Rule-Based cognitive modeling for intelligent tutoring systems. In R. Nkambou, J. Bourdeau, &

R. Mizoguchi (Eds.), Studies in Computational Intelligence: Vol. 308. Advances in intelligent tutoring

systems (pp. 33-62). Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-14363-2_3

Aleven, V., & Koedinger, K. R. (2013). Knowledge component approaches to learner modeling. In R. Sottilare, A.

Graesser, X. Hu, & H. Holden (Eds.), Design recommendations for adaptive intelligent tutoring systems

(Vol. I, Learner Modeling, pp. 165-182). Orlando, FL: US Army Research Laboratory.

Aleven, V., McLaren, B. M., & Sewall, J. (2009). Scaling up programming by demonstration for intelligent tutoring

systems development: An open-access web site for middle school mathematics learning. IEEE

Transactions on Learning Technologies, 2(2), 64-78.

Aleven, V., McLaren, B. M., Sewall, J., & Koedinger, K. R. (2006). The cognitive tutor authoring tools (CTAT):

Preliminary evaluation of efficiency gains. In M. Ikeda, K. D. Ashley, & T. W. Chan (Eds.), Proceedings of

the 8th International Conference on Intelligent Tutoring Systems (ITS 2006) (pp. 61-70). Berlin,

Heidelberg: Springer-Verlag. doi:10.1007/11774303_7

Aleven, V., McLaren, B. M., Sewall, J., & Koedinger, K. R. (2009). A new paradigm for intelligent tutoring

systems: Example-Tracing tutors. International Journal of Artificial Intelligence in Education, 19(2), 105-

154.

Aleven, V., McLaren, B. M., Sewall, J., Popescu, O., Demi, S., & Koedinger, K. R. (under review). Towards

tutoring at scale: Reflections on “A new paradigm for intelligent tutoring systems: Example-Tracing

tutors”. International Journal of Artificial Intelligence in Education.

Aleven, V., Roll, I., McLaren, B. M., & Koedinger, K. R. (2010). Automated, unobtrusive, action-by-action

assessment of self-regulation during learning with an intelligent tutoring system. Educational Psychologist,

45(4), 224-233.

Aleven, V., Sewall, J., McLaren, B. M., & Koedinger, K. R. (2006). Rapid authoring of intelligent tutors for real-

world and experimental use. In Kinshuk, R. Koper, P. Kommers, P. Kirschner, D. G. Sampson, & W.

Didderen (Eds.), Proceedings of the 6th IEEE International Conference on Advanced Learning

Technologies (ICALT 2006) (pp. 847-851). Los Alamitos, CA: IEEE Computer Society.

Aleven, V., Sewall, J., Popescu, O., Xhakaj, F., Chand, D., Baker, R. S., . . . Gasevic, D. (2015). The beginning of a

beautiful friendship? Intelligent tutoring systems and MOOCs: To appear in the Proceedings of the 17th

International Conference on AI in education, AIED 2015.

Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive tutors: Lessons learned. The

Journal of the Learning Sciences, 4(2), 167-207.

Arroyo, I., Woolf, B. P., Burelson, W., Muldner, K., Rai, D., & Tai, M. (2014). A multimedia adaptive tutoring

system for mathematics that addresses cognition, metacognition and affect. International Journal of

Artificial Intelligence in Education, 24(4), 387-426. doi:10.1007/s40593-014-0023-y

Baker, R. S. J. d., Corbett, A. T., & Koedinger, K. R. (2007). The difficulty factors approach to the design of lessons

in intelligent tutor curricula. International Journal of Artificial Intelligence and Education, 17(4), 341-369.

Blessing, S., Devasani, S., & Gilbert, S. (2011). Evaluation of webxpst: A browser-based authoring tool for

problem-specific tutors. In G. Biswas, S. Bull, J. Kay, & A. Mitrovic (Eds.), Proceedings of the 15th

International Conference on Artificial Intelligence in Education (AIED 2011) (pp. 423-425). Berlin:

Springer.

Blessing, S. B., Gilbert, S. B., Ourada, S., & Ritter, S. (2009). Authoring model-tracing cognitive tutors.

International Journal of Artificial Intelligence in Education, 19(2), 189-210.

281

Borek, A., McLaren, B. M., Karabinos, M., & Yaron, D. (2009). How much assistance is helpful to students in

discovery learning? In U. Cress, V. Dimitrova, & M. Specht (Eds.), Proceedings 4th European Conference

on Technology-Enhanced Learning, EC-TEL 2009 (pp. 391-404). Berlin, Heidelberg: Springer

doi:10.1007/978-3-642-04636-0_38

Cen, H., Koedinger, K. R., & Junker, B. (2007). Is over practice necessary?-improving learning efficiency with the

cognitive tutor through educational data mining. In R. Luckin, K. R. Koedinger, & J. Greer (Eds.),

Proceedings of the 13th International Conference on Artificial Intelligence in Education (pp. 511-518).

Amsterdam: IOS Press.

Chase, C., Marks, J., Bernett, D., & Aleven, V. (under review). The design of the an exploratory learning

environment to support Invention. Submitted to the International Workshop on Intelligent Support in

Exploratory and Open-ended Learning Environments, to be held in conjunction with the 17th International

Conference on Artificial Intelligence in Education (AIED 2015).

Corbett, A., Kauffman, L., MacLaren, B., Wagner, A., & Jones, E. (2010). A cognitive tutor for genetics problem

solving: Learning gains and student modeling. Journal of Educational Computing Research, 42(2), 219-

239.

Corbett, A., McLaughlin, M., & Scarpinatto, K. C. (2000). Modeling student knowledge: Cognitive tutors in high

school and college. User Modeling and User-Adapted Interaction, 10, 81-108.

Corbett, A. T., & Anderson, J. R. (1995). Knowledge tracing: Modeling the acquisition of procedural knowledge.

User Modeling and User-Adapted Interaction, 4(4), 253-278.

D’Mello, S. K., & Graesser, A. C. (2014). Feeling, thinking, and computing with affect-aware learning. In R. A.

Calvo, S. K. D'Mello, J. Gratch, & A. Kappas (Eds.), The oxford handbook of affective computing (pp.

419-434). Oxford University Press. doi: 10.1093/oxfordhb/9780199942237.013.032.

Forlizzi, J., McLaren, B. M., Ganoe, C., McLaren, P. B., Kihumba, G., & Lister, K. (2014). Decimal point:

Designing and developing an educational game to teach decimals to middle school students. In C. Busch

(Ed.), Proceedings of the 8th European Conference on Games Based Learning: ECGBL 2014 (pp. 128-

135). Reading, UK: Academic Conferences and Publishing International.

Friedman-Hill, E. (2003). JESS in action. Greenwich, CT: Manning. doi:friedman-hill

Heffernan, N. T., & Heffernan, C. L. (2014). The ASSISTMents ecosystem: Building a platform that brings

scientists and teachers together for minimally invasive research on human learning and teaching.

International Journal of Artificial Intelligence in Education, 24(4), 470-497. doi:10.1007/s40593-014-

0024-x

Kelly, K., Heffernan, N., Heffernan, C., Goldman, S., Pellegrino, J., & Goldstein, D. S. (2013). Estimating the effect

of web-based homework. In H. C. Lane, K. Yacef, J. Mostow, & P. Pavlik (Eds.), Proceedings of the 16th

International Conference on Artificial Intelligence in Education AIED 2013 (pp. 824-827). Berlin,

Heidelberg: Springer.

Kodaganallur, V., Weitz, R., & Rosenthal, D. (2005). A comparison of model-tracing and constraint-based

intelligent tutoring paradigms. International Journal of Artificial Intelligence in Education, 15(1), 117-144.

Koedinger, K. R. (2002). Toward evidence for instructional design principles: Examples from Cognitive Tutor Math

6. In D. Mewborn, P. Sztajn, D. Y. White, H. G. Wiegel, R. L. Bryant, & K. Nooney (Eds.), Proceedings of

the 24th Annual Meeting of the North American Chapter of the International Group for the Psychology of

Mathematics Education (pp. 21-49). Columbus, OH: ERIC Clearhinghouse for Science, Mathematics, and

Environmental Education.

Koedinger, K. R., Aleven, V., Heffernan, N., McLaren, B., & Hockenberry, M. (2004). Opening the door to non-

programmers: Authoring intelligent tutor behavior by demonstration. In J. C. Lester, R. M. Vicario, & F.

Paraguaçu (Eds.), Proceedings of seventh International Conference on Intelligent Tutoring Systems, ITS

2004 (pp. 162-174). Berlin: Springer.

Koedinger, K. R., Aleven, V. A., & Heffernan, N. (2003). Toward a rapid development environment for cognitive

tutors. In U. Hoppe, F. Verdejo, & J. Kay (Eds.), Proceedings of the 11th International Conference on

Artificial Intelligence in Education (AIED 2003) (pp. 455-457). Amsterdam: IOS Press.

Koedinger, K. R., Baker, R. S. J. d., Cunningham, K., Skogsholm, A., Leber, B., & Stamper, J. (2010). A data

repository for the EDM community: The PSLC datashop. In S. Ventura, C. Romero, M. Pechenizkiy, & R.

S. J. d. Baker (Eds.), Handbook of educational data mining (pp. 43–55). Boca Raton, FL: CRC Press.

Koedinger, K. R., Stamper, J. C., McLaughlin, E. A., & Nixon, T. (2013). Using data-driven discovery of better

student models to improve student learning. In H. C. Lane, K. Yacef, J. Mostow, & P. Pavlik (Eds.),

Proceedings of the 16th International Conference on Artificial Intelligence in Education AIED 2013 (pp.

421-430). Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-39112-5_43

282

Koedinger, K. R., Suthers, D. D., & Forbus, K. D. (1999). Component-based construction of a science learning

space. International Journal of Artificial Intelligence in Education, 10(3), 292-313.

Kumar, R., & Rose, C. P. (2011). Architecture for building conversational agents that support collaborative learning.

Learning Technologies, IEEE Transactions on, 4(1), 21-34. doi:10.1109/TLT.2010.41

Long, Y., & Aleven, V. (2013). Supporting students’ self-regulated learning with an open learner model in a linear

equation tutor. In H. C. Lane, K. Yacef, J. Mostow, & P. Pavlik (Eds.), Proceedings of the 16th

International Conference on Artificial Intelligence in Education (AIED 2013) (pp. 249-258). Berlin:

Springer.

Long, Y., & Aleven, V. (2014). Gamification of joint student/system control over problem selection in a linear

equation tutor. In S. Trausan-Matu, K. E. Boyer, M. Crosby, & K. Panourgia (Eds.), Proceedings of the

12th International Conference on Intelligent Tutoring Systems, ITS 2014 (pp. 378-387). New York:

Springer. doi:10.1007/978-3-319-07221-0_47

Lovett, M. C. (1998). Cognitive task analysis in the service of intelligent tutoring system design: A case study in

statistics. In B. P. Goettle, H. M. Halff, C. L. Redfield, & V. J. Shute (Eds.), Proceedings of the 4
th

International Conference on Intelligent tutoring systems, ITS 1998 (pp. 234-243). Berlin: Springer Verlag.

Ma, W., Adesope, O. O., Nesbit, J. C., & Liu, Q. (2014). Intelligent tutoring systems and learning outcomes: A

meta-analysis. Journal of Educational Psychology, 106(4), 901. doi:10.1037/a0037123

MacLellan, C., Koedinger, K. R., & Matsuda, N. (2014). Authoring tutors with simstudent: An evaluation

of efficiency and model quality. In S. Trausan-Matu, K. E. Boyer, M. Crosby, & K. Panourgia (Eds.),

Proceedings of the 12th International Conference on Intelligent Tutoring Systems, ITS 2014 (pp. 551-560).

Berlin: Springer. doi:10.1007/978-3-319-07221-0_66

Mathan, S. A., & Koedinger, K. R. (2005). Fostering the intelligent novice: Learning from errors with metacognitive

tutoring. Educational Psychologist, 40(4), 257-265.

Matsuda, N., Cohen, W. W., & Koedinger, K. R. (2005). Applying programming by demonstration in an intelligent

authoring tool for cognitive tutors. In D. Oblinger, T. Lau, Y. Gil, & M. Bauer (Eds.), AAAI workshop on

human comprehensible machine learning (technical report WS-05-04) (pp. 1-8). Menlo Park, CA: AAAI

Association.

Matsuda, N., Cohen, W. W., & Koedinger, K. R. (2015). Teaching the teacher: Tutoring simstudent leads to more

effective cognitive tutor authoring. International Journal of Artificial Intelligence in Education, 25(1), 1-

34. doi:10.1007/s40593-014-0020-1

McLaren, B. M., Adams, D., Durkin, K., Goguadze, G., Mayer, R. E., Rittle-Johnson, B., . . . Velsen, M. V. (2012).

To err is human, to explain and correct is divine: A study of interactive erroneous examples with middle

school math students. In A. Ravenscroft, S. Lindstaedt, C. Delgado Kloos, & D. Hernández-Leo (Eds.),

21st century learning for 21st century skills: 7th European Conference of Technology Enhanced learning,

EC-TEL 2012 (pp. 222-235). Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-33263-0_18

Mitrovic, A., & Ohlsson, S. (1999). Evaluation of a constraint-based tutor for a database language. International

Journal of Artificial Intelligence in Education, 10(3-4), 238-256.

Mitrovic, A., Koedinger, K. R., & Martin, B. (2003). A comparative analysis of cognitive tutoring and constraint-

based modeling. In P. Brusilovsky, Corbett, & de Rosis (Eds.), Proceedings of the 9th International

Conference on User Modeling (UM 2003) (pp. 313-322). Springer Berlin Heidelberg. doi:10.1007/3-540-

44963-9_42

Mitrovic, A., Suraweera, P., Martin, B., Zakharov, K., Milik, N., & Holland, J. (2006). Authoring constraint-based

tutors in ASPIRE. In M. Ikeda, K. D. Ashley, & T. W. Chan (Eds.), Lecture Notes in Computer Science:

Proceedings of the 8th International Conference on Intelligent Tutoring Systems, ITS 2006 (Vol. 4053, pp.

41-50). Berlin: Springer. Retrieved from Google Scholar.

Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ: Prentice-Hall.

Olsen, J. K., Belenky, D. M., Aleven, V., Rummel, N., Sewall, J., & Ringenberg, M. (2014). Authoring tools for

collaborative intelligent tutoring system environments. In S. Trausan-Matu, K. E. Boyer, M. Crosby, & K.

Panourgia (Eds.), Proceedings of the 12th International Conference on Intelligent Tutoring Systems, ITS

2014 (pp. 523-528). Berlin: Springer. doi:10.1007/978-3-319-07221-0_66

Pane, J. F., Griffin, B. A., McCaffrey, D. F., & Karam, R. (2013). Effectiveness of cognitive tutor algebra I at scale.

Educational Evaluation and Policy Analysis, 0162373713507480. doi:10.3102/0162373713507480

Pavlik, P. I., Brawner, K., Olney, A., & Mitrovic, A. (2013). A review of student models used in intelligent tutoring

systems. In R. Sottilare, A. Graesser, X. Hu, & H. Holden (Eds.), Design recommendations for adaptive

intelligent tutoring systems (Vol. I, Learner Modeling, pp. 39-68). Orlando, FL: US Army Research

Laboratory.

283

Rau, M., Aleven, V., & Rummel, N. (2013). Interleaved practice in multi-dimensional learning tasks: Which

dimension should we interleave? Learning and Instruction, 23, 98-114. doi:learninstruc.2012.07.003

Rau, M. A., Aleven, V., & Rummel, N. (2015). Successful learning with multiple graphical representations and self-

explanation prompts. Journal of Educational Psychology, 107(1), 30-46. doi:10.1037/a0037211

Rau, M. A., Aleven, V., Rummel, N., & Pardos, Z. (2014). How should intelligent tutoring systems sequence

multiple graphical representations of fractions? A multi-methods study. International Journal of Artificial

Intelligence in Education, 24(2), 125-161.

Razzaq, L., Patvarczki, J., Almeida, S. F., Vartak, M., Feng, M., Heffernan, N. T., & Koedinger, K. R. (2009). The

assistment builder: Supporting the life cycle of tutoring system content creation. IEEE Transactions on

Learning Technologies, 2(2), 157-166. Retrieved from

http://doi.ieeecomputersociety.org/10.1109/TLT.2009.23

Rice, W. (2011). Moodle 2.0 e-learning course development: A complete guide to successful learning using Moodle.

Birmingham, UK: Packt Publishing Ltd.

Ritter, S. (1997). Communication, cooperation, and competition among multiple tutor agents. In B. du Boulay & R.

Mizoguchi (Eds.), Proceedings of the Artificial intelligence in education, AI-ED 97 (pp. 31-38).

Amsterdam: IOS Press.

Ritter, S., & Koedinger, K. R. (1996). An architecture for plug-in tutor agents. International Journal of Artificial

Intelligence in Education, 7(3-4), 315-347.

Roll, I., Aleven, V., & Koedinger, K. R. (2010). The invention lab: Using a hybrid of model tracing and constraint-

based modeling to offer intelligent support in inquiry environments. In V. Aleven, J. Kay, & J. Mostow

(Eds.), Lecture Notes in Computer Science: Proceedings of the 10th International Conference on

Intelligent Tutoring Systems, ITS 2010 (Vol. 1, pp. 115-124). Berlin: Springer.

Rus, V., D’Mello, S., Hu, X., & Graesser, A. (2013). Recent advances in conversational intelligent tutoring systems.

AI Magazine, 34(3), 42-54.

Segedy, J., Sulcer, B., & Biswas, G. (2010). Are iles ready for the classroom? Bringing teachers into the feedback

loop. In V. Aleven, J. Kay, & J. Mostow (Eds.), Proceedings, 10th International Conference on Intelligent

Tutoring Systems, ITS 2010 (Part II, pp. 405-407). Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-

13437-1_85

Sottilare, R.A., Brawner, K.W., Goldberg, B.S. & Holden, H.K. (2012). The Generalized Intelligent Framework for

Tutoring (GIFT). Orlando, FL: U.S. Army Research Laboratory – Human Research & Engineering

Directorate (ARL-HRED).

Stamper, J., Eagle, M., Barnes, T., & Croy, M. (2013). Experimental evaluation of automatic hint generation for a

logic tutor. International Journal of Artificial Intelligence in Education, 22(1-2), 3-17. doi:10.3233/JAI-

130029

Steenbergen-Hu, S., & Cooper, H. (2013). A meta-analysis of the effectiveness of intelligent tutoring systems on K–

12 students’ mathematical learning. Journal of Educational Psychology, 105(4), 970-987.

doi:10.1037/a0032447

Steenbergen-Hu, S., & Cooper, H. (2014). A meta-analysis of the effectiveness of intelligent tutoring systems on

college students’ academic learning. Journal of Educational Psychology, 106(2), 331-347.

doi:10.1037/a0034752

VanLehn, K. (2006). The behavior of tutoring systems. International Journal of Artificial Intelligence in Education,

16(3), 227-265.

VanLehn, K. (2011). The relative effectiveness of human tutoring, intelligent tutoring systems, and other tutoring

systems. Educational Psychologist, 46(4), 197-221.

VanLehn, K., Graesser, A. C., Jackson, G. T., Jordan, P., Olney, A., & Rosé, C. P. (2007). When are tutorial

dialogues more effective than reading? Cognitive Science, 31(1), 3-62. doi:10.1080/03640210709336984

Waalkens, M., Aleven, V., & Taatgen, N. (2013). Does supporting multiple student strategies lead to greater

learning and motivation? Investigating a source of complexity in the architecture of intelligent tutoring

systems. Computers & Education, 60(1), 159 - 171. doi:10.1016/j.compedu.2012.07.016

Walkington, C. A. (2013). Using adaptive learning technologies to personalize instruction to student interests: The

impact of relevant contexts on performance and learning outcomes. Journal of Educational Psychology,

105(4), 932.

284

285

CHAPTER 23 Usability Considerations and Different User Roles

in the Generalized Intelligent Framework for Tutoring
Anne M. Sinatra

1
, Heather K. Holden

2
 , Scott J. Ososky

1
 & Karissa Berkey

3

1
US Army Research Laboratory;

2
Mount Washington College,

3
Stetson University

The Challenges of Being “Generalized”

One of the most unique and challenging aspects of the design of the Generalized Intelligent Framework

for Tutoring (GIFT) can be found in its name: “Generalized.” The main goal of GIFT is to provide a

framework that allows for the creation of domain-independent intelligent tutoring systems (ITSs).

Additionally, GIFT includes functionality that can result in using it as an experimental testbed (for

experiments in many domains) or to specifically analyze the impact of changing out different intelligent

tutoring components (Sottilare, Graesser, Hu & Holden, 2013). While having these goals leads to a

system with a great amount of flexibility, it also leads to very important design challenges
6
.

User Roles in Gift

The traditional components and modules of ITSs are present within the design of GIFT; however, special

care was taken to make sure that they remain domain-independent. The domain module of GIFT is the

only one that is specific to the content that an individual is intending to teach (Sottilare, Brawner,

Goldberg & Holden, 2012). The individual who is authoring adaptive feedback can write specific rules to

link assessments of learner state to the domain. By following this design goal, GIFT can successfully be

used to create domain-independent ITSs, which allow users to bring their own content and plug it into the

system. However, while this design meets the requirement of providing a generalized system for creating

ITSs, additional design decisions should be made to guide the different functionalities and user roles that

are created by GIFT’s flexibility.

There are three main categories of individuals who interact with GIFT:

 Students

 Authors

 Researchers/analysts

In most cases, students will only encounter an exported tutor that has successfully been designed with

GIFT. Authors will work with the full version of GIFT and its authoring tools. They can design both

adaptive and non-adaptive course content using GIFT, and then ultimately export their tutors for student

use. Researchers will also work with the full version of GIFT; however, their goals may be different than

authors’ goals. There are a wide range of disciplines that may engage with research using GIFT.

Researchers may use GIFT to run psychology experiments (Sinatra, 2014), or they may be testing specific

configurations of an intelligent tutor to discover what the best learning outcome will be. Researchers in

varying disciplines may have different expectations and design requirements for studies that they wish to

use GIFT to run. While GIFT does have a number of different user interfaces, it currently does not have

ones that are dedicated to specific types of users. Part of the challenge of this generalized system is

6
 As a note to orient the reader, at the time of the writing of this chapter the latest version of GIFT was GIFT 2014-2.

286

deciding how and when to make divisions. Namely, what types of interfaces should individuals interact

with? What types of authoring tools should they have access to? How should we sub-divide groups of

authors? Should we break users down into beginner and advanced users?

Authoring Tools in Gift

An area of GIFT that has made great strides toward becoming more user-friendly is its authoring tools. In

early versions of GIFT the authoring tools were primarily a set of extensible markup language (XML)

editors that allow for creation of elements of ITSs such as course files, sensor files, and adaptive feedback

files (domain knowledge files or DKFs). While these tools have carried over to later versions of GIFT,

newer versions are also being developed. The GIFT Authoring Tool (GAT) is ultimately being developed

to be the one-stop course development tool that provides the individual access to all of the tools that they

will require while creating their intelligent tutor. The early iterations of the GAT include a new user

interface with drop-down menus, and explanations/prompts that explain the different elements that

individuals can add to their courses. Additionally, a new DKF authoring tool debuted with GIFT 2014-2.

This tool makes the complex process of creating adaptive feedback more straightforward for both new

and returning GIFT users. See Figure 1 for the original Course Authoring Tool (CAT) and Figure 2 for

the same course loaded in the GAT.

Figure 1. A course loaded in the XML editor style course authoring tool

287

Figure 2. The same course loaded in the new GAT

For future development of GIFT, it is important to start establishing the user groups that are likely to

interact with it, and how their login experiences should be different. For instance, for a student, it is

important that once a tutor is installed, they know where to click to get it to successfully run.

Additionally, it is important for an author to login to the system and be presented with an authoring tools

menu, as opposed to the student login as was present in early versions of GIFT. One place to start in

regard to determining what type and level of user groups to design for is to examine other ITS authoring

tools that exist. Many of these tools have chosen to go with what-you-see-is-what-you-get (WYSIWYG)

style authoring tools and have offered users templates for commonly used features (Brawner & Sinatra,

2014). These features allow for both advanced and beginning users to interact successfully with their

systems. Additionally, it would be advantageous for GIFT’s designers to examine established usability

principles and to try to make future changes to their interfaces consistent with usability guidelines. By

lining up the design of authoring tools and user interfaces with established usability principles the system

should become easier to use. Further, this ease of use will lead to increased adoption of the system by new

users.

Understanding Usability Principles and Designing for the User Experience

The previous section illustrated how designing a system with only functionality in mind is just one of

many critical elements in supporting users of that system. For instance, developing a complex software

application such as GIFT to provide an efficient, easy to use, and pleasurable experience is a daunting

task. Moreover, creating a positive experience for multiple user groups (i.e., students, authors,

researchers) adds additional complexity. To that end, this section takes a closer look at usability principles

and heuristics. This section also examines the role of utility and usability in support of the overall user

experience.

Consider Jordan’s (2000) three-level hierarchy of consumer needs for a product: functionality, usability,

and pleasure. The base level, functionality, declared that “a product will be useless if it does not contain

appropriate functionality; a product cannot be usable if it does not contain the functions necessary to

perform the tasks for which it is needed” (p. 5). The next level, usability, stated that “once people had

become used to having appropriate functionality, they then wanted products that were easy to use” (p. 6).

Pleasure is the highest level in Jordan’s hierarchy, which declared that “having become used to usable

products, it seems that inevitable that more people will soon want something more…products that bring

not only functional benefits, but also emotional ones” (p. 6).

288

As described above, GIFT provides the functionality required to create an adaptive course. Therefore,

GIFT has utility for that purpose. Sharp and colleagues (2007) described utility as “the extent to which the

product provides the right kind of functionality so that users can do what they need or want to do” (p.22).

That definition closely aligns with Jordan’s (2000) first level of functionality in the hierarchy of consumer

need. Utility is an important, complementary attribute to usability. Thus, software that is usable, and

allows the user to achieve their desired goals might be described as useful (Nielsen, 2012).

Current development efforts in GIFT include improving the usability of the system for our target user

groups. By comparison, usability is “the extent to which a product can be used by specified users to

achieve specified goals with effectiveness, efficiency, and satisfaction in a specified context of use” (ISO

9241-11; Jordan 1998). Similarly, Nielsen (2012) operationalized usability as methods for “improving

ease-of-use during the design process.” Nielsen (2012) further characterized usability by the following

five components:

Learnability: How easy is it for users to accomplish basic tasks the first time they encounter the

design?

Efficiency: Once users have learned the design, how quickly can they perform tasks?

Memorability: When users return to the design after a period of not using it, how easily can they

reestablish proficiency?

Errors: How many errors do users make, how severe are these errors, and how easily can they

recover from the errors?

Satisfaction: How pleasant is it to use the design?

These attributes can be measured through objective and subjective data in order to discover problems

improve the overall usefulness of a product or system. With respect to GIFT, improving upon the

usability of the current system by reducing the time, skill, and effort required to create and manage

adaptive course content should contribute to a positive user experience with the system.

User experience, then, relates to how a user feels about the overall interaction with the target system. User

experience is described as “a person’s perceptions and responses that result from the use or anticipated

use of a product, system, or service” (ISO 9241-210). User experience links the two highest levels in

Jordan’s (2000) hierarchy (usability and pleasure) and indicates users’ responses to interaction with a

particular system. These responses are complicated in nature as they are a combination of (a) users’

individual perceptions of the system in terms of their attitudes, motivations, and individual needs; (b)

characteristics of the system, such as purpose, functionality, and usability; and (c) contextual

dependencies in terms of task and environment situations (Norman, 2002). User experience goals are

more subjective in nature and can include elements evaluating the degree to which as user perceives the

technology as satisfying, enjoyable, engaging, motivating, aesthetically pleasing, cognitively stimulating,

supportive of creativity, etc. (Sharp et al., 2007). Negative perceptions of frustration, annoyance, and

boredom exhibited by a technology are also metrics that can be used to capture user experience.

Design Principles

Creating a positive user experience for the different types of GIFT users outlined in this chapter requires,

in part, careful consideration of design for usability, aesthetics, and symbolism. Here, principles are

highlighted that help guide and inform those design goals. Don Norman, an academic in the fields of

cognitive science and design and usability engineering, identified the first set of design principles for

289

interaction design. Don Norman’s “Principles of Design” include visibility; feedback; constraints;

mapping consistency; and affordance (Norman, 2002).

Visibility

The visibility principle is based on the notion that usability and learnability are enhanced when the user

can readily see available options and commands. Most options and commands, especially key functions,

should not be hidden, but should be visible and placed in a logical order. Sometimes complex systems,

such as GIFT, may have too many functions to visually represent all of them at once. One suggestion for

complex systems is to consider using drop-down/pull-down menus for functions that are not always

needed. The function will be out of sight, but will easily be available as needed. When considering the

different user roles of GIFT, all visible options and commands should only pertain to key functions for

the specific role.

Feedback

Feedback pertains to the system providing adequate confirmation of actions being performed by the user.

Feedback can be provided with any combination of messages, sounds, highlighting, and/or animation. It

is important to provide feedback immediately to the user about the successful or unsuccessful results of

their actions. Norman (2002) suggests that there are two types of feedback as system can perform:

activational feedback (i.e., evidence that a control was activated successfully, such as a button is pressed

or a menu option is selected) and behavioral feedback (i.e., evidence that the activation or adjustment of

the control has now had some effect in the system). The GIFT Monitor Module is one interface in which

activational feedback is provided. The interface was designed to provide diagnostic information related to

the operational status of GIFT components. In that interface, active (i.e., running) modules are indicated

with a green icon, while red icons indicate modules that are offline (modules can easily be restarted from

the same interface). Similarly, with respect to behavioral feedback, when XML data are validated with the

GIFT authoring tools, the system lets the user know when the validation is complete or if a file needs to

be inspected for errors. This feedback could be improved, for instance, by indicating the specific line(s)

within an XML file in which an error was detected. Finally, from the student perspective, GIFT provides

continuous feedback on their actions and sequences the learning material accordingly.

Consistency

Sharp, Rogers, and Preece (2007) described consistency as “designing interfaces to have similar

operations and use similar elements for achieving similar tasks” (p. 32). Consistency is critical for

learnability because it helps users recognize and apply existing patterns when new situations arise.

Inconsistency can have a negative impact on user perceptions, especially when things do not work the

way the user thinks they should. Attention to consistency can inspire user’s confidence in the system by

supporting the impression that the system design is logical and rational. Many of GIFT’s tools are

consistent within release versions. However, the interface of GIFT slightly changes between releases

(resulting from continuous development and improvement), which may lead to inconsistency between

releases, and ultimately, user confusion. For instance, GIFT 2014-2 moved the authoring tools to a control

panel that is independent from the primary startup program; further, the reasoning behind this change has

not been presented to the user. As such, it is important to be cautious of interface redesign and provide

users with proper information on future changes and the reasons behind those changes.

290

Constraints

Constraints prevent invalid data from being entered or invalid actions from being performed. Having

proper constraints prevents system errors and system failures. There is a desired balance between

providing users with flexibility and implementing constraints to ensure system reliability. GIFT designers

have done a sound job of providing constraints; however, as GIFT continues to expand, keeping control

of these constraints can be difficult. That difficulty in balancing flexibility and constraints will increase as

GIFT begins to incorporate new functionality and interfaces.

Affordances

Affordances refer to inherent visual traits of an object that suggest how to interact with it. For example,

chairs afford sitting, however the surface of a school desk does not. One can consider everything that

users interact with in the system (i.e., buttons, scrollbars, the mouse and keyboard, etc.) as an affordance.

The GIFT program has many affordances, such as tooltips, throughout the application. Additional tooltips

and on-demand prompts are recommended to support usability. For example, after GIFT is installed, a

new user might ask, “What is next? How do I start GIFT?” The new user might not know, for example, to

launchActiveMQ.bat and launchMonitor.bat to start GIFT. Placing shortcut icons for different tools on

the desktop is one recommendation for improving access to authoring, student, and researcher interfaces.

Other Rules for Designing User Interfaces

Norman’s design principles helped pave the way for designing systems from a usability and user-centered

perspective. These design principles complement each other and serve as the basis for human-centered

design. Other relevant sets of guidelines to consider in usability / user experience design include the

following:

 Jakob Nielsen’s “10 Usability Heuristics for User Interface Design” include visibility of the

system status; match between the system and the real world; user control and freedom;

consistency and standards; error prevention; recognition rather than recall; flexibility and

efficiency of use; aesthetic and minimalist design; help for users recognize, diagnose, and recover

from errors; and help and documentation (Nielsen, 2005).

 Ben Shniederman’s “Eight Golden Rules of Interface Design” include strive for consistency;

enable frequent users to use shortcuts; offer informative feedback; design dialogue to yield

closure; offer simple error handling; permit easy reversal of actions; support internal locus of

control; and reduce short-term memory load (Shneiderman, Plaisant, Cohen & Jacobs, 2009).

The common principles within each of these sets of guidelines are: visibility, consistency, and feedback.

The prevalence of these principles further emphasizes their importance for system design, development,

and implementation. As GIFT’s user interface continues to evolve, each of these principles will be of

critical importance in order to positively influence each of the user experiences that GIFT provides.

Connections/Recommendations for GIFT

Since GIFT has become well established and gone through many iterations of design, it is an ideal time to

consider a heuristic/expert usability evaluation of GIFT. Those evaluations, also known as usability

audits, are conducted by usability experts. Those evaluations are used to identify issues with the user

interface and generate recommendations based on industry standards and best practices. The findings of

291

heuristic evaluations may also be used to develop testing with actual users from populations of interest, to

examine their expectations of how to navigate and interact with the system.

In order to conduct these usability analyses, it is important not to lose sight of GIFT’s different user

groups. The skill levels and user requirements will vary between groups. For example, instructional

designers and subject matter experts may have different expectancies regarding authoring tools and

navigation of the system. Additionally, the functions that are used by an author who is instructing a class

may vary greatly from the tools that are used by a researcher. One of the most important questions that it

is necessary for GIFT to answer is what level of support they want to provide for each type of user. For

instance, design for usability may result in an open-ended experience for an advanced user, while a novice

user may benefit from a wizard-like experience.

One “non-invasive” way to start designing for users with less experience is through supplementary

materials that can assist the beginning user with the system. One of these supplementary materials would

be to include a simple “how-to” guide to assist users upon their initial download of the system. While

GIFT currently has readme files, they should be examined/rephrased to streamline and clarify the

processes that the user needs to take to initially begin working with the system. Creating an introductory

set of brief directions on how to open the system, how to access specific interfaces, and complete basic

tasks would help beginner users learn the system without resorting to trial-and-error methods. While the

user is interacting with the system, it would be beneficial if there was a detailed help function that users

could click on that would bring up directions for the tool they are interacting with, complete with a

searchable version of the documents. With respect to authoring tools, new users may benefit from a few

simple example courses, which can be quickly modified to generate unique course content. This approach

would be easier than creating an entirely new course. Additionally, templates can be generated that

require less work from the user, but are aimed at specific tasks that an instructor or researcher may want

to engage in with the system.

As GIFT moves toward designing distinct user experiences for its user groups, we offer Figure 3 as a

suggestion of functions that will be most relevant to students, authors, and researchers.

 Student Author Researcher

Student/Participant Login

Interface
X

GIFT Authoring Tool X X

Survey Authoring System X X

Event Reporting Tool X

Figure 3. Tools and interfaces that are most relevant to different user groups.

Students will primarily interact with the login interface, whereas authors and researchers will use more

advanced features. Of these advanced features, the GAT and Survey Authoring System are very relevant.

However, these systems may be used with very different purposes by authors and researchers,

respectively. Further, while the author may extract some survey data using the Event Reporting Tool

(ERT), a researcher is much more likely to interact with it for an extended period of time and use many of

its functions. As GIFT’s design and functionality continue to move forward, it is important to think in

292

terms of the types of users that will interact with it and their desired goals with the system. Keeping these

groups and their expectations in mind will lead to improved interface design, positive user experiences,

and the continued growth of the GIFT community.

References

Brawner, K.W. & Sinatra, A.M. (2014). Intelligent Tutoring System Authoring Tools: Harvesting the Current Crop

and Planting Seeds for the Future. In Workshop Proceedings of the 12
th

 International Conference on

Intelligent Tutoring Systems, Honolulu, HI, June 2014.

Jordan, P. (1998). Human Factors for Pleasure in Product Use. Applied Ergonomics, 29(1), 25-33.

Jordan, P. (2000). Designing Pleasurable Products: An Introduction to the New Human Factors. London: Taylor

and Francis.

Nielsen, J. (2005). Ten Usability Heuristics for User Interface Design. Retrieved April 2014, from

www.nngroup.com/articles/ten-usability-heuristics

Nielsen, J. (2012). Usability 101: Introduction to Usability. Retrieved September 30, 2014, from

http://www.nngroup.com/articles/usability-101-introduction-to-usability

Norman, D. (2002). The Design of Everyday Things. New York, NY: Basic Books.

Sharp, H., Rogers, Y. & Preece, J. (2007). Interaction Design: Beyond Human-Computer Interaction: 2
nd

 Edition

John Wiley & Sons, Inc.

Shneiderman, B., Plaisant, C., Cohen, M. & Jacobs, S. (2009). Designing the User Interface: Strategies for Effective

Human-Computer Interaction (5th ed.). USA: Prentice Hall.

Sinatra, A.M. (June 2014). The Research Psychologist’s Guide to GIFT. Proceedings of GIFT Symposium 2 in

Pittsburgh, PA, June 2014.

Sottilare, R.A., Brawner, K.W., Goldberg, B.S. & Holden, H.K. (2012). The Generalized Intelligent Framework for

Tutoring (GIFT). Orlando, FL: U.S Army Research Laboratory Human Research & Engineering

Directorate (ARL-HRED).

Sottilare, R., Graesser, A., Hu, X., and Holden, H. (Eds.). (2013). Preface in Design Recommendations for

Intelligent Tutoring Systems: Volume 1 - Learner Modeling (pp. i - xiii). Orlando, FL: U.S. Army Research

Laboratory.

http://www.nngroup.com/articles/ten-usability-heuristics
http://www.nngroup.com/articles/usability-101-introduction-to-usability

293

Chapter 24 Invisible Intelligent Authoring Tools
Stephen B. Gilbert

1
, Stephen B. Blessing

2

1
Iowa State University;

2
University of Tampa

Motivation

Imagine that you, an expert in technology and in the learning sciences, have decided to help your

colleagues pass on their expertise to others by helping them build intelligent tutors systems (ITSs). Your

expert colleagues can be in only one place at a time, and an ITS would multiply the impact of their

expertise better than an online video, since an ITS can personalize the instruction. ITSs have

demonstrated significant learning gains in a variety of disciplines, after all (Anderson, 1989; Koedinger,

1997; Lesgold, Lajoie, Bunzo & Eggan, 1992; Ritter, Kulikowich, Lei, McGuire & Morgan, 2007;

VanLehn, et al., 2005), so this approach makes sense.

As you reflect on who these “expert colleagues” really are, you decide to focus on science, technology,

engineering, and mathematics (STEM) topics, since the US has a dire need for more STEM expertise

(Institute of Medicine, National Academy of Sciences & National Academy of Engineering, 2007), and

since a wide variety of people have expertise that they would like to share with others, you’d like to focus

on four kinds of experts: university faculty, K12 teachers, professional instructional designers and

trainers, and high school students. Some of these experts will be reflective practitioners (Schön, 1983),

who will bring a rich conceptual repertoire to the design of the tutor, while others will lack a conceptual

model of the domain, much less the tutoring process. For this reason it is critical that the authoring tools

be intelligent, i.e., able to adapt to the author.

You include the students as experts because you know that students can learn so effectively through the

process of teaching and peer-mentoring (Biswas, Leelawong, Schwartz, Vye & The Teachable Agents

Group at Vanderbilt, 2005; Crouch & Mazur, 2001), as well as from design-based activities (Kolodner, et

al., 2003; Resnick, et al., 2009; Vattam & Kolodner, 2011). In fact, you realize, the process of formalizing

knowledge into a particular representation can change the representation, so it would be worth studying

all of your experts along the way, both to see if you can learn more about the basics of their conceptual

change and to make sure that the tools you provide don’t force undesired conceptual change on them. You

know from Don Norman (1988) that a gap between your experts’ expectations of your tools and their

actual experiences with them will make the tools feel unnatural and frustrate your colleagues. Also, only

the K12 teachers have actually received significant instruction on how to teach, so the authoring tools

would have to incorporate good pedagogy implicitly, and the tutors that result from these tools would

need to be evaluated for learning gains.

You then search the Internet for existing authoring tools for creating ITSs, and the results are

disappointing. You find a summary of previous ITS authoring tools (Murray, Blessing & Ainsworth,

2003), but it offers more of a history than a guide to available tools. One chapter (Murray, 2003b) does

offer lessons learned and guidance for the design of the ideal authoring tool; you’ll keep that in mind.

There are more recent search hits for ITS authoring tools, but most are academic papers, not software

that’s usable right now. Plus, some are all constrained to a specific domain, e.g., authoring algebra tutors.

In terms of actual existing tutor authoring tools that you can sit down and use, six systems float to the top:

Cognitive Tutor Authoring Tools (CTAT) (Aleven, Sewall, McLaren & Koedinger, 2006), the Extensible

Problem-Solving Tutor (xPST) (Gilbert, Blessing & Kodavali, 2009), Authoring Software Platform for

Intelligent Resources in Education (ASPIRE) (Mitrovic, et al., 2009), SimStudent (Matsuda, Cohen,

294

Sewall, Lacerda & Koedinger, 2007), ASSISTments (Razzaq, et al., 2009), and the Generalized

Intelligent Framework for Tutoring (GIFT) (Sottilare, 2012).

As you examine these systems more carefully, however, you realize that none of them meet your desires

entirely. The tools take different approaches to enabling the author to input and structure her knowledge.

Some have a graphical user interface (GUI)-based system and some have what looks more like

programming source code. Some might be easy for your experts to use to create simple problems, but

require more computational thinking for more complex ones or for creating tutors that apply more

generally. You find a comparison of the usability of CTAT and xPST (Devasani, Gilbert & Blessing,

2012), pointing out pros and cons to GUI vs. text-based approaches to tutor authoring, depending on the

domain. That analysis suggests that the ideal ITS authoring tool, much like Adobe Dreamweaver or

Microsoft Visual Studio, with both code views and views of the interface, should have multiple

representations of content with which to interact. But the comparison article omits discussion of experts’

individual differences. Surely two of your colleagues, even if they were experts in the same domain,

might have different preferences of the kind of software they would like to use to represent their

knowledge.

Delving more deeply into these authoring tools makes you realize the wide variety of interfaces for which

ITSs have been built: equations and graphs, geometry and other diagrams, traditional desktop software

applications, written text, virtual reality simulations for maintenance and repair, and Socratic dialogue, to

name a few. You now realize that it would be best if there were a set of ITS authoring tools that could

create tutors for all of these different interfaces, while catering to the individual differences of your

colleagues and the needs of the particular knowledge domain. While that sounds like a significant

challenge, you remember Don Norman’s vision for the invisible computer (Norman, 1998), and his

prescient early call for replacing a PC with many “information appliances” that would work for us while

not burdening our minds or daily work. In effect, today’s Internet cloud and mobile apps have begun to do

that. App users seem happy to alternate the information representations with which they engage, when the

representation feels natural for the chosen task. Therefore, you reason, the perfect ITS authoring tools

would offer an invisible authoring system, one that allows your expert colleagues to, in effect, teach a

computer what they know without getting in the way, just as naturally as a musician plays a composition

into the iPad GarageBand app. Too bad those tools don’t exist yet.

Introduction

A chapter in this volume by Blessing et al. offers a detailed comparison of the ITS authoring tools

mentioned above. This chapter, in contrast, uses a user-experience lens to characterize the challenge of

designing the ideally appropriate authoring tools to address the above scenario. Creating authoring tools

that could meet this challenge would serve two purposes: (1) make it easier and faster to create ITSs much

like the ones that exist today, and (2) create a framework that will lead to fundamentally better tutors in

terms of pedagogy.

Definitions

To maintain clarity, we offer the following description of an intelligent tutor, its components, and the

terms we are using. Shute (1994) notes that all ITSs contain the following: an expert model that contains

the expert’s knowledge; a student model that records what the student has learned (skills); and a

pedagogical model that enables the tutor to react appropriately to the student’s behavior. Other

researchers note that the fourth critical component is the interface or problem-solving environment

(Corbett, Koedinger & Anderson, 1997), which may be an off-the-shelf, third-party system or a

295

customized interface just for a particular tutor. To use standardized terminology proposed by Van Lehn

(2006), the “task domain” is the discipline and content being taught, a “task” is a challenge assigned to a

student or students, and tasks can be broken down into “steps.” Finally, ITSs vary in the generality of

their expert models. Some are example-tracing tutors, focusing on providing feedback around one specific

example task. When we say “tutor,” we intend the more general tutor, which contains knowledge that can

be applied across many tasks of the same kind.

Extending the authoring task analysis described by Ritter, Blessing & Wheeler (2003), Table 1 contains

the authoring tasks typically required to create a tutor. These steps are not strictly ordered; they typically

are completed iteratively.

Table 2: Tasks of Authoring a Tutor

Characterize the Learning

Environment

What are the possible actions or states of the learner’s environment that need

to be noted by the tutor? What objects will the learner manipulate, and what

actions are permitted?

Organize the Curriculum What topics and skills needed to be learned? Are there subskills?

Characterize the Learning

Activities

What are the steps the learner needs to take, generally speaking? How do

those steps demonstrate the skills that need to be learned, i.e., what is the

mapping between steps taken and skills?

Describe Good Tutoring What does a right answer look like? What are frequent wrong answers? How

do you evaluate a learner’s answer? What hints should be given if help is

requested? What feedback should be given when the learner makes incorrect

choices, and under what circumstances should it be given?

An Author’s User Interfaces

The ideal user interfaces (UIs) that the expert will use to accomplish the above authoring tasks will likely

vary between tasks and may vary by individual author, if the author’s preferences for knowledge

representation are known. Figure 8 illustrates example UIs that might be used.

The Wizard Dialog asks the expert a series of questions to refine the structure of the tutor, e.g., “Do your

tasks have one right answer?” or “In your task domain, do students practice a task many times, 5–15

times, or fewer than 5 times?” The Wizard Dialog is essentially an expert system to narrow down to the

most appropriate tutor structure.

The Decision Tree facilitates the creation of branching IF…THEN predicates. The idea of predicates and

a predicate hierarchy is based on the original ACT-R inspired tutors, built using production rules

(Anderson, Boyle, Corbett & Lewis, 1990), as well as on Carnegie Learning, Inc.’s SDK authoring tool

(Blessing, Gilbert & Ritter, 2006; Blessing, Gilbert, Ourada & Ritter, 2009b).

The Click & Annotate UI works similarly to Camtasia or other software for making instructional screen-

capture videos, in which the expert highlights elements of the interface and adds specific instructions.

This UI would be particularly helpful for creating tutors on diagrams (e.g., free-body diagrams,

blueprints, or geometry proofs) and with tutors on software applications.

The natural language scripting UI allows the expert to define a set of nouns (objects), adjectives

(properties), and verbs (relationships), and then use natural language to describe conditions and

interactions. In a game-based tutor, for example, an expert who is interested in guiding the student to stay

close to the walls when exploring unknown corridors might write:

296

“Stay-close-to-wall” means the Player’s location is near a wall of the
corridor. “Near” means closer than 10% of the width of the corridor.

This approach uses principles of Applescript (2007) and Tutorscript (Blessing, et al., 2006), a language

used with Cognitive Tutors at Carnegie Learning, Inc. A similar idea is proposed in the form of Natural-K

(Jung & VanLehn, 2010).

The visual programming UI is similar to those used by Alice (Pausch, et al., 1995), Scratch (Resnick, et

al., 2009), and Greenfoot (Henriksen & Kölling, 2004). The expert is given a set of primitives and

operators and assembles them as blocks. This UI will be particularly useful for defining characteristics of

the interface state, e.g., which components of a simulation are powered on, or the positions of entities

within a serious game. One approach to tutoring based on game state is described in our previous work

(Devasani, Gilbert, Shetty, Ramaswamy & Blessing, 2011; Gilbert, Devasani, Kodavali & Blessing,

2011).

This list of UIs is not exhaustive. Other UIs not depicted, for example, include a state transition graph,

like the CTAT behavior graph (Aleven, et al., 2006), as well as a UI for constructing natural language

parses and phrase classifiers, such as the Concept Grid (Blessing, Devasani & Gilbert, 2012; Devasani,

Aist, Blessing & Gilbert, 2011). And of course plain source code or extensible markup language (XML)

Figure 8: Different user interfaces are appropriate for different authoring tasks.

297

is a possibility. Other new forms of UIs will become appropriate as new kinds for tutors arise, e.g.,

interfaces to allow conditions based on a student’s affect or motivation.

A tutor would likely be created using a combination of these UIs. A tutor template would be a particular

configuration of UIs designed to help create a tutor of a specific kind. As mentioned above, Norman’s

information appliances are the inspiration, so that the ideal ITS authoring system becomes an invisible

collection of tools well designed for their purposes. Just as mobile phone users are familiar with switching

between an email app, a calendar app, and a contacts app, which all share data, tutor templates will

provide an optimal configuration of UIs for a given task domain, and that the backend will allow

appropriate data sharing across them. In addition, a Template Recommender could be created, an expert

system that will recommend templates to tutor authors based on a Wizard-style interview about the

discipline and learning goals.

GIFTscript

While natural language scripting is mentioned above, it is worth considering it in more detail because of

the power of allowing an expert to use her own language to create a tutor. Statements like the above

“stay-close-to-wall” include the definition of new concept (stay-close-to-wall) and of a new condition

(“near”). It assumes that the objects “corridor” and “wall” have been defined elsewhere and that a

property “width” is associated with “corridor” (perhaps inherited from a parent object such as “object”).

The approach suggests an object hierarchy with properties assigned to the objects that could be

considered adjectives, e.g., a generic “building” object might have properties of “height,” “location,” and

“dimensions” that could be inherited by child objects “house,” “wall,” “store,” etc. Those child objects

could in turn have specialized properties. This approach is taken by Carnegie Learning’s tutor authoring

tools (Blessing, et al., 2006), but user interfaces don’t take advantage of natural language to author these

hierarchies on the fly. And, working with inheritance hierarchies requires a degree of computational

thinking (Wing, 2008) that our target users probably do not all have.

We suggest that if users could think of their knowledge domain in terms of scenarios, tasks, and concepts

(or perhaps skills), an interactive language-based authoring tool might be able to be created, which creates

the aforementioned object hierarchy more naturally. Since there is interest in developing the perfect

authoring tools for GIFT, we call this language GIFTscript.

GIFTscript would be integrated with the other UIs described above by using text editing boxes that check

GIFTscript syntax. Special visual indicators on the boxes would indicate to the user that (1) GIFTscript is

available, (2) that syntax is violated, and (3) that valid GIFTscript is present. Also, these text boxes will

support auto-completion and color coding, much like Visual Studio. A mockup of a sample interface is

provided in Figure 2 as illustration. In this example, using some of the primitives already extant in GIFT,

you could imagine script such as

“Avoid Location {x}” means player location is far from {x} location.

The interface would recognize that the user had defined a new condition called Avoid Location. It would

also recognize noun phrases (objects) such as “player location” and “location,” and if it didn’t recognize

those noun phrases, it would ask the user to define them. In this example, it recognizes a new adjectival

phrase, “far from,” and asks for a definition. The user might use some known objects to define it:

“far from” means distance > than 20 ft.

Then, using the new Avoid Location condition, the author could write rules such as

298

If the Player does not avoid location enemy bunker then remind, “Stay a
safe distance from the enemy.”

The critical feature of a UI featuring GIFTscript is offering a usable visualization of the objects and

structures resulting from this approach.

Authoring Tool as Research Tool

Just as many creators of learning technologies are studying the misconceptions of their learners and

getting usability feedback via educational data mining techniques and the use of embedded or stealth

assessment (Shute & Ventura, 2013; Shute, Ventura, Bauer & Zapata-Rivera, 2009), it will be valuable if

ITS authoring tools are themselves instrumented with click-stream logging similar embedded

assessments. Using these methods, authors’ own conceptual change can be monitored, especially if

combined with a pre- and post-assessment of the author’s understanding of the domain. Even without

such assessments, however, an unsupervised learning classification method could be used to cluster

different authors as to their approaches to knowledge representation, and perhaps, the interface elements

could be personalized to each author’s style. Also, it has been found useful in previous studies of

authoring tools, e.g., Blessing, Gilbert, Ourada, and Ritter (2009a) to monitor the time spent by the author

in different components of the authoring system. These usage profiles can be used to broadly characterize

authors as experts or novices and perhaps give intelligent tutoring-style feedback to the authors

themselves on the task of authoring.

Recommendations and Future Research

To create a mapping between types of tutors and appropriate UIs for authoring, it will be important to

create a taxonomy of tutor types. The larger categories of tutor interfaces might be, for example,

diagrams, equations, text, procedures, and cases. Each larger category might have subcategories, e.g.,

text-based tutors categorized by focus on short-answer responses, longer text passages, English language

learning, reading, or Socratic dialogue. While other researchers have provided overviews of the gamut of

intelligent tutors (Murray, 2003a; Sottilare, 2012; VanLehn , 2006), they have not focused on categorizing

Define Condition

OK Cancel

"Avoid Location {x}" means player location
is far from {x} location.

New condition "Avoid Location {x}" defined.

Please define "far from".

Figure 9: Mockup of interactive dialogue box for editing GIFTscript.

299

tutors by the kind of authoring approach required, or by the knowledge representation required of an

expert author. A taxonomy effort such as this might lead to a table as shown in Figure 3, which could then

guide the creation of the ideal invisible authoring tools, for GIFT or other tutoring systems.

Research questions remain that are worth exploring. Are there noteworthy individual differences in UI

preferences among experts in the same field? How does authoring with a given UI affect an expert’s own

understanding of his expertise? What effect does the choice of a tutor’s authoring UI have on student

learning? Does having natural UIs for authoring improve the quality of the resulting tutor?

References

Apple (2007). Introduction to AppleScript Overview Retrieved July 6, 2012, from

http://developer.apple.com/applescript/

Aleven, V., Sewall, J., McLaren, B. M. & Koedinger, K. R. (2006). Rapid Authoring of Intelligent Tutors for Real-

World and Experimental Use. Paper presented at the Sixth International Conference on Advanced Learning

Technologies.

Anderson, J. R., Boyle, C. F., Corbett, A. T. & Lewis, M. W. (1990). Cognitive modeling and intelligent tutoring.

Artificial intelligence, 42(1), 7-49.

Anderson, J. R., Conrad, F. G. & Corbett, A. T. (1989). Skill acquisition and the LISP tutor. Cognitive Science, 13,

467–505.

Biswas, G., Leelawong, K., Schwartz, D., Vye, N. & The Teachable Agents Group at Vanderbilt. (2005). Learning

by Teaching: A new agent paradigm for educational software. Applied Artificial Intelligence, 19(3-4), 363-

392. doi: 10.1080/08839510590910200

Blessing, S., Gilbert, S. B. & Ritter, S. (2006). Developing an authoring system for cognitive models within

commercial-quality ITSs. Paper presented at the Nineteenth International FLAIRS Conference.

Blessing, S. B., Devasani, S. & Gilbert, S. B. (2012). Evaluating ConceptGrid: An Authoring System for Natural

Language Responses. Paper presented at the Twenty-Fifth International FLAIRS Conference, Marco

Island, FL, USA.

Blessing, S. B., Gilbert, S. B., Ourada, S. & Ritter, S. (2009a). Authoring model-tracing cognitive tutors.

International Journal for Artificial Intelligence in Education, 19(2).

Figure 10: A mockup of the type of matrix that might emerge from mapping a taxonomy of tutor types

to user interfaces for authoring them.

http://developer.apple.com/applescript/

300

Blessing, S. B., Gilbert, S. B., Ourada, S. & Ritter, S. (2009b). Authoring model-tracing cognitive tutors.

International Journal for Artificial Intelligence in Education.

Corbett, A. T., Koedinger, K. R. & Anderson, J. R. (1997). Chapter 37 - Intelligent Tutoring Systems. In G. H.

Marting, K. L. Thomas & V. P. Prasad (Eds.), Handbook of Human-Computer Interaction (Second Edition)

(pp. 849-874). Amsterdam: North-Holland.

Crouch, C. H. & Mazur, E. (2001). Peer Instruction: Ten years of experience and results. American Journal of

Physics, 69(9), 970-977.

Devasani, S., Aist, G., Blessing, S. & Gilbert, S. B. (2011). Lattice-Based Approach to Building Templates for

Natural Language Understanding in Intelligent Tutoring Systems. Paper presented at the Proceedings of the

Fifteenth Conference on Artificial Intelligence in Education, Auckland.

Devasani, S., Gilbert, S. B. & Blessing, S. B. (2012). Evaluation of Two Intelligent Tutoring System Authoring Tool

Paradigms: Graphical User Interface-Based and Text-Based. Paper presented at the Twenty-First

Conference on Behavior Representation in Modeling and Simulation (BRIMS), Amelia Island, FL, USA.

Devasani, S., Gilbert, S. B., Shetty, S., Ramaswamy, N. & Blessing, S. (2011). Authoring Intelligent Tutoring

Systems for 3D Game Environments. Paper presented at the Proceedings of the Authoring Simulation and

Game-based Intelligent Tutoring Workshop at the Fifteenth Conference on Artificial Intelligence in

Education, Auckland.

Gilbert, S. B., Blessing, S. B. & Kodavali, S. (2009). The Extensible Problem-Specific Tutor (xPST): Evaluation of

an API for Tutoring on Existing Interfaces. Paper presented at the 14th International Conference on

Artificial Intelligence in Education.

Gilbert, S. B., Devasani, S., Kodavali, S. & Blessing, S. (2011). Easy Authoring of Intelligent Tutoring Systems for

Synthetic Environments. Paper presented at the Twentieth Conference on Behavior Representation in

Modeling and Simulation (BRIMS), Sundance, UT, USA.

Henriksen, P. & Kölling, M. (2004). Greenfoot: Combining object visualisation with interaction. Paper presented at

the Companion to the 19th annual ACM SIGPLAN conference on Object-oriented programming systems,

languages, and applications.

Institute of Medicine, National Academy of Sciences & National Academy of Engineering. (2007). Rising above the

gathering storm: Energizing and employing America for a brighter economic future. Washington, D.C.:

National Academies Press.

Jung, S.-Y. & VanLehn, K. (2010). Developing an intelligent tutoring system using natural language for knowledge

representation. Paper presented at the Intelligent Tutoring Systems Conference (ITS 2010).

Koedinger, K. R., Anderson, J.R., Hadley, W.H. & Mark, M.A. (1997). Intelligent tutoring goes to school in the big

city. International Journal for Artificial Intelligence in Education, 8, 30-43.

Kolodner, J. L., Camp, P. J., Crismond, D., Fasse, B., Gray, J., Holbrook, J., et al. (2003). Problem-based learning

meets case-based reasoning in the middle-school science classroom: Putting learning by design (tm) into

practice. The journal of the learning sciences, 12(4), 495-547.

Lesgold, A., Lajoie, S., Bunzo, M. & Eggan, G. (1992). SHERLOCK: A coached practice environment for an

electronics troubleshooting job. In J. Larkin & R. Chabay (Eds.), Computer-assisted instruction and

intelligent tutoring systems: Shared goals and complementary approaches. Hillsdale, NJ: Lawrence

Erlbaum Associates.

Matsuda, N., Cohen, W. W., Sewall, J., Lacerda, G. & Koedinger, K. R. (2007). Predicting students’ performance

with simstudent: Learning cognitive skills from observation. FRONTIERS IN ARTIFICIAL

INTELLIGENCE AND APPLICATIONS, 158, 467.

Mitrovic, A., Martin, B., Suraweera, P., Zakharov, K., Milik, N., Holland, J., et al. (2009). ASPIRE: an authoring

system and deployment environment for constraint-based tutors. International Journal of Artificial

Intelligence in Education, 19(2), 155-188.

Murray, T. (2003a). An Overview of Intelligent Tutoring System Authoring Tools: Updated analysis of the state of

the art Authoring tools for advanced technology learning environments (pp. 491-544): Springer.

Murray, T. (2003b). Principles for pedagogy-oriented knowledge based tutor authoring systems: Lessons learned

and a design meta-model Authoring Tools for Advanced Technology Learning Environments (pp. 439-466):

Springer.

Murray, T., Blessing, S. & Ainsworth, S. (Eds.). (2003). Authoring Tools for Advanced Technology Learning

Environments: Toward Cost-effective Adaptive, Interactive, and Intelligent Educational Software. Norwell,

MA: Kluwer Academic Publishers.

Norman, D. (1988). The design of everyday things. New York: Basic Books.

301

Norman, D. (1998). The Invisible Computer: Why Good Products Can Fail, the Personal Computer Is So Complex,

and Information Appliances Are the Solution. Cambridge, MA: MIT Press.

Pausch, R., Burnette, T., Capeheart, A., Conway, M., Cosgrove, D., DeLine, R., et al. (1995). Alice: Rapid

prototyping system for virtual reality. IEEE Computer Graphics and Applications, 15(3), 8-11.

Razzaq, L., Patvarczki, J., Almeida, S. F., Vartak, M., Feng, M., Heffernan, N. T., et al. (2009). The Assistment

Builder: Supporting the life cycle of tutoring system content creation. Learning Technologies, IEEE

Transactions on, 2(2), 157-166.

Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan, K., et al. (2009). Scratch:

programming for all. Commun. ACM, 52(11), 60-67. doi: http://doi.acm.org/10.1145/1592761.1592779

Ritter, S., Blessing, S. B. & Wheeler, L. (2003). Authoring tools for component-based learning environments. In T.

Murray, S. Blessing & S. Ainsworth (Eds.), Authoring Tools for Advanced Technology Learning

Environments (pp. 467-489). Norwell, MA: Kluwer Academic Publishers.

Ritter, S., Kulikowich, J., Lei, P., McGuire, C. L. & Morgan, P. (2007). What evidence matters? A randomized field

trial of Cognitive Tutor Algebra I. In T. Hirashima, U. Hoppe & S. S. Young (Eds.), Supporting Learning

Flow through Integrative Technologies (Vol. 162, pp. 13-20). Amsterdam: IOS Press.

Schön, D. A. (1983). The reflective practitioner: How professionals think in action. New York: Basic books.

Shute, V. & Ventura, M. (2013). Stealth assessment: Measuring and supporting learning in video games: MIT

Press.

Shute, V. J. & Psotka, J. (1994). Intelligent tutoring systems: Past, present, future. Technical Report AL/HR-TP-

1994-0005, USAF, Armstrong Laboratory.

Shute, V. J., Ventura, M., Bauer, M. & Zapata-Rivera, D. (2009). Melding the power of serious games and

embedded assessment to monitor and foster learning. Serious games: Mechanisms and effects, 295-321.

Sottilare, R. (2012). Considerations in the Development of an Ontology for a Generalized Intelligent Framework for

Tutoring Paper presented at the International Defense and Homeland Security Simulation Workshop 2012,

Vienna, Austria.

VanLehn , K. (2006). The behavior of tutoring systems. International journal of artificial intelligence in education,

16(3), 227-265.

VanLehn, K., Lynch, C., Schulze, K., Shapiro, J. A., Shelby, R., Taylor, L., et al. (2005). The Andes Physics

Tutoring System: Five Years of Evaluations. Paper presented at the Proceedings of the 2005 conference on

Artificial Intelligence in Education: Supporting Learning through Intelligent and Socially Informed

Technology.

Vattam, S. S. & Kolodner, J. L. (2011). On foundations of technological support for addressing challenges facing

design-based science learning. Technology Enhanced Learning and Cognition, 27, 233.

Wing, J. M. (2008). Computational Thinking and Thinking about Computing. Philosophical Transactions of the

Royal Society, 366, 3717-3725.

http://doi.acm.org/10.1145/1592761.1592779

302

303

Chapter 25 Lowering the Technical Skill Requirements for

Building Intelligent Tutors: A Review of Authoring Tools
H. Chad Lane

1
, Mark G. Core

2
, Benjamin S. Goldberg

3

1
University of Illinois, Urbana-Champaign,

2
University of Southern California,

3
US Army Research Laboratory

Introduction

Educational technologies have come to play an important role in advancing the science of learning. By

consistently applying a set of pedagogical policies (and not getting tired while doing so), educational

technologies can be used to address precise questions about how people learn and how to best help them.

The resulting findings often answer important questions about human learning, which, in turn, can

positively influence the design of future educational technologies or even possibly educational practices.

A second way learning science researchers seek to have impact is by getting the technology in the hands

of as many learners as possible. Unfortunately, with more users come more requirements, and therefore,

additional questions educational software designers need to address. For example, can a system be

tailored to the specific needs of a class, teacher, or individual learner? Can it be used in a new task

domain? Is it possible to reorganize or create new course content? Can the pedagogical approach and/or

content embedded in the system be adjusted or even replaced? Sadly, but understandably, software that is

created for lab studies or specific end-user needs do not often address these questions. If the aim is to “go

big,” then it is no longer feasible to create one system suited for all needs tools for configuring and

creating content are a requirement.

In this chapter, we focus on intelligent tutoring systems (ITSs), an instance of educational technology that

is often criticized for not reaching its full potential (Nye, 2013). Researchers have debated why, given

such strong empirical evidence in their favor (Anderson, Corbett, Koedinger & Pelletier, 1995; D’Mello

& Graesser, 2012; VanLehn et al., 2005; Woolf, 2009), intelligent tutors are not in every classroom, on

every device, providing educators with fine-grained assessment information about their students.

Although many factors contribute to a lack of adoption (Nye, 2014), one widely agreed upon reason

behind slow adoption and poor scalability of ITSs is that the engineering demands are simply too great.

This is no surprise given that the effectiveness of ITSs is often attributable to the use of rich knowledge

representations and cognitively plausible models of domain knowledge (Mark & Greer, 1995; Valerie J.

Shute & Psotka, 1996; VanLehn, 2006; Woolf, 2009), which are inherently burdensome to build. To put it

another way: the features that tend to make ITSs effective are also the hardest to build. The heavy reliance

on cognitive scientists and artificial intelligence (AI) software engineers seems to be a bottleneck.

This issue has led to decades of research geared toward reducing both the skills and time to build

intelligent tutors. The resulting ITS authoring tools serve different educational goals, but generally seek

to enable creating, editing, revising, and configuring the content and interfaces of ITSs (Murray, Blessing

& Ainsworth, 2003). A significant challenge lies in the accurate capture of the domain and pedagogical

expertise required by an ITS, and many authoring tools focus on eliciting this knowledge. Unfortunately,

as ITS technology has evolved, the authoring burden has increased rather than decreased, and so the

tension between usability of an authoring tool and the sophistication of the target ITS knowledge

representation is substantial.

In this chapter, we focus on the problem of reducing the technical knowledge required to build ITSs (only

one of many possible goals for authoring tools). We review the important historical attempts that most

directly sought to open up the creation of ITSs to nonprogrammers (like educators) as well as more recent

work that addresses the same goal. We review popular approaches, such as programming by

304

demonstration, visualization tools, and what you see is what you get (WYSIWYG) authoring, and

summarize the limited experimental evidence validating these approaches. The central questions driving

this review are (1) In what ways have researchers sought to make authoring more intuitive and accessible

to nonprogrammers? (2) For what purposes have these tools been developed? (3) What components of an

ITS have they addressed? and (4) How have researchers evaluated these approaches and what have they

learned about intuitive authoring? The chapter ends with suggestions for future research, including

identifying ways to empirically understand the sophistication vs. ease-of-authoring tradeoff, leveraging

more findings from the human-computer interaction (HCI) community, and addressing the glaring gap in

authoring research as it relates to learning management systems (LMSs).

The Problem

What makes ITSs so difficult to create? ITSs provide the fine-grained support necessary for deep learning

unlike most traditional computer-aided instructional systems (VanLehn, 2011), but this ability requires

greater complexity (VanLehn, 2006). We use the Generalized Intelligent Framework for Tutoring (GIFT)

architecture, shown in Figure 1, as a general model of the complex system of interconnected components

typically present in an ITS, and the end product of ITS authoring. The specific requirements, roles, and

complexities of each component are described elsewhere (Sottilare, 2012), but some of the more

prominent components in terms of authoring include the following:

 The learner module tracks the learner’s state over the course of a session. The learner module

updates performance measures based upon assessments of learner activities, and may estimate

changes in understanding, acquisition of skills and learner emotions.

 The pedagogical module makes the instructional decisions that drive the tutor’s behavior. These

decisions can vary in scope from topic and problem selection to deciding whether to give

feedback and the content and style of this feedback.

 The domain module handles domain-specific responsibilities such as assessing learner problem

solving and providing help. This module may use general information about the target task and

any associated simulation as well as rely upon problem-specific data.

 The tutor-user interface provides the communication channel(s) between learner and tutor, such

as speech, text, visualizations, etc. It defines the scope of potential tutoring interactions.

305

Figure 1. Overview of the GIFT architecture (Sottilare, 2012).

It is typical for authoring tools to focus on specific components that are most important or relevant for the

target ITS. This approach also makes the process more viable as authors focus their attention on a few

components while the rest may remain unchanged from problem to problem, or domain to domain. By

starting with the GIFT framework, which seeks to maximize generality, rather than a specific system, the

full range of possible targets for an ITS authoring tool is more apparent.

ITS Authoring Tools: Goals And Tradeoffs

In two broad and thorough reviews of the field (Murray, 1999, 2003), two (of the many) take-away

messages are that authoring tools (1) have been developed with a wide variety of goals in mind and for

many different categories of users, and (2) present a huge space of tradeoffs both in terms of their own

implementation and those that must be addressed by authors using the system. Authoring success stories,

such as Cognitive Tutor Authoring Tools (CTAT) (Aleven, McLaren, Sewall & Koedinger, 2006) and

REDEEM (Ainsworth et al., 2003), always impose a reasonable level of constraints on their authors and

make assumptions so that tasks can stay manageable.

Murray (2003) identifies five typical goals for authoring tools, roughly in order of importance or

predominance (p. 509):

(1) Decrease the effort required to build an ITS (e.g., time, cost).

(2) Decrease the “skill threshold” for building ITSs.

306

(3) Support authors in the articulation of domain or pedagogical knowledge.

(4) Enable rapid prototyping of ITSs.

(5) Rapidly modify and/or prototype with the aim of evaluating different approaches.

Systems in category (1) can include those built for cognitive scientists and programmers. For example,

CTAT (Aleven, et al., 2006) includes two primary methods for tutor creation, the first of which involves

creating and debugging production rule-based cognitive models directly. CTAT includes a variety of tools

for organizing, testing, watching, and editing cognitive models, all designed for users with high levels of

technical skill. The second type of authoring uses example-tracing, which is described below and more

directly addresses Murray’s second goal.

Category (1) stands in direct contrast to (2), which involves lowering the bar on what authors need to

know or be able to do. Typically, authoring tools that seek to do this have the aim of allowing teachers,

subject-matter experts, and other educators to create ITSs to address their own needs. Category (2) is the

focus of this chapter how have researchers attempted to “simplify,” or at least remove some of the

more technically onerous aspects of building ITSs? Goals in categories (3) through (5) are in many ways

orthogonal to (1) and (2). Articulating domain and pedagogical knowledge (3) is a requirement for ITSs

and can be accomplished with no specialized tools, tools for technically skilled authors, or tools for

nonprogrammers. Similarly, the rapid creation of ITSs and variations on existing ITSs for the purposes of

testing or running experiments can also be accomplished regardless of the tools used.

Of course, whatever purposes an authoring tool is intended to serve will directly impact the design. In

turn, the design of any content-creation tool (e.g., word processors, presentation software) involves

tradeoffs. In the case of ITS authoring tools, a variety of tradeoffs are apparent. One tension is that

complexity in one area of authoring can introduce difficulties in other areas. For example, a tool could

allow authors to create a custom graphical user interface (GUI) for their ITS. However, the underlying

ITS has no idea what the controls (e.g., text boxes and menus) of the GUI mean, Thus, either the author

has to develop a knowledge representation and link it to the GUI, or develop a model in terms of GUI

actions (e.g., example-tracing in CTAT). A second tension that arises is between the complexity of an

authoring tool and ease of use. For example, the full power of cognitive modeling is available in CTAT,

but requires programming skills and the resulting cognitive models can be onerous. In general, the greater

the expressive power provided by an authoring system, for any module, the more complicated other

components become to build. Therefore, we find a distinct tradeoff between this expressive power and the

ease at which authoring can be accomplished.

In the remainder of this chapter, we focus our attention on techniques researchers have used to reduce the

skills needed in order to build ITSs (category (2) from the list above). A tradeoff made in most of these

examples is increased authorability but reduced sophistication of the underlying tutors that are built. In

other words, the assumptions made and steps taken to “simplify” the authoring process have generally led

to simpler models. This is not necessarily true in all of the cases below, however. SimStudent (Matsuda et

al., 2013) and Authoring Software Platform for Intelligent Resources in Education (ASPIRE) (Mitrovic et

al., 2009), for example, use machine learning techniques to infer more than what the authoring activities

provide on the surface. Another common tradeoff is simplifying the process by limiting what the author

can create or change. For example, REDEEM (Ainsworth, et al., 2003) uses a “courseware catalogue” as

a starting point, and SitPed (Lane, Core, et al., in-press) starts with pre-constructed scenarios.

307

Approaches to Building Intuitive Authoring Tools

The AI-heavy components of an ITS (domain module, pedagogical module, learner module) generally

require detailed information from authors. This type of ITS authoring is similar to the task of knowledge

engineering, which was widely recognized as onerous and a possible impediment to the growth of expert

systems. The general challenge of capturing or eliciting knowledge from subject matter experts was

recognized early, leading to a great deal of research focused on the knowledge elicitation problem

(Hoffman, Shadbolt, Burton & Klein, 1995). ITSs share this problem, but with the additional burden of

needing to address issues related to pedagogy that is, how to present information, assess learners’

knowledge, deliver feedback, and so on. Thankfully, ITSs often do not require such heavy-duty models as

fully elaborated expert systems, and solutions that go beyond basic computer-aided instruction but not as

far as a fully-fledged ITS still have a great deal of value. For example, the ASSISTments approach

provides teachers with authoring tools to create, share, and deploy step-by-step example problems that

approximate ITS behaviors by providing step-level support for a learner without the need for traditional

student modeling, expert modeling, and so on (Heffernan & Heffernan, 2014).
7

Although many authoring tools indirectly lower the skill threshold needed to build a tutor, either through

hiding implementation details or automating steps, the systems included in this review are systems that

prioritize usability. A requirement for inclusion is that a system be explicitly built for and tested with

nonprogrammers who are either instructors or subject-matter experts in an educational role. A second

requirement is that the authoring tool supports the population of ITS-like components (see Figure 1) via

interaction with the author. The end result of the authoring process is a learning system that performs at

least some of the behaviors from the standard definition of a tutoring system (VanLehn, 2006).

A final dimension we highlight is Murray’s (2003) distinction between performance and presentation

roles that an ITS can play. An ITS that focuses on performance typically assesses the learner during

problem solving (or other form of practicing a skill) and provides feedback and scaffolding. This is

perhaps the most common role of an ITS given that they often help learners during homework. An

authoring tool that addresses the presentation of content is geared toward a more direct instructional role,

such as that played by educational videos in massive open online courses (MOOCs) or flipped

classrooms. The presentation of content can be made highly adaptive based on learner behaviors and

embedded assessments, and so there are many opportunities to go beyond what simple videos or reading

can achieve. Historically, many ITSs sought to play both roles and use shared models between the two to

increase the level of personalization (Brusilovsky, 2012). The distinction between authoring for

performance or presentation (or both) is used in the discussion that follows.

Authoring for Content Delivery

REDEEM (Ainsworth, et al., 2003) represents one of earliest and most successful attempts to put

authoring tools in the hands of teachers. Using intuitive interfaces, REDEEM walks authors through a

workflow that operates primarily on existing content so that a generated ITS can later present it adaptively

to learners. In addition, authors can increase interactivity in the resulting lessons by creating questions

and identifying “reflection points” that allow the system to know when students should spend more time

processing the material. REDEEM most directly supports non-technical authors in the following ways:

1. REDEEM provides a well-defined workflow with integrated stages that are all clearly defined for

authors so that they understand the overall process and end result.

7
 Although ASSISTments does include elaborate records of student performance used in service of helping

instructors assess their students’ learning.

308

2. It adopts a slider-based approach to allow authors to specify parameters such as suitability of

resources for learners, and amount of student choice.

3. Instructional strategies are expressed in ways that are familiar to authors (who are instructors).

The REDEEM workflow takes authors through three distinct phases: (1) describe the course material by

organizing and marking content with structural annotations, (2) define the kinds of learners who will use

the resulting ITS, and (3) describe how the system should teach those learners with the content articulated

during step 1. REDEEM assumes the availability of a “courseware catalogue,” which consists primarily

of reading content. For this content, authors are asked to identify sections, label the content in sections

along various dimensions (e.g., how difficult or familiar it will be to students), and finally describe

relations between sections (e.g., section B is an application of the concept described in section A). These

relationships help the system build a semantic representation of the course content, which is then used by

the resulting ITS to adapt instruction. In addition, authors also create interactive content such as multiple

choice and fill-in-the-blank questions. The second step for REDEEM authors is to create a base of learner

types (based on the author’s discretion), while the third is the “glue” that brings these steps together.

To complete their ITS, authors must define a body of tutoring strategies that ultimately tell a REDEEM

ITS how to use the annotated content. A slider metaphor is used to configure the details of the tutoring

strategies. For example, if a teacher wants to allow the ITS to engage in practice with the learner, they can

define this strategy by using a series of sliders to set the parameters appropriately (Figure 2). The strategy

includes information about when to use it, how to deploy it, and how to provide help. Although there is a

cap of 20,000 different strategies, authors tend to create about 7 per tutor (Ainsworth, et al., 2003, p. 213).

Figure 2. Creating a teaching strategy in REDEEM (Ainsworth, et al., 2003).

309

REDEEM has undergone multiple evaluations showing that teachers can use the system to create tutors,

and that they find it easy to use. In addition, tutors created with REDEEM have been compared against

computer-aided instruction (CAI) counterparts. These studies have demonstrated a significant difference

in learning outcomes with effect sizes as large as 0.76 for REDEEM vs. 0.36 for CAI systems with the

same content (Ainsworth & Fleming, 2006).

Generalizing from Examples

One important skill instructors and subject matter experts share is that they can solve problems in the

domain in which they teach or work. This observation was made in ITS authoring as well as in the areas

of expert systems and programming (Cypher & Halbert, 1993). Authoring by demonstration seeks to

leverage this observation by allowing instructors and experts to simply show the authoring system how

students should solve problems instead of forcing instructors and experts to explicitly encode domain

knowledge. Given a sufficient number of examples, the authoring tool will develop a generalized model

of the skill that can be used in an ITS.

Building on the work in expert systems and programming-by-demonstration, Blessing (2003) was one of

the pioneers in applying this idea to building an ITS. His Demonstr8 authoring system could generate an

ACT-style tutor for arithmetic based on authors solving problems. ACT Tutors have expert models

consisting of production rules capable of solving problems, and learner actions are continually compared

against this model through a process called model tracing. Demonstr8 creates such an expert model by

attempting to determine the rationale behind steps in solved examples and create rules that apply across

examples. However, an author must first create an underlying knowledge representation such that

Demonstr8 can generalize from the author’s behavior. For example, authors need to define the concept of

a column of numbers as well as basic arithmetic operations such as subtracting two digits. It is also the

case that the underlying model cannot be hidden from the author who may need to adjust production rules

as well as specify details such as goals and subgoals.

It is worth noting a similar approach adopted in DISCIPLE (Tecuci & Keeling, 1998). Here, the domain is

history and the task is to determine whether a source is relevant to a specific research assignment, and

why or why not. Only the GUI and the specialized problem solver are specific to the target domain/task.

To define the target task, an educator with help from a knowledge engineer first builds an ontology. The

next step is developing a set of problem-solving rules; in this case, the rules determine whether a source is

relevant based on properties of the source and the research assignment. The general approach is for the

educator to teach the authoring system through demonstration (i.e., providing a correct answer), limited

explanation (e.g., pointing out a relevant feature), and feedback. In the case of feedback, the system

generates new examples and the educator helps debug the rules when incorrect results appear. The

educator must then extend the set of natural language generation templates allowing the system to

generate tutoring guidance from the underlying knowledge representation. The resulting history ITS was

highly rated in surveys from an experiment with students and teachers, and the domain module was

judged highly accurate by an external expert.

ASPIRE (Mitrovic, et al., 2009) is an authoring tool developed at the University of Canterbury for the

construction of tutors that use constraint-based modeling as the primary method for knowledge

representation. Constraints are fundamentally different from production rules in that they encode

properties that must hold in solutions rather than generate problem solving steps. Constraints, when

violated by a student’s solution, capture teachable moments in which constraint-based tutors can help.

Authors are required to create constraints, feedback messages, problems, and if necessary, a user

interface. Although different from production rules, constraints are still a form of knowledge

representation and building a constraint base for an ITS requires a certain level of technical skill.

310

ASPIRE’s predecessor, Web-Enabled Tutor Authoring System (WETAS) (Mitrovic, Martin &

Suraweera, 2007), supported users with some technical expertise while ASPIRE falls into the category of

systems built for nonprogrammers seeking to automate some of the more complex tasks of building ITSs

with machine learning.

To build a constraint-based tutor with ASPIRE, authors must perform three steps, none of which require

programming skills: (1) design a (text-based) interface, (2) build a domain ontology (Figure 3), (3) create

problems and solutions in the interface. ASPIRE can use the ontology to automatically generate syntactic

constraints corresponding to domain requirements. For example, an instructor might require students to

specify a lowest common denominator (e.g., the student must type a number into the relevant location in

the GUI). Semantic constraints model the correctness of the answer. Authors are required to specify

alternate solutions, and ASPIRE automatically generates semantic constraints accommodating these

variations (Mitrovic, et al., 2009). Perhaps the most burdensome step in creating an ASPIRE tutor lies in

the creation of a domain ontology, which has the potential to become overly complex. However, as can be

seen in Figure 3, the process is simplified in that only basic hierarchical relationships are needed (such as

specialization).

Figure 3. The ASPIRE ontology editor, used in the automated generation of constraints

(Mitrovic, et al., 2009)

When compared to a hand-authored domain model, ASPIRE was found to generate all of the same

syntactic constraints and covered 85% of the semantic. A larger pilot evaluation of a tutoring system

generated by ASPIRE with a subject-matter expert author (and nonprogrammer), showed that it produced

significant learning gains and that learners followed expected learning curves (Mitrovic et al., 2008).

311

Authoring by Constructing Elaborated Examples

One of the most prominent efforts to provide authoring tools for non-experts is CTAT at Carnegie Mellon

University. CTAT provides tools for building two kinds of tutoring systems: example-tracing tutors,

which involve problem-specific authoring but no programming (Aleven, McLaren, Sewall & Koedinger,

2009), and cognitive tutors, which require AI programming and the development of a problem-

independent cognitive model of the target skill(s) (Anderson, et al., 1995). The work on Cognitive Tutors

shows there is room for improvement in authoring tools for ITS programmers. For Cognitive Tutors,

CTAT has been shown to reduce development time by a factor of 1.4 to 2 (Aleven, et al., 2006).

In keeping with the goals of our chapter, we focus on non-programmers and example-tracing tutors. For

example-tracing tutors, early evaluations of efficiency gains using CTAT are also impressive: a reduction

in development costs by a factor of 4 to 8 over traditional estimates on ITS development (Aleven, et al.,

2009). Example-tracing tutors are created by demonstration. The appeal, therefore, is that an author can

create solution models by simply solving problems in ways that learners might. This is accomplished in

CTAT by defining a specific problem, solving it, and then expanding the resulting solution in ways so

that other common problem solving actions can be recognized, such as alternate solutions and common

misconceptions. These different problem-solving steps form a behavior graph such as the one on the right

side of Figure 4. Learners take actions by manipulating a GUI (left side of Figure 4) and the tutoring

system matches these actions to nodes in the behavior graph. The graph branches as authors specify a

variety of correct and incorrect approaches to solving the problem.

Figure 4. An authored example in CTAT for stoichiometry (Aleven, et al., 2009).

Example-tracing does not require a machine-readable ontology defining the domain and there is no

machine learning that must be debugged by the author. However, this knowledge-light approach means

that authors must annotate steps in the behavior graph with hint and feedback messages as well as links to

the learner module (e.g., taking this step provides evidence that the learner understands a certain domain

concept). This annotated behavior graph contains all the information needed for the ITS to assess learner

actions and provide step-level feedback.

The Situated Pedagogical Authoring (SitPed) project at the University of Southern California (Lane,

Core, et al., in-press) focuses on problem-solving through conversation (e.g., a therapist talking to a

client) using simulated role players. Using SitPed, authors create an ITS by doing the following:

312

 Specifying paths through the problem space by simultaneously solving problems (either correctly

or intentionally incorrectly) and indicating the relevant skills and misconceptions.

 Pausing during problem solving to create hints and feedback messages associated with the current

situation.

Like the case of example-tracing tutors, authors work in the same learning environment that learners use.

Thus, SitPed falls roughly into the category of WYSIWYG authoring tools (Murray, 2003) because

authors are constantly reminded of what the resulting learning experience will be like. In the case of

SitPed, demonstration is not simply a technique to hide technical details. Simulated conversations and

simulations in general allow learners to explore a wide space of possibilities, and it can be difficult for

authors to visualize the learner’s perspective unless they are also working through examples in the same

simulation.

One of the difficulties in building an ITS for a simulated role play is that simulated role players can be

implemented in a variety of ways. The initial version of SitPed targets branching conversations. At each

step in the conversation, learners are selecting utterances from a menu and the virtual role player consults

a tree to lookup its response and the next set of menu items. This tree simply contains the lines of the

conversation as well as the associated animations corresponding to performance of the role player lines.

In branching conversations, it is necessary for the author to play through all branches of the tree and link

each possible learner choice to the skills and misconceptions of the domain. This process is illustrated in

Figure 5. Although the goal is to recreate the learner experience as much as possible, authors need to be

able to see relevant context (e.g., the dialogue history in the middle) and make annotations corresponding

to the skills and common mistakes of the domain which we refer to as tasks (via the menu labeled “Task

List”). This exhaustive exploration of the possibilities is necessary because of the difficulty of

automatically understanding the dialogue well enough to identify skills such as active listening. For

simulated role players with models of dialogue and emotion, more scope for generalization may be

possible based on expert conversations.

313

Figure 5. The SitPed Authoring domain tagging screen (Lane, Core, et al., in-press).

SitPed also provides a tool to create simple, hierarchal task models (similar to those created in GIFT),

which form the basis for the linking screen shown in Figure 5. The full workflow requires an author to (1)

create a task list; (2) load a scenario file (these are authored in a commercial product called Chat Mapper,

an editor designed specifically for tree-based branching stories; (3) run through the scenario as many

times as needed to annotate the possible student choices; (4) create hints and feedback content during

those runs; and

(5) test the final product out in a “student” view that recreates the actual learning experience (with no

additional tools visible). In step 5, authors also have the option to activate the assessment engine and see

how the authored model classifies each action (i.e., positive, negative, or mixed) with respect to the task

list.

A study of SitPed was conducted in 2014 that consisted of two phases. In the first phase, a set of 11

domain experts were split across three authoring conditions: full SitPed (as described), SitPed Lite

(hypertext-only with no graphics or sound), and a specialized spreadsheet. Authors were given scenario

data and asked to annotate it both with appropriate tasks (as well as known or likely misconceptions) and

tutor messages. In the second phase, the data sets generated from each condition were used to create three

separate tutoring systems (randomly using one of the data sets from each corresponding group). Initial

results from phase 1 suggest that authors in the SitPed conditions generally wrote longer feedback

messages and created more links to the task list in their authored models, but covered far less of the

scenario space. Although the results of phase 2 are still being analyzed at the time of this writing, initial

results suggest that learners in all three conditions demonstrated learning gains with trends in favor of

SitPed (Lane, Core, et al., in-press).

Our final example of an authoring tool that leverages examples (or equivalently, demonstrations) is

actually a more recent addition to CTAT. SimStudent (Matsuda, Cohen & Koedinger, 2014; Matsuda, et

al., 2013) extends work started with Demonstr8 to pursue the holy grail of authoring: deriving cognitive

models (or more generally, expert models with rich representations) based on demonstration of the skill.

SimStudent uses inductive logic programming to infer production rules interactively with an author. That

is, as an author interacts with SimStudent, the author is tutoring the system an author can simply

show SimStudent what to do at any point or it can let SimStudent perform problem solving steps. In the

latter case, the author gives feedback to confirm or correct the emerging model. SimStudent creators have

demonstrated that the interactive approach produces higher levels of accuracy in the resulting models

(Matsuda, et al., 2014). Similarly, the use of induction allowed the resulting model to go beyond the

examples used to train it (MacLellan, Koedinger & Matsuda, 2014). By adding the element of teaching a

model (versus simply demonstrating and letting the system observe), there seems to be a payoff in terms

of how close the resulting models can get to a hand-authored cognitive model.

Authoring by Demonstration in Simulation-Based Learning Environments

Other key ITS authoring efforts have leveraged ideas from programming by demonstration and authoring

with examples. In the area of simulation-based ITS authoring tools, RIDES was a pioneering effort that,

among a wide variety of other capabilities, included demonstration as a method for extracting tutoring

content (Munro, 2003; Munro et al., 1997; Munro, Pizzini, Johnson, Walker & Surmon, 2006). RIDES

provided authors the ability to build their own interfaces and show how to use them in a specialized

demonstration mode. In addition, RIDES had a rich language for modeling physical systems, identifying

expert pathways through the system, and authoring pedagogical feedback. The system incorporates

simulation along with other instructional materials to support procedural learning. RIDES has been used

314

to develop tutors for a variety of domains, including diagnosis of faulty electronic systems and shipboard

radar tracking.

A more recent instance of authoring by demonstration, being used in a simulated environment, is the

Extensible Problem Specific Tutor (xPST) (S. Gilbert, Devasani, Kodavali & Blessing, 2011). By seeking

to capture programming by demonstration in simulated, 3D environments, xPST is unique in its use of

freely explorable 3D environments combined with authoring. The system allows authors to link tutoring

behaviors to events in a 3D environment to enable the detection of key events (such as recognizing that a

step in a procedure has been taken) and then tutoring at those times by delivering hints and feedback.

While xPST does not involve authoring directly inside the 3D environment, a web interface is available

that has been tested with nonprogrammers who have been able to successfully create tutors for specific

skills (S. B. Gilbert, Blessing & Kodavali, 2009).

Themes

In this review of authoring systems that have specifically built to be accessible by nonprogrammers, a few

key themes emerge that both highlight the limitations imposed by addressing this audience, and the key

areas for future research that we address in our conclusions. Although the systems discussed in this

chapter have seen some limited successes, they remain largely in the research and prototype categories

with much to be desired in terms of ease of use and accessibility. This seems to be one stable, and

undesirable, status of the field (Devasani, 2011; Murray, et al., 2003), although authoring ITS-like

interactions have seen dramatic adoption rates (Heffernan & Heffernan, 2014). In nearly every system

reviewed here, authors are not spared the inherent complexity of ITS creation (with SimStudent and

ASPIRE standing out as possible exceptions). Authors must organize and annotate the vast space of

possible learner actions given a specific problem (e.g., example-tracing tutors and SitPed), or alternatively

create the complex pedagogical policies needed for ITS decision-making (e.g., REDEEM and xPST). It

could be argued that this inherent complexity is unavoidable. In the rest of this section, we summarize

these issues by highlighting three themes that emerge from the review.

Theme One: Leveraging of Intuition and Existing Skillsets

All of the authoring tools in this review seek, to varying degrees, to leverage intuitive and simplified

elicitation methods such as providing examples or using basic ontology creation tools. The two primary

categories of approaches reviewed are (1) intuitive interfaces for capturing domain and pedagogical

knowledge and (2) leveraging of an author’s existing skillsets and knowledge, such as solving problems

in the targeted task domain. Developing GUIs (both for the learner by an author and for the author by a

software engineer) are general challenges for authoring systems (Murray, 2003); however, the specific

challenge of developing an interface for nonprogrammers is at its core a HCI problem. Interfaces matter,

and they matter to a very large degree when system designers ask non-technical audiences to create highly

technical content. The second approach, and one that shows up in several different forms in the reviewed

systems, is to ask authors to do what they already know how to do: solve problems. Whether it is creating

examples, demonstrating a task, or interactively walking through a problem space emulating a learner,

this path to building tutors is showing significant promise. Evaluations cited in this review suggest that

nonprogrammers can do this, and that they can produce models with reasonably good accuracy.

Theme Two: Tradeoff Between ITS Sophistication and Methods of Elicitation

A closely related theme is the fundamental tradeoff that occurs when a system limits the expressive power

of the author (which is a subset of the full space of tradeoffs outlined by Murray (2003, p. 518)). Of

315

course, limiting expressive power is necessary to simplifying knowledge elicitation (barring a profound

discovery in the knowledge elicitation field). For example, REDEEM provides a wide array of easy-to-

understand sliders and a logical workflow while allowing authors to create “simple” tutors. Similarly,

SitPed supports authors in navigating a large problem space by working in the learner’s environment, but

does not produce an expert representation with the richness of most traditional ITSs. But emerging

research that leverages machine learning techniques is beginning to close this gap. Both SimStudent and

ASPIRE go one step further by attempting to build cognitive models and constraint bases from simplified

interactions with an author. These are important advances in the field that directly address known

shortcomings. The primary limitation is that these approaches are currently limited to fairly simple task

domains that involve symbol manipulation (although important ones, including algebra and arithmetic).

This is a typical progression in AI and so we suspect future work will push this research into new task

domains and uncharted spaces.

Theme Three: Focused Outputs from Authoring and Carefully Chosen Pedagogical

Goals

Authoring tools naturally tend to narrow the problem in appropriate ways to help authors complete the

task and produce a usable system. In other words, authoring tools for nonprogrammers may never allow a

single author to create an end-to-end tutor for any task domain imaginable, but they can certainly operate

in defined spaces and allow authors to tailor existing systems for their particular needs. For example,

xPST provides tools for problem-specific tutoring (i.e., a new model for each new problem) and example-

tracing is similar in that respect. In these cases, generalized ITSs are not the goal the goal is to offer step-

level help and assess learner actions in specific situations. The norm for nonprogrammer authoring is

populate only the ITS modules (see Figure 1) that matter most given specific pedagogical aims.

Conclusions

The overarching contribution of work on authoring tools for nonprogrammers thus far is that it provides

proof-of-concepts that simplify authoring environments, and can be used to produce usable tutors. There

continues to be limited studies on the products of authoring tools in terms of teaching and learning

efficacy since most studies look at either time to create content, or the completeness of a produced model.

Simple success at building a tutor is also an important, but limiting measure.

But, it is true that more studies are being conducted with authoring tools. REDEEM has been the focus of

a long list of evaluations, even comparing performance against CAI counterparts (and outperforming

them). Along those lines, SitPed’s two-phase study model seeks to link authoring affordances to

differences in learning. These are promising trends that will lead to better authoring tools that do not

simply make authoring easier, but also nudge authors to make decisions that are in line with known

principles of learning and effective pedagogy. This large and growing body of work supports the notion

that serious attention is being paid to nonprogrammers and scalability issues and suggests that the field as

a whole recognizes the problem with having effective ITSs in the world, but only seeing limited adoption.

There are still significant gaps in the research as a whole, however. Very few, if any of the systems

reviewed here have treated the act of authoring as a cognitive skill. Although Murray (Murray, 2003)

suggests that authoring tools could do a better job teaching authors how to author, the skill itself is largely

treated as a black box. Highly relevant work on automated cognitive task analysis tools, such as DNA

(Valerie J Shute & Torreano, 2003), has had an influence on ITS authoring tools, but there is still much

room for improvement in modeling and supporting processes, decisions, and the creativity inherent in

good authoring (which is a form of teaching, as evidenced by SimStudent).

316

With respect to the implications for the future of the GIFT architecture, it seems clear that a truly general

system for non-technical audiences is not likely to bear fruit. Rather, given the nature of the systems built

thus far and reviewed here, a more productive vision for GIFT would likely lie in creating specialized

versions of GIFT for broad domain categories. For example, the history of cognitive tutors (Anderson, et

al., 1995) and also with CTAT, many (but not all) of the systems focus on symbol manipulation tasks,

such as geometry proofs, equation solving, stoichiometry, and so on. The commonality between a class of

domains can be a powerful force in the world of authoring since it can support reuse of formalisms,

pedagogy, and even interfaces. While GIFT is currently built around standards for formalizing assessment

and pedagogy in any domain, a goal should be to provide tools that differentiate authoring across

cognitive, affective, and psychomotor domains. The real challenge of authoring however is removing the

required programming component to establish real-time assessment functions. As of now, all authoring is

completed in GIFT’s domain knowledge file (DKF) where a hierarchical representation of a domain is

linked to specific condition classes authored for determining performance on an “at-”, “above-”, and

“below-expectation” rating. Having a situated interface that enables an author to establish performance

criteria while building out scenarios and problem sets is recommended.

A second, but related possible implication for GIFT from this work is the idea of building tools for

building authoring tools (in the spirit of “compiler compilers” popular in the early years of computer

science). In other words, designing a pipeline from engineers to end-users who face specific authoring

tasks could further spread the work of building ITSs and expedite the production of ITSs that meet real

needs. The problem would still exist for extracting rich knowledge from a non-programmer, but the

engineer in the loop design could select the best methods given the task domain and the pedagogical

goals, then produce tools that meet the need (e.g., authoring by example for practice support, or adaptive

presentation of content using multiple-choice quizzes). The benefit is that GIFT already has many of the

tools in place for programmers, so building customization tools and easily adjusted interfaces could imply

an authoring tool generator is not far off. The open source nature of GIFT supports this approach, but

buy-in is required from the ITS community as a whole so that the authoring tools, processes, and methods

evolve as more systems are established using the GIFT architectural dependencies.

A final recommendation for GIFT that emerges from this review highlights the need for a longer-term

vision for the future of authoring tools. GIFT is equipped with a number of important capabilities that

address the needs of educators and researchers. This combination could play a major role in bringing

together the creation of ITSs with authoring tools and evolving them to both improve (in terms of their

ability to promote learning) and be shared within a community. In the spirit of the ASSISTments project

that has brought together unprecedented numbers of teachers to create, share, and evaluate content

(Heffernan & Heffernan, 2014), GIFT could provide the underlying tools that allow authors to create

ITSs, collect important data such as pre- and post-test scores, physiological data, and usability data, to act

as the hub for a living cycle of growth and improvement of user-generated ITSs. The vision of an

instructor creating content then reviewing the aggregated results of days-worth of usage to then make

adjustments and improvements to the content, is a powerful one for GIFT developers to consider. It is

understood that future GIFT developments are focused on pushing authoring to a collaborative, web-

based interface that uses customized tools to remove low-level programming for establishing the modules

to deliver an ITS for a domain. The initial focus is on authoring environments to remove the burden of

building out XML files that GIFT runs on. To make GIFT more extensible, a focus needs to address

learning and training effectiveness tools to assess the effect of authored pedagogical approaches and their

influence on performance outcomes. A sought after goal would be to establish probabilistic modeling

approaches that can use reinforcement learning techniques to automatically adjust pedagogical policies

based on outcomes across a large dataset of learners interacting with the system. This in turn introduces

further complications when it comes to authoring tools, in that new techniques would be required to build

out these policies when an individual is void of this knowledge and understanding.

317

In sum, research on authoring tools for nonprogrammers is making a great deal of progress and producing

useful results. There is much room for continued improvements and, sadly, ITS authoring tools still fall

way behind those of commercially viable CAI authoring tools (Murray, 2003). Researchers should

continue to engage in more studies on authoring and focus on accuracy of produced models, usability of

tools, and increase efficacy studies that link authoring affordances to learning outcomes. In addition, an

issue not addressed in this review but of high importance the need for greater emphasis on multi-party

authoring. It is unlikely that one person will be qualified to do end-to-end authoring, and so explicit

support for collaboration and workspaces is definitely needed. Authoring researchers should seek to

provide explicit support for good pedagogy and the targeting the right level of complexity for desired

learning outcomes. Together, and with general frameworks like GIFT to underlie them, it is likely that

authoring tools for ITSs will continue to close the gap between research and real-world needs. As newer

technologies, such as tablets and immersive games, work their way into educational technologies more

deeply, authoring tools will evolve to meet those needs and research should be conducted to inform these

inevitable trends.

References

Ainsworth, S. & Fleming, P. (2006). Evaluating authoring tools for teachers as instructional designers. Computers in

human behavior, 22(1), 131-148.

Ainsworth, S., Major, N., Grimshaw, S., Hays, M., Underwood, J. & Williams, B. (2003). REDEEM: Simple

Intelligent Tutoring Systems from Usable Tools. In T. Murray, S. Ainsworth & S. Blessing (Eds.),

Authoring Tools for Advanced Technology Learning Environments (pp. 205-232).

Aleven, V., McLaren, B., Sewall, J. & Koedinger, K. (2006). The Cognitive Tutor Authoring Tools (CTAT):

Preliminary Evaluation of Efficiency Gains. In M. Ikeda, K. Ashley & T.-W. Chan (Eds.), Intelligent

Tutoring Systems (Vol. 4053, pp. 61-70): Springer Berlin / Heidelberg.

Aleven, V., McLaren, B. M., Sewall, J. & Koedinger, K. R. (2009). A New Paradigm for Intelligent Tutoring

Systems: Example-Tracing Tutors. International Journal of Artificial Intelligence in Education, 19(2), 105-

154.

Anderson, J. R., Corbett, A. T., Koedinger, K. R. & Pelletier, R. (1995). Cognitive tutors: Lessons learned. Journal

of the Learning Sciences, 4(2), 167-207.

Brusilovsky, P. (2012). Adaptive Hypermedia for Education and Training. Adaptive Technologies for Training and

Education, 46.

Cypher, A. & Halbert, D. C. (1993). Watch what I do: programming by demonstration: MIT press.

D’Mello, S. K. & Graesser, A. C. (2012). AutoTutor and affective AutoTutor: Learning by talking with cognitively

and emotionally intelligent computers that talk back. ACM Transactions on Interactive Intelligent Systems,

2 (4)(23), 1 - 38.

Devasani, S. (2011). Intelligent tutoring system authoring tools for non-programmers. Master’s Thesis, Iowa State

University.

Gilbert, S., Devasani, S., Kodavali, S. & Blessing, S. (2011). Easy authoring of intelligent tutoring systems for

synthetic environments. Paper presented at the Proceedings of the Twentieth Conference on Behavior

Representation in Modeling and Simulation.

Gilbert, S. B., Blessing, S. & Kodavali, S. K. (2009). The Extensible Problem-Specific Tutor (xPST): Evaluation of

an API for Tutoring on Existing Interfaces. Paper presented at the International Conference on Artificial

Intelligence in Education.

Heffernan, N. T. & Heffernan, C. L. (2014). The ASSISTments Ecosystem: Building a Platform that Brings

Scientists and Teachers Together for Minimally Invasive Research on Human Learning and Teaching.

International Journal of Artificial Intelligence in Education, 24(4), 470-497.

Hoffman, R. R., Shadbolt, N. R., Burton, A. M. & Klein, G. (1995). Eliciting knowledge from experts: A

methodological analysis. Organizational behavior and human decision processes, 62(2), 129-158.

MacLellan, C. J., Koedinger, K. R. & Matsuda, N. (2014). Authoring Tutors with SimStudent: An Evaluation of

Efficiency and Model Quality. Paper presented at the Intelligent Tutoring Systems.

Mark, M. A. & Greer, J. E. (1995). The VCR Tutor: Effective Instruction for Device Operation. The Journal of the

Learning Sciences, 4(2), 209-246.

318

Matsuda, N., Cohen, W. & Koedinger, K. (2014). Teaching the Teacher: Tutoring SimStudent Leads to More

Effective Cognitive Tutor Authoring. International Journal of Artificial Intelligence in Education, 1-34.

doi: 10.1007/s40593-014-0020-1

Matsuda, N., Yarzebinski, E., Keiser, V., Raizada, R., Cohen, W. W., Stylianides, G. J. & Koedinger, K. R. (2013).

Cognitive anatomy of tutor learning: Lessons learned with SimStudent. Journal of Educational Psychology,

105(4), 1152.

Mitrovic, A., Martin, B. & Suraweera, P. (2007). Intelligent Tutors for All: The Constraint-Based Approach. IEEE

Intelligent Systems, 22(4), 38-45.

Mitrovic, A., Martin, B., Suraweera, P., Zakharov, K., Milik, N., Holland, J. & Mcguigan, N. (2009). ASPIRE: An

Authoring System and Deployment Environment for Constraint-Based Tutors. Int. J. Artif. Intell. Ed.,

19(2), 155-188.

Mitrovic, A., McGuigan, N., Martin, B., Suraweera, P., Milik, N. & Holland, J. (2008). Authoring Constraint-based

Tutors in ASPIRE: a Case Study of a Capital Investment Tutor. Paper presented at the World Conference

on Educational Multimedia, Hypermedia and Telecommunications.

Munro, A. (2003). Authoring simulation-centered learning environments with RIDES and VIVIDS. In T. Murray, S.

Blessing & S. Ainsworth (Eds.), Authoring Tools for Advanced Technology Learning Environments (pp.

61-91). Dordrecht, Netherlands: Kluwer Academic Publishers.

Munro, A., Johnson, M. C., Pizzini, Q. A., Surmon, D. S., Towne, D. M. & Wogulis, J. L. (1997). Authoring

simulation-centered tutors with RIDES. International Journal of Artificial Intelligence in Education, 8,

284-316.

Munro, A., Pizzini, Q. A., Johnson, M. C., Walker, J. & Surmon, D. (2006). Knowledge, models, and tools in

support of advanced distance learning final report: The iRides performance simulation / instruction delivery

and authoring systems: University of Southern California Behavioral Technology Laboratory.

Murray, T. (1999). Authoring intelligent tutoring systems: An analysis of the state of the art. International Journal

of Artificial Intelligence in Education (IJAIED), 10, 98-129.

Murray, T. (2003). An Overview of Intelligent Tutoring System Authoring Tools: Updated Analysis of the State of

the Art. In T. Murray, S. Blessing & S. Ainsworth (Eds.), Authoring Tools for Advanced Technology

Learning Environments (pp. 491-544): Springer Netherlands.

Murray, T., Blessing, S. & Ainsworth, S. (2003). Authoring Tools for Advanced Technology Learning

Environments. Dordrecht: Kluwer Academic Publishers.

Nye, B. D. (2013). ITS and the digital divide: Trends, challenges, and opportunities. Paper presented at the

Artificial Intelligence in Education.

Nye, B. D. (2014). Barriers to ITS Adoption: A Systematic Mapping Study. In S. Trausan-Matu, K. Boyer, M.

Crosby & K. Panourgia (Eds.), Intelligent Tutoring Systems (Vol. 8474, pp. 583-590): Springer

International Publishing.

Shute, V. J. & Psotka, J. (1996). Intelligent tutoring systems: Past, present, and future. In D. H. Jonassen (Ed.),

Handbook for research for educational communications and technology (pp. 570-599). New York, NY:

Macmillan.

Shute, V. J. & Torreano, L. A. (2003). Formative evaluation of an automated knowledge elicitation and organization

tool Authoring Tools for Advanced Technology Learning Environments (pp. 149-180): Springer.

Sottilare, R. A. (2012). A modular framework to support the authoring and assessment of adaptive computer-based

tutoring systems. Paper presented at the Interservice/Industry Training, Simulation & Education Conference

(I/ITSEC), Orlando, FL.

Tecuci, G. & Keeling, H. (1998). Developing Intelligent Educational Agents with the Disciple Learning Agent

Shell. In B. Goettl, H. Halff, C. Redfield & V. Shute (Eds.), Intelligent Tutoring Systems (Vol. 1452, pp.

454-463): Springer Berlin / Heidelberg.

VanLehn, K. (2006). The Behavior of Tutoring Systems. International Journal of Artificial Intelligence in

Education, 16(3), 227-265.

VanLehn, K. (2011). The Relative Effectiveness of Human Tutoring, Intelligent Tutoring Systems, and Other

Tutoring Systems. Educational Psychologist, 46(4), 197-221. doi: 10.1080/00461520.2011.611369

VanLehn, K., Lynch, C., Schulze, K., Shapiro, J. A., Shelby, R., Taylor, L., . . . Wintersgill, M. (2005). The Andes

Physics Tutoring System: Lessons Learned. Int. J. Artif. Intell. Ed., 15(3), 147-204.

Woolf, B. P. (2009). Building Intelligent Interactive Tutors: Student-centered Strategies for Revolutionizing E-

learning. Amsterdam, Netherlands: Morgan Kaufmann.

319

CHAPTER 26 Authoring Instructional Management Logic in

GIFT Using the Engine for Management of Adaptive

Pedagogy (EMAP)
Benjamin Goldberg

1
, Michael Hoffman

2
, and Ronald Tarr

3
1
US Army Research Laboratory,

2
Dignitas Technologies,

3
Institute for Simulation and Training

Introduction

The Generalized Intelligent Framework for Tutoring (GIFT) is a modular architecture built upon

standardized tools and methods to support personalized instruction across an array of computer-based

training applications (Sottilare, Brawner, Goldberg & Holden, 2013). With an emphasis on

personalization, GIFT requires a domain-agnostic pedagogical structure to support the authoring and

delivery of varying instructional techniques that can be executed within any learning environment (Wang-

Costello, Goldberg, Tarr, Cintron & Jiang, 2013). From an implementation standpoint, this pedagogical

framework requires authoring functions that enable a system developer to configure strategy types to

specific domain calls and a runtime component that supports strategy execution in real-time based on

learner model inputs. During an initial market survey to address this requirement, no open-source solution

was recognized that provides adaptive course-flow capabilities based on both individual differences

across learners and historical and real-time performance metrics. The goal is to establish functions in

GIFT that determine what information to present, how best to present it, what assessments to deliver, how

best to grade them, and what guidance to provide and how best to moderate it.

To facilitate this need, the Engine for Management of Adaptive Pedagogy (EMAP) was developed. The

EMAP is a pedagogical architecture built around GIFT standards to support the authoring and delivery of

adaptive course materials that function on both an inner-loop and outer-loop capacity (Goldberg et al.,

2012; VanLehn , 2006). It is structured around David Merrill’s Component Display Theory (CDT;

Merrill, 1994) and is designed to support adaptive instruction based on the tenets of knowledge and skill

acquisition. The framework is designed to assist with two facets of lesson creation. First, it is designed to

serve as a guiding template for subject matter experts when constructing intelligent and adaptive course

materials that adhere to sound instructional design principles. And second, it serves as a framework to

support instructional strategy focused research to examine pedagogical practices and the influence of

individual differences on learning outcomes. As such, the EMAP required the development of authoring

tools to support the types of functions and data calls linked to its implementation. In this chapter, we

define a notional authoring workflow using the EMAP. We highlight the varying authoring tools and

processes required for implementing individualized instruction along with the instructional system theory

informing its design. In addition, we highlight intended use cases of the EMAP across two distinctly

different application environments: (1) EMAP for support of experimentation within the learning sciences

research community and (2) EMAP for support of course development across instructional designers and

educators in a classroom or distributed setting. This is followed by a description of future work involving

the EMAP to support automated creation of learning materials through the use of reusable learning

objects and large ontological representations of domains and courses.

The Engine For Management Of Adaptive Pedagogy (EMAP)

The EMAP enhances GIFT through a set of authoring tools and runtime components that enable

customized personalization across multiple instructional strategy types. The goal is to provide a means for

320

instructors and course developers to build highly individualized lesson interactions that manage the

student experience based on configured learning paths and real-time performance. In addition, the EMAP

serves as an automated lesson manager when a learning event is executed in a self-regulated environment.

It is currently being built to manage the delivery of information and course materials, perform assessment

related practices to determine an individual’s knowledge and skill for a set of concepts linked with a

domain, manage the delivery of real-time guidance and interventions found to support learning outcomes,

and direct remediation paths based on performance.

The pedagogical framework is intended to support the various interactions that occur when an individual

is learning a new topic or skill. This includes the design of actionable logic that determines for every

domain of instruction (1) what material to present, (2) how best to assess knowledge and skill linked to a

task and set of competencies, and (3) what guidance and feedback practices most reliably impact

subsequent performance outcomes. The goal is to establish a data-driven pedagogical model that adapts

strategy execution based on the type of learner the interventions moderate most appropriately. To make

this a manageable problem space, the first steps associated with the EMAP design was identifying a

generalized framework to support its function that is grounded in sound instructional system design (ISD)

theory. In the following subsection, we highlight the ISD tenets informing the EMAP’s implementation

and the constraints and limitations associated with the selected approach.

Instructional Design Informing EMAP Development

The EMAP design was the resulting outcome of a collaborative project between the US Army Research

Laboratory (ARL) and the Institute for Simulation and Training (IST) at the University of Central Florida.

The task was to define a generalized pedagogical framework that enables the execution of instructional

strategies and interventions that are personalized to a given learner and are based on prior empirical

evidence supporting their utility. Another goal was to establish a simplistic pedagogical framework that

accounts for the multiple interactions associated with learning a new domain, on a general level. The

simplistic approach is desired for two reasons: (1) to ease the authoring burden on the course developer in

an effort to reduce their workload associated with intelligent tutoring system (ITS) creation and (2) to

establish a lesson flow that focuses on domain relevant information that can support adaptive remediation

loops.

Following an extensive review of literature focused on instructional system design and pedagogical

strategy implementations within computer-based learning environments, the team selected David

Merrill’s component display theory (CDT) to serve as the guiding framework to formalize the EMAP

requirements around (Wang-Costello, Goldberg, Tarr, Cintron & Jiang, 2013). The CDT was originally

constructed as a way to simplify theories and models of instruction around a set of core interactions a

learner engages in when mastering a new domain (Merrill, 1994). For our efforts, the CDT served as a

simplistic framework to organize instructional strategy research that would ultimately inform the

development of the EMAP’s domain independent structure.

The CDT breaks learning down into four fundamental presentation forms that focus on content and

presentation modes. These instructional conditions, known as CDT’s Presentation Forms, provide the

basic building blocks for the instructional strategies present in the EMAP. CDT indicates two paths when

it comes to content as depicted in the Primary Presentation Forms (Figure 1): Content can be presented

(expository); or the instructor asks the student to remember or use the content (inquisitory). The content

can represent a general case (generality) or it can represent a specific case (instance). Therefore,

instruction can be divided into four categories: Expository generality present a general case (Rule);

Expository instance present a specific case (Example); Inquisitory generality ask the student to

remember or apply the general case (Recall); and Inquisitory instance ask the student to remember or

321

apply the specific case (Practice). These four categories can be used as high-level metadata descriptors to

label training content, with each category applying different pedagogical practices inherent to the learning

process. Therefore, instructional strategies can be explicitly defined and categorized within each

component of the CDT. This association allows an instructional designer to understand what a piece of

content is intended to provide in a lesson context (i.e., this video y provides an example for enabling

objective x), and further instructional strategies can be defined to inform when this piece of material is

most suitable for use. With a framework for organizing content and applying metadata descriptors, a

model is required to determine selection criteria and to perform conflict resolution.

Content

Mode

CDT Model

The Primary Presentation Forms

Generality Rule Recall

Instances Example Practice

 Expository Inquisitory

 Presentation Mode

Figure 1. The CDT model

Addressing Individual Differences in the EMAP

With the CDT serving as a generalized pedagogical framework for course construction, the next task was

building empirically driven condition statements for the delivery of instructional materials that account

for individual differences across a set of learners. The initial construction was facilitated through the

creation of an algorithm in the form of a decision tree that informs adaptation based on general learner

characteristics. Specifically, the decision tree informs the selection of instructional strategies based on

known information about the learner (e.g., learner motivation, learning style, previous experience, etc.)

and the logic is established using the Pedagogical Configuration Authoring Tool (PCAT), which is

described in detail below. The resulting strategies were identified through an extensive literature review

of empirically based research in an attempt to produce a list of commonly applied techniques found to

reliably impact learning outcomes.

While many strategies were investigated across the learning sciences community, and many themes

recognized, the studies often were limited to single domains and learning environments. The summary of

this work can be seen across two publications produced during the execution of the described effort (see

Goldberg et al., 2012; Wang-Costello et al., 2013). As a result, establishing a truly generalized

pedagogical manager requires future research in an attempt to study the effect of strategies on outcomes

and how those specific instructional techniques transfer to different learning environments. In this vein,

the EMAP was designed to support both the creation of customized learning applications in addition to

providing tools to support robust instructional strategy focused research. The aim for such work is to

inform the learning community as a whole and to inform future GIFT developments. In order for GIFT

and the EMAP to become widely accepted, its application must be easy to learn and apply. In the next

section, we highlight the various authoring processes developed to support EMAP functions and how the

tools are designed for use when building out adaptive GIFT managed courses.

322

Gift Authoring Tools to Support EMAP Functions

A number of authoring processes have been established to support the various pedagogical functions

made available by the EMAP. In this section, we introduce the environments currently in place to

implement specific configurations that the EMAP operates on. These include (1) the PCAT, (2) the

Survey Authoring System (SAS), (3) the Metadata Authoring Tool (MAT), and (4) the Course Authoring

Tool (CAT). Each tool serves a different purpose in building out the adaptive logic associated with a

lesson using Merrill’s CDT to structure interaction and assessment types. It is important to note that each

tool is currently implemented within an open-source extensible markup language (XML) editor that has

pre-established schemas. These tools are not intended to be the final authoring interfaces, as each process

is being converted into web-based tools designed around usability principles and heuristics to support

ease of interaction. However, with that said it is important to understand the underlying logic informing

the EMAP, as it will support a better applications of its method.

Pedagogical Configuration Authoring Tool

The PCAT is an interface component designed for linking learner relevant information with metadata that

drives pedagogical decisions in GIFT. One important note to mention is the domain independent nature of

what is authored in the PCAT. More often than not, systems tightly couple pedagogy with the domain,

providing little reuse for future developmental efforts. The EMAP differs from this description in that the

authoring process is based on generalized tools and methods that translate across domain applications,

including the pedagogical strategies the system acts upon (Goldberg et al., 2012). As seen in Figure 1, a

developer interacting with the PCAT defines learner model attributes they want GIFT to use for

moderating adaptive practices. This is accomplished by linking a set of content descriptors with a given

attribute across each of the established CDT quadrants represented in GIFT. These descriptors are a

collection of metadata tags that are machine actionable and provide generalized information associated

with content and guidance that can be used to configure system interactions in real time. The metadata

currently in use is based on the learning object metadata (LOM; Mitchell & Farha, 2007) standard put in

place by the Institute for Electrical and Electronics Engineers (IEEE). This provides a set of high level

categories (e.g., interactivity type, difficulty, skill level, coverage, etc.) and value ranges (i.e., skill level is

broken down into novice, journeyman, and expert) that inform characteristics for a type of interaction.

As an example, one can see in Figure 2 that personalization is moderated by an individual’s prior

knowledge, self-regulatory ability, motivation, and grit. When establishing these variables, a current

assumption is that the learner model has a historical representation of these measures or that the system

has a means for collecting inputs to inform classification. Continuing with this example, a developer has

the ability to define the attributes that dictate varying pedagogical techniques based on the CDT quadrant.

For the Rules and Examples quadrants, an author’s primary function is to define ideal types of content

with relation to the individual differences variable that moderates it selection. For instance, you can see

specific metadata tags linked with the learner attribute Motivation and the value Low. For this type of

learner, the PCAT will look for Rules associated content that has tags marked as visual, animations, and

low interactivity. The tags currently referenced are based on the previously mentioned instructional

strategies literature review we conducted. These configurations are informed by prior instructional

strategy focused research, but their true utility as a generalized strategy needs further verification and

validation.

323

Figure 2. GIFT’s PCAT

While Rules and Examples primarily focus on information delivery, the Recall and Practice quadrants are

focused on assessment, guidance, and remediation. The Recall quadrant is unique because it focuses on

knowledge elicitation through an automatically generated quiz. To enable this capability, there are two

additional authoring processes that take place in the SAS. First, one builds a bank of concept questions to

generate a recall assessment from. Second, one uses the CAT to configure assessment scoring outcomes

that determine if one advances to practice or if a remediation loop is triggered. Each process is covered in

more detail below.

In the Practice quadrant, an author establishes adaptive configurations associated with the difficulty and

complexity of a scenario, along with timing and specificity configurations linked to concept assessments

being managed during run-time. The PCAT is unique because it differentiates the type of pedagogy

associated with different types of interactions tied to learning a new topic or domain. This enables

personalization on a number of facets linked to instruction, such as modifying delivery of content based

on prior knowledge/experiences and learning preferences to focusing guidance and remediation around

knowledge gaps and impasses recognized during assessment. While the PCAT establishes configurations

of learner information with pedagogical technique, the MAT is set up to build metadata files that

associate with a specific learning material or training application.

324

Metadata Authoring Tool (MAT)

The MAT (Figure 3) is an interface component in GIFT that provides a simple function; it allows one to

tag existing training content with concept-dependent metadata that is acted upon by the EMAP. While the

PCAT enables an ITS developer to build configurations between learner model data and metadata

descriptors linked with pedagogical techniques, the MAT is established to build files that link metadata

with actual content that can be delivered for learning purposes. When in an EMAP managed lesson, a

learner is directed through defined branching points, called Merrill’s Branching, that associate with the

four quadrants of the CDT. When a learner starts instruction in the Rules quadrant, the PCAT produced

file is referenced for determining the type of content to search for based on a learner’s individual profile

and the type of metadata their models inform. Next, the EMAP searches through the various files

generated in the MAT, for a given lesson, and looks for the closest match with respect to the number of

descriptors for a given learning material and the ideal match informed by the PCAT. As such, the MAT is

a very important tool as it allows an author and system developer to label their content in a controlled

fashion that is then moderated autonomously by the EMAP during run-time.

Figure 3. GIFT’s MAT

As the MAT is based on EMAP theory and design, it provides multiple input fields that relate to how the

pedagogical model operates. These input fields are used to create a GIFT metadata file that when

collocated with any number of additional metadata file instances, can be mined during course execution to

325

determine what material to present to a learner. Figure 3 provides a screenshot of the MAT authoring

environment and displays input entries for a specific PowerPoint used in medic training. The initial

activity for a developer is to provide a reference to the learning material that is being described with

metadata attributes. The MAT allows the author to select whether additional features are needed when the

content is delivered such as concept assessments and useful instructional strategies. Next, the author is

responsible for entering the quadrant of the CDT this material most appropriately belongs to. This is a

drop-down menu that allows one to enter whether the referenced item associates with rules, examples,

recall, or practice. This is followed by designating the concepts that are covered for a referenced item.

This entry is very important as each Merrill’s Branch Point functions on specific concepts defined when

building out the GIFT course file (this will be explained in more detail when presenting GIFT’s CAT).

Once concepts are identified, it is up to the interfacing developer to begin adding LOM tags that best

describe the piece the material in question. In the example above, one can see that the author entered tags

that inform a learning object’s interactivity, content style, difficulty/skill level, and the amount of user

control. An individual author can tag a learning object with as many descriptors as they deem appropriate.

With metadata in place to support the delivery of lesson materials and objects across the various EMAP

quadrants, an author also has the ability to author concept based assessment prompts for presentation in

the Recall quadrant. These assessment questions are developed in the Survey Authoring System.

Survey Authoring System (SAS)

When an individual installs the latest version of GIFT, that user is given access to the SAS. The SAS was

developed for two primary purposes: (1) to collect learner relevant information through surveys that are

used to update learner model attributes for the purpose of adaptation and (2) to deliver knowledge

assessments in the form of questions that can be automatically scored for updating competency states and

reporting performance across a set of learning objectives and concepts. In terms of the EMAP, both

functions are highly relevant. Firstly, if one defines configurations in the PCAT that act on learner trait

information such as motivation or grit, the SAS allows a developer to present validated questionnaires

and surveys that can be used to classify that individual learner. These functions are described in more

detail in the provided GIFT documentation once downloaded and many examples are made available to

work from.

For the purpose of this chapter, we focus on how the SAS is used to support the Recall quadrant in the

EMAP by assembling and delivering a set of questions for determining competency and informing

remediation paths. The SAS was modified to support the EMAP by providing a “check on learning”

function through the assessment of knowledge states across a set of predefined concepts for a lesson. A

course developer would start interaction in the SAS by building out a bank of questions that are of

relevance to the topic of instruction. As can be seen in Figure 4, GIFT’s SAS provides a web interface to

author the question, the answer type, and scoring weights that are used in determining knowledge states.

A new field added to the question building process is defining a set of associated concepts the specific

item informs. For EMAP purposes, this field is very important as it is used in defining the specific

question bank that will be used within the Recall quadrant interactions. One can also define the difficulty

level of a question in the properties filed, as a course developer can configure the number of questions to

be administered for a difficulty level across a specified concept as well.

326

Figure 4. GIFT’s SAS question creation interface

Following question generation, a course developer is then required to build the context for which the

generated items will be acted upon. This is achieved by establishing the specified concept question bank

the EMAP will operate on within the SAS’s survey context interface window (Figure 5). The survey

context is referenced by GIFT’s CAT, which is described next, and is used to identify the questionnaires

in the database that are referenced during course construction, as well as establishing question banks that

are used for Recall assessment purposes. In the SAS survey context interface, the author has the ability to

add concept question banks by selecting a specific concept that was established during question

generation. If the author selects a question bank for “Some Concept A,” then all questions that have an

“Associated Concept” property field with that particular entry will be included in the designated bank. If

one is using the EMAP to deliver a lesson on three concepts, this is where one organizes separate

questions banks for each concept, thus providing a granular approach to assessment for the purpose of

moderating personalized and performance driven remediation. For each concept question bank, an author

has an option of building in multiple questions of varying difficulty so as to avoid assessment on the same

question sets (i.e., imagine only 1 question existed for a concept, it would always be presented in a pre-

test, 1st recall and 2nd/3rd recall after remediation for the same learner each time the concept was taught).

Based on this, it is recommended a user author multiple questions across each concept so as to maintain

random assessment selection.

327

Figure 5. GIFT’s SAS survey context interface for the EMAP

One can also see that this survey context includes four independent questionnaires that are linked to the

context name that is used when creating a lesson or course. For this instance, the identified surveys are

used at the beginning of a lesson to update learner model attributes that are acted upon by the EMAP

quadrants as configured in the PCAT. With an established EMAP configuration completed in the PCAT,

an array of course materials and objects with associated metadata files, and the construction of question

banks for check-on-learning practices, the next step a course developer takes is using the CAT to build

out a sequence of interactions and transitions that will guide a learner automatically through lesson

materials.

Course Authoring Tool (CAT)

The GIFT CAT is the final authoring interface a course developer interacts with once all of their materials

and assessments have been appropriately configured for EMAP run-time. It is in this environment that an

328

author designates the sequence of interaction a learner will experience for a specific lesson. The lesson is

composed of defined transitions that dictate what is presented next (see GIFT documentation for a full list

of available transitions and their associated descriptions). The transitions of interest for the EMAP are

Present Survey and Merrill's Branch Point. The Present Survey transition enables an author to select a

questionnaire present in the SAS that will be delivered to a learner at any point in the course flow. For

EMAP purposes, a course developer might call for surveys upfront to collect information on learner

model attributes, such as measuring an individual’s motivation for a topic and applying a pre-test

assessment to establish initial performance states that can dictate lesson flow. This requires an author to

designate a survey context present within the SAS that determines what surveys and concept question

banks are made available (Figure 6). These referenced surveys can then be selected when a Present

Survey transition is entered. As one can see in Figure 6, a motivation survey and knowledge pre-test are

both entered as individual transitions to start the lesson. A pre-test is unique because it can be used to

modify a user’s experience within a lesson. An author can specify performance criteria for bypassing

components of instruction based on outcomes associated with this pre-test.

Figure 6. GIFT’s CAT

With defined surveys used to inform learner attributes and a pre-test to gauge initial knowledge levels, the

next step for an author is establishing Merrill Branch Points. These branch point transitions are managed

by the configurations established in the PCAT and MAT, as described above. Within the CAT, the author

selects specific concepts used to build the quadrants of the CDT for a given branch point. Within a single

course, one can define multiple branch point transitions. In figure 6, one can see two branches were

entered, covering a total of three concepts to be instructed. Once the author has selected the concepts a

branch point associates with, the author then has the opportunity to configure interactions across the

quadrants of the CDT. The CAT configurations allow a user to deselect certain quadrants that would be

bypassed when a learner enters that branch transition. In Figure 7, one can see the visual breakdown of

the quadrants where the practice field was not checked, thus bypassing that interaction.

329

Figure 7. GIFT’s CAT: Merrill’s Branch Point Transition

The last configurations an author can make within the CAT is specifying what will be delivered to a

learner within the Recall quadrant of the CDT (Figure 8). Once a user specifies the survey context

referenced in the SAS and the concepts a Merrill’s Branch Point is used to manage, the next step is

defining the number of questions to deliver for knowledge state assessment purposes and the scoring rules

that determine the state value to communicate out to the learner module. When defining the number of

questions to deliver, the inputs are used to identify matches within the established question banks that are

built in the survey context interface within the SAS. It first looks for questions linked to a concept and

then it looks for metadata values used to classify a difficulty ranking. In the example in Figure 8, the user

inputs the delivery of 1 question for the associated concepts across all three difficulty levels of easy,

medium, and hard.

330

Figure 8. GIFT’s CAT: Recall Assessment Scoring Rules

Below the question types, the assessment rules are defined. In the current state of the EMAP

development, assessment rules are simple condition statements linked to the number of questions a

learner gets scored correctly. These condition statements are important because they are used to determine

if the learner proceeds out of the Recall quadrant and into the Practice quadrant, if that interaction is

available, or if a learner triggers a Remediation Loop. Remediation Loops work in the same fashion for

the Recall and Practice quadrants. It is triggered by a form of assessment across both the knowledge and

skill states maintained in GIFT’s learner model. If a concept is scored at “below expectation” or “at

expectation” the EMAP initiates remediation by routing the learner to a Rule or Example quadrant for the

presentation of additional learning objects.

The selected path of remediation is based on the performance state resulting from an administered

assessment. For “below expectation” outcomes, the user is delivered both Rule and Example materials

focused on the specific concept found below criteria. For “at expectation” outcomes, the user is delivered

just Example materials before a follow-on assessment. In the event that multiple forms of content exist for

a single concept, an algorithm has been established that performs conflict resolution for initial content

selection as well as secondary remediation selection. This is important, as an author can build in multiple

representations of a single concept, thus providing more options to personalize a lesson around. All

remediation paths are reconfigurable. The current prioritization logic in place is as follows:

(1) If possible, don’t present domain content that has already been presented.

331

(2) Maximize the needed coverage of concepts by selecting the fewest content to present at that time.

(3) Maximize the appropriateness of the content by selecting the best match of EMAP learner state

attributes to the available metadata attributes.

(4) If available, use the content’s paradata (i.e., usage data about learning resources) to trim the

number of content choices that cover the same set of needed concepts.

(5) Choose randomly from the content choices that cover the same set of needed concepts.

The EMAP’s Intended Function

When designing the EMAP, two primary end-users were considered. These included traditional educators

and training developers that would use the EMAP toolsets to author adaptive courseware materials they

could distribute across classes and training organizations, and it included researchers and scientists within

the learning sciences community that have interest in adaptive instruction, individual differences, and

pedagogical heuristics. Making the distinctions between these two user groups is important because it will

dictate the primary authoring tools they will interact with.

The EMAP for Educators and Training Developers

The main difference between these two user sets is their interest and background associated with

individual differences based research. A simple assumption with our design is that the primary group of

educators and training developers building course materials with the EMAP will not be experts in

pedagogical theory and practice, thus placing an emphasis on GIFT to accommodate this lack of

knowledge. In fact, for this specific user group, the goal is to have an empirically driven pedagogical

configuration established within the PCAT that would require no manipulation. It will have support for all

the learner attributes available within GIFT along with pedagogical strategies to implement for a given

learner across the type of interactions experienced within the CDT quadrants.

As the goal of the EMAP is to support streamlined creation of personalized educational content, the

primary interactions this user group will engage in are housed within the MAT, SAS, and CAT. As

mentioned before, the PCAT will be off limits to these individuals because it will be operated in a default

capacity as it is intended to be empirically driven. However, a primary responsibility of these authors is to

tag available content, practice scenarios, and assessments with LOM descriptors that the PCAT is

configured around. A training developer will need to create a metadata descriptor file for each piece of

content and associate those files with the various quadrants of the CDT. As these authors are assumed to

be experts in the field they are building a course around, their main responsibility is bringing appropriate

materials to use for instruction and to set them up so that GIFT can manage their delivery.

Following interaction in the MAT, an author is then responsible to use the SAS to establish the surveys

that will be used to inform learner model attributes. An author is also then responsible to build concept

question banks that are ultimately used for pre-/post-test assessments as well as checks-on-learning

conducted within the Recall quadrant. Following, this class of authors would then interact in the CAT to

build out the sequence of transitions a learner would progress through, including the number of Merrill’s

Branch Points to be experienced. Once interaction in the CAT is complete, this user group can then run an

EMAP managed course and distribute it as required.

332

The EMAP for the Learning Sciences Research Community

When considering the authoring experience across the EMAP tools for the learning sciences community,

an assumption is that this user group is interested in the creation of experimental groups for the intentions

of running studies to support feedback and individual differences based research. The main differences

between these individuals and educators/training developers are that the learning sciences researchers will

interact heavily with the PCAT to build out specific configurations in support of their research questions.

This involves modifying current attributes available in the EMAP as well as adding additional variables

with the goal of assessing its effectiveness in informing adaptive pedagogical approaches. Within the

PCAT, an author references a learner model attribute as well as metadata descriptors associated with the

ideal type of content to deliver to that specific learner. For research purposes, the learning sciences user

group will be responsible for adding and removing available attribute tags for both the learner model and

metadata variables and associated values. Each of the available tags are referenced in an enumeration file

in GIFT’s source code that can be modified to support the type of learner attribute and metadata a

researcher desires the EMAP to act on. These files can be located at the following directory off of GIFT

root: GIFT\src\mil\arl\gift\common\enums\MetadataAttributeEnum.java and

GIFT\src\mil\arl\gift\common\ enums\LearnerStateAttributeNameEnum.java. For each of the attributes

represented in the learner state attribute enumerations file, a user will need to author an additional .java

file that specifies the available tags made available for that variable when manipulating the PCAT

authoring tool. Many examples are available to work from in the GIFT\src\mil\arl\gift\common\enums\

folder. Following any manipulation within GIFT’s source code, that user will need to recompile the

program to update variables available in the authoring process.

In implementing the EMAP for support in the learning sciences research community, there are also a

couple more assumed dependencies associated with the authoring tools. While an author will be required

to modify enumeration files in the source code to introduce variables of interest not currently supported in

the baseline version of GIFT, an author will also be required to make additions in the SAS for the purpose

of collecting individual differences metrics used to inform variable states that dictate strategy selection. In

addition, GIFT also supports tracking and inferring upon affective based data for the purpose of

diagnosing cognitive and emotional states experienced during a learning event. None of the current

EMAP configurations are built to support acting on this type of assessment. The PCAT would need to be

modified for this very purpose, along with identifying required classifiers that would be developed within

the learner and sensor modules of GIFT.

Future Work

In its current baseline state, the EMAP provides an automated lesson manager for a GIFT course with

some caveats. For example, the course author has but only one option for a “check on learning” within the

Recall CDT quadrant and that is an assessment composed of items selected at runtime from a designated

question bank. Other forms of knowledge assessment could be given, such as creating a static pre-

authored survey useful for research settings in which the consistency across users is desired or using

AutoTutor (Nye, Graesser & Hu, 2014) web services integrated with GIFT. Using AutoTutor allows

GIFT to hold a conversational discourse in natural language between one or more agents and the learner.

This interaction can be used to elicit a learner’s comprehension of prior instructed concepts in their own

words, which provides evidence for deeper understanding of a concept and its relationships.

As additional EMAP functionality and content type support is expanded, GIFT can increasingly serve as

the course delivery medium for third party applications such as Tools for Rapid Development of Expert

Models (TRADEM; Brown, Martin, Ray & Robson, 2015). TRADEM is designed to rapidly assist in the

transformation of domain content repositories into a hierarchical expert model. Ultimately, the user can

333

select to export the model into a simple GIFT course containing a Merrill’s branch point course transition.

The course package includes at least one Rule and one Example based auto-generated, metadata tagged

PowerPoint with slides that contain the information found in the expert model. In a future release of

TRADEM, it will automatically populate the SAS question bank with a set of questions related to the

course concepts, which will be used in the Recall CDT quadrant’s “check on learning.” Overall, this

process will enable GIFT authors to quickly generate a simple course given a content repository

containing many different files in numerous formats.

Continuing with the theme of auto-generated EMAP informed courses, one might have or want to build

an ontology representation of domain concepts and objectives where learning objects can be embedded.

Such an ontology would represent the knowledge and skills associated with a given domain, while also

providing direct linkages to content/problems/scenarios that can be used to instruct and assess those

associated concepts. In this manner, GIFT plans to leverage the a concept applied in the SCALE program

(Spain et al., 2013) where the leaf nodes in an established ontology related to land navigation are linked

with reusable learning objects (RLOs) such as images, PDFs, question banks, training scenarios, etc.

Using an ontology with established learning objects can be informed by EMAP relevant metadata

descriptors, thereby exposing those assets to the data mining used during GIFT course execution. All of

this would facilitate an educator to easily, and in some cases autonomously, build courseware that is

adaptive and linked with an ontology. A possible issue with this approach is controlling inputs and

performing semantic reasoning that allows linking concepts that are the same but labeled differently

possibly due to different data sources, authors, organizations (e.g., “map reading,” “reading a map,” “read

map,” “understanding a map,” etc.).

Finally, as mentioned above, another major push with the EMAP is translating its authoring processes

into an intuitive web-based interface that creates a transparent workflow of establishing all configurations

required to run an adaptive GIFT managed lesson. This will require the application of human factors

informed design that adheres to heuristics identified in the usability literature. Creating this authoring

workflow will require extensive research focused on formative evaluations that create iterative

development cycles to make the user experience as seamless as possible.

Conclusion

In this chapter, we presented the tools and methods formalized through the development of GIFT’s

EMAP. Authoring adaptation in GIFT is dependent on the functions made available in the pedagogical

module. The EMAP was built as an instructional framework that guides pedagogical authoring and

implementation within GIFT. The eMAP is structured around David Merrill’s CDT and is designed to

support adaptive instruction based on the tenets of knowledge and skill acquisition. The framework is

designed to assist with two facets of lesson creation. First, it is designed to serve as a guiding template for

subject matter experts when constructing intelligent and adaptive course materials that adhere to sound

instructional design principles. Second, it serves as a framework to support instructional strategy focused

research to examine pedagogical practices and the influence of individual differences on learning

outcomes. We also described the fundamental components that make up the EMAP, followed by the

authoring workflow associated with its implementation.

References

Brown, D., Martin, E., Ray, F. & Robson, R. (2015). Using GIFT as an adaptation engine for a dialogue-based

tutor. Paper presented at the Generalized Intelligent Framework for Tutoring (GIFT) Users Symposium

(GIFTSym2).

334

Goldberg, B., Brawner, K. W., Sottilare, R., Tarr, R., Billings, D. R. & Malone, N. (2012). Use of Evidence-based

Strategies to Enhance the Extensibility of Adaptive Tutoring Technologies. Paper presented at the

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012, Orlando, FL.

Merrill, M. D. (1994). The descriptive component display theory: Educational Technology Publications, Englewood

Cliffs, NJ.

Mitchell, J. L. & Farha, N. (2007). Learning Object Metadata: Use and Discovery. In K. Harman & A. Koohang

(Eds.), Learning Objects: Standards, Metadata, Repositories, and LCMS (pp. 1-40). Santa Rosa, CA:

Informing Science Press.

Nye, B. D., Graesser, A. C. & Hu, X. (2014). AutoTutor and Family: A Review of 17 Years of Natural Language

Tutoring. International Journal of Artificial Intelligence in Education, 24(4), 427-469.

Sottilare, R., Brawner, K. W., Goldberg, B. & Holden, H. (2013). The Generalized Intelligent Framework for

Tutoring (GIFT). In C. Best, G. Galanis, J. Kerry & R. Sottilare (Eds.), Fundamental Issues in Defense

Training and Simulation (pp. 223-234). Burlington, VT: Ashgate Publishing Company.

Spain, R., Mulvaney, R. H., Cummings, P., Barnieu, J., Hyland, J., Lodato, M. & Zoellick, C. (2013). Enhancing

Soldier-Centered Learning with Emerging Training Technologies and Integrated Assessments. Paper

presented at the Interservice/Industry Simulation Training & Education Conference (I/ITSEC), Orlando,

FL.

VanLehn, K. (2006). The behavior of tutoring systems. International Journal of Artificial Intelligence in Education,

16(3), 227-265.

Wang-Costello, J., Goldberg, B., Tarr, R. W., Cintron, L. M. & Jiang, H. (2013). Creating an Advanced Pedagogical

Model to Improve Intelligent Tutoring Technologies. Paper presented at The Interservice/Industry Training,

Simulation & Education Conference (I/ITSEC).

335

Chapter 27 Tiering, Layering and Bootstrapping for ITS

Development
Eric Domeshek, Randy Jensen, and Sowmya Ramachandran

Stottler Henke Associates, Inc.

Introduction

Intelligent tutoring system (ITS) authoring tools aim to lower the cost of code and content development,

maintenance, and reuse. We discuss three techniques for cost-containment: tiering, layering, and

bootstrapping. Our discussion focuses on the critical task of assessment authoring for situated tutors

(Schatz, Oakes, Folsom-Kovarik and Dolletski-Lazar, 2011). Situated tutors are a class of ITSs where

training is conducted in a scenario-playing experiential environment with intelligent adaptive instruction,

including micro-adaptation within scenarios and/or macro-adaptation across scenarios (Shute, 1993).

Exercise environments are often quite complex—e.g., simulations of helicopter flight controls, ship battle

stations, sensor suites, or command and control systems—and often include components for interacting

with simulated teammates, customers, or adversaries. Student assessment is complicated by the nuances

of the domain and task, the need to track activity in such complicated simulations, and the need to

generate simulation behaviors to create particular learning opportunities. Based entirely on the data and

cues available from the training environment, automated assessment mechanisms are responsible for

producing judgments of performance at a fidelity that meets training objectives by being sufficiently

comparable to human instructor assessments. The complexity of the assessment mechanism in this kind of

environment often translates to significant development costs, and thus the need for authoring techniques

aimed at reducing costs by structuring the process, component, and content development tasks.

A tiered structure of authoring tools offers a way to tailor knowledge elicitation and engineering for

different classes of experts, ranging from those with domain expertise or instructional knowledge, to

authors with skills in domain or task modeling, logical and symbolic reasoning, basic scripting, or even

advanced programming. A layered approach to modeling allows for composition of model components. It

promotes reuse of general knowledge where feasible, while allowing for context-specific knowledge to

fill gaps as needed. A bootstrapping approach involves generalizing assessment knowledge from specific

instances to scenario-independent mechanisms. Bootstrapping techniques we have applied include

incremental rule condition generalization and student action templates created by demonstration and

generalization.

These techniques fit an ITS development approach emphasizing incremental example-driven evolution

over upfront complete model development. We aim to gain the advantages of rapid/cheap initial

capability while still ensuring that instructional unit costs taper over time. We describe our experience

building ITS authoring tools that embody approaches to tiering, layering, and bootstrapping.

Related Research

Tiered authoring is an intuitive solution to the challenge of ITS authoring and, not surprisingly, has been

implemented in one form or another by a variety of authoring tools. Murray (1999) discusses meta-

authoring tools as a potentially effective approach to addressing the usability and power trade-off. Meta-

authoring tools are a means for creating special-purpose authoring tools using general-purpose authoring

tools. The latter are designed to be applicable to a wide variety of domains and support several types of

pedagogical approaches and thus would present a larger degree of authoring complexity. The idea is that

336

highly skilled authors could use these tools to create special-purpose authoring tools that are targeted at a

specific domain and a subset of pedagogical styles (Qiu & Riesbeck, 2005; Hsieh, Halff & Redfield,

1999). Limiting the scope of the tool in this manner makes it possible to design these authoring tools to be

more usable and less demanding in terms of authoring skills. Meta-authoring is an example of the tiered

authoring approach that we discuss below. For a more recent example, Nye, et al. (2014) describe a tool

that uses a tiered approach for augmenting web content with AutoTutor-like dialogues.

Layered authoring of ITS content is primarily intended to enable and promote reuse. This fits one of the

authoring tool methods enumerated by Murray (1999). However, given our bias toward example-driven

situated tutor development, we focus on reuse across scenarios rather than across entire tutor applications.

Layering is not aimed at reusing preexisting media or courseware as in REDEEM (Major, Ainsworth &

Wood, 1997) or the Shareable Content Object Reference Model (SCORM) standard (ADL, 2009), nor is

layering primarily concerned with reusing computational or user interface components (e.g., as in

SIMQUEST; deJong et al., 1998). Layering, as presented here, would not make sense in the context of

authoring a fully general domain model capable of solving any problem the tutor might pose to a student.

Bootstrapped acquisition of domain knowledge has been gaining traction in recent years. A common

approach is to use machine learning algorithms to learn initial domain knowledge and refine it on an

ongoing basis (Kumar, Roy, Roberts & Makhoul, 2014; Aleven, McLaren, Sewall & Koedinger, 2006).

More recently, SimStudent advances the concept even further where the ITS is an active learner, i.e., it

learns from an initial set of demonstrated solutions and refines its knowledge by actively validating it on

examples while asking for feedback and help, much like a student. Another bootstrapping approach is

limited to using student performance data to improve a tutor’s assessment or student modeling knowledge

while the initial knowledge itself is handcrafted (Baker, Corbett & Aleven, 2008; Barnes & Stamper,

2008). However, such bootstrapping is primarily envisioned as an automated process, whereas we

emphasize the more pragmatic approach of keeping authors in the loop to deal with the commonly

required representational shifts.

Discussion

Tiered Authoring

The challenge of ITS authoring lies in developing user-friendly tools that allow subject matter experts or

instructional designers to create complex pieces of knowledge. The targeted authors typically do not

possess the kinds of computational/logical modeling skill required to create the knowledge that informs

ITSs. This skill gap is often too large to be bridged by authoring tools. One way to reduce this gap is to

limit the complexity (breadth and/or depth) of knowledge provided to the tutor, thereby reducing

modeling complexity. However, this comes at the cost of reducing the “intelligence” of the ITS. An

alternative is to partition the space of the knowledge to be authored into sections that can be authored by

different people with different skillsets. One approach is to partition the knowledge into modules, each of

which might require a different skill set for authoring. For example, an author with expert modeling skills

may author performance assessment rules while an instructional designer might configure the pedagogy.

An alternative way to partition is to develop tiers of knowledge with one tier combining and specializing

another. Templates are an example of intermediary structures or abstractions that can be combined

together and instantiated to capture the knowledge required for assessment and tutoring. A tiered

approach to authoring provides a way to divide and distribute the task so as to match the skillset and

knowledge of the variety of contributors collaborating on the ITS.

The EarthTutor ITS and authoring tool illustrates this approach. This ITS was designed for NASA to

teach remote sensing image processing, a domain in which students analyze satellite data using an image

337

processing application. The objective of EarthTutor is to teach students to use image processing tools by

completing exercises related to specific questions about an image. EarthTutor structures an exercise as a

series of cards, each containing interactive behaviors embedded in HTML pages. The interactive

behaviors consist of questions and real-world tasks the student must complete in the host application.

Embedded in these behaviors is the logic for monitoring the student’s actions, presenting feedback, and

updating the student model.

EarthTutor provides a tiered tool suite for authoring these behaviors. At the foundational level, advanced

authors use a graphical flow chart tool to combine ITS and host-application primitives into hierarchies of

reusable parameterized assessment behaviors. A novice tier authoring tool, then, allows less skilled

authors to use previously defined flow charts from the behavior library to create interactive cards for

exercises. The novice tool enables authors to select behavior templates from the behavior library,

instantiate their parameters, and embed them in a card with other HTML content. Adding an instantiated

template to a card indicates (1) that the flow chart linked to the template should be executed when the

card is displayed, and (2) that the student interface should replace the template with a user interface (UI)

component (defined by the advanced author in the flow chart). This approach allows novice authors to

tailor tutoring behaviors to their own pedagogical needs using parameters, but the interface is reduced to

what you see is what you get (WYSIWYG) HTML and simple forms. This novice tier tool also lets

authors define a hierarchical course structure in which a course contains labs and labs contain cards. The

author can set properties for the courses, labs, and cards such as prerequisites and student modeling

parameters.

This two-tiered authoring architecture allows subject matter experts to create image processing exercises

with automated intelligent tutoring support by piggybacking on the more advanced authors who populate

the behavior library. Since the templates are designed to be reusable objects, the work invested in creating

them can be amortized over many exercises.

Figure 11 shows the authoring interface for creating behavior templates. In this example, the author has

specified the steps for opening a specific image file using the application’s menu. Executing this behavior

will show the student the necessary steps to find and open a file, monitor their actions, and provide

feedback if they open the wrong file.

338

Figure 11. Flowchart behavior templates are created in EarthTutor’s expert authoring interface.

Figure 12 shows a novice author creating a card for an exercise and embedding previously created

behavior templates, including the one for opening a file using the menu. Here, the author has written

introductory text and selected two behavior templates, including the one shown above for opening a file.

The author has instantiated these templates using simple form-based graphical user interfaces (GUIs).

When this card is shown to the student, the templates will be replaced by the GUI that shows the steps for

opening a file, and student activity will be monitored as specified in the flowchart above.

339

Figure 12. HTML exercise cards are created in the novice authoring interface by instantiating behavior

templates.

We are using this tiered authoring approach for an ITS being developed to train Navy Information

Technology (IT) support staff (ITADS). This is a simulation-based ITS designed to provide hands-on

experience with troubleshooting skills and maintenance procedures. The knowledge required for

automated assessment of performance—especially for troubleshooting exercises—requires complex

modeling and will be constructed by developers or very advanced authors. Once the assessment

knowledge has been modeled, less advanced authors will create scenarios that reference this model and tie

to frozen sets of virtual machines supporting the simulation. Using simple form-based editors, novice

authors can edit student-visible text associated with the scenario and with the model-linked coaching; they

can also copy and adapt expert-developed scenarios. The ITS is also designed to use Socratic dialogues as

a pedagogical strategy for coaching students. We take a tiered approach to authoring these dialogues as

well. Advanced authors use a dialogue authoring tool to create a variety of dialogue structures. Novice

authors copy and modify dialogues using form-based editors.

340

Layered Authoring

Tiering primarily addresses the provision of different authoring tools for different kinds of content most

efficiently created by different kinds of authors. The prototypical approach of templating allows a higher

volume of content to be generated more quickly by lower-skilled authors, guided and constrained by

patterns established by higher-skill (and more expensive) authors. Layering, in contrast, focuses on

picking apart a single kind of content (or at least a single view of content that may be composited from

related elements) into pieces that have different scopes of applicability or levels of generality. The object

is to achieve more reuse of authored content.

Our prototypical example of layering comes from a system that entwines simulation, assessment, and

potential tutor interventions into a composite authoring view of linked content. Our Medical Emergency

Team Tutored Learning Environment (METTLE) ITS teaches diagnosis, emergency response, and task-

specific coordination appropriate for responding to chemical, biological, and radiological attacks. The

target trainee is an emergency room physician. In a scenario based on an anthrax attack, the doctor is

coached through an initial diagnostic session with a mystery patient in their emergency room (ER). The

web-based system supports text-based diagnostic interviewing, media-based physical examination, and

form-based ordering of tests and treatments. A cast of other characters can be consulted or may intervene

during the scenario, including an ER nurse, a hospital administrator, and staff members at ERs of other

nearby hospitals. The tutor provides proactive and reactive hints and feedback, and can also carry out

extended Socratic dialogues to review diagnostic logic.

METTLE adopts a theater metaphor in which an exercise scenario is viewed as a sort of dynamic play. A

METTLE scenario has a cast, each member of which is assigned a set of behaviors that we think of as

“lines” in a nonlinear “script,” to be used when triggered by student activity or other scenario events.

These behaviors can vary across the scenes of the scenario and based on the state of the character. Lines,

then, can be assigned by role, scenario, scene, or state, (or, in the most flexible case, based on some

combination of those factors). Lines can include (1) a cue (trigger conditions), (2) a response (the

character’s scripted actions), (3) side-effects on scenario or character state, and (4) contextual tutor

evaluations and comments (including hints, prompts, and feedback).

METTLE allows for composition of scripts and even individual script lines from different sources. For

instance, a set of default behaviors can be defined that apply to any character in any situation (e.g., how to

handle greetings, farewells, and small talk), while a more specific set of behaviors can be defined for

some particular class of simulated characters (e.g., how any character assigned the “patient” role should

respond to diagnostic questions). For the patient role, we defined a basic set of several hundred default

script lines, providing a reusable set of named rules with cues and “normal” responses covering many

standard diagnostic interview questions, examination actions, diagnostic tests, and so on.

When scripting any particular patient for any particular scenario, a subset of these default rules can be

extended with situationally important responses, state changes, and tutoring. For instance, a patient with

anthrax really only differs from a normal healthy adult on a small set of key diagnostic indicators.

Authors can compose scenario-appropriate diagnostic question/answer script lines by taking the trigger

from the role-general form of the behavior (the question stays the same), while overriding the response to

fit the scenario (the answer is tuned to fit the results that would be expected for an anthrax patient).

Entirely new rules can be added for behaviors that only make sense in the context of the scenario (or

some scene or character state). For instance, if an important aspect of the case is how the patient got the

disease, then a back-story can be introduced with a set of custom question and answer behaviors bearing

on their recent activities, who they were with, and how those people are faring.

341

Consider a pair of example behaviors used in the anthrax scenario. First, there is a standard diagnostic

interview question—appropriate in cases where the underlying issue might be an infectious disease—that

checks if anyone else the patient knows is suffering from a similar problem. In the generic patient script

there is a line named Complaint-Others that is specified with cues such as “Do you know anyone else

with the same symptoms?” and a default answer of “No.” In the anthrax scenario, this is an important

question and so additions and modifications are layered onto the default behavior. For starters, its answer

is overridden so that the patient says: “Yeah, my cousin John has come down with some fluey thing since

we last saw each other. My wife says his wife took him to Memorial Hospital today.” The triggering of

this behavior is tied to a curriculum point labeled ED-Diagnosis-Infection and in the anthrax scenario a

proactive prompt is associated to be used by the tutor if this behavior has not been triggered 5 minutes

into the scenario: “You might consider asking whether Ryan knows anyone else who has what he has.”

Our second example is a totally new script line introduced for this scenario. Once it is revealed that the

patient’s cousin is also sick, there should be a follow-up line of questioning about the cousin.

Accordingly, this scenario introduces a new line named Others-Cousin-When with cues that include

“When did you last see your cousin?” eliciting the answer “We went to a basketball game together with

another friend of mine maybe 5 or 6 days ago.”

These examples illustrate composition of aggregate scripts from behaviors defined at different layers such

as for generic characters, generic patients, and some particular patient in a scenario. They also illustrate

composition of individual script lines from fragments defined at different layers, such as a

question/answer behavior defined for generic patients being overridden with an answer appropriate to a

particular patient and associated tutoring interventions.

METTLE behaviors are composed from an extensible application-specific rule condition/action language.

Extensions to that language can be viewed as an expert level authoring tier similar to EarthTutor’s

advanced authoring of behavior templates. In addition, it might turn out that different tools are

appropriate for different layers, or that different classes of authors are best suited to providing different

layers of content. Nonetheless, when it comes to building up behaviors in layers, the primary issue is not

division of labor, but rather content reusability—across exercises, courses, and possibly even domains.

Bootstrapped Assessment

Bootstrapped authoring, as applied to automated assessment, is an incremental development process

where the cost of authoring is reduced with successive spirals or releases. Starting with example-based

scenario-specific content and training mechanisms, authors incrementally generalize to create

successively more reusable components. Each iteration offers cost savings over the last, coupled with

wider reusability for the next.

Before proceeding to examples, we explicate what we mean by generalized assessment mechanisms in the

context of a situated tutor. A common tradeoff in designing automated assessment is the choice between

an example-based or model-based approach. Example-based assessment makes inferences from the case-

specific conditions that apply in a particular scenario, without regard for how the same concepts would

appear or be assessed in other scenarios. Because example-based assessment mechanisms can be

essentially hard-coded with unique knowledge associated with a specific scenario, learner, or context,

they are often easy to rapidly prototype. This can be very productive for the early stages of development

when requirements are still being refined. However, as the number of scenarios grows, the example-based

approach must be essentially replicated for each new scenario.

In contrast, a model-based approach seeks to capture more general knowledge that reduces the cost of

authoring new scenarios. In the broadest sense, an assessment model attempts to represent knowledge,

342

skills and aptitudes (KSAs) and how they’re applied in scenarios, without relying on unique scenario-

specific knowledge. In practice, there are numerous approaches to model-based assessment, ranging from

those that represent recurring but recognizable constraints on good performance, to those that aim to

represent a comprehensive space of possible actions together with the underlying cognitive states that

produce those actions. Regardless of the precise formulation, we emphasize the goal of scenario-

independence. On one hand, the effort required to achieve scenario-independent assessment doesn’t easily

scale down to the early development stages where prototyping is useful. So in the short term of initial

prototyping, a purely model-based approach is inherently more costly and time-consuming to implement

than a purely example-based approach. However, in the longer term, a generalized assessment model

reaps authoring cost benefits precisely because of the scenario-independence. A generalized model can

also theoretically be abstracted further, to shed the specific constraints of a given simulation or exercise

environment, and yield cost savings for transitions to other platforms.

Given the practical benefits of example-based methods in the short run and model-based methods in the

long run, the bootstrapping approach seeks a transition from the former to the latter in the course of

assessment authoring. This combines the expedient of an example-based approach for early development,

with the future authoring benefits and cost savings associated with a generalized model. The concept of

bootstrapped content authoring can be applied over successive development spirals of a scenario-based

ITS, in tandem with expansions in either or both the collection of scenarios or the core ITS assessment

capabilities.

This bootstrapping approach was employed in the development of a game-based trainer for the Army’s

US Military Academy (USMA) at West Point, called Intelligent Game-based Evaluation and Review

(InGEAR). InGEAR is integrated with a tactical decision-making game called Follow Me, which is used

at West Point to teach small unit leader tactics in dynamic, experiential scenarios. The project objective

was to extend the reach of instructors and allow self-directed learning for cadets using the game

environment. Before InGEAR was developed, Follow Me was used entirely with facilitated classroom

learning, where all performance assessment and feedback in exercises was the province of human

instructors. The USMA instructional staff designed an existing set of scenarios to exercise tactical

concepts with varying degrees of difficulty, and assessed cadets’ performance by applying accumulated

knowledge of scenario dynamics. For InGEAR, this existing scenario knowledge provided an excellent

baseline for a rapid prototyping effort in the first spiral of development. Example-based assessments were

developed within 4 months of the project start, following the lead of established instructional knowledge.

One of the benefits of rapid prototyping in this manner is that it produces a useable training capability

early on. However, with InGEAR the objective was to deliver scenario-independent mechanisms that

could assess the same tactical concepts when relevant in future scenarios to be created or modified by the

USMA instructional staff after the InGEAR development effort. The combination of short-term

prototyping goals and long-term project goals motivated a bootstrapping evolution from an initial set of

example-based assessments to an eventual set of generalized scenario-independent assessments using a

constraint-based model.

An example of this evolution involves the assessment of cover and concealment in tactical movement.

Initially with existing Follow Me scenarios used at West Point, instructors were so intimately familiar

with the terrain and enemy positions that they could immediately point to good and bad areas of cover and

concealment. Following this lead, the initial example-based assessments in the first spiral used scenario-

specific annotations to score areas of terrain, applying a figure of merit for the quality of cover and

concealment in significant areas. This was easy to develop quickly, and it provided a sample working

assessment to review with instructors (along with automated feedback and other capabilities). It also

served as an effective primer for the development team to quickly gain an understanding of the domain,

which facilitated the ongoing collaboration with both the USMA staff and the developer of Follow Me.

343

However, this example-driven approach could not be easily extended to future scenarios, so the next

spiral required a more general model-based approach to assessing cover and concealment.

In order to develop a scenario-independent assessment for cover and concealment, the methodology was

to review existing scenarios where the tactical principles were applied, and to abstract the key concepts

across settings. From that, a mechanism could be constructed to reason about the merits of a tactical

position with respect to those concepts, in any given scenario. The key concepts in this case involve

visibilities in relation to actual or likely enemy positions, and visibilities in specific terrain (e.g., the

inherent level of exposure on a ridgeline versus a wooded area). For this application, the game

environment already dynamically calculates visibilities between units and between terrain positions. The

screenshot in Figure 13 shows an example of terrain visibility in the game (represented as a pixelated

overlay) from the position of a particular machine gun unit (also shown with its sector of fire as a wedge

shaped graphic).

Figure 13. The Follow Me game shows machine gun section visibilities and sectors of fire.

During an exercise, instances of detection by enemy units trigger game notifications, contributing to half

of the generalized assessment for cover and concealment. However, it is more complex to implement a

real-time assessment of the quality of a position in terms of terrain exposure. To support such assessment,

we constructed an authoring utility to pre-process the terrain database for any given scenario by

generating exposure scores for all positions (represented as terrain tiles). These scores can then be used

during execution for real-time assessment, without requiring heavy processing during the exercise and

without requiring explicit manual instructor annotation of the terrain in authoring. The resulting

generalized assessment for cover and concealment was scenario-independent, with minimal requirements

on authors seeking to activate this assessment for a new scenario. From a methodological standpoint, the

implementation benefited from the earlier knowledge acquired with the example-based implementation,

which accelerated the development of the subsequent more general mechanism. As a further benefit, the

general assessment’s performance could be compared with the earlier example-based versions as well.

344

For each scenario-independent assessment implemented for InGEAR, the final step to support authoring

was to produce a specification for the parameters required to configure and apply the assessment

mechanism in a scenario. In some cases, the parameters are thresholds for time, distances, survivability,

or other factors that instructors determine will delineate performance standards (such as pass/fail). In

other cases, the parameters involve a simple specification of a game artifact, such as an objective area to

be secured as part of a tactical task.

Recommendations and Future Research

The three approaches discussed in this chapter, tiering, layering, and bootstrapping, hold promise for

addressing the trade-off of power vs. usability in the design of authoring tools, while enabling cost-

savings through content reuse and restructuring. Further research is required to build such tools and

validate them for a variety of ITSs. The Generalized Intelligent Framework for Tutoring (GIFT) can

facilitate this research by providing a unified framework for collaboration on this research.

GIFT provides a decomposition of typical ITS functionality that aligns well with a range of applications

and capabilities. For instance, the architecture presented by Ragusa, Hoffman, and Leonard (2013) has

many broad correspondences to the architecture of the ITADS system mentioned earlier: both separate

management/monitor functions from the tutor user interface, which is separate from any simulation/game

modules (which are linked to the ITS through an interface module); both have user management and

learning management modules; and both have domain, learner, and pedagogy modules.

Domain knowledge—specifically performance assessment rules—can be specified in the GIFT

framework within extensible markup language (XML) domain knowledge files (DKFs). GIFT provides a

Domain Knowledge File Authoring Tool (DAT), an XML editing tool for creating and editing these rules.

The DKF—and its associated DAT—provide a means to define assessments and state transitions.

Assessments use a hierarchy of tasks, concepts, and conditions to cover runtime performance assessment

(during exercises) and scoring rules (aggregate after-exercise scores). State transitions itemize changes

in learner state that are of interest (including, of course, assessed performance states), each with a list of

strategies the tutor might use to respond to those changes.

Within GIFT’s general module breakdown and domain modeling framework, we see several possible

extensions that might support tiering, layering, and bootstrapping.

An obvious way to support tiered authoring within this framework is to allow parameterized rules and

create a GUI-based authoring tool in addition to the DAT for novice authors to instantiate parameters.

Another useful capability would be to support multiple simultaneous authors so that the task of rule

creation can be distributed more fluidly. With these changes, expert authors could create complex logic

while novice authors could create simpler rules. This capability should be supported by associated

integration and testing tools for the overall set of rules. A more advanced approach might be to provide

the capability to create flowcharts representing branching sequences of assessments and state transitions

(e.g., to represent procedural tasks). An expert tier authoring tool could be developed for creating such

flowcharts as a part of a DKF specification, while a novice tier authoring tool supported selection and

instantiation of templates.

Layered authoring, as exemplified in METTLE, could also be introduced into the GIFT framework. One

challenge here is our example’s relatively tight coupling between simulation/game construction,

assessment authoring, and tutor intervention specification. However, if it is most natural for a scenario-

focused author to think about exercise behavior, performance evaluation, and coaching in tandem then

authoring tools should provide a view that couples those structures, even though an underlying

345

architecture might divide the simulation/game from the assessment engine from the tutor utterances. At

the same time, the tools should provide a view that helps authors understand the contextually composited

form of a behavior or rule, even though it combines new and reused pieces from different scopes. Again,

this view should be available irrespective of how the generic underlying ITS architecture wants to divide

up the included, reused, and overridden bits of knowledge.

Bootstrapped assessment authoring may also be facilitated with the GIFT framework, by adding structure

for regression testing, to be integrated with the analysis testbed methodology. Naturally if assessment

mechanisms will undergo an evolution as they are incrementally generalized, then some form of

regression testing is desirable to verify that the assessment results from a generalized mechanism match

those produced from earlier example-based assessments in a battery of specific scenarios. The GIFT

framework may be an effective place to introduce such testing artifacts, because its domain module is

designed to consume assessment outputs from an instrumented exercise environment, while being

abstracted from the internals of the implementation in the environment. This inherently supports the

abstraction between the GIFT domain module and pedagogical module. This same abstraction is relevant

to a potential additional function for the GIFT analysis testbed methodology, which seeks to refine and

validate learning outcomes in different conditions, such as an authored tutor versus traditional classroom

learning. This comparison methodology would be useful for validating an evolving assessment approach

developed in a bootstrapping fashion—to compare an initial baseline of example-based assessment

mechanisms to subsequent more generalized iterations or spirals

References

ADL (2009). SCORM® 2004 4th Edition Content Aggregation Model (CAM) Version 1.1. Advanced Distributed

Learning (ADL). Retrieved from: http://www.adlnet.gov/scorm/scorm-2004-4th/.

Aleven, V., McLaren, B., Sewall, J. & Koedinger, K. (2006). The cognitive tutor authoring tools (CTAT):

Preliminary evaluation of efficiency gains. Intelligent Tutoring Systems Lecture Notes in Computer

Science, Vol. 4053, 61-70.

Baker, R., Corbett, A. & Aleven, V. (2008). More accurate student modeling through contextual estimation of slip

and guess probabilities in Bayesian knowledge tracing. Intelligent Tutoring Systems Lecture Notes in

Computer Science, Vol. 5091, 406-415.

Barnes, T. & Stamper, J. (2008). Toward automatic hint generation for logic proof tutoring using historical student

data. Intelligent Tutoring Systems Lecture Notes in Computer Science, Vol. 5091, 373-382.

de Jong, T., van Joolingen, W.R., Swaak, J., Veermans K., Limbach R., King S., and Gureghian D. (1998).

Combining human and machine expertise for self-directed learning in simulation-based discovery

environments. Journal of Computer Assisted Learning, 14(3), 235-246.

Hsieh, P. Y., Halff, H. M. & Redfield, C. L. (1999). Four easy pieces: Development systems for knowledge-based

generative instruction. International Journal of Artificial Intelligence in Education (IJAIED), 10, 1-45.

Kumar, R., Roy, M. E., Roberts, R. B. & Makhoul, J. I. (2014). Towards Automatically Building Tutor Models

Using Multiple Behavior Demonstrations. Intelligent Tutoring Systems Lecture Notes in Computer Science,

Vol. 8474, 535-544.

MacLellan, C. J., Koedinger, K. R. & Matsuda, N. (2014). Authoring Tutors with SimStudent: An Evaluation of

Efficiency and Model Quality. Intelligent Tutoring Systems Lecture Notes in Computer Science, Vol. 8474,

551-560.

Major, N., Ainsworth, S., and Wood, D. (1997). REDEEM: Exploiting symbiosis between psychology and

authoring environments. International J. of Artificial Intelligence in Education. 8(3-4), 317-340.

Murray, T. (1999). Authoring intelligent tutoring systems: An analysis of the state of the art. International Journal

of Artificial Intelligence in Education (IJAIED), 10, 98-129.

Nye, B. D., Rahman, M. F., Yng, M., Hays. P., Cai, Z., Graesser. A. & Hu, X. (2014). A tutoring page markup suite

for integrating shareable knowledge objects (SKO) with HTML. Proceedings from Intelligent Tutoring

Systems (ITS) 2014 Workshop on Authoring Tools.

Qiu, L., and Riesbeck, C. (2005). The design for authoring and deploying web-based interactive learning

environments. World Conf. on Educational Multimedia, Hypermedia and Telecommunications.

http://www.adlnet.gov/scorm/scorm-2004-4th/

346

Schatz, S., Oakes, C., Folsom-Kovarik, J. T. & Dolletski-Lazar, R. (2012). ITS + SBT: A review of operational

situated tutors. Military Psychology 24(2), 166-193.

Shute, V. J. (1993). A macroadaptive approach to tutoring. Journal of Artificial Intelligence in Education, 4(1), 61-

93.

347

CHAPTER 28 Expanding Authoring Tools to Support

Psychomotor Training Beyond the Desktop
Robert A. Sottilare, Scott J. Ososky, and Michael Boyce

US Army Research Laboratory

Introduction

Today, intelligent tutoring systems (ITSs) are generally authored to support desktop training applications

with the most common domains being mathematics, computer programming, and physics. The success of

using game-based platforms (e.g., Virtual BattleSpace 3 and VMedic) to train the cognitive aspects of

military tasks (e.g., problem solving and decision making for land navigation, force-on-force battle

tactics, and combat casualty care) have also demonstrated the efficacy of games as desktop training

platforms when combined with measures of success and sufficient feedback to the learner.

In recent years, implementations of game-based tutors (Goldberg, Sottilare, Brawner & Holden, 2012)

using the Generalized Intelligent Framework for Tutoring (GIFT; Sottilare, Brawner, Goldberg & Holden,

2012; Sottilare, Goldberg, Brawner & Holden, 2012) have demonstrated adaptive tutoring for desktop

training applications similar to those shown in Figure 14. Measures of tutor-learner interactions shown in

Figure 14 may or may not be available during psychomotor tasks being trained in the operational

environment (e.g., embedded training or training in the wild). A goal is to integrate GIFT with more

dynamic virtual simulations to support more natural learner interaction associated with the psychomotor

elements of training tasks and thereby promote higher transfer of skills to the operational environment.

This chapter begins to explore how authoring systems might be enhanced to support tutoring beyond the

desktop for more dynamic physical tasks.

Figure 14. Prototypical elements of a desktop tutor-user interface

348

As their name suggests, adaptive training systems (e.g., ITSs) offer more flexibility during instruction.

Instruction is tailored to the needs and preferences of individual learners. Given the variability of learner

attributes across the general population, this creates a greater demand for domain content authoring to

support tailored training experiences. Finding efficient methods to create new content and to reuse

existing content (e.g., training content in existing training simulations) is a critical element in making

adaptive training affordable and ubiquitous (Sottilare, 2015). Tools and methods are needed to automate

large portions of the authoring process. Before we can automate the authoring process, we first need to

define the authoring process for domain modeling and then examine what is unique about authoring for

psychomotor domains.

Expert models (sometimes called ideal student models), scenario generation, content curation (search,

retrieval, and selection), and learner assessment are all candidates for automating authoring processes. In

order to operationalize automated authoring processes for psychomotor tasks, first we need to represent

the dimensions of and then define measures for those tasks.

Modes of Psychomotor Tasks and their Impact on Authoring

In examining modes of dynamic interaction, we begin by modeling the type and degree of physical

interaction. The degree of physical interaction in training as compared to how it is performed in the

operational environment may impact transfer or the degree to which knowledge and skills developed in

training are used in the operational environment. The authoring processes for all training environments

include the development of the following:

 instructional goals, objectives, and concepts to be learned

 directed graphs to represent paths through the training material represented by concepts,

assessments, and instructional decisions based on learning theory

We have defined four levels of physical interaction in support of adaptive training: static, limited

dynamic, enhanced dynamic, and full dynamic. Each is discussed in terms of its ability to support training

in the psychomotor domain and its impact on the authoring process.

Static Tutoring Mode for Low Dynamic, High Cognitive Tasks

Static training environments (e.g., desktop computer training; see Figure 14) allow the learner to train for

primarily cognitive tasks with little dynamic interaction. Desktop environments are unsuitable for training

purely physical tasks, but may be used to reinforce knowledge acquisition during the rules, examples, and

recall quadrants defined by component display theory (CDT; Merrill, Reiser, Ranney, and Trafton, 1992).

Since the training tasks associated with desktop environments are primarily cognitive, the authoring

process is primarily focused on delivering content to facilitate decision making and problem solving in

the form of scenarios or graded problem sets (e.g., easy, moderate, difficult). There is much less focus on

capturing any physical learner data or measures other than those needed to classify learner performance,

engagement, cognitive load, and emotional states. These states are used to drive instructional decisions by

the ITS.

This mode is most closely aligned with authoring processes common to traditional ITSs to support

tutoring in mathematics, physics, and computer programming. No assessments are required to compare

and contrast detailed physical movements of the learner to an expert model. Cognitive task analyses may

349

be required to develop a cognitive model to assess and compare the learner’s decision-making and

problem-solving processes relative to those of an expert.

Limited Dynamic Tutoring Mode

Limited dynamic tasks allow for full gestures and limited motion in a restricted area determined by the

range of the sensors. Movement and tracking of the learner from standing positions to kneeling, sitting, or

supine positions is supported so the range of physical tasks is broader than in static tasks. A prototype was

developed in 2014 by SRI for the US Army Research Laboratory to support limited dynamic training

(Figure 15) through multimodal sensing and tailoring of instruction driven by GIFT. The sensor suite

(hardware and algorithms) included a Microsoft Kinect to support gesture and pose estimation, a high-

resolution web camera to support assessment of emotional states based on facial markers and gaze

estimation, and a microphone to provide speech interaction and support stress evaluation via tonal

analysis.

Figure 15. Prototype for a limited dynamic training environment

Limited dynamic environments support hybrid (cognitive, affective, psychomotor) tasks where a larger

degree of interaction with the training environment and other learners is critical to learning, retention, and

transfer to the operational environment. Decision-making and problem-solving tasks may be taught easily

in a limited dynamic mode along with tasks requiring physical orientation (e.g., land navigation), but

certain aspects of the environment are difficult to reproduce (e.g., running over uneven terrain). Small

unit training scenarios may be possible by reproducing the individual training suites in Figure 15 and

combining them in a shared synthetic environment.

350

The impact on authoring is the assessment of physical actions, which may include tracking of fine motor

movements for some tasks (e.g., interaction with equipment). The ability of the ITS to track, assess, and

respond to learner movements becomes critical to supporting training in a limited dynamic mode, and

authoring in this mode is correspondingly more complex than in the static mode. This difficulty increases

dramatically for team-level tasks where there is a high degree of interdependence in pursuing goals. In the

team scenario, models for team processes (e.g., coordination, communication, and leadership) and team

states related to performance and learning must be developed and then assessed in real time during

training.

Enhanced Dynamic Tutoring Mode

Enhanced dynamic environments support tasks where freedom of movement and a high degree of

interaction with other learners are critical to learning, retention, and transfer to the operational

environment. Building clearing and other team-based tasks may be taught easily in an enhanced dynamic

mode. The impact of this mode on the authoring process is similar to the limited dynamic mode, but more

complex based on the higher degree of movement in the training environment (e.g., live, augmented

reality, or mixed reality). This requires sensors with greater ranges or networks of sensors. As with the

limited dynamic mode, authoring is complicated in team-based scenarios where multiple learners must be

tracked over wider ranges in instrumented spaces. Team processes and states must also be modeled in this

mode.

Full Dynamic Tasks in the Wild

Full dynamic mode transfers tutoring to the operational environments and could also be called embedded

training or training in the wild. Tutoring would go with the learner wherever the learner goes. Full

dynamic mode is critical to support tasks where a very high degree freedom of movement and a high

degree of interaction with other learners are critical to learning, retention, and transfer to the operational

environment.

It is anticipated that psychomotor and social tasks may be best taught in full dynamic mode or an

environment more closely resembling the operational environment. Research has shown that retrieval of

learned information is better when the original learning context is reinstated during task performance and

that contextual dependencies also extend to perceptual-motor behavior (Ruitenberg, De Kleine, Van der

Lubbe, Verwey, and Abrahamse, 2012). This supports the notion that a misalignment between physical

dynamics in training tasks will slow transfer of psychomotor skills during operations, and that a better

alignment of the physical aspects of training tasks with how they will be performed on the job will result

in more efficient transfer of motor skills.

Authoring is complicated in this mode as sensor-based assessments of motor movements are currently

limited to location. Sensor suites will need to be developed to support more detailed assessments of

position, location, orientation, and other physical states.

Measuring Learner Performance in the Psychomotor Domain

Sometimes called the doing or action domain, tasks in the psychomotor domain are associated with

physical tasks (e.g., marksmanship and sports like golf, baseball, and soccer) or manipulation of a

tangible interface (e.g., driving or piloting vehicles and remotely piloting a vehicle), which may include

physical movement, coordination, and the use of the motor skills along with cognitive elements (e.g.,

351

decision making and problem solving). Simpson’s psychomotor taxonomy (1972, Figure 16) lists seven

levels of psychomotor skill development from perception (low) to origination (high).

Figure 16. Simpson’s (1972) psychomotor domain

Psychomotor tasks encompass physical movement, coordination, and the use of the motor-skill areas. The

development of these skills requires practice and is measured in terms of speed, precision, distance,

procedures, or techniques in execution. While this domain is well represented in military training,

research is needed to build adaptiveness into these training systems and thereby optimize deep learning. A

goal of this research is to reduce the time to competency to allow time for over-training and deeper

learning experiences which transfer more efficiently to the operational environment.

For each type of physical task and associated training scenario, we can represent measures of skill

development in a similar hierarchical fashion. In its simplest form, training is about asking learners to

perform a task (with associated goals) under specific conditions (environment) to an established set of

standards (measures), and finally, provide feedback about their performance to support improved learning

and potential for greater performance in the future. Associated with each task is a set of required skills.

By way of example, let’s examine a land navigation task:

 Task: plan and navigate a route from point A (east) to point B (west)

 Associated goals: determine one’s position on a map at 30 minute intervals as one navigates

from one position (point A) to another (point B)

 Measures: note the variance between actual position and marked position on the map at each

30-minute interval and the time to complete course

 Conditions: consists of a single individual learner wearing a global positioning system (GPS)

tracker walking on hilly, forested terrain with restricted visibility; no watch or compass is

available

 Performance Standard: navigate course in 3 hours or less

 Physical Skills Required: demonstrate endurance, speed, and balance for navigating over

uneven terrain

 Cognitive Skills Required: demonstrate map reading, assessment of position based on

landmarks, and the position of the sun

352

We examine a land navigation task in terms of physical behaviors and cognitive skills starting with low

skills and working toward examples of high skills. In terms of Simpson’s psychomotor domain, we also

observe specific goals and measures that might be required to support interactive tutoring beyond the

desktop (e.g., in an operational environment as embedded training or in the wild as part of a distributed

learning application). Across all of the levels of psychomotor development, we have identified the need to

capture performance-related behaviors (e.g., observing and organizing), but we also discuss the

challenges and potential impact on the authoring process.

An ITS must be able to acquire data about the learner’s choices and use these data to assess progress

toward goals as measured against an expert model or other standard established for the task under

training. The author must be able to identify and acquire key behavioral measures at each level of the

psychomotor taxonomy. The author must also be aware of and manage cognitive load, and specifically,

working memory during instruction (Sweller, Van Merrienboer & Paas, 1998). Sottilare & Goldberg

(2012) suggest that comprehensive modeling of the learner during instruction is key to successfully

managing cognitive load by either injecting difficulties during tutoring to engage the learner or reducing

difficulty so the learner can realize success. ITSs will require the ability to distinguish one psychomotor

level from another to determine progress of the learner based on either expected results based on past

performance, on organizational standards, or in comparison to the expert behaviors described in the ITS

expert model.

Perception

Perception is the “organization, identification, and interpretation of sensory information in order to

represent and understand the environment” (Schacter, 2011). In our example task, land navigation, the

learner is taking in information about the terrain and observing the position of the sun, and using to this

information to estimate current position and choose future actions (e.g., routes). Perception behaviors

include, but are not limited to choosing, describing, detecting, and differentiating (Simpson, 1972) based

on sensory input and judgment. While we may not be able to directly observe the “interpretation of

sensory information,” we can track the resulting behaviors stemming from decision making (e.g., learner

moves off to the left toward the road below). Greater insight may also be teased out through reflect

dialogue with the ITS.

Set

Sometimes called mindsets or dispositions, set includes mental, physical, and emotional dispositions that

predetermine a person’s response to current conditions (Simpson, 1972). In the case of our land

navigation task, the learner is assumed to have prerequisite skills (e.g., map reading), which drive

reactions to current conditions. Since these cognitive skills are needed to successfully complete the task,

these are part of the mental set. A learner’s motivation and enthusiasm to complete the task is part of the

emotional set, and finally, the physical set might include a readiness to complete the task based on

sufficient sleep and nutrition. Each of these dispositions can either enable or inhibit the learner’s ability to

perform. Set behaviors include starting, displaying, reacting, responding, and volunteering (Simpson,

1972). It is likely that long-term modeling of learner experiences can provide insight to the learner’s

mental disposition based on meeting prerequisites for the task under training. Specific behavioral

measures to determine emotional disposition may include semantic and/or tonal analysis of learner

responses. Finally, the physical set may be determined through query or physiological sensing.

353

Response

During the response stage of learning complex tasks, models are critical in skill development. It may be

useful to the learner to observe others successfully performing the task of determining position based on

the position of the sun at various times of day to determine direction. Trial and error through guided

practice allows the learner to apply knowledge (e.g., heuristics) and eventually reduce errors as the learner

develops enhanced mental and physical models. This assumes time is available to support discovery

learning. In the case of land navigation, the learners may use the sun throughout the day to determine that

they are traveling west toward point B. Over time, they will become more skilled at judging the time of

day, and thereby the position of the sun and its relationship to a westerly course. Response behaviors

include assembling, measuring, decomposing, manipulating, fixing, mixing, and organizing (Simpson,

1972). It is likely that measures of response will be domain-specific.

Mechanism

During the mechanism stage, learned responses are now habitual and physical movements can be

performed with a growing degree of confidence. In our land navigation example, learners running over

uneven terrain the first time would be slower and more deliberate in their movements, while learners who

have practiced and habituated this skill will run more easily and with much less conscious thought. This

reduces the cognitive workload during this action and allows this resource to be applied to other elements

of the task. Mechanism behaviors include many of the same behaviors as in response, but are displayed at

a higher level of automaticity (Simpson, 1972). Measures of mechanism will be similar to response, but

the speed and accuracy of learner actions will have increased based on deliberate practice.

Complex Overt Response

During the complex overt response stage, the learner displays highly skillful performance of physical

actions that involve complex movement patterns. At this level of proficiency, the learner does not

hesitate, and is accurate and highly coordinated. They perform required actions with a minimum

expenditure of energy. In our land navigation example, the ability to move easily and almost effortlessly

over uneven terrain has developed to a high level of confidence and speed. Complex overt response

behaviors include many of the same behaviors as in response and mechanism, but are displayed at a

higher level of automaticity (Simpson, 1972). Measures of complex overt response will be similar to

mechanism and response, but the speed and accuracy of learner actions will have increased based on

deliberate practice.

Adaptation

In adaptation, the learner’s skills are so well developed that the learner can change movement patterns to

fit special requirements or unexpected situations. As the term adaptation suggests, the learner’s behaviors

include changing, altering, rearranging, reorganizing, revising, and varying movement to meet new

situations that may never been encountered by the learner previously (Simpson, 1972). In our land

navigation example, the learner could encounter obstacles (e.g., near vertical paths and rivers) in route to

point B that may require adaptation of the more basic “moving over uneven terrain” skill. Physical pattern

recognition will be needed for the ITS to recognize standards (most likely) physical actions and their

variants.

354

Origination

During origination, the learner arranges, combines, composes, develops, designs, and creates. With an

emphasis on creativity based on highly developed skills, the learner crafts new movement patterns to fit a

particular scenario, a set of conditions, or a specific problem (Simpson, 1972). Again, physical pattern

recognition will be needed for the ITS to recognize standards (most likely) physical actions and their

variants, but the ITS will also need to recognize when physical behaviors have evolved to become

sufficiently different to be classified as “new.”

Implications for Authors and GIFT

This chapter has examined the expansion of authoring in support of tutoring in psychomotor domains.

The primary implications for authoring in the psychomotor domain are in developing mode-specific

measures and sensor suites (hardware and algorithms) to support the assessment of individual motor

movements, team processes, and team states. There are many opportunities for research to support these

challenges. For example, research is needed to support assessments of fine motor movements at a

distance. Likewise, opportunities to evaluate commercial tools (e.g., smart glasses) to provide instruction,

feedback, and enhanced interaction between the learner and the environment should also be pursued.

An examination of the expansion of authoring, however, would not be complete without addressing the

impact that those new methods, tools, and technologies may have on the authoring experience from a

user-perspective. While automated authoring processes are a goal of ITSs, in general, it is likely that the

burden of physically creating the tutor will fall to human hands for the foreseeable future. The act of

creating an intelligent tutor, whether through computer programming or a guided user interface, is a

process with which many potential authors (e.g., subject matter experts, training facilitators) may be

unfamiliar. Developing an artificially intelligent tutor represents a new content creation activity, one for

which new human mental models are required. ITS authoring shares some superficial similarities with

other content creation activities such as developing a slide deck designing a web page. Though, there are

aspects of tutor creation are unique to ITSs (e.g., content selection based on learner model) for which new

authoring processes must be defined. By extension, the nature of the psychomotor domain presents a

specific set of challenges in authoring tutors for learners in dynamic environments as well as the testing

and evaluation of those tutors.

Authoring for Different Interfaces

Instructional content is typically authored with PC-based software tools; courses created with those tools

are usually accessed by learners using PC-based hardware (as evidenced by low dynamic trainers). More

sophisticated creation tools support cross-platform compatibility to access course content on phones and

tablets. However, if adaptive tutoring is to truly move beyond the desktop, then tutor authoring tools must

also accommodate non-traditional interfaces, such as embedded systems, augmented reality, or haptic

systems.

Recall the land navigation example. In full dynamic mode, for instance, learners are moving through in an

open environment. The constraints dictate that no watch or compass is available. Learners must also

attend to environmental features and reference area maps. The characteristics of the land navigation task

represent potential limitations for the author with respect the type of content and communication that can

be delivered to the learner — it may not be practical or appropriate to add a smartphone to the learner’s

physical and cognitive load. Therefore, authors must identify an appropriate modality by which

instructional interventions may be communicated to the learner, as well as determine how to implement

that solution with their tutor creation tools. Traditional software tutor authoring tools will need to extend

355

their functionality be able to create content for and interoperate with available devices that may be

embedded with learners in the field. Research will also be needed to attend to the usability of authoring

tools, concurrent with the development of new functionality.

Authoring for Different Environments

Real-world environments introduce new constraints such as noise, glare, temperature, or physical

obstacles. Those environments features vie for the attention of the learner and represent constraints that

authors must consider when developing adaptive tutors.

For instance, examine the interaction with the talking avatar shown in Figure 1. The author may desire to

carry the avatar interaction into a dynamic environment in order to create a consistent narrative across

various stages of training. In developing an enhanced dynamic component to the land navigation course,

the author plans to use an augmented reality headset for use in daytime and nighttime scenarios, including

simulated night vision capabilities. The author realizes learners’ visual bandwidth may be overloaded

with information from the task itself and decides to use auditory communication for instructional

interventions without the visual avatar component.

Even at this stage in the design, additional decisions must be made. The author can push auditory

messages to the learner at the point of need, but risks the learner being unable to attend to the message

while moving about. Alternatively, the author can notify the learner that guidance is available (i.e., pull),

at the risk of the learner ignoring the guidance or listening to it when it is no longer useful. Thus, as

training environments increase in approximation of real-world settings, authors will need to consider how

features of the training environment impact the design of the tutor.

Test and Evaluation of Psychomotor Domain Tutors

Current GUI-based tutor authoring tools leverage visual design interfaces that allow authors to preview

course content (from the learner’s perspective) as it is being created. This method of content creation has

been referred to as what you see is what you get (WYSIWYG) and is the common method of content

creation for documents, slide decks, and web pages. That method is somewhat inadequate for creating

training in dynamic environments, which may include unique hardware interfaces and complex physical

environments, described in the previous sections, respectively. Authors, however, will still require the

means to review and update training material to ensure, for example, sensors and communication between

the learner and tutor function as intended or that branches of the tutor are accessed based on

corresponding learner models.

Suppose that the author(s) in the land navigation example decided to overlay an interactive avatar in the

augmented reality display. The author, designing the course from a desktop computer, must make some

decisions regarding the size, position, and transparency of the physical avatar within the learner’s display.

The avatar must be configured in such a way that it provides an instructional benefit to the learner, while

not detracting from necessary information in the visual field. The author might reference literature to

determine the configuration, go through a testing process with pilot users, or make an educated guess and

hope for the best. To that end, authoring tools can support authors by embedding best practices into

GIFT’s development interfaces to allow authors to work from a series of default options.

The cornerstone of adaptive tutoring is instructional interventions and branching content based on learner

data. Authors may also want to know if their interventions are triggered at the correct moments within the

course, as well as trace the tutor content model to ensure that all permutations of the content are reachable

under intended learner states. To test those elements of the tutor within a static environment, an author

might simply need to answer a pre or post-test survey with the desired responses and examine the result.

356

Testing the same tutor functionality in the land navigation example by creating GPS and other physical

sensor data is labor intensive and potentially impractical. Therefore, a robust set of GIFT authoring tools

should also include the capability to automatically simulate sensor data in order to generate a set of

learner states to test the adaptive portions of the tutor.

Finally, the value of an adaptive tutor will be diminished without mechanisms by which the effectiveness

of the tutor can be evaluated. The degree to which training for psychomotor tasks is effective may be

dependent upon the level of physical interaction (i.e., mode). Further, the data required to assess the

effectiveness of the training may overlap with the data collected for the learner model. There are

opportunities to minimize effort by building training effectiveness hooks into authoring tools, thus

creating a more comprehensive solution. Enabling authoring tools in GIFT with a forward-looking

perspective toward training effectiveness may also create opportunities to embed data collection tools into

live (non-training) performance assessments. Such features may provide an easier path to expanding

authoring tools in support of psychomotor tasks beyond training into transfer tasks and long-term skill

development.

References

Goldberg, B., Sottilare, R., Brawner, K. & Holden, H. (2012). Adaptive Game-Based Tutoring: Mechanisms for

Real-Time Feedback and Adaptation. International Defense & Homeland Security Simulation Workshop in

Proceedings of the I3M Conference. Vienna, Austria, September 2012.

Merrill, D. , Reiser, B, Ranney, M., and Trafton, J. (1992). Effective Tutoring Techniques: A Comparison of Human

Tutors and Intelligent Tutoring Systems. The Journal of the Learning Sciences, 2(3), 277-305.

Ruitenberg, M. F. L., De Kleine, E., Van der Lubbe, R. H. J., Verwey, W. B. & Abrahamse, E. L. (2012). Context-

dependent motor skill and the role of practice. Psychological Research, 76(6), 812–820.

doi:10.1007/s00426-011-0388-6

Schacter, Daniel (2011). Psychology. Worth Publishers.

Simpson, E. (1972). The classification of educational objectives in the psychomotor domain: The psychomotor

domain. Vol. 3. Washington, DC: Gryphon House.

Sottilare, R. & Goldberg, B. (2012). Designing Adaptive Computer-Based Tutors to Accelerate Learning and

Facilitate Retention. Cognitive Technology Journal: Contributions of Cognitive Technology to Accelerated

Learning and Expertise.

Sottilare, R.A., Brawner, K.W., Goldberg, B.S. & Holden, H.K. (2012). The Generalized Intelligent Framework for

Tutoring (GIFT). Orlando, FL: U.S. Army Research Laboratory Human Research & Engineering

Directorate (ARL-HRED).

Sottilare, R., Goldberg, B., Brawner, K. & Holden, H. (2012). A modular framework to support the authoring and

assessment of adaptive computer-based tutoring systems (CBTS). In Proceedings of the

Interservice/Industry Training Simulation & Education Conference, Orlando, Florida, December 2012.

Sottilare, R. (2015). Examining Opportunities to Reduce the Time and Skill for Authoring Adaptive Intelligent

Tutoring Systems. In R. Sottilare (Ed.) 2
nd

 Annual GIFT Users Symposium (GIFTSym2), Pittsburgh,

Pennsylvania, 12-13 June 2014. Army Research Laboratory, Orlando, Florida. ISBN: 978-0-9893923-4-1.

Sweller, J., Van Merrienboer, J. & Paas, F. (1998). Cognitive architecture and instructional design. Educational

Psychology Review, 10 (3), 251–296.

357

BIOGRAPHIES

Editors

Keith Brawner

Dr. Keith Brawner is a researcher for the Learning in Intelligent Tutoring Environments (LITE) Lab

within the US Army Research Laboratory’s Human Research & Engineering Directorate (ARL-HRED).

He has 8 years of experience within US Army and Navy acquisition, development, and research agencies.

He holds a Masters and PhD degree in computer engineering with a focus on intelligent systems and

machine learning from the University of Central Florida. The foci of his current research are in machine

learning, active and semi-supervised learning, realtime datastream processing, affective computing,

adaptive training, and semi/fully automated user tools for adaptive training content.

Art Graesser

Professor Art Graesser is a professor in the Department of Psychology and the Institute of Intelligent

Systems at the University of Memphis and is an Honorary Research Fellow at the University of Oxford.

His primary research interests are in cognitive science, discourse processing, and the learning sciences.

More specific interests include knowledge representation, question asking and answering, tutoring, text

comprehension, inference generation, conversation, reading, memory, emotions, computational

linguistics, artificial intelligence, human-computer interaction, learning technologies with animated

conversational agents (such as AutoTutor and Operation ARA), and automated analyses of texts at

multiple levels (such as Coh-Metrix, and Question Understanding AID (QUAID)). He served as editor of

the journal Discourse Processes (1996–2005) and Journal of Educational Psychology (2009–2014). His

service in professional societies includes president of the Empirical Studies of Literature, Art, and Media

(1989–1992), the Society for Text and Discourse (2007–2010), the International Society for Artificial

Intelligence in Education (2007–2009), and the Federation of Associations for Behavioral and Brain

Sciences Foundation (2012–13). In addition to receiving major lifetime research achievements awards

from the Society for Text and Discourse and University of Memphis, he received an award in 2011 from

American Psychological Association on Distinguished Contributions of Applications of Psychology to

Education and Training.

Xiangen Hu

Dr. Xiangen Hu is Dunavant professor in the Department of Psychology and Department of Electronic

and Computer Engineering at The University of Memphis (UofM), senior researcher at the Institute for

Intelligent Systems (IIS) at the UofM, and visiting professor at Central China Normal University

(CCNU). Dr. Hu received his MS in applied mathematics from Huazhong University of Science and

Technology, MA in social sciences, and PhD in cognitive sciences from the University of California,

358

Irvine. Currently, Dr. Hu is the director of the Cognitive Psychology program at the UofM, the Director

of Advanced Distributed Learning (ADL) Center for Intelligent Tutoring Systems (ITS) Research &

Development, and the senior researcher in the Chinese Ministry of Education’s Key Laboratory of

Adolescent Cyberpsychology and Behavior. Dr. Hu’s primary research areas include mathematical

psychology, research design and statistics, and cognitive psychology. More specific research interests

include general processing tree (GPT) models, categorical data analysis, knowledge representation,

computerized tutoring, and advanced distributed learning. Dr. Hu receives funding for the above research

from the US National Science Foundation (NSF), US Institute for Education Sciences (IES), ADL of the

US Department of Defense (DoD), US Army Medical Research Acquisition Activity (USAMRAA),

ARL, US Office of Naval Research (ONR), UofM, and CCNU.

Robert Sottilare

Dr. Robert A. Sottilare leads adaptive training research at the Simulation & Training Technology Center

(STTC) within ARL-HRED. The focus of his research is automated authoring, instructional management,

and analysis tools and methods for intelligent tutoring systems (ITSs). His work is widely published and

includes recent articles in the Journal for Defense Modeling & Simulation, Cognitive Technology and the

Educational Technology Journal & Society. Dr. Sottilare is the co-creator of the Generalized Intelligent

Framework for Tutoring (GIFT). Prior to his work in adaptive training, he was active in distributed

training and learning technologies. He received his doctorate in modeling and simulation from the

University of Central Florida with a focus in intelligent systems. In January 2012, he was honored as the

inaugural recipient of the US Army Research Development & Engineering Command’s Modeling &

Simulation Lifetime Achievement Award.

Authors

Vincent Aleven

Dr. Vincent Aleven is an Associate Professor in Carnegie Mellon University’s (CMU) Human-Computer

Interaction Institute, and has over 20 years of experience in research and development of advanced

learning technologies, such as ITSs and educational games. Major themes in his research are self-

regulated learning, metacognition authoring tools, and the use of tutoring technology in ill-defined

domains. Dr. Aleven and colleagues created the Cognitive Tutor Authoring Tools (CTAT), a suite of

efficient, easy-to-learn, and easy-to-use authoring tools for intelligent tutoring systems

(http://ctat.pact.cs.cmu.edu), including a new paradigm called “example-tracing tutors” that make tutor

authoring 4–8 times as cost-effective. CTAT tutors have been built for a wide range of domains, including

mathematics (at the elementary school, middle school, and high school level), science (chemistry,

genetics), engineering (thermodynamics), language learning (Chinese, French, and English as a Second

Language), and learning of intercultural competence. Dr. Aleven is a member of the Executive

Committee of the Pittsburgh Science of Learning Center (PSLC), an National Science Foundation (NSF)-

sponsored research center spanning CMU and the University of Pittsburgh. He is a co-founder of

Carnegie Learning, Inc., a Pittsburgh-based company that markets Cognitive Tutor™ math courses. He

was the program committee co-chair of the 2010 International Conference on Intelligent Tutoring

Systems. He is co-editor in chief of the International Journal of Artificial Intelligence in Education. He

has been or is principal investigator (PI) on 7 major research grants and co-PI on 10 others. He has over

200 publications to his name.

359

Benjamin Bell

Dr. Benjamin Bell is a principal with Aqru Research and Technology, LLC. Dr. Bell’s research has

addressed the authoring and efficacy of simulation for training and education across a spectrum of

applications, including K-12, higher education, and military training. He has led funded research from a

diverse array of sponsors, including the DoD, Federal Aviation Administration (FAA), National Air and

Space Administration (NASA), and the National Baseball Hall of Fame. He has held leadership positions

in the private sector, and previously served on the faculty of Teachers College, Columbia University. Dr.

Bell is an associate editor for the IEEE Transactions on Human-Machine Systems and an assistant adjunct

professor at Embry Riddle Aeronautical University. He holds a PhD from Northwestern University and

Master’s degrees from Embry Riddle and Drexel University. Dr. Bell is a graduate of the University of

Pennsylvania.

Karissa Berkey

Karissa Berkey is currently a senior at Stetson University in DeLand, FL. She will be graduating in May

2015 with a major in psychology and a minor in education. During her time at Stetson, she has been a

member of the Psi Chi International Psychology Honor Society, Student Government Association,

Student Ambassadors, and Pi Beta Phi Women’s Fraternity, and served as the International Admissions

Assistant. She completed her Senior Project in the areas of social anxieties and interaction, self-

awareness, and perception, and has since pursued a second research study in similar areas in relation to

social Greek organizations. Karissa plans to attend graduate school for clinical psychology in fall 2015.

Stephen Blessing

Dr. Stephen Blessing is currently an Associate Professor of Psychology at the University of Tampa. He

has over 20 years of experience in the field of ITSs, starting with developing the Demonstr8 authoring

tool while an intern at Apple Computer. He worked for 5 years at Carnegie Learning, creating the

cognitive models for their high school math tutors. While there he started work on their Cognitive Tutor

Software Development Kit, which allowed for the rapid creation of their model-tracing tutors. Dr.

Blessing has maintained his research interest in authoring tools for ITSs, co-editing a book on the topic.

He has collaborated with Dr. Stephen Gilbert on the Extensible Problem-Solving Tutor (xPST), another

authoring tool that aims to make tutor creation easier and more affordable. He has an interest not only in

how ITSs are used in traditional classroom environments, but also how they may be used in informal

learning environments as well. He is currently testing an iPad-based tutor in a children’s museum.

Amy Bolton

Dr. Amy Bolton is a Program Officer at ONR. She manages several programs within the Capable

Manpower Future Naval Capability. Capable Manpower is a multi-million dollar per year science and

technology (S&T) program that addresses the human system integration topics of manpower, personnel,

training, and human system design. Products from Dr. Bolton’s programs have had success transitioning

to both the Navy and Marine Corps contributing to enhanced warfighter readiness across the Naval

Enterprise. Dr. Bolton’s research interests include adaptive training, human behavior modeling, human

system design, and Live, Virtual, and Constructive training. She holds a PhD in applied experimental and

human factors psychology from the University of Central Florida. Dr. Bolton has published more than 50

technical publications including four invited book chapters. Publications were on the topics of

computational modeling, training technology and methodology, cognitive performance and resilience to

stress, augmented cognition, and transitioning S&T into the acquisition process.

360

Michael Boyce

Dr. Michael W. Boyce is a Postdoctoral Research Associate under the direction of Dr. Sottilare

supporting the Learning in Intelligent Tutoring Environments (LITE) Laboratory and the Advanced

Simulation Branch for the Army Research Laboratory Simulation and Training Technology Center (ARL

STTC). As a part of his postdoc, Dr. Boyce has been tasked with developing an adaptive tutoring

environment to help support the Augmented Reality Sandtable. His research interests involve user

interaction design, human systems integration, and human performance assessment. Dr. Boyce has his

doctorate from the University of Central Florida, Applied / Experimental Human Factors Psychology

Program.

Zhiqiang Cai

Mr. Zhiqiang Cai is a Research Assistant Professor with IIS at UofM. He has a MS degree in

computational mathematics received in 1985 from Huazhong University of Science and Technology, P.

R. China. His current research interests are in algorithm design and software development for tutoring

systems and natural language processing (NLP).

Joseph Cohn

Dr. Joseph Cohn is a Commander in the US Navy’s aerospace experimental psychologist (AEP)

community. He is currently assigned as Deputy Director to the Office of the Under Secretary of Defense

for Acquisition, Technology, and Logistics’ (OUSD(AT&L)) Human Performance Training and

BioSystems Directorate, with oversight for both the DoD’s Human Research Protection Programs and the

DoD’s Human Systems and Medical research portfolios. He has previously served in the ONR’s Human

and Bioengineered Systems Division, as a Military Deputy and Program Officer and was ONR’s first

Deputy Director of Research for Science, Technology, Engineering and Mathematics (DDoR STEM).

Dr. Cohn also served as a program manager at the Defense Advanced Research Projects Agency

(DARPA) directing basic and applied research projects that delivered cutting edge biomedical and

information technology products, including deployable brain-imaging technologies, advanced brain-

system interfaces, technologies that inoculate warfighters against stress, and a digital tutoring system that

reduced by an order of magnitude the time required to train novices to perform at the expert level. He has

co-authored over 80 publications, chaired numerous panels and workshops and been an invited speaker to

national and international conferences on human systems research. He has co-edited a three-volume book

series focusing on all aspects of training system development, and a single-volume book on enhancing

human performance in high risk environments and is working on a book entitled Modeling Sociocultural

Influences on Decision Making. He is a Fellow of the American Psychological Association, the Society of

Military Psychologists, and Associate Fellow of the Aerospace Medical Association.

Ron Cole

Dr. Ron Cole is Principal Scientist and President of Boulder Language Technologies, Inc. He received a

BA in psychology from the University of Rochester and an MA and PhD in psychology from the

University of California at Riverside. He established the Center for Spoken Language Understanding

(CSLU) at the Oregon Graduate Institute, where he envisioned and managed development of the CSLU

toolkit, with over 32,000 installations in 136 countries. The CSLU Toolkit was used as the research,

development, and runtime platform to teach vocabulary to profoundly deaf children through spoken

dialogue interaction with an animated computer character. The results of this multidisciplinary research

effort were featured on ABC TV’s Prime Time and the NSF Home Page on 03/2001–04/2001. He also

361

co-founded the Center for Spoken Language Research at University of Colorado and established three

successful companies. He has been principal investigator or co-PI on over $40 million in individual

investigator peer-reviewed grants from NSF, National Institutes of Health (NIH), and Department of

Education. His research with Wayne Ward at Boulder Language Technologies led to development of My

Science Tutor, an ITS in which children learn spoken dialogues with a virtual tutor, with learning gains

equivalent to expert human tutors. During the past 20 years, he has worked diligently to stimulate and

sustain international collaboration in computer science and engineering. In 1997, with Jose Fortes, he

organized the NSF-sponsored Workshop on International Collaboration in Computer Science.

Subsequently, he organized several NSF-sponsored workshops with Jose Fortes, Jaime Carbonnell, and

others in the US, Argentina, Chile, and Mexico to promote international collaboration in computer

science. Several of these workshops led to new projects, initiatives and programs. He also managed a 2-

year project sponsored by the NSF and EU to survey the state of the art of the field of human language

technology, which resulted in an edited volume with contributions from over 90 authors.

Mark G. Core

Mark G. Core is a research scientist at the Institute for Creative Technologies (ICT) at the University of

Southern California. He specializes in artificial intelligence (AI) in education working in ill-defined

domains such as negotiation, cultural awareness, and leadership. He received his PhD from the University

of Rochester in 2000 under the direction of Prof. Lenhart Schubert, and was a research fellow at the

University of Edinburgh working with Prof. Johanna Moore until joining ICT in 2004. He worked in the

area of computational linguistics specifically natural language understanding, and discourse analysis. At

the University of Edinburgh, he undertook analysis of successful human tutoring dialogues and while at

ICT he has focused on analysis of learner writing. At ICT, he is also working on an evolving tutoring

architecture incorporating technologies such as expert modeling, open learner modeling, experience

manipulation, explainable AI, natural language understanding, and natural language generation. Recent

areas of research include authoring tools for tutoring systems, and physician training including interview

and diagnosis skills.

Jianmin Dai

Jianmin Dai received his PhD in system engineering from the Huazhong University of Science and

Technology in China in 2006, and served as a Postdoctoral Fellow on the Writing Pal project with

Danielle McNamara from 2008–2011. He is currently an Assistant Research Professor in charge of

system design and computer programming for ITSs (e.g., iSTART, Writing Pal) and NLP tools (e.g.,

Coh-Metrix, TERA, Writing Assessment Tool) for the Science of Learning and Educational Technology

Lab (SoLET) at Arizona State University (ASU). His primary interests are in research and development

(R&D) for ITSs and game-based education technology. His research focus is on the application of NLP

and machine learning in ITSs and game-based education systems.

Sandra Demi

Sandra Demi is a Senior Research Programmer at the Human-Computer Interaction Institute at CMU and

has over 20 years’ experience working in the software field as a developer, tester, and technical writer.

For the last 10 years, she has been responsible for quality assurance and creating installers for the CTAT

project, as well as contributing to development of the software, documentation, and supporting users.

Prior to joining the project, she worked as a tester for an electronic diary used in clinical trials for the

pharmaceutical industry, a developer on a nuclear-waste tracking system, a developer for a web proxy

server, the lead tester for the transaction-processing engine in IBM’s WebSphere application, and as a

362

technical writer for a suite of design-synthesis tools for electrical engineers. Her technical expertise

includes test automation, software usability, and a variety of programming languages including Java,

JavaScript, Python, ActionScript, C and PL/SQL. She has a MS in information science from the

University of Pittsburgh.

Eric Domeshek

Dr. Domeshek is an AI Project Manager at Stottler Henke Associates, Inc. where he leads and supports

projects applying AI technology to problems in training and decision support. He has worked on a wide

range of ITSs and related training, education, and simulation environments spanning applications to

military tactics, medical diagnosis, engineering systems management, business decision-making, and

historical analysis. He is particularly interested in exploration of Socratic tutoring techniques and the

development of authoring tools. He currently leads work on the authoring tools for the Intelligent

Tutoring Authoring and Delivery System (ITADS) ITS in development for the US Navy. Dr. Domeshek

received his PhD in computer science from Yale University, focused on case-based reasoning. For his

dissertation, he developed representations of decision rationale for social situations, intended to support

case retrieval; this included extensive representations of characters’ relationships, traits, and motivational

structures. He served as research faculty at the Georgia Institute of Technology College of Computing

where he contributed to the development of a line of case-based design aids. He was also an assistant

professor at Northwestern University, developing goal-based scenario training systems at the Institute for

the Learning Sciences.

Hannah Freeman

Hannah Freeman, MSc, is a Policy Analyst in the Office of the Assistant Secretary of Defense (Research

& Engineering)’s (OASD(R&E)) Human Performance, Training, and BioSystems Directorate. In this

role, she provides strategic guidance to the DoD’s Human Systems S&T Senior Executives, directly

supporting the long-term investment of over $3B in basic and applied research activities. Ms. Freeman

also supported the department’s S&T leadership through Reliance 21; supporting the development and

implementation of policy strengthening the harmonization and efficiency of the DoD S&T joint planning

and coordination process. She earned a dual BA degree in Hispanic studies and international studies

(Russia and Eastern Europe) at Illinois Wesleyan University. Ms. Freeman earned her MSc in political

science - conflict studies from the London School of Economics & Political Science.

Libby Gerard

Libby Gerard, EdD, is a Research Scientist in the University of California (UC), Berkeley Graduate

School of Education. Her research examines how innovative learning technologies can capture student

ideas and help teachers and principals use those ideas to make decisions about classroom instruction and

assessment. Her recent projects explore the use of automated scoring of student written essays and student

created drawings to provide guidance to students and support the teacher. She designs and leads teacher

and principal professional development by using student assessment data to inform instructional

customization and resource allocation. Prior to being a research scientist, she was a postdoctoral scholar

researcher at UC Berkeley where she coordinated the Mentored and Online Professional Development in

Science (MODELS) project, and was a fellow of the Technology Enhanced Learning in Science (TELS)

Center at Mills College. She also taught preschool and elementary school in Oakland, CA, and in

Alessandria, Italy. Her research is published in leading peer-reviewed journals including Science, Review

of Educational Research and Journal of Research in Science Teaching.

363

Stephen Gilbert

Stephen B. Gilbert received a BSE from Princeton in 1992 and PhD from MIT in 1997. He has worked in

commercial software development and run his own company. He is currently an assistant professor in the

Industrial and Manufacturing Systems Engineering Department at Iowa State University, as well as

Associate Director of ISU’s Virtual Reality Application Center and its Graduate Program in Human

Computer Interaction. His research interests focus on technology to advance cognition, including

interface design, intelligent tutoring systems, and cognitive engineering. He is a member of IEEE and

ACM. He is currently the PI on two contracts supporting ARL’s STTC in future training technologies.

Benjamin Goldberg

Benjamin Goldberg, PhD, is a member of the LITE Lab at ARL-HRED’s STTC in Orlando, FL. He has

been conducting research in the M&S community for the past 5 years with a focus on adaptive learning

and how to leverage AI tools and methods for adaptive computer-based instruction. Currently, he is the

LITE Lab’s lead scientist on instructional management research within adaptive training environments.

Dr. Goldberg is a PhD graduate from the University of Central Florida in the program of M&S. Dr.

Goldberg’s work has been published across several well-known conferences, with recent contributions to

the Human Factors and Ergonomics Society (HFES), Artificial Intelligence in Education and ITS

proceedings, and the Journal of Cognitive Technology.

Neil Heffernan

Dr. Neil Heffernan is a Professor of Computer Science and Co-Director of the Learning Science &

Technologies Program at Worcester Polytechnic Institute (WPI). For his dissertation from CMU, he built

the first ITS that incorporated a model of tutorial dialogue. This system was shown to lead to higher

student learning, by getting students to think more deeply about problems. It is based upon detailed

studies of students, which produced basic cognitive science research results on the nature of human

thinking and learning. He has written over 60 strictly peer-reviewed publications, and received multiple

awards from professional associations. Since coming to WPI, he has received over a dozen major grants

from NSF including the prestigious CAREER award, the US Department of Education, ONR, the US

Army, the Massachusetts Technology Transfer Center, the Bill and Melinda Gates Foundation, and the

Spencer Foundation worth over 13 million dollars. Recently, his work was cited in the National

Educational Technology Plan and featured in the NY Times Sunday Magazine.

Michael Hoffman

Michael Hoffman is the lead software engineer on the GIFT project with over 9 years of software

development experience and a Master’s of Science degree from the University of Central Florida. He has

been responsible for ensuring that the development of GIFT meets the evolving customer requirements in

addition to supporting both intelligent tutoring for computer based training and intelligent tutoring

technology research of the growing user community. He manages and contributes support for the GIFT

community through various mediums including the GIFT portal (www.GIFTTutoring.org), annual GIFT

Symposium conferences, and various technical exchanges. In addition, he excels in integrating third-party

capabilities such as software and hardware systems that enable other organizations to integrate GIFT into

their training solutions.

364

Heather Holden

Heather K. Holden, PhD, is an Assistant Professor in the School of Information Technology for Mount

Washington College. She is a former researcher for the LITE Lab within ARL-HRED. The focus of her

research is in AI and ITS application to education and training; technology acceptance; and human-

computer interaction. Dr. Holden’s doctoral research evaluated the relationship between teachers’

technology acceptance and usage behaviors to better understand the perceived usability and use of job-

related technologies. Her work has been published in the Journal of Research on Technology in

Education, the International Journal of Mobile Learning and Organization, the Interactive Technology

and Smart Education Journal, and several relevant conference proceedings. Her PhD and MS were

earned in information systems from the University of Maryland, Baltimore County. Dr. Holden also

possesses a BS in computer science from the University of Maryland, Eastern Shore.

Tanner Jackson

G. Tanner Jackson is a research scientist in the Research and Development Division at Educational

Testing Service (ETS) in Princeton, NJ. Tanner received a PhD degree in cognitive psychology in 2007

and a MS degree in cognitive psychology in 2004—both from UofM. He also received a BA degree in

psychology from Rhodes College in 2001. After completing a Postdoctoral Fellowship at UofM (2008–

2011), he continued his research as an Assistant Research Professor within the Learning Sciences Institute

at ASU (2011–2013). His current work at ETS focuses on innovative assessments and student process

data. His main efforts involve the development and evaluation of conversation-based formative

assessments (through ETS strategic initiatives) and game-based assessments (working in collaboration

with GlassLab). Additionally, he is interested in how users interact with complex systems, and leverages

these environments to examine and interpret continuous and live data streams, including user interactions

across time within an assessment system.

Matthew E. Jacovina

Matthew E. Jacovina is a Postdoctoral Scholar working with Dr. Danielle McNamara in the Science of

Learning and Educational Technology Lab (SoLET). He received his PhD in cognitive psychology in

2011 working with Dr. Richard Gerrig at Stony Brook University and subsequently worked as a

Postdoctoral Fellow with Dr. David Rapp at Northwestern University. He studies the cognitive processes

that guide comprehension and communication, focusing on situations in which success is complicated by

mismatches between discourse content and prior knowledge, preferential biases, or time pressure. He is

interested in how individual differences influence success in these situations, and how educational

technology can leverage these understandings to individualize and improve learning. He is currently

working on the optimization of iSTART-2 and Writing Pal, game-based tutoring systems teaching

reading and writing strategies.

Randy Jensen

Randy Jensen is a group manager at Stottler Henke Associates, Inc., working in training systems since

1993. His research areas include adaptive training, distributed learning, game-based training, behavior

modeling, and NLP. He has led projects to develop ITSs and automated after-action review tools for the

Army, Air Force, Navy, and Marines. Recent work includes a model-based performance assessment

capability for training troubleshooting skills in an ITS for the US Navy. He also recently led the

development of a game-based trainer for small unit tactical decision-making at the United States Military

365

Academy at West Point. Mr. Jensen holds a BS with honors in symbolic systems from Stanford

University.

Lewis Johnson

Dr. Lewis Johnson co-founded Alelo in 2005 as a spinout of the University of Southern California. Under

his leadership, Alelo has developed into a major producer of innovative learning products focusing on

communication skills. Alelo has developed courses for use in a number of countries around the world, all

using the Virtual Role-Play method. Dr. Johnson is an internationally recognized leader in innovation for

education and training. In 2012, he was keynote speaker at the International Symposium on Automated

Detection of Errors in Pronunciation Training in Stockholm. In 2013, he was keynote speaker at the

International Association of Science and Technology for Development (IASTED) Technology Enhanced

Learning Conference and the SimTecT conference, and was co-chair of the Industry and Innovation Track

of the Artificial Intelligence in Education (AIED) 2013 conference. In 2014, he was keynote speaker at

the International Conference on Intelligent Tutoring Systems, and was Distinguished Lecturer at the

National Science Foundation. When not engaged in developing disruptive learning products, Lewis and

his wife Kim produce Kona coffee in Hawaii.

Irvin Katz

Irvin R. Katz is Director of the Cognitive Sciences Research Group at ETS in Princeton, NJ. He earned a

PhD in cognitive psychology from CMU in 1988. In addition to ETS, he has held positions at Keio

University in Yokohama, Japan; the US Bureau of Labor Statistics; the US Census Bureau; and George

Mason University. Throughout his 25-year career at ETS, he has conducted research that applies and

develops theories of cognitive learning and reasoning to issues of educational assessment. Dr. Katz is also

a human-computer interaction practitioner with more than 30 years of experience in designing, building,

and evaluating software for research, industry, and government. The Cognitive Science Research Group

that he directs comprises 12 scientists who conduct research and development at the forefront of

educational assessment, using cognitive theory in the design of assessments, building cognitive models to

guide interpretation of test-takers’ performance, and researching cognitive issues in the context of

assessment. Moving beyond traditional (e.g., multiple-choice) tests, the group investigates reliable and

valid assessment (both summative and formative) using innovative, highly interactive digital

environments such as online games, virtual labs or other simulations, and human-agent conversation-

based interactions.

Ken Koedinger

Dr. Kenneth Koedinger is Professor of Human-Computer Interaction and Psychology at CMU. His

research has contributed new principles and techniques for the design of educational software and has

produced basic cognitive science research results on the nature of student thinking and learning. Dr.

Koedinger is a co-founder of Carnegie Learning (carnegielearning.com <http://carnegielearning.com>)

and the CMU Director of LearnLab (learnlab.org <http://learnlab.org>). LearnLab is supporting Big Data

investigations in education and, more generally, leverages cognitive and computational approaches to

support researchers in investigating the instructional conditions that cause robust student learning. See

pact.cs.cmu.edu/ koedinger.html <http://pact.cs.cmu.edu/koedinger.html> for more information.

366

H. Chad Lane

H. Chad Lane is an Associate Professor of Educational Psychology and Informatics at the University of

Illinois, Urbana-Champaign (UIUC). His work focuses on the application of AI and entertainment

technologies to educational problems. He has published over 40 papers in areas including educational

games, pedagogical agents, scaffolding/feedback, and virtual environments for learning. Prior to joining

UIUC, he was the Director for Learning Sciences Research at the USC ICT. He received his PhD in

Computer Science in 2004 from the University of Pittsburgh where he studied intelligent tutoring systems

and the learning sciences. In 2013, Chad served as the Program Co-Chair for the 16th International

Conference on AIED. He also serves on the executive committee of the AIED Society (an elected

position), as an associate editor for several major educational technology journals, and as an advisor for

the NSF Cyberlearning CIRCL center. More information is available on his website: http://hchadlane.net.

James Lester

James C. Lester is Distinguished Professor of Computer Science and Director of the Center for

Educational Informatics at North Carolina State University. His research focuses on transforming

education with technology-rich learning environments. Using AI, game technologies, and computational

linguistics, he designs, develops, fields, and evaluates next-generation learning technologies for K-12

science, literacy, and computer science education. His work on personalized learning ranges from game-

based learning environments and ITSs to affective computing, computational models of narrative, and

natural language tutorial dialogue. The adaptive learning environments he and his colleagues develop

have been used by thousands of students in K-12 classrooms throughout the US He received his BA

(Highest Honors, Phi Beta Kappa), MSCS, and PhD in computer science from the University of Texas at

Austin. He received his BA in history from Baylor University. He has served as Editor-in-Chief of the

International Journal of Artificial Intelligence in Education and Program Chair for the International

Conference on Intelligent Tutoring Systems, the International Conference on Intelligent User Interfaces,

and the International Conference on Foundations of Digital Games. The recipient of a NSF CAREER

Award, he is a Fellow of the Association for the Advancement of Artificial Intelligence (AAAI).

Marcia Linn

Marcia C. Linn is Professor of Development and Cognition, specializing in S&T in the Graduate School

of Education, UC Berkeley. She is a member of the National Academy of Education and a Fellow of the

American Association for the Advancement of Science (AAAS), the American Psychological

Association, and the Association for Psychological Science. She has served as President of the

International Society of the Learning Sciences, Chair of the AAAS Education Section, and on the boards

of the AAAS, the Educational Testing Service Graduate Record Examination, the McDonnell Foundation

Cognitive Studies in Education Practice, and the NSF Education and Human Resources Directorate.

Awards include the National Association for Research in Science Teaching Award for Lifelong

Distinguished Contributions to Science Education, the American Educational Research Association

Willystine Goodsell Award, and the Council of Scientific Society Presidents first award for Excellence in

Educational Research.

Danielle S. McNamara

Danielle S. McNamara is a Professor in the Psychology Department at ASU and director of the Science of

Learning and Educational Technology laboratory. She focuses on educational technologies and

discovering new methods to improve students’ ability to understand challenging text, learn new

367

information, and convey their thoughts and ideas in writing. Her work integrates various approaches and

methodologies including the development of game-based ITSs (e.g., iSTART, Writing Pal), the

development of NLP tools (e.g., iSTART, Writing Pal, Coh-Metrix, the Writing Assessment Tool), basic

research to better understand cognitive and motivational processes involved in comprehension and

writing, and the use of learning analytics across multiple contexts. More information about her research

and access to her publications are available at soletlab.com.

Noboru Matsuda

Dr. Noboru Matsuda is research faculty at the Human-Computer Interaction Institute at CMU. His

primary research interest is in an application of cutting-edge technologies to build an effective learning

technology for all students. To achieve this goal, Dr. Matsuda studies the transformative theory of

advanced educational technology as well as cognitive theories of learning and teaching. Dr. Matsuda

received a PhD in intelligent systems from the University of Pittsburgh in 2004. Dr. Matsuda has

developed a number of ITSs in math (arithmetic, geometry theorem proving and algebra equations), C

language, and the formal specification language Z. In recent years, Dr. Matsuda has been leading the

SimStudent project (www.SimStudent.org) where the research team develops an AI that learns problem-

solving skills through guided-problem solving (aka peer tutoring) and worked-out examples (aka learning

by self-explanation). Applications of SimStudent include (1) developing an innovative authoring system

for cognitive tutors by using SimStudent as an intelligent apprentice that learns subject matter knowledge

from authors, (2) understanding the theory of learn by teaching by using SimStudent as a synthetic peer

that students can teach, and (3) advancing theory of learning by running simulations using SimStudent.

Camillia Matuk

Camillia Matuk is Assistant professor of Educational Communication and Technology at New York

University’s Steinhardt School of Culture, Education, and Human Development. Her interests are in the

design of technologies for teaching, learning, and collaboration. Recently, she has been involved in

researching how tools within online learning environments can support classroom science inquiry, and

how they can encourage teachers to design and refine their instruction. Matuk has a PhD in learning

sciences from Northwestern University, an MSc in biomedical communications from the University of

Toronto, and a BSc in biological sciences from the University of Windsor. She completed a postdoctoral

fellowship with the TELS center at UC Berkeley.

Tanja Mitrovic

Dr. Antonija (Tanja) Mitrovic is a full professor and the Head of the Department of Computer Science

and Software Engineering at the University of Canterbury, Christchurch, New Zealand. She is the leader

of Intelligent Computer Tutoring Group (ICTG). Dr. Mitrovic received her PhD in computer science from

the University of Nis, Yugoslavia, in 1994. Prof. Mitrovic is president of the International Society of

Artificial Intelligence in Education. She is an associate editor of the following journals: International

Journal on Artificial Intelligence in Education, IEEE Transactions on Teaching and Learning

Technologies, and Research and Practice in Technology Enhanced Learning (RPTEL). Dr. Mitrovic’s

primary research interests are in student modeling. ICTG has developed a number of constraint-based

intelligent tutoring systems in a variety of domains, which have been thoroughly evaluated in real

classrooms, and proven to be highly effective. These systems provide adaptive support for acquiring both

problem-solving skills and meta-cognitive skills (such as self-explanation and self-assessment). Although

most of the ITSs developed by ICTG support students learning individually in areas such as database

querying (SQL-Tutor), database design (EER-Tutor and ERM-Tutor), and data normalization (NORMIT),

368

there are also constraint-based tutors for object-oriented software design and collaborative skills, various

engineering topics (thermodynamics, mechanics), training to interpret medical images and language-

learning. ICTG has also developed the Authoring Software Platform for Intelligent Resources in

Education (ASPIRE), a full authoring and deployment environment for constraint-based tutors. Recent

research includes affect-aware tutors and motivational tutors. She has authored over 200 peer-reviewed

publications.

Bradford Mott

Bradford Mott is a Senior Research Scientist in the Center for Educational Informatics at North Carolina

State University. He received his PhD in computer science from North Carolina State University, where

his research focused on intelligent game-based learning environments. His research interests include AI

and human-computer interaction, with applications in educational technology. In particular, his research

focuses on game-based learning environments, intelligent tutoring systems, computer games, and

computational models of interactive narrative. His research has been recognized with best paper awards

and he has contributed to several award-winning video games, including one that received a game of the

year award. He has many years of software development experience from industry, including extensive

experience in the video game industry, having served as Technical Director at Emergent Game

Technologies where he created cross-platform middleware solutions for Microsoft’s Xbox and Sony’s

PlayStation video game consoles.

Tom Murray

Dr. Tom Murray is a Senior Research Fellow in School of Computer Science at the University of

Massachusetts Amherst. His current research areas include supporting social deliberative skills in online

contexts, and text analytics for cognitive developmental levels. He has also published in the areas of ITS

authoring tools, adaptive hypermedia, intelligent learning environments, and knowledge engineering. He

is also publishes papers in the field of integral theory on embodied epistemology, contemplative dialogue

practices, and applied ethics. Murray has degrees in educational technology (EdD, MEd), computer

science (MS), and physics (BS). He is on the editorial review boards of two international journals, the

International Journal of Artificial Intelligence in Education and Integral Review (as an Associate Editor).

Benjamin Nye

Benjamin D. Nye is a research assistant professor at UofM at the IIS. His current focus is on ITS

architectures, with a focus on lowering barriers to developing and adopting ITS technology. His primary

research project is the ONR STEM Grand Challenge, where he is researching natural language tutoring

modules called sharable knowledge objects (SKOs). He is also involved in cognitive agent-based

architectures. His thesis topic was “Modeling Memes: A Memetic View of Affordance Learning,” which

examined memes theoretically and computationally through a model that synthesized Shannon

Information Theory and Observational Learning from Bandura’s Socio-Cognitive Learning Theory.

Brent Olde

Dr. Brent Olde is a Lieutenant Commander in the US Navy. He is currently assigned as a Program Officer

and Division Deputy at ONR’s Human & Bio-Engineered Systems Division. He manages several S&T

programs; primarily Live, Virtual, and Constructive (LVC) training; Unmanned Aerial Systems (UAS)

Selection, Interface, and Training; and STEM ITSs. He received his undergraduate degree at the

University of Missouri - Columbia and his PhD in experimental psychology at UofM. Upon completion

369

he was commissioned as a Lieutenant in the US Navy, completed primary flight training in 2003, and was

designated an US Navy AEP. He has completed tours at NAVAIR 1.0, Program Manager (PMA205 -

Training Systems); NAVAIR 4.6, Human Systems Research and Engineering Department; Naval

Postgraduate School, Assistant Professor; and Naval Aerospace Medicine Institute (NAMI), Fleet Support

Division Officer.

Andrew Olney

Andrew Olney is presently an Associate Professor in the Institute for Intelligent Systems/Department of

Psychology at UofM and Director of the IIS. Dr. Olney received a BA in linguistics with cognitive

science from University College London in 1998, an MS in evolutionary and adaptive systems from the

University of Sussex in 2001, and a PhD in computer science from UofM in 2006. His primary research

interests are in natural language interfaces. Specific interests include vector space models, dialogue

systems, unsupervised grammar induction, robotics, and ITSs. Dr. Olney frequently serves as program

committee member and journal reviewer in the fields of cognitive science, AI, and education. Together

with his collaborators, Dr. Olney has been awarded $9.3 million from federal funding agencies including

the NSF, the Institute for Education Sciences, and the DoD. His research has been featured in WIRED

Magazine, the New York Times, the Wall Street Journal, the Discovery Science Channel, and BBC Radio

4. Dr. Olney was awarded first place in an international robotics competition for the PKD Android

(AAAI, 2006) and received the Early Career Research Award from UofM.

Scott Ososky

Dr. Scott Ososky is a Postdoctoral Research Fellow at the STTC within ARL-HRED. His current research

examines mental models of adaptive tutor authoring, including user experience issues related to tools and

interfaces within the adaptive tutor authoring workflow. His prior work regarding mental models of

human interaction with intelligent robotic teammates has been published in the proceedings of the Human

Factors and Ergonomics Society, HCI International, and SPIE Defense & Security annual meetings. Dr.

Ososky received his PhD and MS in modeling & simulation, as well as a BS in management information

systems from the University of Central Florida.

Philip Pavlik

Philip I. Pavlik Jr. is currently an Assistant Professor of Psychology at UofM’s IIS. Dr. Pavlik received a

BA from the University of Michigan in Economics and a PhD from CMU where he studied cognitive

psychology with John Anderson (developer of the Adaptive Control of Thought—Rational (ACT-R)

cognitive modeling system) and received a neuroscience certificate from the Center for the Neural Basis

of Cognition. With Anderson, Pavlik has pioneered changes in the ACT-R theory that have allow his

research to use this theory to quantitatively optimize the learning of information for tasks such as

flashcard learning. From this foundation, his work with Ken Koedinger has developed to focus on

problem solving, schema learning, optimal transfer, effects of motivational constructs, and student

strategy use. His methodologies include theory development, experimentation, mathematical modeling,

and educational applications. Pavlik has received more than 2.2 million dollars in grant awards from the

Institute for Educational Sciences, NSF, and other sources.

Octav Popescu

Octav Popescu is a Senior Research Programmer/Analyst in CMU’s Human-Computer Interaction

Institute, where he is in charge of TutorShop, the learning management system part of the CTAT project.

370

He has more than 25 years of experience working on various projects involving natural language

understanding and ITSs. He holds an MS in computational linguistics and a PhD in language technologies

from CMU.

Charles Ragusa

Charles Ragusa is a senior software engineer at Dignitas Technologies with over 14 years of software

development experience. After graduating from University of Central Florida with a BS in computer

science, Mr. Ragusa spent several years at SAIC working on a variety of R&D projects in roles ranging

from software engineer and technical/integration lead to project manager. Noteworthy projects include the

2006 DARPA Grand Challenge as an embedded engineer with the CMU Red Team, program manager of

the SAIC Common Driver Trainer (CDT)/Mine Resistant Ambush Protected (MRAP) Independent

Research & Development (IR&D) project, and lead engineer for Psychosocial Performance Factors in

Space Dwelling Groups. Since joining Dignitas Technologies in 2009, he has held technical leadership

roles on multiple projects, including his current role as the principal investigator for the GIFT project.

Sowmya Ramachandran

Dr. Sowmya Ramachandran is a Research Scientist at Stottler Henke Associates where her work focuses

on the application of AI and machine learning to improve education and training. She leads research and

development of ITSs and ITS authoring tools for a diverse range of military and civilian domains. Dr.

Ramachandran headed the development of ReadInsight, an intelligent tutor for teaching reading

comprehension skills to adult English speakers. She also led the development of an intelligent tutor for

training Tactical Action Officers in the Navy. This system uses NLP technologies to assess and train

tactical action officers (TAOs) and is currently in operational use at the Surface Warfare Officers School.

She is currently leading the development of an ITS for training US Navy Information Systems

Technicians in troubleshooting and maintenance skills. Dr. Ramachandran holds a PhD from The

University of Texas at Austin. For her dissertation, she developed a novel machine learning technique for

constructing Bayesian network models from data.

Steven Ritter

Steven Ritter is Chief Scientist at Carnegie Learning. Dr. Ritter received his doctorate in cognitive

psychology from CMU and worked with John Anderson and others to develop and evaluate the ITSs that

became the basis for Carnegie Learning’s products. He was one of the co-founders of Carnegie Learning.

Dr. Ritter is the author of numerous papers on the design, architecture, and evaluation of educational

technology and served on the education board of the Software and Information Industry Association. His

evaluation work has been recognized by the What Works Clearinghouse as fully satisfying their

requirements for rigorous evaluation. In his role as chief scientist, Dr. Ritter directs all projects regarding

research on the effectiveness of Cognitive Tutor products and guides development projects focused on

improving the effectiveness of mathematics curricula. Dr. Ritter also serves as Chief Product Architect,

setting the direction of future Cognitive Tutor products.

Jonathan Rowe

Jonathan Rowe is a Research Scientist in the Center for Educational Informatics at North Carolina State

University. He received the PhD and MS degrees in computer science from North Carolina State

University. He received the BS degree in computer science from Lafayette College. His research is in the

areas of AI and human-computer interaction for advanced learning technologies, with an emphasis on

371

game-based learning environments. He is particularly interested in intelligent tutoring systems, user

modeling, educational data mining, and computational models of interactive narrative. He has led

development efforts on several game-based learning projects, including Crystal Island: Lost Investigation,

which was nominated for Best Serious Game at the Unity Awards and Interservice/Industry Training,

Simulation and Education Conference (I/ITSEC) Serious Games Showcase and Challenge. His research

has also been recognized with several best paper awards, including best paper at the Seventh International

Artificial Intelligence and Interactive Digital Entertainment Conference and best paper at the Second

International Conference on Intelligent Technologies for Interactive Entertainment.

Andrew R. Ruis

A.R. Ruis is a member of the Epistemic Games Group at the Wisconsin Center for Education Research

and a fellow of the Medical History and Bioethics Department at the University of Wisconsin-Madison.

He received his BS and BA from the University of California, Davis, and his MA and PhD from the

University of Wisconsin-Madison.

Jonathan Sewall

Jonathan Sewall is a Project Director in the Human-Computer Interaction Institute at CMU. For the last

11 years, he has been the technical lead on the CTAT project, which aims to create tools that speed the

development of ITSs. Mr. Sewall has more than 32 years of experience in system design, development,

integration and testing. His technical expertise includes Java, C, JavaScript, C++, HTML and other

programming languages. His career experience has included developing software for the Joint Chiefs of

Staff’s strategic missile warning system; debugging network software, training operators and handling

problems in the Internet’s Network Operations Center; designing and building a data base system for

personal computer application distribution; creating a system to automate oil terminal operations; and

building server software for retrieving and displaying electronic medical records. His roles have ranged

from system tester to software debugger to designer to project manager.

Dylan Schmorrow

Dr. Schmorrow is the Chief Scientist at Soar Technology (SoarTech) where he is leading the

advancement of research and technology tracks to build intelligent systems for defense, government, and

commercial applications that emulate human decision making in order to make people more prepared,

more informed and more capable. He has led numerous initiatives that transformed promising

technologies into operational capabilities and he successfully transitioned several significant prototypes to

operational use. His past service includes the Deputy Director, Human Performance, Training, and

BioSystems at the Office of the Secretary of Defense, Program Manager for DARPA, Research Scientist

and Branch Head at the Naval Air Warfare Center, Chief Scientist for Human-Technology Integration at

the Naval Research Lab, Assistant Professor at the Naval Postgraduate School, Program Officer at ONR,

and Executive Assistant to the Chief of Naval Research. He received a commission in the US Navy in

1993 as a Naval aerospace experimental psychologist and completed naval flight training in 1994. He

retired as a US Navy Captain in 2013 after twenty years of service where he was both an aerospace

experimental psychologist and an acquisition professional leading research and development programs.

David Shaffer

David Williamson Shaffer is a Professor at the University of Wisconsin-Madison in the Department of

Educational Psychology and a Game Scientist at the Wisconsin Center for Education Research. Before

372

coming to the University of Wisconsin, Dr. Shaffer taught grades 4–12 in the United States and abroad,

including 2 years working with the Asian Development Bank and US Peace Corps in Nepal. His MS and

PhD are from the Media Laboratory at MIT, and he taught in the Technology and Education Program at

the Harvard Graduate School of Education. Dr. Shaffer was a 2008–2009 European Union Marie Curie

Fellow. He studies how new technologies change the way people think and learn, and his most recent

book is How Computer Games Help Children Learn.

Anne Sinatra

Anne M. Sinatra, Ph.D. is a Research Psychologist and Adaptive Tutoring Scientist in the LITE Lab

within ARL-HRED. The focus of her research is in cognitive psychology, human factors psychology, and

adaptive tutoring. She has specific interest in how information relating to the self and about those that one

is familiar with can aid in memory, recall, and tutoring. Her dissertation research evaluated the impact of

using degraded speech and a familiar story on attention/recall in a dichotic listening task. Her post-

doctoral work examined the self-reference effect and personalization in the context of computer-based

tutoring. Her work has been published in the journal Interaction Studies, and in the conference

proceedings of the Human Factors and Ergonomics Society and Human-Computer Interaction

International. Prior to her current position, Dr. Sinatra was a Visiting Assistant Professor of Cognitive

Psychology at Stetson University and completed 2 years as an Oak Ridge Associated Universities/ARL

Post-Doctoral Fellow in ARL’s LITE Lab. Dr. Sinatra received her PhD and MA in applied experimental

and human factors psychology, as well as her BS in psychology from the University of Central Florida.

Erica L. Snow

Erica L. Snow is a graduate student in the Department of Psychology and the Learning Sciences Institute

at ASU. Her academic background includes a psychology BS (2007) and a cognitive psychology MA

(2014). She is currently pursuing a doctoral degree in the area of cognitive science. Her current research

explores the interplay of students’ learning outcomes, learning behaviors, and individual differences

within ITSs and educational games. She is particularly interested in how methodologies from AI,

educational data mining, and learning analytics can be applied to discover patterns in students’ logged

interactions with computer-based learning environments.

Ronald Tarr

Ronald W. Tarr is a Senior Research Faculty Member at the University of Central Florida and Program

Director of the Research in Advanced Performance Technologies and Educational Readiness (RAPTER)

Lab at the Institute for Simulation and Training (IST). He leads a team of interdisciplinary researchers

who function as analysts, planners, integrators and designers of the advanced applications of simulation

and learning technologies for enhancing human performance.

Robert Taylor

Robert Taylor is a Senior Research Software Engineer in the Center for Educational Informatics at North

Carolina State University. His primary focus is designing and implementing game-based learning

environments and intelligent cyberlearning systems that leverage video game and cloud-based computing

technologies. His work includes creating cutting-edge AI research platforms and deploying software

systems of commercial-quality and scalability. Thousands of students across the United States have used

these adaptive learning environments for STEM education in elementary school classrooms. He received

his ME and BS degrees in engineering mathematics and computer science from the University of

373

Louisville. The majority of his career has focused on designing and implementing commercial software

solutions that range in scale and complexity from mobile applications to enterprise-class software. His

professional interests include video game technologies, content authoring tools, ITSs, and AI

technologies.

Martin van Velsen

Martin van Velsen is a Senior Research Engineer in the Human-Computer Interaction Institute and

graduate student in the Language Technologies Institute at CMU. He is the lead visualization developer

for the CTAT authoring research group. Martin also works full time on research projects of a wildly

varied nature, some which are: neurosurgery simulations, large-scale AI architectures, virtual humans,

and training simulations. He serves as technical adviser to many leading specialists in the field of serious

games, simulations, and digital entertainment. As a digital storytelling expert, he serves as research

consultant to various entertainment companies including Disney Research and Paramount Pictures. He

has been a speaker and panel host for various entertainment technology gatherings. Most recently, he took

part as a panelist at the PAX East gaming convention, but he has also organized such scientific forums as

a panel on Authoring Interactive Narrative at the Stanford Spring Symposium. Over the last 18 years, he

has been responsible for shepherding open-ended research projects toward viable products that can be

deployed by such organizations as DARPA, Air Force Research Laboratory, and ONR. Finally, he is an

award-winning artist, published fiction author, engineer, and a researcher in the field of interactive

narrative.

Wayne Ward

Dr. Wayne Ward is Principal Scientist and Chief Financial Officer at Boulder Language Technologies,

Inc. He received a BA in mathematical science and psychology at Rice University and an MA and PhD in

psychology at University of Colorado. He is also a Research Professor at the Computational Language

and Education Research Center for the University of Colorado. Previously, he was appointed as a

Research Computer Scientist at CMU. Dr. Ward developed and maintains the Phoenix system, a parser

and dialogue manager designed specifically for semantic information extraction from spoken dialogues in

limited domains. Phoenix is distributed as freeware by Boulder Language Technologies and by CMU. Dr.

Ward then led the effort to incorporate these and additional technologies into the Virtual Human Toolkit,

a toolkit for developing conversational systems using animated agents.

Diego Zapata-Rivera

Diego Zapata-Rivera is a Senior Research Scientist in the Cognitive and Learning Sciences Center at ETS

in Princeton, NJ. He earned a PhD in computer science (with a focus on AI in education) from the

University of Saskatchewan in 2003. His research at ETS has focused on the areas of innovations in score

reporting and technology-enhanced assessment (TEA) including work on adaptive learning environments

and game-based assessments. His research interests also include evidence-centered design, Bayesian

student modeling, open student models, conversation-based tasks, virtual communities, authoring tools,

and program evaluation. Dr. Zapata-Rivera has produced over 100 publications including journal articles,

book chapters, and technical papers. He has served as a reviewer for several international conferences and

journals. He has been a committee member and organizer of international conferences and workshops in

his research areas. He is a member of the Board of Special Reviewers of the User Modeling and User-

Adapted Interaction journal and an Associate Editor of the IEEE Transactions on Learning Technologies

Journal. Most recently, Dr. Zapata-Rivera has been invited to contribute his expertise to projects

sponsored by the National Research Council, NSF, and NASA.

374

375

INDEX

Abelson, H., 27

Abraham, A., xiv

Abrahamse, E.L., 348, 354

Adams, D., 89, 91, 280

Adams, D.M., 89

Adamson, D., 269, 278

adaptive training, xiii, 6, 161, 162, 163, 164, 346,

355, 356, 357, 361, 362

adaptive tutoring, vi, vii, xii, xiv, 86, 92, 236, 255,

258, 278, 345, 352, 353, 358, 370

Adcock, A., 152, 160, 169, 178

Adenowo, A., 42

Adesope, O.O., 151, 160, 251, 275, 280

ADL, iv, 334, 343, 356

affective state, 123, 166

affordances, 27, 37, 51, 52, 180, 288, 313, 314

Ahuja, N.J., 42

Ainsworth, S., xiv, 27, 29, 120, 143, 144, 189, 190,

191, 298, 315, 316, 343

Aist, G., 251, 294, 298

Albright, D., 248, 250

Aleahmad, T., 142, 143

Aleixandre, M., 251

Aleven, Vincent, iii, xiii, 3, 7, 9, 27, 29, 40, 42, 52,

54, 55, 56, 57, 61, 62, 63, 68, 71, 74, 75, 76, 78,

87, 89, 90, 91, 92, 93, 109, 120, 137, 141, 143,

167, 169, 177, 178, 179, 181, 182, 189, 190, 229,

234, 237, 238, 239, 240, 255, 257, 259, 261, 262,

263, 264, 265, 266, 268, 269, 270, 272, 273, 274,

275, 278, 279, 280, 281, 291, 294, 297, 303, 304,

309, 315, 334, 343, 356

Allen, L.K., 110, 111, 118, 119, 120, 121, 149

Almeida, S.F., 55, 63, 92, 144, 281, 299

Amburn, C., 233, 239

Anderson, J. R., xiii, 28, 63, 90

Anderson, J.R., iii, x, xiii, 28, 50, 54, 63, 74, 82, 84,

85, 87, 90, 138, 143, 144, 163, 167, 180, 189, 227,

228, 229, 238, 264, 266, 270, 274, 278, 279, 291,

292, 293, 297, 298, 301, 309, 313, 315, 367, 368

Anderson, L.W., xiii

Andersson P., 28

Arastoopour, G., 180, 181, 189

architecture, iii, ix, xi, 4, 33, 35, 36, 39, 44, 48, 59,

62, 63, 82, 84, 88, 89, 92, 93, 123, 131, 135, 139,

142, 144, 148, 149, 155, 183, 189, 220, 221, 223,

235, 240, 261, 266, 269, 271, 272, 273, 274, 276,

281, 302, 303, 313, 317, 335, 342, 354, 359, 368

Aris, T.N.M., 45

Army Learning Model, v, xiv

Army Research Laboratory, ii, i, iv, v, viii, ix, xiii,

xiv, 3, 7, 29, 42, 44, 45, 61, 89, 121, 144, 147, 149,

150, 178, 191, 209, 210, 225, 227, 255, 256, 259,

278, 280, 281, 283, 290, 301, 317, 318, 345, 347,

354, 355, 356, 358, 361, 362, 367, 370

Arnab, S., 160

Arroyo, I., 109, 120, 151, 159, 163, 268, 275, 276,

278

Articulate Global, 216, 218, 224

Artstein, R., 224

Ashley, K., 62, 120, 239

ASPIRE, iv, xiv, 3, 7, 29, 68, 69, 71, 79, 80, 81, 85,

86, 88, 178, 179, 181, 191, 239, 256, 280, 291,

298, 304, 307, 308, 312, 313, 316, 365

authoring tools, i, iv, v, vi, viii, ix, xii, xiii, xiv, 1, 3,

4, 6, 7, 9, 10, 11, 13, 16, 19, 20, 22, 26, 27, 29, 31,

32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47,

49, 54, 59, 61, 62, 67, 68, 69, 70, 71, 74, 77, 84,

87, 89, 95, 96, 97, 99, 100, 102, 105, 106, 107,109,

110, 112, 113, 116, 117, 118, 119, 120, 121, 123,

124, 125, 127, 131, 133, 135, 136, 137, 140, 143,

144, 147, 149, 150, 151, 152, 153, 155, 156, 157,

158, 159, 160, 161, 169, 170, 175, 177, 178, 179,

180, 181, 182, 185, 188, 189, 195, 196, 197, 199,

209, 211, 216, 217, 218, 219, 220, 222, 223, 225,

227, 229, 236, 237, 238, 255, 256, 257, 258, 259,

261, 264, 265, 266, 267, 269, 271, 272, 275, 277,

278, 283, 284, 285, 287, 289, 290, 291, 292, 295,

296, 298, 299, 301, 303, 304, 305, 309, 310, 311,

312, 313, 314, 315, 316, 317, 320, 329, 330, 333,

334, 338, 342, 343, 345, 352, 353, 356, 357, 359,

360, 366, 368, 370, 371

376

AutoTutor, v, xiii, 3, 4, 28, 33, 38, 43, 45, 62, 120,

133, 135, 136, 147, 148, 152, 159, 160, 169, 170,

174, 178, 179, 190, 191, 196, 197, 199, 200, 201,

202, 203, 204, 205, 207, 208, 209, 210, 223, 225,

238, 239, 256, 315, 330, 332, 334, 355

Axelrod, R., 106

Azevedo, R., 61

Baek, J.Y., 185, 190

Baer, W., 199, 209

Bagley, E.A., 180, 181, 189

Baker, A., iv, xiii, 43, 49, 62, 87, 90, 112, 120, 148,

149, 163, 166, 167, 225, 245, 251, 270, 273, 279,

334

Baker, R., 238, 343

Baker, R.S., xiii, 62, 90, 120, 149, 167, 278, 279

Bakhtin, M., 242, 251, 252

Bannan-Ritland, B., 103, 106

Barab, S.A., 181, 189

Barba, C., 43

Barlow, S.T., 251

Barnes, T., 144, 273, 281, 334, 343

Barnieu, J., 332

Barrows, H.S., 211, 224

Battistini, L., 169, 177

Bauer, M., 112, 121, 178, 280, 296, 299

Beal, C., 109, 120, 151, 159

Beauchat, T., 233, 239

Bebbington, A., 92

Beck, I., 251

Beck, J.E., 138, 139, 143, 244

behavior, vii, ix, x, xii, xiv, 12, 16, 23, 34, 36, 37, 47,

52, 54, 56, 59, 63, 68, 74, 75, 76, 77, 84, 85, 86,

87, 88, 91, 93, 101, 103, 109, 112, 118, 119, 121,

125, 133, 137, 138, 139, 144, 149, 151, 152, 155,

156, 157, 158, 159, 161, 163, 164, 165, 166, 167,

185, 188, 190, 218, 220, 221, 222, 223, 224, 228,

240, 251, 257, 261, 262, 263, 264, 266, 267, 268,

269, 270, 271, 277, 279, 281, 292, 294, 299, 302,

305, 307, 309, 312, 315, 332, 333, 335, 336, 337,

338, 339, 342, 348, 349, 350, 351, 357, 362, 370

Belenky, D.M., 29, 92, 280

Bell, Benjamin, 6, 31, 33, 34, 35, 37, 39, 41, 42, 45,

96, 103, 242, 251, 357

Benbya, H., 27

Bennett, R.E., 37, 42, 169, 177

Bennett, W., 42

Bereiter, C., 27

Berenfeld, B., 108

Berkey, Karissa, 257, 283, 357

Berkowitz, M., 44

Berland, L., 242, 251

Berman, S.R., 144

Bernett, D., 264, 279

Best, R., 121

Bharathy, G.K., 62

Bhogal, R.S., 251

Billings, D.R., 149, 332

Billington, I., 37, 42

Billington, S., 37, 42

Biswas, G., 61, 281, 297

Bjork, R., 144

Blackmore, J., 107

Blank, G.D., 61

Blankenship, E., 90

Blankenship, L.A., 82, 90, 177

Blessing, Stephen, xiv, 7, 9, 27, 29, 42, 44, 68, 71,

82, 84, 85, 89, 90, 91, 109, 120, 121, 136, 137,

143, 144, 160, 170, 177, 179, 191, 257, 272, 275,

278, 291, 292, 293, 294, 295, 296, 297, 298, 299,

301, 307, 311, 312, 315, 316, 357

Bloom, Benjamin, x, xiii, 50, 52, 61

Blyth, P., 225

Bogoni, L., 240

Bohemia Interactive Simulations, 222, 224

Boiney, J., 165, 167

Bolanos, D., 252

Bolstad, C.A., 92

Bolter, J.D., 190

Bolton, Amy, 149, 161, 357

Bonn, D., 92

Bonnell, R.D., 45

Boonthum, C., xiii, 57, 62, 110, 111, 120, 121, 182,

190, 209, 238, 239

Booth, R.J., 186, 191

Bope, E., 44

Borek, A., 264, 272, 278

Boschman, F., 106

Boucher, J., 225

Boullosa, J., 152, 160

Bourdeau, J., xiv

Boyce, Michael, 258, 345

Boyce, S., 164, 167, 358

Boyd, P., 218, 224

Boyle, C.F., 293, 297

Brandon, R.D., 110, 121

Bransford, J.D., 42

Brantley, J.W., 169, 178

Brawner, Keith, i, iii, iv, x, xiii, xiv, 3, 7, 29, 32, 33,

35, 40, 41, 42, 43, 44, 45, 58, 63, 123, 136, 145,

147, 149, 150, 151, 153, 159, 160, 177, 196, 225,

227, 255, 258, 259, 261, 269, 280, 281, 283, 285,

290, 317, 332, 345, 354, 355

Brennan, K., 299

Brew, C., 107

Bricker, L., 242, 251

Brown, A.L., 27, 106, 189, 239

Brown, D., 135, 331

Brown, J., 42, 238

Brown, J.S., 42, 43

Brown, M., 106

Bruner, J., 27

Brunskill, E., 144, 238

377

Brusilovsky, P., 36, 42, 91, 92, 143, 280, 305, 315

Buchenroth-Martin, C., 252

Buckley, B.C., 178

Bunzo, M., 255, 259, 291, 298

Burelson, W., 278

Burke, C.S., 63

Burkett, C., 61, 209

Burnette, T., 298

Burns, H.L., 42

Burton, A.M., 33, 36, 42, 305, 315

Burton, R., 42

Butcher, K., 141, 143

Butler, A.C., 240

Butler, H., 169, 177, 190, 209, 210, 229

Byström, K., 27

Cade, W., xiii, 62, 238, 239

Cai, Zhiqiang, xiii, xiv, 43, 47, 62, 111, 120, 123,

133, 136, 147, 149, 150, 152, 160, 179, 186, 190,

196, 197, 199, 201, 209, 210, 234, 236, 238, 240,

343, 358

Callaway, C.B., 151, 159

Camp, P.J., 298

Campbell, D.J., 27

Campione, J.C., 27, 106

Cannon-Bowers, J., 135

Capeheart, A., 298

Capps C.G., 42

Carpenter, R., 224

Carter, E., 61

Cedillos, E.M., 45

Cen, H., 138, 141, 143, 168, 273, 278

Chand, D., 278

Chang, H., 106

Chang, K.M., 99, 106, 138, 143

Chase, C.C., 231, 238, 264, 279

Chauncey, A., 61

Chen, Z., 209, 239, 240

Chesler, N.C., 180, 181, 189

Chi, M.T.H., 251

Chilana, P.K., 27

Childers, D.L., 62

Chin, C., 251

Chin, D.B., 238, 242

Chipman, P., 28, 43, 62, 135, 159, 238

Chiu, J.L., 106

Chklovski, T., 232, 238

Choi, J., 250

Cintron, L.M., 234, 240, 317, 318, 332

Clark, D., 61, 106, 189, 252

Clark, R.C., 61, 143

Clark, R.E., 42, 90

Clarke-Midura, J., 169, 177, 178, 181, 190

Clemente, J., 163, 167

Cobb, P., 27, 190

Code, J., 120, 169, 177, 185, 187

cognitive modeling, xiv, 74, 89, 161, 256, 259, 278,

304, 367

cognitive state, 50

Cohen, M., 106, 290

Cohen, P., v, xii, xiii, xiv, 54, 62, 77, 78, 91, 102,

106, 109, 120, 187, 229, 230, 231, 258, 262, 288,

291, 311, 315

Cohen, P.R., xiii, 259

Cohen, W., 239

Cohen, W.., 315

Cohen, W.W., xiv, 62, 91, 239, 280, 298, 315

Cohn, Joseph, 44, 149, 161, 162, 165, 167, 168, 358

Cole, Ron, 196, 197, 241, 252, 358

Collier, W., 189

Collins, A., 27, 29, 42, 43

Commons, M.L., 28

Component Display Theory, x, 3, 62, 234, 317, 318,

319, 320, 322, 323, 326, 327, 329, 330, 331, 332,

346, 368

Conejo, R., 61

Confrey, J., 27, 190

Conklin, J., 28

Conley, M.W., iii, xiii, 181, 190

Connolly, T., 120

Conole, G., 106

Conrad, F.G., 170, 178, 297

consistency, 235, 287, 288, 330

Constantin, A., 28

Converse, S.A., 251

Conway, M., 298

Cook-Greuter, S.R., 28

Cooper, H., 143, 190, 275, 281

Copeland, J., xiii

Corbett, A., xiii, 62, 63, 90, 92, 120

Corbett, A.T., iii, xiii, 50, 54, 62, 63, 74, 76, 84, 87,

90, 92, 112, 120, 138, 143, 163, 167, 228, 238,

264, 265, 266, 268, 270, 274, 278, 279, 280, 292,

293, 297, 301, 315, 334, 343

Core, Mark, 62, 225, 257, 301, 304, 309, 310, 311,

359

Corrigan, S., 178

Cosgrove, D., 298

Cox, M.T., 62

Craig, S.D., 190, 209

Crismond, D., 298

Cristea, A., 28

Crossley, S.A., 110, 111, 119, 120

Crouch, C.H., 291, 298

Croy, M., 273, 281

CTAT, v, 3, 27, 54, 61, 68, 69, 71, 72, 74, 75, 76, 77,

78, 79, 82, 84, 85, 86, 87, 88, 89, 143, 179, 181,

189, 229, 230, 231, 236, 256, 259, 261, 262, 263,

264, 265, 266, 267, 268, 269, 270, 271, 272, 273,

274, 275, 276, 277, 278, 291, 292, 294, 303, 304,

309, 311, 313, 315, 343, 356, 359, 367, 369, 371

Cue, Y., 152, 159, 225

378

Cummings, P., 332

Cunningham, K., 279

Cviko, A., 106

Cycorp, 232, 238

Cypher, A., 90, 315

Cytrynowicz, M., 144

D’Angelo, C.M., 106, 189

D’Mello, S.K., xiii, 43, 45, 62, 160, 190, 209, 238,

239, 240, 279, 281, 315

Dabbagh, N.H., 95, 96, 103, 105, 106

Dahmann, J., 62

Dai, Jianmin, 68, 109, 359

Damelin, D., 108

data analytics, 165, 275

data mining, 92, 117, 156, 159, 275, 278, 279, 296,

331, 368, 370

Davenport, J., 178

Davidson, M., 44

Davis, E.A., 96, 104, 106, 369

Day, J., 92

De Antonio, A., 163, 167

de Carvalho, A., 62

de Freitas, S., 160

de Jong, T., 44, 45, 343

De Kleine, E., 348, 354

de Raedt, L., 92

De Wever, B., 107

Deaton, J., 43

Dede, C., 169, 177, 181, 190

DeFalco, J.A., 32, 45, 148, 149

deJong, L., 242, 251, 334

del Blanco, Á., 120

de-la Cruz, J.L.P., 61

DeLeeuw, K.E., 91

DeLine, R., 298

Demi, Sandra, 90, 257, 261, 278, 359

Dennis, S., 111, 120, 190, 210, 228, 239

Derry, S., 43

Desmarais, M.C., 144, 163, 166, 167

Devasani, S., 90, 278, 297, 298, 315

Development, iv, xiv, 13, 23, 28, 29, 42, 43, 84, 106,

133, 149, 152, 160, 161, 167, 168, 176, 178, 182,

185, 217, 248, 259, 265, 299, 318, 330, 333, 343,

356, 357, 360, 362, 363, 364, 365, 368, 369

DiazGranados, D., 63

DiCerbo, K., 178

Dickison, D., 139, 143, 144

Dieterle, E., 181, 190

diSessa, A., 27

Dligach, D., 250

Dobson, W., 43, 44

Dolletski-Lazar, R., 333, 344

domain model, iii, iv, vii, 3, 34, 79, 86, 218, 232,

257, 262, 264, 267, 269, 270, 308, 334

domain modeling, iii, viii, 40, 342, 346

Domeshek, Eric, 257, 333, 360

Donnelly, D.F., 96, 106

Dow, S., 185, 190

Downing, B., 252

Dozzi, G., 62, 239

Drake, M., xiii

Duguid, P., 42

Dunwell, I., 160

Durkin, K., 89, 91, 280

Durlach, P., xiii, 62, 224, 225

Duschl, R., 242, 251

Dwyer, D., 43

Dyke, G., 269, 278

Eagle, M., 273, 281

Early, S., 42, 90

Easterday, M.W., 61

Eastmond, E., 299

Edelson, D., 106

educational games, 121, 181, 188, 191, 356, 363, 370

Eduworks, 233, 238

Edwards, J.E., 168

Eggan, G., 255, 259, 291, 298

Eksin, C., 62

Elkins, D., 135

Elson-Cook, M., xiii

EMAP, 317, 318, 319, 320, 322, 323, 324, 325, 326,

328, 329, 330, 331

Emme, D., 44

Emonts, M., 215, 224

Engestrom, Y., 28

Erduran, S., 251, 252

Estes, F., 90

Evanini, K., 169, 177

Evans, C., 96, 106

expert model, v, ix, 6, 32, 35, 78, 79, 109, 257, 292,

307, 330, 346, 350

expert modeling, 32, 305, 334, 359

Eylon, B.S., 96, 99, 105, 106, 107

Fancsali, S.E., 144

Fano, A., 45

Farha, N., 320, 332

Fasse, B., 298

feedback, iv, vii, viii, ix, x, 4, 13, 14, 15, 16, 18, 20,

34, 37, 40, 47, 49, 51, 52, 53, 54, 56, 57, 58, 59,

60, 63, 68, 73, 74, 76, 77, 82, 85, 86, 88, 89, 92,

96, 98, 99, 100, 102, 103, 104, 109, 110, 111, 113,

115, 117, 118, 119, 137, 139, 140, 142, 151,

180,188, 195, 213, 214, 216, 221, 223, 228, 229,

230, 236, 241, 244, 247, 258, 263, 264, 265, 266,

270, 272, 274, 276, 281, 283, 284, 287, 288, 293,

296, 302, 305, 307, 309, 310, 311, 312, 318, 330,

334, 335, 338, 340, 345, 349, 352, 363

Feldon, D., 90

Feng, M., 63, 92, 144, 281, 299

Feng, S., 55, 63, 92, 144, 199, 209, 281

Ferguson, W., 27

Fernández-Manjón, B., 120

379

Fillmore, C., 251

Fischer, K., 28

Fisher, C.R., 45

Fleming, P., 109, 120, 307, 315

Fletcher, D.F., iv, vi, xiii, 162, 167

Fletcher, J.D., xiii

Florin, C., 240

Folsom-Kovarik, J.T., 333, 344

Forbell, E., 62, 225

Forbus, K.D., 251, 271, 279

Forlizzi, J., 264, 279

Forsyth, C., 177, 190, 199, 209, 210

FOSS, 242, 243

Foster, D., 165, 167

Fournier-Viger, P., 61, 238

Fowler, S., 43

Fowlkes, J.E., 43

Francis, M.E., 45, 186, 191, 290

Franklin, S., 7

Frederiksen, J., 43

Fredriksen, A., 250

Freeman, Hannah, 33, 149, 161, 360

Freeman, J, 42

Friedland, L., 224

Friedman-Hill, E., 263, 279

Furman, M., 107

Furtak, E.M., 101, 107

Gagne, R.M., xiii

Gagné, R.M., 234, 238

Gandhe, S., 220, 224

Gandy, M., 190

Ganoe, C., 279

Garc, D., 152, 160

Gasevic, D., 278

Gentner, D., 28

Gerard, Libby, 68, 95, 99, 106, 107, 108, 360

Germany, M.L., 90, 189, 190, 191, 209

Gersh, J.R., 28

Geyer, A., 167, 168

Gholson, B., 209

Gick, M.L., 229, 238

GIFT, iii, iv, v, vi, vii, viii, ix, x, xi, xii, xiv, 3, 4, 6,

7, 29, 35, 40, 41, 44, 45, 59, 60, 61, 68, 69, 70, 84,

88, 89, 105, 109, 119, 123, 124, 125, 126, 127,

128, 130, 131, 132, 133, 134, 135, 136, 142, 144,

147, 148, 149, 150, 151, 159, 167, 177, 189,197,

208, 211, 212, 223, 224, 234, 237, 250, 255, 256,

258, 259, 261, 265, 266, 267, 269, 271, 272, 274,

275, 276, 277, 281, 283, 284, 285, 286, 287, 288,

289, 290, 292, 295, 296, 299, 302, 303, 311, 313,

314, 315, 317, 319, 320, 321, 322, 323, 324, 325,

326, 327, 328, 329, 330, 331, 332, 342, 343, 345,

347, 352, 353, 354, 356, 361, 368

Gilbert, R.B., 160

Gilbert, Stephen, viii, xiv, 68, 71, 82, 84, 85, 89, 90,

92, 151, 170, 177, 255, 257, 259, 272, 275, 278,

291, 292, 293, 294, 296, 297, 298, 311, 312, 315,

357, 361

Gildea, D., 252

Goguadze, G., 91, 280

Goldberg, Benjamin, iii, iv, vi, x, xii, xiii, xiv, 3, 6, 7,

29, 35, 40, 41, 42, 43, 44, 45, 47, 50, 58, 59, 61,

62, 63, 121, 123, 135, 136, 148, 149, 150, 151,

159, 160, 177, 178, 209, 210, 225, 234, 240, 255,

257, 258, 259, 261, 281, 283, 290, 301, 317, 318,

319, 320, 332, 345, 350, 354, 361

Goldman, R., 225

Goldman, S., 279

Goldstein, D.S., 279

Goldstone, R., 189

Gong, Y., 139, 143

González-Brenes, J.P., 143

González-Calero, P.A., 62

Goodwin, G.F., 63

GooruLearning, 233, 238

Gordon, A.S., 43

Gorman, G., 224

Gott, S., 91

Graesser, Art, i, iii, iv, v, x, xiii, xiv, 3, 7, 11, 28, 29,

33, 34, 38, 42, 43, 44, 45, 47, 48, 57, 61, 62, 89,

109, 111, 120, 121, 123, 133, 135, 136, 147, 148,

149, 150, 151, 152, 153, 159, 160, 169, 170, 177,

178, 179, 181, 182, 186, 187, 190, 191, 193, 195,

196, 199, 201, 209, 210, 225, 227, 228, 231, 232,

234, 238, 239, 240, 241, 251, 269, 275, 278, 279,

280, 281, 283, 290, 301, 315, 330, 332, 343, 355

Graf, P., 119, 121

Grance, T., 134, 136

Gray, J., 298

Green, T.R.G., 90

Greer, J., 43, 143, 315

Griffin, B.A., 275, 280

Grimshaw, S., 27, 143, 189, 315

Grishman, R., 187, 190

Grooms, J., 252

Grossman, R., 164, 167

Grünwald, P.D., 28

Guess, R.H., 111, 120

Guralnick, D., 43

Gureghian, D., 343

Gustha, M., 187, 191

Guzdial, M., 29

Guzmán, E., 61

Hacioglu, K., 252

Hadley, W.H., 28, 74, 82, 90, 238, 298

Hadwin, A.F., 112, 120

Halbert, D.C., 307, 315

Halff, H.M., 91, 280, 316, 334, 343

Hall, B., 62, 92, 136, 152, 159, 225, 280, 290, 357

Halpern, D., 177, 181, 182, 190, 199, 209, 210

Halpin, S.M., 63

Han, L., 190

380

Hanks, S., xiii, 259

Hao, J., 178

Harris, T., 144

Harris, T.K., xiii, 143, 190

Hart, J., 62, 225

Harter, D., 43, 149, 178, 251

Hartley, J.R., 43

Hasselbring, T.S., 42

Hassler, B., 116, 120

Hausmann, R.G.M., 141, 143

Havighurst, R.J., 43

Hay, K., 29

Hayes, M., 27, 143

Haynes, B., 43, 62, 135, 159, 238

Haynes, B.C., 28

Haynes, S.R., 28

Hays, M., 47, 62, 123, 136, 150, 238, 239, 315

Hays, P., 62, 136, 150, 238, 239, 343

Healy, A.F., 119, 121

Heffernan, C, 28

Heffernan, C., 144, 224, 279, 315

Heffernan, Neil, 3, 7, 11, 28, 36, 44, 55, 63, 68, 71,

73, 74, 78, 90, 91, 92, 137, 139, 144, 164, 167,

168, 179, 190, 222, 224, 262, 263, 268, 271, 279,

281, 299, 305, 312, 314, 315, 361

Hendrix, M., 160

Hennessy, S., 116, 120

Henriksen, P., 294, 298

Hernault, H., 152, 153, 160

heuristic, 5, 6, 13, 15, 24, 25, 232, 288

Hickey, D., 181, 190

Hiebert, J., 107

Hill, R.W., 225

Hilton, M., 179, 182, 190

Hockenberry, M., 91, 167, 190, 279

Hofer, R.C., 62

Hoffman, E., 178

Hoffman, Michael, iv, vi, xii, xiv, 133, 136, 258, 305,

317, 342, 361

Hoffman, R.R., 315

Hofmann, M., 136

Holbrook, J., 298

Holden, Heather, iii, iv, x, xiii, xiv, 3, 7, 29, 35, 40,

41, 42, 43, 44, 45, 58, 63, 89, 123, 136, 142, 144,

148, 150, 151, 160, 177, 179, 191, 209, 225, 255,

257, 258, 259, 261, 278, 280, 281, 283, 290, 317,

332, 345, 354, 362

Holland, J., xiv, 7, 29, 92, 93, 178, 191, 239, 280,

298, 316

Holmes, N.G., 92

Holt, L., 44

Holyoak, K.J., 229, 238

Honey, M.A., 179, 190

Hsi, S., 101, 106

Hsieh, P., 334, 343

Hsu, C-H, 43

Hu, Xiangen, i, v, xiii, xiv, 6, 29, 33, 42, 43, 44, 45,

47, 48, 61, 62, 65, 67, 89, 121, 123, 133, 136, 147,

148, 149, 150, 151, 159, 160, 178, 179, 186, 190,

191, 196, 199, 201, 209, 210, 225, 227, 238, 239,

269, 275, 278, 280, 281, 283, 290, 330, 332, 343,

355, 356

Huang, Y., 143, 240

Hutchinson, R., 168

Hwang, J., 250

Hyland, J., 332

Ingram-Goble, A., 181, 189, 190

instructional model, iii

intelligent tutoring system, iii, iv, v, vi, vii, viii, ix, x,

xi, xii, xiii, xiv, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 16,

17, 18, 19, 20, 26, 27, 28, 29, 31, 32, 33, 34, 35,

36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49,

50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62,

63, 67, 68, 69, 70, 71, 77, 79, 87, 90, 91, 92, 107,

109, 112, 120, 121, 123, 128, 129, 131, 133, 134,

135, 136, 143, 144, 147, 148, 149, 151, 152, 153,

155, 156, 158, 159, 160, 165, 167, 170, 177, 178,

195, 196, 197, 209, 210, 225, 227, 229, 231, 232,

233, 234, 236, 237, 238, 239, 242, 255, 256, 257,

258, 259, 261, 264, 265, 266, 267, 268, 269, 271,

272, 273, 274, 275, 276, 277, 278, 279, 280, 281,

285, 290, 291, 292, 295, 296, 298, 301, 302, 303,

304, 305, 306, 307, 309, 310, 311, 312, 313, 314,

315, 316, 318, 322, 333, 334, 335, 337, 338, 340,

342, 343, 344, 346, 347, 350, 351, 352, 356, 359,

360, 361, 362, 366, 368

Irby, B.J., 163, 167, 168

Iseli, M.R., 164, 168

Ishizuka, M., 152, 153, 160

Isotani, S., 89

Iwaniec, D.M., 62

Jackson, Tanner, 43, 110, 111, 116, 119, 120, 149,

150, 169, 178, 191, 209, 281, 362

Jacovina, Matthew, 68, 109, 110, 121, 362

Jameson, E., 181, 190

Jamieson-Noel, D., 120

Jang, H., 278

Jarmasz, J., 42

Järvelin, K., 27

Jarvis, M.P., 90

Jenkins, F., 169, 177

Jensen, Randy, 257, 333, 362

Jeong, H., 61

Jesukiewicz, P., 233, 238

Jiang, H., 234, 240, 317, 318, 332

Jimenez Castro, M., 62

Jo, I.Y., 61

Johnson, A., 61

Johnson, C.W., 28

Johnson, D., 63, 191

Johnson, Lewis, iii, xiii, 11, 28, 33, 37, 43, 44, 152,

159, 196, 197, 211, 212, 220, 224, 363

381

Johnson, M.C., ii, x, xiii, 13, 14, 20, 28, 44, 49, 50,

61, 63, 89, 91, 181, 191, 280, 311, 316

Johnson-Laird, P.N., 28

Johnston, J., 42

Jona, M., 43, 44, 45

Jonassen, D., 28

Jones, E., 90, 279

Jordan, D.S., 45

Jordan, P., 18, 28, 35, 43, 45, 92, 149, 152, 159, 191,

223, 225, 281, 285, 286, 290

Jordan, P.W., 43, 149, 159, 251

Jordan, T., 28

Joshi, A., 144

Joyce, H., 224

Junker, B., 143, 273, 278

Jurafsky, D., 252

Just, M.A., 168

Just, S., 168, 188, 295, 296

Kahler, S.E., 251

Kali, Y., 104, 106

Kannampallil, T.G., 28

Karabinos, M., 264, 278

Karam, R., 275, 280

Karpicke, J.D., 163, 167

Kass, A.M., 44

Katz, Irvin, 149, 150, 169, 170, 178, 363

Kauffman, L., 90, 279

Keeling, H., 307, 316

Kegan, R., 28

Keiser, V., 315

Kelly, A., 185, 190, 276

Kelly, G., 251

Kelly, K., 279

Keogh, B., 252

Keshtkar, F., 201, 210

Ketelhut, D.J., 181, 190, 191

Khajah, M., 138, 144

Kihumba, G., 279

Kim, J.M., 48, 55, 56, 58, 62, 63, 211, 225, 363

Kim, R.S., 63

King Chen, J., 100, 107

King, B., xiii

King, K.S., 44

King, S., iii, xiii, 39, 44, 100, 107, 343

Kingsbury, P., 252

Kinnebrew, J.S., 61

Kintsch, W., 111, 120, 190, 210, 228, 239

Kinzer, C.K., 42

Kittredge, R., 187, 190

Klein, C., 63

Klein, G., 63, 305, 315

Klinkenberg, R., 133, 136

Knerr, B., 43

Knight, S., 116, 120

knowledge component, 50, 74, 75, 87, 88, 138, 140,

141, 155, 257, 258, 262, 263, 270, 273, 274, 275

knowledge representation, 12, 85, 91, 92, 156, 190,

197, 293, 296, 298, 301, 304, 307, 355, 356

Ko, A.J., 27

Kodaganallur, V., 267, 279

Kodavali, S., 89, 90, 291, 294, 298, 311, 312, 315

Koedinger, Kenneth, iii, v, xiii, xiv, 3, 7, 11, 27, 28,

50, 51, 54, 55, 57, 61, 62, 63, 74, 75, 76, 77, 78,

79, 82, 84, 87, 89, 90, 91, 92, 93, 112, 120, 137,

138, 143, 144, 148, 149, 159, 163, 165, 167, 168,

169, 177, 179, 181, 182, 189, 190, 196, 227, 228,

229, 230, 231,234, 238, 239, 240, 255, 257, 259,

261, 262, 263, 264, 266, 267, 268, 270, 271, 272,

273, 274, 275, 277, 278, 279, 280, 281, 291, 292,

297, 298, 301, 303, 309, 311, 315, 334, 343, 363,

367

Koehn, G.M., 43

Koenig, A.D., 164, 168

Kogut, B., 102, 107

Kölling, M., 294, 298

Kolodner, J.L., 62, 298, 299

Krajcik, J.S., 104, 106, 251

Krathwohl, D.R., xiii

Krause, S.R., 28

Kraut, R., 143

Kreuz, R., xiv, 43, 209, 240

Kreuz, R.J., xiv, 240

Krugler, W., 252

Kuhl, F., 62

Kuhn, D., 242, 251

Kulatunga, U., 242, 251

Kulikowich, J., 291, 299

Kumar, A.N., 62

Kumar, P., 28

Kumar, R., 28, 56, 62, 144, 221, 269, 279, 334, 343

Kyle, K., 120

Lacerda, G., 91, 298

Lai, K., 99, 108

Lajoie, S., xiii, 37, 43, 54, 62, 91, 255, 259, 291, 298

Lajoie, S.P., 43, 62

Landauer, T.K., 111, 120, 190, 210, 228, 239

Lane, H Chad, 37, 44, 61, 62, 91, 93, 120, 144, 220,

225, 257, 279, 301, 304, 309, 310, 311, 363

Lanfranchi, A., 250

Lau, T.A., 91

Laurentino, T., 62

Lave, J., 104, 180, 190

Le, N.T., 120

Leake, D.B., 237, 239

learner model, iii, vii, ix, xii, 91, 197, 234, 272, 273,

277, 279, 317, 320, 322, 323, 325, 326, 328, 329,

330, 352, 353

Leber, B., 279

Leber, Brett, 261

Lee, A., 91

Lee, E.P.K., 168

Lee, J.J., 78, 91, 164, 168, 190, 219

382

Lee, S., 225

Leelawong, K., 291, 297

Lehrberger, J., 187, 191

Lehrer R., 27

Lehrer, R., 27, 185, 190, 251

Lei, P., 299

Lepper, M.R., xiii

Lerner, R., 104, 106

Lesgold, A., xiii, 54, 62, 224, 255, 259, 291, 298

Lesh, R.A., 185, 190

Lester, James, 33, 44, 54, 63, 90, 91, 149, 151, 159,

167, 211, 224, 251, 279, 364

Levinstein, I.B., 62, 120, 121, 190

Levy, S.T., 104, 106

Lewis, J.E., 211, 242, 251, 293, 363

Lewis, M.W., 297

Lhommet, M., 152, 156, 159

Li, H., 209, 210

Li, N., 91, 239

Lieberman, H., 91

Limbach, R., 343

Lim-Breitbart, J., 107

Lindros, J., 225

Lindsey, R.V., 144

Linn, Marcia, 68, 95, 96, 99, 100, 101, 102, 105, 106,

107, 108, 364

Lister, K., 279

Litman, D., xiii

Litteral, D.J., 43

Liu, O.L., 99, 107, 141, 144, 169, 178, 275

Liu, Q., 251, 280

Livak, T., 44

Lizotte, D., 251

Lobene, E., 44

Lodato, M., 332

Loke, S., 211, 225

Loll, F., 109, 120

Long, R., 44, 76, 91, 190, 233, 239, 264, 268

Long, Y., 91, 279, 280

Loper, M.L., 62

Louwerse, M., 43, 120, 209

Louwerse, M.M., 43

Loveland, M., 178

Lovett, M., 91

Lovett, M.C., 280

Lowe, J., 251

Lu, S., 43, 120, 209

Lua, 219, 225

Lucas, D., 251

Luce, C., 169, 177

Ludvigsen, S., 106

Luehmann, A.L., 99, 106

Lunenburg, F.C., 163, 167, 168

Luzuriaga, M., 107

Lynch, C., 30, 62, 63, 120, 239, 259, 299, 316

Ma, W., 251, 280

Maass, J.K., 91

MacIntyre, B., 190

MacLaren, B., 90, 279

MacLellan, C., 91, 149

MacLellan, C.J., 79, 91, 148, 149, 231, 239, 257,

259, 263, 280, 311, 315, 343

Macmillan, S., 44

MacWhinney, B., 62, 239

Madhok, J., 107, 108

Magerko, B., 44

Magliano, J.P., 228, 238, 240

Major, N., 27, 143, 190, 315, 343

Makhoul, J.I., 334, 343

Malave, V.L., 168

Mall, H., 44

Malone, N., 149, 332

Maloney, J., 299

Mandel, T., 144

Mangold, L.V., 233, 239

Mangrubang, F.R., 157, 159

Marchiori, E.J., 109, 120

Mark, M.A., 28, 82, 90, 238, 298, 301, 315, 359

Markou, M., 62

Marks, J., 264, 279

Marsella, S.C., 152, 156, 159, 160, 225

Martin, B., xiv, 7, 29, 30, 91, 92, 93, 178, 191, 239,

280, 298, 316

Martin, E., 44, 135, 331

Martin, J., xiii, xiv, 7, 29, 30, 44, 79, 81, 91, 92, 93,

135, 169, 178, 191, 231, 239, 250, 252, 261, 267,

308, 330, 371

Martinez-Garza, M., 106

Marx, R., 251

Masia, B.B., xiii

Mason, R.A., 168, 363

Massey, L.D., 44, 45

Mathan, S., 231, 239, 271, 280

Mathews, M., 92

Matsuda, Noboru, v, xiv, 54, 62, 68, 71, 77, 78, 79,

91, 148, 149, 229, 230, 231, 239, 257, 259, 262,

263, 280, 291, 298, 304, 311, 315, 343, 365

Matuk, Camillia, 68, 95, 96, 99, 100, 101, 102, 105,

107, 108, 365

Mayer, R.E., 61, 89, 91, 143, 280

Mayrath, M., 169, 177, 178

Mazur, E., 291, 298

McCaffrey, D.F., 275, 280

McCollum, C., 43

McDaniel, M., 144

McDonald, D., 30

McElhaney, K., 99, 100, 101, 102, 107

Mcguigan, N., 316

McGuigan, N., xiv, 7, 29, 93, 178, 191, 239, 316

McGuire, C.L., 291, 299

McKelvey, B., 27

McKenney, S., 106

383

McKeown, M., 244, 251

McKneely, J.A., 28

McLaren, B., xiii, 27, 42, 61, 63, 89, 90, 91, 278

Mclaren, B.M., 229, 238

McLaren, B.M., xiii, 27, 40, 42, 54, 57, 61, 63, 74,

75, 76, 78, 89, 90, 91, 143, 144, 167, 169, 177,

179, 181, 189, 190, 255, 259, 262, 263, 264, 265,

275, 277, 278, 279, 280, 291, 297, 303, 309, 315,

334, 343

McLaren, P.B., 279

McLaughlin, E.A., 279

McLaughlin, M.W., 96, 107, 143, 144, 163, 168, 238,

264, 273, 279

McNamara, Danielle, 52, 56, 57, 62, 63, 68, 109,

110, 111, 112, 116, 118, 119, 120, 121, 182, 187,

190, 210, 228, 239, 359, 362, 364

McNeill, K.L., 251

McTear, M.F., 228, 239

Means, B., 91

Means, M., 87, 91, 252

Medvedeva, O., 144

Mehta, A., 161, 168

Mell, P., 134, 136

mental models, xiii, 9, 11, 13, 20, 21, 23, 27, 28, 257,

352, 367

Merceron, A., 156, 159

Meron, J., 152, 159

Merrill, D., xiv, 354

Merrill, M.D., 62, 332

Messina, R., 30

Metiu, A., 102, 107

Meyer, O., 91

Michael, J., 178

Miettinen, R., 28

Milik, N., xiv, 7, 29, 93, 178, 191, 239, 280, 298, 316

Millán, E., 61

Miller, J.R., 44

Millis, K., 111, 120, 177, 190, 199, 209, 210

Mirel, B., 28

Mislevy, R., 169, 170, 178, 187, 191

Misra, A.K., 28

Mitamura, T., 93, 240

Mitchell, H., 43, 120, 166, 320, 332

Mitchell, H. H., 43, 209

Mitchell, T.M., 168

Mitrovic, Tanja, iv, xiv, 3, 7, 9, 11, 29, 30, 32, 44, 52,

62, 68, 71, 79, 80, 81, 85, 91, 92, 93, 169, 178,

179, 181, 190, 191, 227, 228, 229, 231, 239, 240,

266, 267, 269, 271, 278, 280, 291, 298, 304, 307,

308, 316, 365

Mizoguchi, R., xiv, 29

Mochol, M., 163, 168

Monroy-Hernandez, A., 299

Moog, R.S., 251

Moore, D.R., 43

Moran, T.P., 45

Moreno, K., 120, 152, 160, 169, 178

Moreno-Ger, P., 120

Morgan, B., xiii, 190, 209, 238

Morgan, P., xiii, xiv, 28, 30, 42, 63, 91, 160, 190,

191, 209, 238, 291, 299, 316

Morris, A.K., 104, 107

Morrison, D., 29, 210

Mostow, J., 29, 251

Mott, Bradford, 33, 44, 54, 63, 149, 151, 366

Moulton, K., 42

Moy, L., 240

Moyer, D., 44

Mozer, M.C., 144

Muggleton, S., 92

Muldner, K., 278

Mulvaney, R.H., 332

Munro, A., 44, 45, 316

Murray, R.C., 144

Murray, Tom, viii, xiv, 6, 7, 9, 22, 23, 27, 29, 31, 34,

35, 40, 42, 44, 95, 96, 97, 99, 103, 107, 109, 121,

123, 136, 137, 143, 144, 151, 158, 160, 170, 178,

179, 191, 227, 255, 258, 259, 291, 296, 298, 299,

301, 303, 304, 305, 310, 312, 313, 314, 315, 316,

333, 334, 343, 366

Mutter, S.A., xiv, 44, 45

MyST, 196, 241, 242, 243, 244, 245, 246, 248, 249,

250

NAEP, 177, 241, 252

Nardi, B.A., 92

Nash, P., 180, 191

Nathan, M.J., 90

National Research Council, 107, 371

Naylor, S., 252

Nelson, B., 106, 189, 190, 191

Nelson, I., 42

Nemet, F., 252

Nesbit, J.C., 120, 251, 275, 280

Newell, A., 92, 280

Newman, S., 34, 43, 168

Newman, S.E., 43

Ngampatipatpong, N., 252

Nguifo, E.M., 61, 238

Nicholson, D., 44

Niculescu, R.S., 168

Nielsen, J., 7, 29, 290

Nielsen, R., 4, 6, 7, 10, 29, 250, 286, 288

Niraula, N., 149, 150, 240

Nixon, T., 143, 144, 273, 279

Nkambou, R., xiv, 61, 238

Norman, D., 29, 290, 298

Noy, N.F., 136

Nulty, A., 180, 191

Nussbaum, E., 252

Nuzzo-Jones, G., 90

Nye, Benjamin, v, xiv, 6, 47, 48, 49, 51, 52, 58, 62,

63, 67, 123, 133, 136, 147, 148, 149, 150, 179,

384

191, 199, 210, 223, 225, 227, 239, 301, 316, 330,

332, 334, 343, 366

Nyulas, C., 136

O’Connor, P.E., 162, 168

O’Donnell-Johnson, T.M., xiii

O’Neill, E., 167

O’Reilly, T., 110, 121

Oakes, C., 333, 344

Ocumpaugh, J., 148, 149

Oezbek, C., 190

Ogan, A., 62

Ohlsson, S., 92, 239, 280

Ohmaye, E., 44

Oja, M.K., 29

Olde, Brent, 149, 161, 366

Oliveri, M.E., 169, 178

Olney, Andrew, iii, xiii, 28, 32, 33, 43, 44, 56, 57, 62,

120, 133, 135, 152, 159, 181, 190, 191, 196, 197,

209, 227, 228, 231, 232, 234, 238, 239, 240, 269,

280, 281, 367

Olsen, J.K., 29, 92, 280

Olson, W., 168

Oppezzo, M.A., 238

Oranje, A., 178

Osborn, J., 252

Osborne, J., 242, 251, 252

Oser, R.L., 43

Osin, O., 63

Ososky, Scott, 257, 258, 283, 345, 367

Ostrow, K., 92

Ourada, S., 90, 177, 278, 297

Ozuru, Y., 110, 121

Paas, F., 350, 354

Pahl, C., 164, 167

Pain, H., 28

Palinscar, A.S., 239

Pallant, A., 108

Palmer, M., 245, 248, 250, 252

Pane, J.F., 137, 275, 280

Panzoli, D., 160

Pappas, C., 136

Paquette, L., 148, 149

Pardos, Z., 92, 168, 280

Parvarczki, J., 144

Pashler, H., 140, 144, 163, 168

Patel, A.M., 42

Patil, A.S., xiv

Patvarczki, J., 63, 92, 281, 299

Pausch, R., 294, 298

Paviotti, G., 44

Pavlik, Philip, 32, 44, 51, 61, 62, 91, 93, 120, 144,

163, 168, 196, 209, 227, 235, 239, 269, 279, 280,

367

pedagogical agent, 77, 147, 151, 152, 153, 154, 155,

156, 157, 158, 159, 241

pedagogical model, iii, x, 9, 48, 201, 264, 292, 318,

322

Pekker, A., 28

Pellegrino, J., 279

Pelletier, R., xiii, 90, 238, 278, 315

Pellom, B., 252

Pennebaker, J.W., 186, 191

Penumatsa, P., 186, 190

Pereira, F., 168

Perfetti, C., 50, 62, 163, 167, 228, 238

Perrotta, C., 169, 178

Persky, H., 169, 177

Person, N., xiii, xiv, 62, 178, 238, 239, 240

Petre, M., 90

Petridis, P., 151, 160

Petrosino, A.J., 251

Piaget, J., 29

Picard, R., xiv, 168

Piech, C., 232, 240

Pietrocola, D., 63

Pinkwart, N., 62, 120, 239

Piwek, P., 152, 153, 157, 160

Pizzini, Q.A., 44, 311, 316

Plaisant, C., 288, 290

Podestá, M.E., 107

Poliquin, A., 252

Pollack, M.E., xiii, 259

Popescu, Octav, 90, 257, 261, 278, 367

Popovic, Z., 144

Pradhan, S., 248, 252

Preece, J., 287, 290

Prendinger, H., 152, 153, 160

Presson, N., 62, 239

Preuss, S., 152, 160

Priest, H., 45

Prothero, W., 251

Protopsaltis, A., 160

Psotka, J., xiv, 44, 45, 299, 316

psychomotor domain, xiv, 258, 346, 348, 349, 352,

354

Punamaki, R.-L., 28

Pynadath, D.V., 152, 160, 225

Qiu, L., 334, 343

Quellmalz, E.S., 169, 178

Radecki, L., 211, 225

Raes, A., 102, 107

Rafferty, A.N., 99, 107

Ragusa, Charles, iv, vi, xii, xiv, 68, 123, 136, 342,

368

Rahman, M.F., 62, 136, 150, 343

Rai, D., 278

Raizada, R., 315

Ramachandran, Sowmya, 40, 44, 257, 333, 368

Ramaswamy, N., 90, 298

Ramírez, J., 163, 167

Ranney, M., xiv, 354

385

Rau, M., 92, 280

Ray, F., 44, 135, 160, 240, 331

Raykar, V.C., 232, 240

Razzaq, L., 63, 92, 144, 281, 299

Rebolledo Mendez, G., 62

Reder, L.M., 180, 189

Redfield, C.L., 91, 280, 316, 334, 343

Reed, S.K., 92

Reeve, R., 30

Regev, J., 251

Rehak, D.R., 233, 238

Reiser, B., xiv, 251, 354

Remington, R.W., 28

Resnick, M., 43, 291, 294, 299

Reyna, V.F., 45

Rice, W., 281

Richard, K., 191

Richards, F.A., 28

Rickel J., 44

Riedl, M.O., 44

Riesbeck, C., 39, 43, 44, 334, 343

Riesbeck, C.K., 43, 44

Ringenberg, M., 92, 159, 225, 280

Ringn r, H., 28

Ritter, Steven, 9, 29, 54, 63, 68, 82, 84, 90, 92, 137,

138, 139, 140, 143, 144, 170, 177, 234, 240, 271,

272, 275, 277, 278, 281, 291, 293, 296, 297, 299,

368

Rittle-Johnson, B., 89, 91, 280

Roberts, R.B., 334, 343

Robinson, D., 177

Robinson, L.J.B., 225

Robinson, S., 163, 168, 178, 211

Robson, E., 44

Robson, R., 44, 135, 160, 240, 331

Rodrigo, M.T., xiii

Rody, F., 42

Roediger, H.L., 163, 167, 229, 240

Rogers, Y., 287, 290

Rohrbach, S., 92

Rohrer, D., 16, 17, 28, 144, 163, 168

Rohrer-Murphy, L., 28

Roll, I., xiii, 63, 92, 120, 278, 281

Romine, W.L., 181, 191

Roscoe, R.D., 50, 52, 56, 61, 63, 110, 111, 120, 121

Rose, C., 43, 149, 152, 159, 191, 225, 269, 273, 279

Rosé, C.P., 43, 149, 191, 251, 278, 281

Rosenthal, D., 267, 279

Rosenzweig, L., 43

Rossi, P.G., 44

Roth, W.-M., 252

Rotherham, A.J., 182, 191

Row, R., 224

Rowe, Jonathan, 33, 44, 54, 63, 110, 121, 149, 151,

368

Roy, M.E., 334, 343

Ruis, Andrew, 147, 150, 179, 189, 369

Ruitenberg, M.F.L., 348, 354

Ruiz-Primo, M.A., 101, 107

Rummel, N., 29, 92, 280

Rupp, A.A., 187, 191

Rus, V., xiv, 45, 150, 160, 210, 240, 281

Rusk, N., 299

Russell, D., 45

Ryder, J., 42

Ryoo, K.K., 99, 100, 107

Sadler, T.D., 180, 181, 191

Salas, E., 43, 63, 167

Salden, R.J., 63

Samaddar, A.B., 28

Samaddar, S.G., 28

Samei, B., 201, 210

Sampson, V., 90, 189, 252, 278

Sancho, P., 120

Sandler Training, 211, 225

Sanghvi, B., 177

Sani, S., 45

Santarelli, T., 43

Sato, E., 108

Savova, G., 250

Scardamalia, M., 27, 30

Scarpinatto, K.C., 264, 279

Schank, R.C., 45

Schatz, S., 333, 344

Schauble, L., 27, 190, 251

Schellens, T., 102, 107

Schifter, C., 181, 191

Schmorrow, Dylan, 44, 149, 161, 369

Schneider, P., 136

Schön, D.A., 180, 191, 291, 299

Schrider, P., 224

Schroeder, N.L., 151, 160

Schulze, K., 30, 63, 259, 299, 316

Schwartz, D.L., 238, 291, 297

Schwartz, S., 252

Schweingruber, H., 251

Scott, B., 39, 44, 189, 283, 345, 367

Scott, R., 44

Segedy, J., 276, 281

Seip, J., 43

Sengupta, P., 179, 189

serious games, ix, xiv, 4, 6, 44, 59, 92, 121, 178, 224,

256, 257, 259, 299, 369, 371

Settlage, J., 96, 107

Sewall, Jonathan, 9, 27, 40, 42, 54, 61, 74, 75, 76, 77,

78, 89, 90, 91, 92, 143, 169, 177, 179, 181, 182,

189, 229, 238, 255, 257, 259, 261, 262, 263, 264,

278, 280, 291, 297, 298, 303, 309, 315, 334, 343,

369

Shadbolt, N.R., 305, 315

Shaffer, David, 21, 29, 147, 148, 149, 150, 179, 180,

181, 189, 191, 369

386

Shapiro, J.A., 30, 63, 259, 299, 316

Sharp, H., 286, 287, 290

Shelby, R., 30, 63, 259, 299, 316

Sheng, M., 93

Sheridan, S., 224

Sherwood, R.D., 42

Shetty, S., 90, 298

Shinkareva, S.V., 166, 168

Shneiderman, B., 288, 290

Shores, L.R., 63

Shouse, A., 251

Shute, V.J., 33, 45, 91, 112, 118, 121, 169, 178, 280,

292, 296, 299, 301, 313, 316, 333, 344

Si, M., 160

Silberglitt, M.D., 178

Silc, K., 103, 106

Sille, R., 42

Silverman, B.G., 62, 63

SIMmersion, 218, 225

Simmons, T.G., 211, 225

Simon, H.A., 92, 189, 240, 280

Simon, S., 75, 92, 180, 189, 229, 240, 252, 270

Simperl, E.P.B., 163, 168

Simpson, E., xiv, 354

Sinatra, Anne, 144, 147, 149, 257, 283, 285, 290, 370

Sinatra, G., 252

Singh, S., 62

Sitaram, S., 29

Siyahhan, S., 189

skills, iii, v, vii, xii, 3, 10, 12, 16, 19, 23, 28, 33, 34,

37, 42, 47, 48, 49, 50, 60, 63, 68, 77, 78, 79, 82,

86, 88, 97, 104, 112, 116, 121, 123, 128, 129, 137,

138, 141, 155, 162, 169, 170, 177, 178, 190, 191,

195, 196, 197, 211, 212, 213, 214, 215, 216, 218,

220, 222, 223, 224, 228, 229, 252, 256, 257, 262,

280, 292, 293, 295, 298, 301, 302, 304, 308, 310,

312, 331, 333, 334, 337, 339, 345, 346, 348, 349,

350, 351, 359, 362, 363, 365, 366, 368

Skillsoft, 219, 225

Skogsholm, A., 279

Slack, K., 106

Slamecka, N.J., 119, 121

Sleeman D., xiv

Sleeman, D.H., 43

Slotta, J.D., 96, 99, 106, 108

Small, M., 100, 118, 121, 347

Smith, B., 43

Snow, Erica, 68, 109, 110, 112, 118, 119, 120, 121,

370

Snyder, L., 252

So, Y., 20, 36, 37, 40, 49, 52, 77, 78, 169, 177, 197,

247, 265, 298, 340

Soller, A., xiv

Soloway, E., 29

Song, Y., 169, 178

Sorensen, B., 44

Sotomayor, T.M., 133, 136

Sottilare, Robert, i, iii, iv, v, vi, viii, x, xii, xiii, xiv, 1,

3, 7, 9, 29, 32, 35, 40, 41, 42, 43, 44, 45, 58, 59,

61, 63, 89, 92, 121, 123, 136, 142, 144, 148, 149,

150, 151, 159, 160, 177, 178, 179, 191, 209, 210,

222, 223, 225, 253, 255, 258, 259, 261, 278, 280,

281, 283, 290, 292, 296, 299, 302, 303, 316, 317,

332, 345, 346, 350, 354, 356

Souders, V., 43

Spain, R., 61, 332

Sparks, J.R., 169, 178

Specht, M., 29

Spitulnik, M., 99, 106

Squire, P., 167

Stacy, W., 165, 167, 168

Stagl, K.C., 63

Stahl, G., 29

Stamper, J.C., 143, 144, 163, 168, 231, 238, 240,

273, 279, 281, 334, 343

Stampfer Wiese, E., 257, 259

Stampfer, E., 92, 239

Steenbergen-Hu, S., 281

Stefanescu, D., 149, 150, 240

Stein, S.A., 28

Stensrud, B., 44

Stevens, A., 28

Stinson, L.L., 170, 178

Stone, B.A., 125, 151, 159, 251

Stuart, P.E., 181, 191, 222

Stuart, S., 225

Styler, W., 250

Sulcer, B., 61, 281

Suraweera, P., xiv, 7, 29, 30, 92, 93, 178, 191, 239,

280, 298, 316

Surface, E.A., 224, 368

Surmon, D.S., 44, 311, 316

Susarla, S., 152, 160, 169, 178

Sussman, G., 27

Suthers, D.D., 271, 279

Svihla, V., 100, 108

Svirsky, E., 252

Swaak, J., 343

Swan, J., 225

Swanson, H., 100, 108, 190

Sweller, J., 350, 354

Swiecki, Z., 189

Taatgen, N., 63, 93, 281

Tai, M., 278

Tao, J., 177

Tao, T., 136, 169

Tarr, Ronald, 149, 234, 240, 258, 317, 318, 332, 370

Taylor, L., 30, 63, 259, 299, 316

Taylor, Robert, 149, 151, 370

Tecuci, G., 307, 316

Thille, C., 91, 144

Thomson, D., 92

387

Thomson, E., 92, 224

Tian, Y., 232, 240

Timms, M.J., 178

Tinker, B., 108

Tinker, R., 108

Torreano, L.A., 313, 316

Torrente, J., 120

Towle, B., 143, 144

Towne, D.M., 33, 44, 45, 316

Towns, S.G., 151, 159

Trafton, G., 62

Trafton, J., xiv, 354

training effectiveness, 136, 165, 314, 353, 354

Traum, D., 224

Trudeau, E.J., 28

Tudorache, T., 136

tutor model, iii, iv, 196, 247

Tutoring Research Group, 7, 178, 209

Underwood, J.D., 27, 143, 315

Urban Brain Studios, 219, 225

Urdan, T., xiii, 190

usability, v, 4, 5, 6, 9, 10, 13, 14, 15, 16, 18, 20, 23,

27, 29, 74, 96, 112, 130, 132, 135, 153, 175, 257,

285, 286, 287, 288, 289, 290, 292, 296, 301, 305,

314, 320, 331, 333, 342, 352, 360, 362

user experience, 31, 32, 33, 132, 182, 183, 184, 185,

257, 285, 286, 288, 331, 367

user interface, iii, v, 5, 6, 9, 16, 35, 72, 89, 90, 125,

128, 153, 183, 220, 223, 239, 258, 284, 288, 292,

302, 304, 307, 334, 335, 342, 345, 352

Valadez, G.H., 240

Valente, A., xiii, 28, 43, 159, 224

Van der Lubbe, R.H.J., 348, 354

Van Eck, R., 152, 160, 169, 178

van Joolingen, W.R., 44, 45, 343

Van Lehn, K., 242

Van Merrienboer, J., 350, 354

van Merriënboer, J., 90

Van Nice, J., 216, 225

van Velsen, Martin, 90, 257, 261, 371

van Vuuren, S., 252

VanLehn, K., xiv, 30, 42, 43, 45, 62, 63, 93, 144,

149, 160, 191, 240, 251, 252, 259, 281, 298, 299,

316, 332

Varma, K., 96, 104, 106

Vartak, M., 55, 63, 92, 144, 281, 299

Vattam, S.S., 291, 299

Veden, A., 44, 240

Veermans, K., 33, 45, 343

Velsen, M.V., 89, 91, 280

Ventura, M., 43, 120, 121, 178, 190, 209, 299

Verwey, W.B., 348, 354

visibility, 4, 5, 41, 132, 287, 288, 341, 349

Vitale, J., 99, 108

Vitányi, P.M., 28

Voerman, J.L., 151, 159

Von Ahn, L., 240

von Davier, A., 178

Voogt, J., 106

Voss, J., 252

Vuong, A., 141, 143

Vye, N., 291, 297

Vygotsky, L.S., 104, 108, 242, 252

Waalkens, M., 63, 93, 281

Wagner, A., 90, 279

Wainess, R.A., 164, 168

Walker, E., 62

Walker, J., 49, 62, 252, 311, 316

Walkington, C.A., 275, 281

Wallace, P., 209, 210

Waller, A., 28

Walles, R., 151, 159

Wang, T., 190

Wang, W., 168

Wang, X., 168, 169, 177, 234, 317, 318, 319

Wang-Costello, J., 240, 332

Ward, Wayne, 196, 197, 241, 243, 244, 250, 252,

359, 371

Warner, C., 250

Warrant, S., 189

Watson, A.M., 224

Weatherly, R., 62

Weaver, R., 63

Weil, A.M., 45

Weiss, A., 169, 177

Weitz, R., 63, 279

Weld, D.S., 91

Wenger, E., 104, 180, 190

Westerfield, G., 93

Weston, T., 252

Weyer, N., 63

Wheeler, L., 299

Wheeler, T.A., 168, 293

Whitaker , E.T., 45

White, B., 43

Whitehead, E.J., 136

Whitman, N., 224

Wichmann, A., 100, 101, 108

Widmer, C.L., 45

Wiek, A., 62

Wiemer-Hastings, K., 43, 209

Wiemer-Hastings, P., 7, 43, 209, 210

Wiggins, M., 136

Wilcox, A., 211, 225

Wilensky, U., 102, 104, 106, 108

Williams, B., 27, 143, 315

Williams, C., 62, 238, 239

Williams, S.M., 42

Williamson, C., 92

Willingham, D., 182, 191

Wing, J.M., 299

Wing, R.M., 144, 295

388

Winne, P.H., 27, 120

Wintersgill, M., 30, 63, 316

Wise, B., 252

Wobbrock, J.O., 27

Wogulis, J.L., 44, 316

Wolfe, C.R., 45

Wood, D., 190, 343

Wood, D.J., 143

Woods, A., 45

Woolf, B., xiv, 29, 30, 44, 63, 120, 159, 160, 191,

278, 316

Wray, R.E., 45

Wright, M., 11, 169, 178

Wu, S., 62, 239

Wylie, R., 93, 240

Xhakaj, F., 278

Xie, C., 102, 108

Yacef, K., 61, 91, 93, 120, 143, 144, 156, 159, 279

Yan, Z., 28

Yang, M., 62, 136, 150

Yaron, D., 264, 278

Yarzebinski, E., 315

Yates, K., 42, 90

Yng, M., 343

Young, R.M., 44

Yu, S., 240

Yudelson, M.V., 140, 143, 144

Zakharov, K., xiv, 7, 29, 93, 178, 191, 239, 280, 298,

316

Zap, N., 169, 177

Zapata, D., 112, 121, 149, 150, 169, 173, 177, 178,

296, 299, 371

Zapata-Rivera, Diego, 112, 121, 149, 150, 169, 173,

178, 296, 299, 371

Zarka, D., 44

Zhang, J., 30

Zhang, Z.H., 15, 18, 30, 99, 108

Zhao, L.H., 240

Zheng, J., 252

Zhu, J., 229, 232, 240

Zhu, X., 240

Zirkel, J., 42

Zoellick, C., 332

Zohar, A., 252

Zuiker, S., 189

Zwaan, R.A., xiv

390

