
Computers in Human Behavior 52 (2015) 1–11
Contents lists available at ScienceDirect

Computers in Human Behavior

journal homepage: www.elsevier .com/locate /comphumbeh
Feedback source modality effects on training outcomes in a serious
game: Pedagogical agents make a difference
http://dx.doi.org/10.1016/j.chb.2015.05.008
0747-5632/Published by Elsevier Ltd.

⇑ Corresponding author.
E-mail addresses: benjamin.s.goldberg.civ@mail.mil (B. Goldberg),

janis.canon-bowers@ucf.edu (J. Cannon-Bowers).
Benjamin Goldberg a,⇑, Janis Cannon-Bowers b

a U.S. Army Research Laboratory, 12423 Research Parkway, Orlando, FL 32826, United States
b Institute for Simulation and Training, University of Central Florida, 3100 Technology Parkway, Orlando, FL 32826, United States
a r t i c l e i n f o

Article history:

Keywords:
Intelligent tutoring systems
Explicit feedback
Pedagogical agents
Generalized intelligent framework for
tutoring
Game-based training
Cognitive load
a b s t r a c t

The aim of this research is to enhance game-based training applications to support educational events in
the absence of live instruction. The overarching purpose of the presented study was to explore available
tools for integrating intelligent tutoring communications in game-based learning platforms and to exam-
ine theory-based techniques for delivering explicit feedback in such environments. The primary tool
influencing the design of this research was the open-source Generalized Intelligent Framework for
Tutoring (GIFT), a modular domain-independent architecture that provides the tools and methods to
author, deliver, and evaluate intelligent tutoring technologies within any instructional domain.
Influenced by research surrounding social cognitive theory and cognitive load theory, the resulting exper-
iment tested varying approaches for utilizing an Embodied Pedagogical Agent (EPA) to function as a tutor
during interaction in a game-based training environment. Conditions were authored to assess the trade-
offs between embedding an EPA directly in a game, embedding an EPA in GIFT’s browser-based Tutor–
User Interface (TUI), or using audio prompts alone with no social grounding. The resulting data supported
the application of using an EPA embedded in GIFT’s TUI to provide explicit feedback during a game-based
learning event. Analyses revealed conditions with an EPA situated in the TUI to be as effective as embed-
ding the agent directly in the game environment.

Published by Elsevier Ltd.
1. Introduction

Across education and training communities the use of virtual
environments and dynamic game-based training applications is
on the rise. When implemented correctly, these programs replicate
task features of a domain that elicit realistic human behavior dur-
ing scenario interactions (Salas, Rosen, Held, & Weissmuller, 2009).
This is often represented behaviorally as cognitive decision mak-
ing, where inputs into a system designate conceptual understand-
ing of task procedures as they relate to the context of a given event.
From an educational perspective, these environments are histori-
cally effective under two conditions: (1) the learner is fully aware
of what is required to meet task standards and adapts his/her
approach based on scenario stimuli and implicit feedback occur-
ring naturally in the environment, or (2) a learner’s behavior is
observed by an instructor and guidance and explicit feedback is
provided to assist the learner in overcoming identified misconcep-
tions and impasses (Kluger & DeNisi, 1996; Narciss, 2008). As the
former implies expert understanding of all task characteristics,
the latter condition is the more prevalent use case of learning in
virtual environments.

For years researchers have investigated the use of Embodied
Pedagogical Agents (EPAs) in computer-based learning environ-
ments to facilitate this more prevalent use case in the absence of
live instruction (Veletsianos & Russell, 2014; Yee, Bailenson, &
Rickertsen, 2007). EPAs are used as the communication layer
within an Intelligent Tutoring System (ITS), where human inter-
vention is replaced by Artificial Intelligence methods (Soliman &
Guetl, 2010). The intent is for an agent–learner relationship to
mimic Vygotsky’s (1987) social-derived theory in that more cap-
able others facilitate the development of an individual’s knowledge
and skill through active guidance and feedback (Moreno, Mayer,
Spires, & Lester, 2001). This capability is important within
game-based instructional environments, as a learner is dependent
on guidance and feedback to identify/recognize mistakes, confirm
correct actions, and to build appropriate schema representations
to promote effective transfer of knowledge and skills into a
real-world task setting (Narciss, 2008; Shute, 2007).

With advancements in ITSs being able to operate in unison with
open-ended virtual environments applied for instructional
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purposes (Mall & Goldberg, 2015; Shute, Ventura, Small, &
Goldberg, 2013), we are interested in modality effects associated
with EPA integration and to what effect mode variations have on
performance, perception, and cognitive load. With modeling tech-
niques in place to compare user inputs against a set of specified
expert models, the missing pieces are how autonomously gener-
ated explicit feedback within game-based training environments
influences performance, and how best to interface these feedback
channels with the learner. As such, virtual environments inte-
grated with ITS technologies provide an excellent test-bed for
studying how explicit feedback can influence human behavior,
and what effect that influence has on performance outcomes
linked with retention and transfer. This is of relevance as more
education and training organizations are using flexible sandbox
type virtual environments, such as Unity 3D and Virtual Battle
Space 3 (VBS3), to build scenarios for instructing and practicing
across multiple domains and skills.

With social learning theory driving the use of EPAs, there have
been numerous empirical investigations over the years looking at
variables associated with agent design and the resulting effect on
metrics of performance, learning, motivation, and perception
(Veletsianos & Russell, 2014). This involves examining the type of
communications and interactions these agents support (i.e., timing
of feedback, specificity of feedback, etc.), and how their appearance
and social agency effects outcomes of interest (Shiban et al., 2015).
This aligns with Baylor’s (2011) description of a genuine agent
interaction, which consists of three factors: (1) how the agent
appears to the learner, (2) how the agent communicates
non-verbally with the learner, and (3) the type of content and dis-
course supported by the agent. In turn, prior research can be cate-
gorized around three themes (Shiban et al., 2015): (1) dialogue
design (Johnson et al., 2004; Lin, Atkinson, Christopherson,
Joseph, & Harrison, 2013); (2) advanced communication features,
like displays of emotion and gestures (Allmendinger, 2010; Olney
et al., 2012; Visschedijk, Lazonder, van der Hulst, Vink, &
Leemkuil, 2013); and (3) agent appearance (Bailenson,
Blascovich, & Guadagno, 2008; Baylor, 2011; Baylor & Kim, 2009;
Veletsianos, 2010).

For this study we focused primarily on agent appearance within
a highly dynamic open-ended game-based training environment,
which is a recognized gap in EPA related research (Gulz & Haake,
2006; Shiban et al., 2015; Veletsianos & Russell, 2014). Existing
work on agent appearance primarily associates with what is ter-
med the persona effect. In its simplest form, the persona effect
posits that the mere presence of a lifelike character in an interac-
tive learning environment can have a significant positive effect
on the perception of the learning experience. This is supported in
the Baylor and Kim (2009) study that demonstrated a visible agent
in a learning environment significantly impacted motivation out-
comes when compared to voice and text only feedback conditions.
Specifically, the incorporation of social agents based on the per-
sona effect have been found to increase motivation for using a sys-
tem, as well as stimulate interest in topics across multiple subjects
and learning environments (Gulz, 2004; Heidig & Clarebout, 2011;
Veletsianos & Russell, 2014). In terms of motivation, a common
conclusion from research shows character enhanced systems to
report as more entertaining, lively, likeable, or engaging (André &
Rist, 2001; Johnson, Rickel, & Lester, 2000; Lester, 2011; Lester
et al., 1997a; Shiban et al., 2015). Research continues to examine
elements of the persona effect to determine agent characteristics
that optimize learning outcomes. This involves both physical ele-
ments of appearance (i.e., voice inflection, hairstyle, clothing, eth-
nicity, gender, etc.) and stereotype perceptions associated with
appearance (i.e., usefulness, credibility, and intelligence) (Baylor
& Kim, 2005; Liew, Tan, & Jayothisa, 2013; Shiban et al., 2015;
Veletsianos & Russell, 2014).
While the persona effect continues to be investigated, what we
are most interested in is the mode by which an EPA appears to the
learner, and what effect that source modality has on learning out-
comes and learner perceptions. To address this approach, princi-
ples of cognitive load theory (Oviatt, 2006; Van Merriënboer &
Sweller, 2005) and multiple resource theory (Wickens, 2002) are
applied to examine how an EPA can be situated during a learning
event, in this case a dynamic game-based environment, and what
effect that modality has on measures of performance and work-
load. This is attributable to defining game-based training with
instructional ITS supports as a dual task environment; ultimately
requiring an individual to maintain awareness and understanding
of the task environment while also perceiving, processing, and act-
ing upon feedback information provided by an integrated EPA. This
can create competition among available cognitive resources to pro-
cess information in the learning environment (Craig, Gholson, &
Driscoll, 2002).

As this described dual task requires split-attention (Sweller &
Chandler, 1994), we apply foundations associated with the modal-
ity principle to guide EPA source implementations. The modality
principle describes an effect derived from Wicken’s (2002) multi-
ple resource theory and Mayer and Moreno’s (1998) theory of mul-
timedia learning. It implies that learners can process information
more efficiently when material and feedback is presented as a
mix of visual and auditory stimuli. The notion is to exploit alterna-
tive modes of feedback presentation (e.g., acoustic, visual, etc.) to
avoid cognitive overload due to modality effects encountered
when presenting guidance information in the same format as other
elements in the training environment (Mayer & Moreno, 2002;
Shute, 2007).

Empirical evidence supports the modality effect as it relates to
processing information during task execution in both multimedia
and game-based learning environments (Low & Sweller, 2005).
Fiorella, Vogel-Walcutt, and Schatz (2012) conducted a study
investigating the modality effect as it applied to real-time feedback
within a simulation-based training scenario. Their procedure
tested the source modality associated with feedback delivery,
where it was presented either as an auditory message or as printed
text overlay on the computer screen. Results showed those receiv-
ing feedback as an audio source to demonstrate better
decision-making performance when compared to the printed text
group. But what happens when an EPA is added to this context?
In an earlier study Craig et al. (2002) found no split-attention effect
when integrating an EPA into a multimedia learning environment.
His analysis showed no significant differences on learning out-
comes when comparing two conditions, one with spoken feedback
and the second with spoken feedback accompanied by an agent.
This demonstrates that the agent did not induce additional cogni-
tive load on available resources that would affect performance
outcomes.

In addition, Moreno, Mayer, and Lester (2000) ran an experi-
ment looking at the role of an EPA’s visual and auditory presence
in a discovery learning environment. They based hypotheses on
cognitive load theory’s modality effect and social cognitive theory’s
persona effect, predicting students who learn with the voice and
image of an agent to remember materials of the lesson better
and are more likely to use what they learned to solve problems.
Their analysis showed no positive or negative effect on perfor-
mance as a result from the visual presence or absence of an EPA,
but they found students in the agent conditions to consistently
report the lesson more favorably, they recalled more information,
and reported being more motivated and interested in the program
(Moreno et al., 2000). However, both studies were based in static
multimedia learning environments, much like other studies that
support the modality effect (Atkinson, 2002; Moreno et al.,
2001). An additional question relevant to this work is: does this
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outcome apply outside of multimedia systems and into interactive
game-based platforms where visual resources are more strained
and have more perceptual cues to attend to?

With new technologies being developed that enable ITS func-
tions within game-based learning platforms, new modalities are
available for relaying information to the user. Through a Tutor–
User Interface (TUI), an independent visual field that can support
agent visualization, content can be presented from an external
channel to the training environment. Embedding an EPA in a des-
ignated TUI can have one of two effects on game interaction: (1)
it provides a grounded base for the visual presence of an EPA,
requiring only ambient visual scanning (Wickens, 2002) and reduc-
ing load for focused attention on the task environment, or (2) the
extra interface creates an associated dual-task in the learning envi-
ronment requiring a user to monitor both the game and TUI
equally to maintain appropriate awareness of the interacting ele-
ments, thus introducing additional extraneous cognitive load
elements.

Based on this foundation, we present findings from an experi-
ment that examined the effect different source modalities of feed-
back had on performance within a virtual game-based
environment. This research was motivated by consideration of
the effort to develop a feedback delivery method versus the impact
it had on performance. That is, based on the cost and time required
to apply a feedback modality, this study determined the feedback
source that produced the greatest impact on retention and transfer.
To execute this research, the U.S. Army Research Laboratory’s
Generalized Intelligent Framework for Tutoring (GIFT) was used
as the ITS authoring environment. GIFT is a community driven
opensource project aimed at promoting standardized methods
for building ITSs and focuses on domain-independency, ease of
authoring, and reuse. GIFT is a modular architecture and consists
of all working parts common to intelligent tutors, with additional
functions built to accommodate its application across multiple
training systems. (Goldberg, Brawner, Holden, & Sottilare, 2012;
Sottilare, Brawner, Goldberg, & Holden, 2013). When used in a
research setting, GIFT provides a stable adaptive training test-bed
that supports easy development of experimental conditions for
studying modeling techniques and instructional management
practices.

The goal of the current effort was to investigate approaches for
enhancing game-based training applications through the incorpo-
ration of performance-driven feedback functions delivered via
GIFT. Specifically, this work examined methods for embedding
feedback delivery mechanisms within game environments using
GIFT interfacing methods and assessed the influence variations in
the source and delivery of feedback had on behavior and perfor-
mance outcomes.
2. Materials and methods

This work investigated the effect variations in the source of
real-time feedback within a game-based training event had on sub-
sequent task performance; the effect the source of feedback had on
post-training learning outcomes; and whether variations in feed-
back source produced reliable differences in trainee self-reported
measures of cognitive load. The study went deeper by exploring
the impact of delivering feedback through game characters defined
as EPAs, and to assess the effect varying agent delivery modalities
had on trainee performance. Specifically, this research examined
whether there is a significant benefit to embedding EPAs directly
into the task environment versus an EPA interacting with the user
from an interface external to the game world. In this section, we
review the experimental methodology and all associated materials
used to investigate these research questions.
2.1. Experimental test-bed

The serious game selected for this study was the Tactical
Combat Casualty Care Simulation (TC3Sim), also known as
vMedic. TC3Sim utilizes a game-based virtual environment to
teach and reinforce the tactics, techniques, and procedures
required to successfully perform as an Army Combat Medic and
Combat Lifesaver (ECS, 2012). Tasks simulated within TC3Sim
include assessing casualties, performing triage, providing initial
treatments, and preparing a casualty for evacuation under condi-
tions of conflict. The two scenarios developed for this experiment
involved handling injuries in a hostile environment following the
detonation of an improvised explosive device.

This virtual environment provides an excellent test-bed as it
simulates real-world scenarios that involve on-the-spot decision
making. To test the effect varying feedback modalities have on per-
formance outcomes, TC3Sim was integrated with GIFT, enabling
real-time performance assessment across a defined set of concepts
linked to the simulated tasks performed in the game. This assess-
ment is then used to trigger the delivery of explicit feedback when
called for by the intelligent tutor. During gameplay, feedback was
provided to participants when their actions met specified thresh-
old conditions for all critical competency measures. These condi-
tions were based on input from combat medic subject matter
experts. These thresholds were defined around time, location,
and entity data provided directly from the game environment. If
specific actions or procedures were violated, a feedback string
was delivered as a reflective prompt to notify the learner of actions
being ignored or actions incorrectly administered.

2.1.1. The Generalized Intelligent Framework for Tutoring (GIFT)
As described above in the introduction, GIFT is a modular

approach to a domain-independent ITS authoring environment
(Goldberg et al., 2012; Sottilare et al., 2013). For the purpose of this
experiment, GIFT was used to perform real-time assessment on
interaction within the serious game environment TC3Sim. This
capability was provided through a tool within GIFT called SIMILE
(Student Information Models for Intelligent Learning
Environments; Mall & Goldberg, 2015). SIMILE serves as a
run-time assessment engine by examining user data generated
during gameplay, and compares specific message types against
pre-defined rule sets. An example is defining a rule for a concept
titled ‘stay with unit’. The concept requires a user to stay within
a defined proximity of their squad leader, which is influenced by
entity location data provided by the simulation. If a user is
reported as being beyond the defined threshold, then the concept
of ‘stay with unit’ is assessed as below expectation. This perfor-
mance state is then communicated to GIFT for determining if a
feedback intervention is required.

This real-time assessment enables GIFT to detect errors in task
performance, which in turn triggers pedagogical interventions
intended to influence subsequent behaviors (see Appendix A for
a list of the 21 concepts being assessed in GIFT). In the context of
this study, GIFT serves as the test-bed architecture for managing
both real-time assessment, as well as directing what feedback is
delivered to a participant during gameplay and how that feedback
is delivered (i.e., the modality from which the information is com-
municated). A functional component unique to GIFT is the Tutor–
User Interface (TUI). The TUI is a browser-based communication
layer designed to collect user inputs and to relay information back
to the user. In terms of providing real-time guided instruction, the
TUI can be used as a tool for delivering explicit feedback content. It
supports multimedia applications and the presence of virtual enti-
ties acting as defined tutors.

The TUI is an interesting component because it enables the
inclusion of EPAs with no programming required. It utilizes
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open-source technologies and does not require any modifications
to a game environment to support the presence of a virtual tutor.
In the context of feedback, this requires the evaluation of its func-
tion to determine if it supports or hinders performance outcomes.

2.2. Metrics

2.2.1. Knowledge and skill assessments
Two forms of performance measures were collected. The initial

metric, learning gains, was based on performance generated on the
administered post-test assessing knowledge levels in TC3 concepts,
with a subject’s pre-test score being defined as a covariate. Items
were based on the instructional categories of technical skills (e.g.,
basic anatomy, physiology, pathology), tactical skills (e.g., move,
shoot, communicate), and clinical skills (e.g., assess, diagnose,
treat, evacuate). Each test included 15 multiple choice questions
to assess the various knowledge components.

The second performance metric came directly from the TC3Sim
game environment. This includes performance within a guided
training scenario with a GIFT EPA and performance within an
assessment capstone scenario. Interaction was monitored and
logged via GIFT, and player actions were measured against defined
expert models. Performance was based on observed procedures
during game play, and ‘go’/’no-go’ determinations were marked
across all defined critical competency measures (e.g., security
sweep, tourniquet application, dress bleed, etc.). The metric output
consisted of the number of correct actions taken within the sce-
nario in relation to the full set of competencies being monitored.
In accordance with the analysis proposed for the knowledge
post-test, the in-game capstone performance analysis designated
training scenario scores as a covariate.

2.2.2. Workload and mental demand metrics
Measures of an individual’s subjective workload and mental

demand were recorded following interaction with the guided
TC3Sim scenario. For this purpose, each participant completed
the NASA-TLX. A participant’s overall workload was determined
by a weighted average of responses across six subscales: mental
Fig. 1. Variable source m
demand, physical demand, temporal demand, performance, effort,
and frustration (Hart & Staveland, 1988). Definitions of each sub-
scale were provided to participants to reduce uncertainty associ-
ated with scale meanings. The instrument was selected because
it shows good face and construct validity (Cao, Chintamani,
Pandya, & Ellis, 2009), and has been found to meet criteria associ-
ated with effective workload assessment techniques: sensitivity,
diagnostic capabilities, selectivity, low intrusiveness, reliability,
and ease of administration (Rubio, Díaz, Martín, & Puente, 2004).
2.3. Experimental design

The design for this experiment was a counter-balanced mixed
design with two independent variables (IV), source of feedback
and character profile. Source of feedback had two levels; it refers
to the interfacing component that relays feedback information to
the user. In the context of this experiment, source conditions were
described as being internal or external to the training environment.
These conditions incorporated EPAs as interfacing characters,
which were present either in the game environment as an entity
part of the scenario or housed externally from the game in the
GIFT TUI (see Fig. 1). The second IV, character profile, was based
on an associated description of the EPA’s background and role
within the scenario, and was centered around research on social
cognitive theory’s persona effect (Baylor & Kim, 2005; Lester
et al., 1997b; Veletsianos, 2010). The results presented will address
analyses examining the first IV alone.

For the purpose of assessing the effect manipulated variables
had on associated dependent measures, there was the need for
baseline conditions to determine effect size. To achieve this, there
were two control conditions. The first control involved the initial
TC3Sim guided scenario without any tutor interaction or explicit
feedback. This is how TC3Sim is currently implemented, with no
real-time interpretation of results and performance; feedback is
provided within an After-Action Review (AAR) following scenario
completion. The second control incorporated the initial TC3Sim
guided scenario with feedback provided solely as an audio mes-
sage. This condition is being termed ‘Voice of God’ (VoG) as there
odality conditions.
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is no direct visual component accompanying the voice message; as
if it comes from nowhere. This condition enables the ability to
determine if the presence of an EPA effects participant outcomes
on dependent variables of interest, as well as if the feedback pre-
sented solely as an audio file improves performance when com-
pared to the baseline condition. It is important to note that
assessments and feedback scripts were consistent across all treat-
ments. This resulted in six total conditions (see Fig. 2).
2.3.1. Hypotheses
In terms of performance related measures, it was hypothesized

that the five conditions including real-time explicit feedback (i.e.,
participants who receive feedback during interaction with
TC3Sim) would produce greater knowledge and skill outcomes in
comparison to the baseline condition with only implicit environ-
mental feedback. In addition, it was hypothesized that all condi-
tions with interactive EPAs would produce significantly higher
performance metrics when compared to both defined control con-
ditions. It was expected that participants receiving explicit feed-
back from an EPA would show greater performance during the
training scenario and larger learning gains as demonstrated by
transfer assessments of game performance and pre-/post-test
scores.

For cognitive load and mental demand based measures, it was
hypothesized there would be significant differences in reported
Workload (WL) and Mental Demand (MD) during TC3Sim interac-
tion across EPA source conditions. Variations in feedback source
modality were believed to affect the allocation of cognitive
resources based on where the EPA was situated in the learning
environment. In terms of this hypothesis, we pose two contradict-
ing predictions based on tenets of cognitive load theory. For
Prediction 1, we reasoned that reported MD and overall WL would
be greatest in conditions where the EPA is present in GIFT’s TUI.
This was based on users having to allocate visual resources to
maintain awareness of the EPAs presence, while managing com-
plex game events. It was also expected that conditions including
an EPA would score higher on MD and WL when compared to
the VoG treatment, as these subjects would not have the additional
visual resources for which they needed to maintain awareness.

In contrast, Prediction 2 was defined around associations linked
with multiple resource theory. Based on Wickens (2002) descrip-
tion of ambient vision, information perceived through peripheral
visual channels allows individuals to maintain a sense of orienta-
tion with that source while maintaining focus on the primary task;
as seen in the Liggett, Reising, and Hartsock (1999) study. Hence,
an additional question is whether an EPA situated directly in the
game environment requires extra focal attention to locate among
other objects in the scenario. Because the EPA is not in a static loca-
tion like the TUI, load on the visual resources may increase to
maintain orientation of where the agent is. If this is the case, then
the prediction is reversed from number one, with expectations of
WL and MD scores reporting higher in the internal feedback source
condition when compared to the external TUI scores.

2.4. Participants

Participants for this study were cadets recruited from the
United States Military Academy (USMA) at West Point. This was
a population of interest because they represent a group of future
Army Officers who will potentially interact with training systems
embedded with ITS components. USMA cadets also account for a
standard university population, with results informing system
design outside of military application. Participant recruitment
was primarily focused on Plebes (i.e. freshman) and Yearlings
(i.e. sophomores) enrolled in the introduction to psychology
course.

Data collection was conducted over a five-day period at USMA
where a total of 131 subjects participated. This resulted in 22 par-
ticipants for each experimental condition minus the control, which
totaled at 21 subjects. Across all participants, 105 were male and
26 were female, and 108 were Plebes (i.e., freshmen) and 23 were
Yearlings (i.e., sophomores). In addition, questions were adminis-
tered to gauge an individual’s videogame experience (VGE), with
majority ranking (95 participants) themselves as having moder-
ately low to no experience, and the remaining subjects (36 partic-
ipants) ranking themselves as having moderately high to high
experience. Based on the variability across this metric, VGE was
be considered as a covariate within statistical analyses linked
around game interaction.

2.5. Procedure

Upon arrival participants were randomly assigned to an exper-
imental condition. Following, they read and signed an informed



Table 1
Descriptive statistics comparing conditions with and without an EPA on performance
across game interactions and administered knowledge tests.

EPA, VoG, or no
feedback

TC3Sim scenario% Knowledge
pre-test

Knowledge
post-test

Training Capstone

EPA-TC3Sim
embedded
(N = 44)

M 37.56 39.41 63.09 68.29
SD 6.92 8.27 12.57 12.89

EPA-GIFT tutor user
interface
(N = 44)

M 37.49 40.56 66.20 69.92
SD 6.59 9.05 9.13 13.12

VoG (N = 22) M 40.91 39.09 63.03 60.00
SD 4.61 7.60 11.77 13.80

No feedback
(N = 21)

M 32.19 35.43 58.73 61.90
SD 6.98 8.03 10.25 18.64
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consent outlining the purpose and risks associated with the study.
Next, they began interaction with GIFT by logging in the session
based on their assigned participant number. GIFT managed the exe-
cution of all experimental procedures once the session was initial-
ized. Instructions and user inputs were established through the TUI.

A participant was first prompted to complete a battery of sur-
veys. Instruments included a demographics survey and a video-
game experience metric. When complete, the pre-test assessing
initial knowledge levels was administered. The test included ques-
tions across all associated training objectives covered in the game.
This initial performance metric was used to determine learning
gains following interaction with the training materials. Next,
GIFT directed the participant to interact with a set of slides devel-
oped to deliver TC3 associated content. The course materials were
self-guided and included interactive multimedia selected across
multiple source applications. All participants interacted with the
same courseware, with subjects spending an average of 10–
12 min with the materials.

Following training, GIFT initialized the first interaction with the
TC3Sim interface environment. Participants performed a short sce-
nario designed to introduce the interfaces and inputs associated with
the game. This tutorial session lasted an average of 3 min and took
no longer than 5 min. Next, GIFT prepped the subject for the first
of two scenarios in TC3Sim. This is where manipulations to the IVs
were introduced. All conditions presented a mission overview high-
lighting the objectives of the game session. Incorporated with this
overview was an introduction to the EPA with which the participant
would interact. A background description associated with the EPA
was provided for the purpose of defining the agent’s perceived role.
Participants in the two assigned control conditions only received a
mission overview before progressing into the game.

The mission overview and EPA background narrative led
directly into the first of two scenarios used to train and test TC3
procedures. The first scenario incorporated real-time feedback pre-
sented through the assigned condition source. During task interac-
tion, GIFT interpreted user inputs for determining performance and
communicated the results for executing feedback scripts. Based on
the condition, feedback was delivered either as audio only (VoG
condition), through an EPA present in GIFT’s TUI, through a charac-
ter present in the virtual game environment, or not at all. Upon
completion, participants answered survey instruments on cogni-
tive load (NASA-TLX). This led into the second of two scenarios
in TC3Sim, which involved similar events to the first session, minus
the real-time feedback element. GIFT monitored interaction and
provided outcome results as a source of performance for determin-
ing skill at executing trained procedures with no assistance.

After interaction with TC3Sim, GIFT presented participants with
a post-test in similar fashion to the initial pre-test. A new set of
questions was presented and the resulting score was used to gauge
learning gains. Next, participants were given the opportunity to
record comments as they related to their experience with the
experimental procedure. Following, a debrief form was given to
participants and any questions they had were addressed.

3. Results

Statistical analyses were performed using IBM SPSS Statistics
19. For indication of statistical significance, an alpha value of .05
was used for all tests, unless explicitly stated otherwise. For a list
of descriptive statistics on associated performance metrics across
conditions of interest, see Table 1.

3.1. Performance-based analysis

The first hypothesis examined what effect the inclusion of feed-
back within a game-based training event had on performance
outcomes in both knowledge- and skill-based assessments. It was
hypothesized that individuals receiving explicit feedback aimed
at improving performance during game-play would produce
higher performance scores for all game interaction as well as
achievement on post-test scores. Statistical tests were conducted
looking at the source of feedback variable to determine if they
had an effect on any associated performance outcomes. Results will
be individually reported across game related data and
pre-/post-test calculated scores. For a visual representation of per-
formance outcomes across game-related metrics and knowledge
test scores, see Fig. 3.
3.1.1. TC3Sim training and capstone scenarios
As an initial starting point, analysis was conducted to confirm

the explicit feedback provided by GIFT actually impacted perfor-
mance scores. This was addressed by examining performance out-
comes within the TC3Sim training scenario, and grouping
individuals in the analysis as whether they received or did not
receive explicit feedback during gameplay. To test this, a
Univariate Analysis of Co-Variance (ANCOVA) was run comparing
the two groups. For this analysis VideoGame Experience (VGE)
was defined as a covariate. Results showed the inclusion of explicit
feedback, regardless of the source, to have a significant main effect
on training scenario performance, (F (1, 129) = 11.749, p = .001,
gp

2 = .05, power = 0.925), with VGE reporting as a significant
covariate, (F (1, 122) = 5.312, p < .025, gp

2 = .040, power = 0.628).
This relationship shows those scoring higher on VGE produced
higher performance during training scenario interaction (Pearson
r = .218).

Next, analyses were conducted examining the influence an EPA
had on performance and retention scores across both game and
knowledge assessments. The first test performed was to examine
the effect an EPA had on performance within the training scenario
alone. This is differentiated from the analysis above in that it takes
into account the VoG condition to determine if performance
between these two design treatments is significantly different. A
Univariate ANCOVA was run across the three defined groups, with
VGE defined as the covariate. The output shows the conditions
relating to interaction with an EPA, VoG, or No Feedback to pro-
duce significant differences in performance outcomes, (F (2,
129) = 8.28, p < .001, gp

2 = .117, power = 0.958), along with VGE
reporting as a significant covariate, (F (1, 129) = 4.356, p < .05,
gp

2 = .034, power = 0.544). To examine further, post hoc analysis
was performed using the Bonferroni test, with results showing
both the EPA and VoG groups to score significantly higher than
the No Feedback condition (see Table 2). However, no significant
difference was found between the EPA and VoG groupings.

Next, analyses were conducted to examine participants’ subse-
quent performance within the capstone scenario. A mixed



Fig. 3. Performance outcomes on game and test oriented metrics.

Table 2
Post-hoc analysis of training scenario performance across EPA treatments.

EPA, VoG, or no feedback TC3Sim scenario% Significance

Mean Standard error

EPA vs. no feedback 37.2 .007 p = .01
32.4 .014

VoG vs. no feedback 40.6 .014 p < .001
32.4 .014
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between-within subjects ANOVA was run examining differences in
performance gains across the two game scenarios and to determine
if the feedback source had an influence on the associated out-
comes. Results showed no significant differences for
within-subject interaction between scenario and experimental
condition (F (1, 125) = 2.572, p = .080, gp

2 = .040, power = 0.505).
However, the test revealed a significant between subjects main
effect across conditions in terms of TC3Sim performance as
deemed by the scores across the two scenarios (F (2,
128) = 4.520, p < .025, gp

2 = .066, power = 0.762).
Following, a Univariate ANCOVA was conducted to test the find-

ing found above and to identify if associated EPA capstone perfor-
mance was significantly different when compared against
outcomes from the VoG and No Feedback conditions, with a partic-
ipants training scenario score being defined as the covariate.
Results show the source treatment to have no significant main
effect on game performance within the capstone scenario (F (2,
123) = 1.232, p = .295, gp

2 = .020, power = 0.264), with a partici-
pants performance on the training scenario being a significant
covariate, (F (1, 123) = 19.571, p < .001, gp

2 = .137, power = 0.992).
Regardless of the condition, an individual’s score on the TC3Sim
training scenario was found to strongly predict their performance
on the subsequent assessment scenario (Pearson’s r = .393,
p < .001).

The final test looked at the location of the EPA during gameplay
(TUI vs. Game-Embedded) and to determine if there was an effect
on resulting performance outcomes. Because all of the EPA condi-
tions incorporated explicit feedback, it is predicted that there
would be no significant differences in outcomes as a result of
where the EPA was positioned. As this is the only aspect of the
experimental procedure where a tutor was present, this analysis
focused solely on training scenario outcomes. A Univariate
ANCOVA was performed based around the TUI-embedded and
TC3Sim-embedded EPA groupings, with VGE defined as a covariate.
As predicted, the results showed no significant differences in train-
ing performance when comparing a tutor in the TUI (M = 37.3.
SE = .011) versus being embedded in the game environment
(M = 37.1, SE = .011; F (1, 86) = .023, p = .879, gp

2 = .000,
power = 0.053). As seen in the groups associated means, there
was minimal variance in performance outcomes as a result of
where the EPA was located during game interaction.

3.1.2. Knowledge post-test outcomes
Following examination of game-based performance metrics,

analyses were performed on outcomes from the two knowledge
tests administered at the beginning and end of the experimental
session. First, a mixed between/within subjects ANOVA was run
looking at the differences in performance across the pre- and
post-test knowledge scores. A visual graphic of these performance
metrics can be seen in Fig. 3. In examining the statistical outputs,
results show no significant within subject interaction between
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Pre-/Post-Test administration and the source conditions, (F (2,
128) = 2.413, p < .094, gp

2 = .036, power = 0.479). However, a sig-
nificant between subject main effect for Experimental Condition
was identified (F (2, 128) = 4.520, p < .025, gp

2 = .066,
power = 0.7626) based on a transformed variable computed by
averaging an individual’s two test scores.

Because of the identified significant between subjects main effect,
post hoc analysis was conducted to identify the conditions to pro-
duce reliable differences associated with knowledge learning gains.
To account for performance scored on the pre-test, a Univariate
ANCOVA was performed, with the pre-test score being defined as a
covariate. Results showed the source condition to have a significant
main effect on the knowledge post-test scores (F (2, 127) = 4.028,
p < .025, gp

2 = .060, power = 0.710), with an individual’s pre-test
score showing as a significant covariate (F (1, 127) = 12.975,
p < .001, gp

2 = .093, power = 0.947). As found above in game perfor-
mance, an individual’s score on the knowledge pre-test was found
to strongly predict their performance on the subsequent post-test,
regardless of the condition (Pearson’s r = .321, p < .001). To examine
Table 3
Experimental workload and mental demand metrics across conditions.

Feedback modality condition NASA-TLX results

Workload Mental demand

EPA-TC3Sim embedded (N = 44) M 56.77 80.82
SD 8.72 12.97

EPA-GIFT tutor user interface (N = 44) M 55.27 84.55
SD 12.45 18.85

VoG (N = 22) M 55.65 73.86
SD 9.53 13.89

No feedback (N = 21) M 52.37 85.33
SD 13.24 15.89

Fig. 4. Mental demand and workload scor
further, post hoc analysis was performed with the Bonferroni test,
resulting in an identified significant difference on post-test perfor-
mance between those interacting with an EPA (M = 68.86,
SE = .014) and those in the VoG condition (M = 60.00, SE = .029;
p = .026). While the EPA conditions outperformed the No Feedback
by more than five percentage points, there was no significant differ-
ence found as a result of the ANCOVA.

3.2. Cognitive load and mental demand based analyses

Due to experimental conditions involving variations in the
game-tutor interface design, analyses were conducted examining
an individual’s Mental Demand (MD) and associated WorkLoad
(WL). The theoretical foundation associated with analysis is based
on research surrounding cognitive load theory and multiple resource
theory (Oviatt, 2006; Wickens, 2002). The results presented are
based on self-reported WL and MD metrics collected from the
NASA-TLX directly following the TC3Sim training scenario. Due to
time limitations with the subject pool, we were unable to
re-administer the NASA-TLX following the capstone scenario to
determine if further exposure to the game reduces the perceived
amount of effort to perform effectively. As a result, statistical tests
examine the relationship between the IV of feedback source modal-
ity and its impact on WL and MD within only one of the two scenar-
ios. For a list of descriptive statistics on associated WL and MD
metrics across each source modality condition, see Table 3.

To establish if there were reliable differences in reported WL
and MD scores across treatments, two separate Univariate
ANOVAs were performed on each of the cognitive load metrics
(see Fig. 4 for visual representation). Results show the overall WL
metric (i.e., metric computed from all six dimensions of
es across source modality conditions.
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NASA-TLX) to reveal no significant differences between conditions
(F (2, 107) = .235, p = .791, gp

2 = .004, power = 0.086), while the MD
metric showed reliable differences as a result of whether a partic-
ipant interacted with the TUI-Embedded tutor, the
TC3Sim-Embedded tutor, or the VoG condition (F (2,
107) = 3.373, p < .05, gp

2 = .059, power = 0.625). To examine fur-
ther, planned comparisons were performed to determine the speci-
fic treatments contributing to this statistical finding. Outcomes
from these tests showed both the TUI-Embedded tutor
(M = 84.54, SD = 18.85) conditions and TC3Sim-Embedded tutor
(M = 80.82, SD = 12.97) conditions to report significantly higher
MD scores when compared to the VoG condition (M = 73.86,
SD = 13.89), while no reliable differences were found between
the varying EPA source modalities.

With a baseline condition providing no explicit feedback during
the TC3Sim training scenario, the next set of analyses focused on
examining if those relying solely on implicit information from
the game to gauge performance would report significantly higher
WL and MD scores when compared to those receiving
performance-driven feedback. Two analyses were conducted to
test this hypothesis. The first was a Multivariate ANOVA
(MANOVA) looking at both WL and MD against the two defined
groups of Feedback and No Feedback. Results from the MANOVA
show no significant differences between the two groups for both
metrics (MD: F (1, 129) = 1.364, p = .245, gp

2 = .010, power = 0.213;
WL: F (1, 129) = 1.886, p = .172, gp

2 = .014, power = 0.245). The next
analysis looked at each of the EPA and VOG source conditions
against those receiving no feedback through a MANOVA. As seen
in all results associated with NASA-TLX data, the metric of WL
showed no significant differences between the individual condi-
tions (F (3, 127) = .765, p = .516, gp

2 = .018, power = 0.210).
However, results from the MANOVA on MD show significantly reli-
able differences between conditions (F (3, 127) = 2.771, p = .044,
gp

2 = .061, power = 0.658), yet post hoc tests showed contradicting
condition comparisons. Bonferroni post hoc analysis revealed no
conditions to report reliable differences, while Fisher’s Least
Significance Difference reported reliable differences when compar-
ing the VoG (M = 73.86, SE = 3.33) condition to both the No
Feedback (M = 85.33, SE = 3.41; p < .025) and the EPA TUI condi-
tions (M = 84.55, SE = 3.32; p < .025).

4. Discussion

With results supporting the application of a real-time feedback
function in the game TC3Sim, the primary focus of the discussion is
to address the impact of EPA feedback modalities on dependent
measures of interest. We identify causal relationships that will
influence future application of ITS features in game-based training
events, as well as direct follow-on research efforts. A goal is to bet-
ter understand the influence of ITS feedback in game-based envi-
ronments, and to identify tradeoffs between the various EPA
interfacing modalities and their influence on performance
outcomes.

In examining the effect an EPA has on performance within the
game TC3Sim, it was found that individuals within the VoG condi-
tion scored highest in the TC3Sim training scenario when com-
pared against all EPA related treatments. From this perspective,
the inclusion of an EPA shows no true benefit. Individuals who
received feedback prompts as audio alone performed the best,
but results were not significantly better than those with EPA treat-
ments. This outcome aligns with similar studies investigating the
impact an EPA has on real-time training performance outcomes
(Höök, Persson, & Sjölinder, 2000; Moundridou & Virvou, 2002;
Van Mulken, André, & Müller, 1998).

The real insight of an EPA’s effect on performance is observed in
examining outcomes on subsequent assessments (i.e., capstone
scenario and knowledge post-test). According to Schmidt and
Bjork (1992) it is critical to add transfer and retention phases when
comparing treatment conditions on learning effect, as these subse-
quent measures are often better indicators of an independent vari-
ables influence on performance differences between groups. In
these analyses, the EPA conditions were found to perform signifi-
cantly better than the VoG. The results from this analysis indicate
that the presence of an EPA during game interaction led to better
outcomes on subsequent interaction within similar problem
spaces, leaving the VoG condition as the only treatment to produce
negative learning gains and transfer across both the game and
knowledge-test metrics. Hence, while VoG was shown to result
in the highest performance outcomes in the TC3Sim training sce-
nario, this treatment was shown to have the weakest transfer to
alternate problems and retention of domain related facts.

This finding supports the persona effect, demonstrating that
grounding feedback through a social source aids in perception of
information and management of short- and long-term memory,
resulting in better conceptual understanding of the material
(Gulz, 2004; Veletsianos & Russell, 2014). This observed outcome
of an EPA’s effect on transfer assessments is consistent with prior
research in the computer-based instruction field (Graesser,
VanLehn, Rosé, Jordan, & Harter, 2001; Moreno et al., 2001). A
remaining question is, what is the causal effect associated with
these variations in performance?

While the EPA and VoG conditions incorporated the same
assessment and feedback techniques, what is the underlying cause
for significant differences in performance outcomes as seen in the
capstone scenario and knowledge post-test measures? In analyzing
the causal effects related to this question, very little prior research
was found that could lend insight into the observed trends. A dis-
tinct difference between these conditions is the priming interac-
tion delivered to participants in the EPA groupings. For the
context of this research, priming is defined as any set of interac-
tions experienced prior to a training event that implicitly influ-
ences the processing of material and communications
(Cleeremans, 2001). In the EPA instances the participant is intro-
duced to the virtual tutor agent with a narrative describing their
purpose. This direct priming informs the learner that information
would be provided in real-time by a virtual tutor that ties their
performance directly to a domain concept being assessed. In the
VoG condition, no such introduction is ever experienced. In fact,
the participant is not primed at all with respect to an ITS running
assessment and managing feedback functions. From this perspec-
tive, the performance-based feedback given in the VoG group can
be perceived as if it is directly part of the scenario, being implicitly
delivered as natural component of the game environment (Narciss,
2008).

This finding may assist in explaining why individuals in the VoG
condition scored the highest during the training scenario, while
producing the worst transfer and retention results on subsequent
assessments. In the VoG treatment, participants are reacting to
feedback provided by GIFT as if it is part of the game, due to
removal of the EPA introduction that notifies the subject explicit
information will be provided. As the feedback is frequent and
performance-driven, the content is intended to guide the trainee
toward a correct behavior. However, frequent feedback in this con-
text can also have negative consequences in terms of learning and
retention (Schmidt, 1991; Schmidt & Bjork, 1992). If feedback
comes to be an inherent part of the task that is implicitly perceived,
as is evident in the VoG condition, then performance is disrupted in
retention when the feedback is ultimately removed from the exe-
cution environment. Schmidt and Bjork (1992) also mention that
frequent feedback can block information processing activities that
are necessary to the knowledge acquisition phase for producing
effective response when assessed on retention. This highlights a
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dependency on feedback to successfully execute a task rather than
use it as a learning aid to better formulate mental models of
acceptable behavior.

To further assess the causal factors of the observed performance
gaps between the EPA and VoG conditions, the results associated
with subjective responses on mental demand are further analyzed.
For this study, two predictions were posed as they relate to where
the EPA was situated during the TC3Sim training scenario and its
effect on perceived cognitive demand. Each prediction was based
around different perspectives of Wicken’s (2002) multiple resource
theory, with dual task and ambient vision theories providing the
basis for the design. Interestingly, the data revealed no differences
in self-reported WL and MD as collected from the NASA-TLX across
all four associated EPA conditions, yet both the TUI-Embedded and
TC3Sim-Embedded EPA treatments scored significantly higher on
the MD metric when compared against the VoG condition. This
result conveys that the incorporation of an EPA increased the level
of mental effort used by a subject when interacting within the seri-
ous game environment. If a learner knows information will be
delivered that will assist them in performing their tasks, they will
be more prone to apply additional cognitive resources so explicit
information is not missed over. In the context of the VoG condition,
participants were not notified explicit feedback would be provided,
resulting in less effort to monitor information not implicitly pro-
vided by the game.

Based on this association, it appears to be beneficial to provide
upfront information to the learner that feedback will be provided
linking game interaction to overall learning objectives the system
is designed to train. This may assist the learner in associating for-
mative feedback information with knowledge schemas in memory
for correcting or reaffirming knowledge components (Shute, 2007).
An additional prediction posed to Hypothesis 2 was that subjects in
the baseline No Feedback treatment would report the highest WL
and MD scores due to relying on implicit information from the
game alone to gauge performance toward meeting objectives.
Similarly to all EPA conditions, the No Feedback condition reported
higher MD scores when compared against the VoG condition, with
no significant differences seen between the control and the feed-
back source modality treatments.

4.1. Future work

The outcomes resulting from this study will inform future
research efforts associated with instructional strategy implemen-
tation for individualized tailored learning. In terms of the feedback
research addressed in this work, the experiment was intended to
examine GIFT’s utility within a dynamic serious game and to eval-
uate approaches for delivering external communication without
negatively affecting performance outcomes. The results conveyed
interesting findings that support further application of a TUI to
interface real-time explicit feedback information with a learner.
More research is needed to explore the varying options the TUI
provides for delivering information, and to determine what appli-
cations the various approaches work best within. A specific fallout
study resulting from this research is investigating the effect the
inclusion of text in the TUI has when an EPA is also present during
game interaction. This is contrary to findings from research sur-
rounding the modality principle and redundancy effect (Mayer &
Moreno, 2002; Shute, 2007). However, it is believed that with some
of these applications being highly dynamic, especially TC3Sim,
having text present in the TUI as a form of feedback history may
be beneficial for the learner as events in the environment may hin-
der cognitive resources required to effectively interpret the infor-
mation provided to assist performance.

In addition, further investigation is required looking at the
impact of upfront communications priming the learner for explicit
feedback functions in the training environment. While the VoG
condition received the same audio prompts without the presence
of an EPA, we need further investigation to determine if the EPA
truly influenced the perception of feedback information. As
game-based learning applications evolve to incorporate automated
feedback functions, further research is required to determine how
best to prepare a learner cognitively so as to efficiently process
information both implicitly in the game and through explicit infor-
mation that associated action with intended objective outcomes.
Lastly, analyses revealed a relationship between videogame expe-
rience and recorded performance outcomes across the TC3Sim sce-
narios. This warrants further investigation to better understand
how videogame experience influences learning in such environ-
ments. A direct question of interest is determining if an individual’s
experience should influence the design of game-based training and
what type of feedback should be provided.
5. Conclusion

The aim of this research was to explore available tools for inte-
grating intelligent tutoring communications in game-based learn-
ing platforms and to examine theory-based techniques for
delivering explicit feedback based on individualized performance.
Influenced by research surrounding social cognitive theory and
cognitive load theory, the experiment presented tested varying
approaches for utilizing an EPA to function as a tutor during inter-
action in a game-based environment. Conditions were authored to
assess the tradeoffs between embedding an EPA directly in the
game environment, embedding an EPA in GIFT’s browser-based
TUI, or using audio prompts alone with no social grounding.
Although not all predictions were supported by the resulting data,
the application of using an EPA in the TUI to provide feedback dur-
ing learning was found to be as effective as embedding the agent
directly in the game environment.

This inference is based on evidence showing reliable differences
across conditions on the metrics of performance and self-reported
mental demand. The overarching finding is that feedback, regard-
less of being delivered by an EPA, significantly improved perfor-
mance in the training scenario. However, those assigned to an
EPA condition were found to perform significantly better on trans-
fer assessments when compared against subjects assigned to the
audio alone condition (e.g. VoG). This finding supports previous
research concerning the application of social agents in
technology-based learning platforms.
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